/************************************************************************************ * drivers/mtd/at45db.c * Driver for SPI-based AT45DB161D (16Mbit) * * Copyright (C) 2010-2011, 2013 Gregory Nutt. All rights reserved. * Author: Gregory Nutt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ************************************************************************************/ /* Ordering Code Detail: * * AT 45DB 16 1 D – SS U * | | | | | | `- Device grade * | | | | | `- Package Option * | | | | `- Device revision * | | | `- Interface: 1=serial * | | `- Capacity: 16=16Mbit * | `- Product family * `- Atmel designator */ /************************************************************************************ * Included Files ************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include /************************************************************************************ * Pre-processor Definitions ************************************************************************************/ /* Configuration ********************************************************************/ /* CONFIG_AT45DB_PREWAIT enables higher performance write logic: We leave the chip * busy after write and erase operations. This improves write and erase performance * because we do not have to wait as long between transactions (other processing can * occur while the chip is busy) but means that the chip must stay powered: */ #if defined(CONFIG_AT45DB_PWRSAVE) && defined(CONFIG_AT45DB_PREWAIT) # error "Both CONFIG_AT45DB_PWRSAVE and CONFIG_AT45DB_PREWAIT are defined" #endif /* If the user has provided no frequency, use 1MHz */ #ifndef CONFIG_AT45DB_FREQUENCY # define CONFIG_AT45DB_FREQUENCY 1000000 #endif /* SPI Commands *********************************************************************/ /* Read commands */ #define AT45DB_RDMN 0xd2 /* Main Memory Page Read */ #define AT45DB_RDARRY 0xe8 /* Continuous Array Read (Legacy Command) */ #define AT45DB_RDARRAYLF 0x03 /* Continuous Array Read (Low Frequency) */ #define AT45DB_RDARRAYHF 0x0b /* Continuous Array Read (High Frequency) */ #define AT45DB_RDBF1LF 0xd1 /* Buffer 1 Read (Low Frequency) */ #define AT45DB_RDBF2LF 0xd3 /* Buffer 2 Read (Low Frequency) */ #define AT45DB_RDBF1 0xd4 /* Buffer 1 Read */ #define AT45DB_RDBF2 0xd6 /* Buffer 2 Read */ /* Program and Erase Commands */ #define AT45DB_WRBF1 0x84 /* Buffer 1 Write */ #define AT45DB_WRBF2 0x87 /* Buffer 2 Write */ #define AT45DB_BF1TOMNE 0x83 /* Buffer 1 to Main Memory Page Program with Built-in Erase */ #define AT45DB_BF2TOMNE 0x86 /* Buffer 2 to Main Memory Page Program with Built-in Erase */ #define AT45DB_BF1TOMN 0x88 /* Buffer 1 to Main Memory Page Program without Built-in Erase */ #define AT45DB_BF2TOMN 0x89 /* Buffer 2 to Main Memory Page Program without Built-in Erase */ #define AT45DB_PGERASE 0x81 /* Page Erase */ #define AT45DB_BLKERASE 0x50 /* Block Erase */ #define AT45DB_SECTERASE 0x7c /* Sector Erase */ #define AT45DB_CHIPERASE1 0xc7 /* Chip Erase - byte 1 */ # define AT45DB_CHIPERASE2 0x94 /* Chip Erase - byte 2 */ # define AT45DB_CHIPERASE3 0x80 /* Chip Erase - byte 3 */ # define AT45DB_CHIPERASE4 0x9a /* Chip Erase - byte 4 */ #define AT45DB_MNTHRUBF1 0x82 /* Main Memory Page Program Through Buffer 1 */ #define AT45DB_MNTHRUBF2 0x85 /* Main Memory Page Program Through Buffer 2 */ /* Protection and Security Commands */ #define AT45DB_ENABPROT1 0x3d /* Enable Sector Protection - byte 1 */ # define AT45DB_ENABPROT2 0x2a /* Enable Sector Protection - byte 2 */ # define AT45DB_ENABPROT3 0x7f /* Enable Sector Protection - byte 3 */ # define AT45DB_ENABPROT4 0xa9 /* Enable Sector Protection - byte 4 */ #define AT45DB_DISABPROT1 0x3d /* Disable Sector Protection - byte 1 */ # define AT45DB_DISABPROT2 0x2a /* Disable Sector Protection - byte 2 */ # define AT45DB_DISABPROT3 0x7f /* Disable Sector Protection - byte 3 */ # define AT45DB_DISABPROT4 0x9a /* Disable Sector Protection - byte 4 */ #define AT45DB_ERASEPROT1 0x3d /* Erase Sector Protection Register - byte 1 */ # define AT45DB_ERASEPROT2 0x2a /* Erase Sector Protection Register - byte 2 */ # define AT45DB_ERASEPROT3 0x7f /* Erase Sector Protection Register - byte 3 */ # define AT45DB_ERASEPROT4 0xcf /* Erase Sector Protection Register - byte 4 */ #define AT45DB_PROGPROT1 0x3d /* Program Sector Protection Register - byte 1 */ # define AT45DB_PROGPROT2 0x2a /* Program Sector Protection Register - byte 2 */ # define AT45DB_PROGPROT3 0x7f /* Program Sector Protection Register - byte 3 */ # define AT45DB_PROGPROT4 0xfc /* Program Sector Protection Register - byte 4 */ #define AT45DB_RDPROT 0x32 /* Read Sector Protection Register */ #define AT45DB_LOCKDOWN1 0x3d /* Sector Lockdown - byte 1 */ # define AT45DB_LOCKDOWN2 0x2a /* Sector Lockdown - byte 2 */ # define AT45DB_LOCKDOWN3 0x7f /* Sector Lockdown - byte 3 */ # define AT45DB_LOCKDOWN4 0x30 /* Sector Lockdown - byte 4 */ #define AT45DB_RDLOCKDOWN 0x35 /* Read Sector Lockdown Register */ #define AT45DB_PROGSEC1 0x9b /* Program Security Register - byte 1 */ # define AT45DB_PROGSEC2 0x00 /* Program Security Register - byte 2 */ # define AT45DB_PROGSEC3 0x00 /* Program Security Register - byte 3 */ # define AT45DB_PROGSEC4 0x00 /* Program Security Register - byte 4 */ #define AT45DB_RDSEC 0x77 /* Read Security Register */ /* Additional commands */ #define AT45DB_MNTOBF1XFR 0x53 /* Main Memory Page to Buffer 1 Transfer */ #define AT45DB_MNTOBF2XFR 0x55 /* Main Memory Page to Buffer 2 Transfer */ #define AT45DB_MNBF1CMP 0x60 /* Main Memory Page to Buffer 1 Compare */ #define AT45DB_MNBF2CMP 0x61 /* Main Memory Page to Buffer 2 Compare */ #define AT45DB_AUTOWRBF1 0x58 /* Auto Page Rewrite through Buffer 1 */ #define AT45DB_AUTOWRBF2 0x59 /* Auto Page Rewrite through Buffer 2 */ #define AT45DB_PWRDOWN 0xb9 /* Deep Power-down */ #define AT45DB_RESUME 0xab /* Resume from Deep Power-down */ #define AT45DB_RDSR 0xd7 /* Status Register Read */ #define AT45DB_RDDEVID 0x9f /* Manufacturer and Device ID Read */ #define AT45DB_MANUFACTURER 0x1f /* Manufacturer ID: Atmel */ #define AT45DB_DEVID1_CAPMSK 0x1f /* Bits 0-4: Capacity */ #define AT45DB_DEVID1_1MBIT 0x02 /* xxx0 0010 = 1Mbit AT45DB011 */ #define AT45DB_DEVID1_2MBIT 0x03 /* xxx0 0012 = 2Mbit AT45DB021 */ #define AT45DB_DEVID1_4MBIT 0x04 /* xxx0 0100 = 4Mbit AT45DB041 */ #define AT45DB_DEVID1_8MBIT 0x05 /* xxx0 0101 = 8Mbit AT45DB081 */ #define AT45DB_DEVID1_16MBIT 0x06 /* xxx0 0110 = 16Mbit AT45DB161 */ #define AT45DB_DEVID1_32MBIT 0x07 /* xxx0 0111 = 32Mbit AT45DB321 */ #define AT45DB_DEVID1_64MBIT 0x08 /* xxx0 1000 = 32Mbit AT45DB641 */ #define AT45DB_DEVID1_FAMMSK 0xe0 /* Bits 5-7: Family */ #define AT45DB_DEVID1_DFLASH 0x20 /* 001x xxxx = Dataflash */ #define AT45DB_DEVID1_AT26DF 0x40 /* 010x xxxx = AT26DFxxx series (Not supported) */ #define AT45DB_DEVID2_VERMSK 0x1f /* Bits 0-4: MLC mask */ #define AT45DB_DEVID2_MLCMSK 0xe0 /* Bits 5-7: MLC mask */ /* Status register bit definitions */ #define AT45DB_SR_RDY (1 << 7) /* Bit 7: RDY/ Not BUSY */ #define AT45DB_SR_COMP (1 << 6) /* Bit 6: COMP */ #define AT45DB_SR_PROTECT (1 << 1) /* Bit 1: PROTECT */ #define AT45DB_SR_PGSIZE (1 << 0) /* Bit 0: PAGE_SIZE */ /* 1 Block = 16 pages; 1 sector = 256 pages */ #define PG_PER_BLOCK (16) #define PG_PER_SECTOR (256) /************************************************************************************ * Private Types ************************************************************************************/ /* This type represents the state of the MTD device. The struct mtd_dev_s * must appear at the beginning of the definition so that you can freely * cast between pointers to struct mtd_dev_s and struct at45db_dev_s. */ struct at45db_dev_s { struct mtd_dev_s mtd; /* MTD interface */ FAR struct spi_dev_s *spi; /* Saved SPI interface instance */ uint8_t pageshift; /* log2 of the page size (eg. 1 << 9 = 512) */ uint32_t npages; /* Number of pages in the device */ }; /************************************************************************************ * Private Function Prototypes ************************************************************************************/ /* Lock and per-transaction configuration */ static void at45db_lock(struct at45db_dev_s *priv); static inline void at45db_unlock(struct at45db_dev_s *priv); /* Power management */ #ifdef CONFIG_AT45DB_PWRSAVE static void at45db_pwrdown(struct at45db_dev_s *priv); static void at45db_resume(struct at45db_dev_s *priv); #else # define at45db_pwrdown(priv) # define at45db_resume(priv) #endif /* Low-level AT45DB Helpers */ static inline int at45db_rdid(struct at45db_dev_s *priv); static inline uint8_t at45db_rdsr(struct at45db_dev_s *priv); static uint8_t at45db_waitbusy(struct at45db_dev_s *priv); static inline void at45db_pgerase(struct at45db_dev_s *priv, off_t offset); static inline int at32db_chiperase(struct at45db_dev_s *priv); static inline void at45db_pgwrite(struct at45db_dev_s *priv, FAR const uint8_t *buffer, off_t offset); /* MTD driver methods */ static int at45db_erase(FAR struct mtd_dev_s *mtd, off_t startblock, size_t nblocks); static ssize_t at45db_bread(FAR struct mtd_dev_s *mtd, off_t startblock, size_t nblocks, FAR uint8_t *buf); static ssize_t at45db_bwrite(FAR struct mtd_dev_s *mtd, off_t startblock, size_t nblocks, FAR const uint8_t *buf); static ssize_t at45db_read(FAR struct mtd_dev_s *mtd, off_t offset, size_t nbytes, FAR uint8_t *buffer); static int at45db_ioctl(FAR struct mtd_dev_s *mtd, int cmd, unsigned long arg); /************************************************************************************ * Private Data ************************************************************************************/ /* Chip erase sequence */ #define CHIP_ERASE_SIZE 4 static const uint8_t g_chiperase[CHIP_ERASE_SIZE] = {0xc7, 0x94, 0x80, 0x9a}; /* Sequence to program the device to binary page sizes{256, 512, 1024} */ #define BINPGSIZE_SIZE 4 static const uint8_t g_binpgsize[BINPGSIZE_SIZE] = {0x3d, 0x2a, 0x80, 0xa6}; /************************************************************************************ * Private Functions ************************************************************************************/ /************************************************************************************ * Name: at45db_lock ************************************************************************************/ static void at45db_lock(struct at45db_dev_s *priv) { /* On SPI busses where there are multiple devices, it will be necessary to * lock SPI to have exclusive access to the busses for a sequence of * transfers. The bus should be locked before the chip is selected. * * This is a blocking call and will not return until we have exclusiv access to * the SPI buss. We will retain that exclusive access until the bus is unlocked. */ (void)SPI_LOCK(priv->spi, true); /* After locking the SPI bus, the we also need call the setfrequency, setbits, and * setmode methods to make sure that the SPI is properly configured for the device. * If the SPI buss is being shared, then it may have been left in an incompatible * state. */ SPI_SETMODE(priv->spi, SPIDEV_MODE0); SPI_SETBITS(priv->spi, 8); (void)SPI_SETFREQUENCY(priv->spi, CONFIG_AT45DB_FREQUENCY); } /************************************************************************************ * Name: at45db_unlock ************************************************************************************/ static inline void at45db_unlock(struct at45db_dev_s *priv) { (void)SPI_LOCK(priv->spi, false); } /************************************************************************************ * Name: at45db_pwrdown ************************************************************************************/ #ifdef CONFIG_AT45DB_PWRSAVE static void at45db_pwrdown(struct at45db_dev_s *priv) { SPI_SELECT(priv->spi, SPIDEV_FLASH, true); SPI_SEND(priv->spi, AT45DB_PWRDOWN); SPI_SELECT(priv->spi, SPIDEV_FLASH, false); } #endif /************************************************************************************ * Name: at45db_resume ************************************************************************************/ #ifdef CONFIG_AT45DB_PWRSAVE static void at45db_resume(struct at45db_dev_s *priv) { SPI_SELECT(priv->spi, SPIDEV_FLASH, true); SPI_SEND(priv->spi, AT45DB_RESUME); SPI_SELECT(priv->spi, SPIDEV_FLASH, false); up_udelay(50); } #endif /************************************************************************************ * Name: at45db_rdid ************************************************************************************/ static inline int at45db_rdid(struct at45db_dev_s *priv) { uint8_t capacity; uint8_t devid[3]; fvdbg("priv: %p\n", priv); /* Configure the bus, and select this FLASH part. (The caller should alread have * loced the bus for exclusive access) */ SPI_SELECT(priv->spi, SPIDEV_FLASH, true); /* Send the " Manufacturer and Device ID Read" command and read the next three * ID bytes from the FLASH. */ (void)SPI_SEND(priv->spi, AT45DB_RDDEVID); SPI_RECVBLOCK(priv->spi, devid, 3); /* Deselect the FLASH */ SPI_SELECT(priv->spi, SPIDEV_FLASH, false); fvdbg("manufacturer: %02x devid1: %02x devid2: %02x\n", devid[0], devid[1], devid[2]); /* Check for a valid manufacturer and memory family */ if (devid[0] == AT45DB_MANUFACTURER && (devid[1] & AT45DB_DEVID1_FAMMSK) == AT45DB_DEVID1_DFLASH) { /* Okay.. is it a FLASH capacity that we understand? */ capacity = devid[1] & AT45DB_DEVID1_CAPMSK; switch (capacity) { case AT45DB_DEVID1_1MBIT: /* Save the FLASH geometry for the 16Mbit AT45DB011 */ priv->pageshift = 8; /* Page size = 256 bytes */ priv->npages = 512; /* 512 pages */ return OK; case AT45DB_DEVID1_2MBIT: /* Save the FLASH geometry for the 16Mbit AT45DB021 */ priv->pageshift = 8; /* Page size = 256/264 bytes */ priv->npages = 1024; /* 1024 pages */ return OK; case AT45DB_DEVID1_4MBIT: /* Save the FLASH geometry for the 16Mbit AT45DB041 */ priv->pageshift = 8; /* Page size = 256/264 bytes */ priv->npages = 2048; /* 2048 pages */ return OK; case AT45DB_DEVID1_8MBIT: /* Save the FLASH geometry for the 16Mbit AT45DB081 */ priv->pageshift = 8; /* Page size = 256/264 bytes */ priv->npages = 4096; /* 4096 pages */ return OK; case AT45DB_DEVID1_16MBIT: /* Save the FLASH geometry for the 16Mbit AT45DB161 */ priv->pageshift = 9; /* Page size = 512/528 bytes */ priv->npages = 4096; /* 4096 pages */ return OK; case AT45DB_DEVID1_32MBIT: /* Save the FLASH geometry for the 16Mbit AT45DB321 */ priv->pageshift = 9; /* Page size = 512/528 bytes */ priv->npages = 8192; /* 8192 pages */ return OK; case AT45DB_DEVID1_64MBIT: /* Save the FLASH geometry for the 16Mbit AT45DB321 */ priv->pageshift = 10; /* Page size = 1024/1056 bytes */ priv->npages = 8192; /* 8192 pages */ return OK; default: return -ENODEV; } } return -ENODEV; } /************************************************************************************ * Name: at45db_rdsr ************************************************************************************/ static inline uint8_t at45db_rdsr(struct at45db_dev_s *priv) { uint8_t retval; SPI_SELECT(priv->spi, SPIDEV_FLASH, true); SPI_SEND(priv->spi, AT45DB_RDSR); retval = SPI_SEND(priv->spi, 0xff); SPI_SELECT(priv->spi, SPIDEV_FLASH, false); return retval; } /************************************************************************************ * Name: at45db_waitbusy ************************************************************************************/ static uint8_t at45db_waitbusy(struct at45db_dev_s *priv) { uint8_t sr; /* Poll the device, waiting for it to report that it is ready */ do { up_udelay(10); sr = (uint8_t)at45db_rdsr(priv); } while ((sr & AT45DB_SR_RDY) == 0); return sr; } /************************************************************************************ * Name: at45db_pgerase ************************************************************************************/ static inline void at45db_pgerase(struct at45db_dev_s *priv, off_t sector) { uint8_t erasecmd[4]; off_t offset = sector << priv->pageshift; fvdbg("sector: %08lx\n", (long)sector); /* Higher performance write logic: We leave the chip busy after write and erase * operations. This improves write and erase performance because we do not have * to wait as long between transactions (other processing can occur while the chip * is busy) but means that the chip must stay powered and that we must check if * the chip is still busy on each entry point. */ #ifdef CONFIG_AT45DB_PREWAIT at45db_waitbusy(priv); #endif /* "The Page Erase command can be used to individually erase any page in the main * memory array allowing the Buffer to Main Memory Page Program to be utilized at a * later time. ... To perform a page erase in the binary page size ..., the * opcode 81H must be loaded into the device, followed by three address bytes * ... When a low-to-high transition occurs on the CS pin, the part will erase the * selected page (the erased state is a logical 1). ... the status register and the * RDY/BUSY pin will indicate that the part is busy." */ erasecmd[0] = AT45DB_PGERASE; /* Page erase command */ erasecmd[1] = (offset >> 16) & 0xff; /* 24-bit offset MS bytes */ erasecmd[2] = (offset >> 8) & 0xff; /* 24-bit offset middle bytes */ erasecmd[3] = offset & 0xff; /* 24-bit offset LS bytes */ /* Erase the page */ SPI_SELECT(priv->spi, SPIDEV_FLASH, true); SPI_SNDBLOCK(priv->spi, erasecmd, 4); SPI_SELECT(priv->spi, SPIDEV_FLASH, false); /* Wait for any erase to complete if we are not trying to improve write * performance. (see comments above). */ #ifndef CONFIG_AT45DB_PREWAIT at45db_waitbusy(priv); #endif fvdbg("Erased\n"); } /************************************************************************************ * Name: at32db_chiperase ************************************************************************************/ static inline int at32db_chiperase(struct at45db_dev_s *priv) { fvdbg("priv: %p\n", priv); /* Higher performance write logic: We leave the chip busy after write and erase * operations. This improves write and erase performance because we do not have * to wait as long between transactions (other processing can occur while the chip * is busy) but means that the chip must stay powered and that we must check if * the chip is still busy on each entry point. */ #ifdef CONFIG_AT45DB_PREWAIT at45db_waitbusy(priv); #endif /* "The entire main memory can be erased at one time by using the Chip Erase * command. To execute the Chip Erase command, a 4-byte command sequence C7H, 94H, * 80H and 9AH must be clocked into the device. ... After the last bit of the opcode * sequence has been clocked in, the CS pin can be deasserted to start the erase * process. ... the Status Register will indicate that the device is busy. The Chip * Erase command will not affect sectors that are protected or locked down... */ SPI_SELECT(priv->spi, SPIDEV_FLASH, true); SPI_SNDBLOCK(priv->spi, g_chiperase, CHIP_ERASE_SIZE); SPI_SELECT(priv->spi, SPIDEV_FLASH, false); /* Wait for any erase to complete if we are not trying to improve write * performance. (see comments above). */ #ifndef CONFIG_AT45DB_PREWAIT at45db_waitbusy(priv); #endif return OK; } /************************************************************************************ * Name: at45db_pgwrite ************************************************************************************/ static inline void at45db_pgwrite(struct at45db_dev_s *priv, FAR const uint8_t *buffer, off_t page) { uint8_t wrcmd [4]; off_t offset = page << priv->pageshift; fvdbg("page: %08lx offset: %08lx\n", (long)page, (long)offset); /* We assume that sectors are not write protected */ wrcmd[0] = AT45DB_MNTHRUBF1; /* To main memory through buffer 1 */ wrcmd[1] = (offset >> 16) & 0xff; /* 24-bit address MS byte */ wrcmd[2] = (offset >> 8) & 0xff; /* 24-bit address middle byte */ wrcmd[3] = offset & 0xff; /* 24-bit address LS byte */ /* Higher performance write logic: We leave the chip busy after write and erase * operations. This improves write and erase performance because we do not have * to wait as long between transactions (other processing can occur while the chip * is busy) but means that the chip must stay powered and that we must check if * the chip is still busy on each entry point. */ #ifdef CONFIG_AT45DB_PREWAIT at45db_waitbusy(priv); #endif SPI_SELECT(priv->spi, SPIDEV_FLASH, true); SPI_SNDBLOCK(priv->spi, wrcmd, 4); SPI_SNDBLOCK(priv->spi, buffer, 1 << priv->pageshift); SPI_SELECT(priv->spi, SPIDEV_FLASH, false); /* Wait for any erase to complete if we are not trying to improve write * performance. (see comments above). */ #ifndef CONFIG_AT45DB_PREWAIT at45db_waitbusy(priv); #endif fvdbg("Written\n"); } /************************************************************************************ * Name: at45db_erase ************************************************************************************/ static int at45db_erase(FAR struct mtd_dev_s *mtd, off_t startblock, size_t nblocks) { FAR struct at45db_dev_s *priv = (FAR struct at45db_dev_s *)mtd; size_t pgsleft = nblocks; fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Take the lock so that we have exclusive access to the bus, then power up the * FLASH device. */ at45db_lock(priv); at45db_resume(priv); /* Then erase each page */ while (pgsleft-- > 0) { /* Erase each sector */ at45db_pgerase(priv, startblock); startblock++; } at45db_pwrdown(priv); at45db_unlock(priv); return (int)nblocks; } /************************************************************************************ * Name: at45db_bread ************************************************************************************/ static ssize_t at45db_bread(FAR struct mtd_dev_s *mtd, off_t startblock, size_t nblocks, FAR uint8_t *buffer) { FAR struct at45db_dev_s *priv = (FAR struct at45db_dev_s *)mtd; ssize_t nbytes; /* On this device, we can handle the block read just like the byte-oriented read */ nbytes = at45db_read(mtd, startblock << priv->pageshift, nblocks << priv->pageshift, buffer); if (nbytes > 0) { return nbytes >> priv->pageshift; } return nbytes; } /************************************************************************************ * Name: at45db_bwrite ************************************************************************************/ static ssize_t at45db_bwrite(FAR struct mtd_dev_s *mtd, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) { FAR struct at45db_dev_s *priv = (FAR struct at45db_dev_s *)mtd; size_t pgsleft = nblocks; fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Take the lock so that we have exclusive access to the bus, then power up the * FLASH device. */ at45db_lock(priv); at45db_resume(priv); /* Write each page to FLASH */ while (pgsleft-- > 0) { at45db_pgwrite(priv, buffer, startblock); startblock++; } at45db_pwrdown(priv); at45db_unlock(priv); return nblocks; } /************************************************************************************ * Name: at45db_read ************************************************************************************/ static ssize_t at45db_read(FAR struct mtd_dev_s *mtd, off_t offset, size_t nbytes, FAR uint8_t *buffer) { FAR struct at45db_dev_s *priv = (FAR struct at45db_dev_s *)mtd; uint8_t rdcmd [5]; fvdbg("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* Set up for the read */ rdcmd[0] = AT45DB_RDARRAYHF; /* FAST_READ is safe at all supported SPI speeds. */ rdcmd[1] = (offset >> 16) & 0xff; /* 24-bit address upper byte */ rdcmd[2] = (offset >> 8) & 0xff; /* 24-bit address middle byte */ rdcmd[3] = offset & 0xff; /* 24-bit address least significant byte */ rdcmd[4] = 0; /* Dummy byte */ /* Take the lock so that we have exclusive access to the bus, then power up the * FLASH device. */ at45db_lock(priv); at45db_resume(priv); /* Higher performance write logic: We leave the chip busy after write and erase * operations. This improves write and erase performance because we do not have * to wait as long between transactions (other processing can occur while the chip * is busy) but means that the chip must stay powered and that we must check if * the chip is still busy on each entry point. */ #ifdef CONFIG_AT45DB_PREWAIT at45db_waitbusy(priv); #endif /* Perform the read */ SPI_SELECT(priv->spi, SPIDEV_FLASH, true); SPI_SNDBLOCK(priv->spi, rdcmd, 5); SPI_RECVBLOCK(priv->spi, buffer, nbytes); SPI_SELECT(priv->spi, SPIDEV_FLASH, false); at45db_pwrdown(priv); at45db_unlock(priv); fvdbg("return nbytes: %d\n", (int)nbytes); return nbytes; } /************************************************************************************ * Name: at45db_ioctl ************************************************************************************/ static int at45db_ioctl(FAR struct mtd_dev_s *mtd, int cmd, unsigned long arg) { FAR struct at45db_dev_s *priv = (FAR struct at45db_dev_s *)mtd; int ret = -EINVAL; /* Assume good command with bad parameters */ fvdbg("cmd: %d \n", cmd); switch (cmd) { case MTDIOC_GEOMETRY: { FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg); if (geo) { /* Populate the geometry structure with information need to know * the capacity and how to access the device. * * NOTE: that the device is treated as though it where just an array * of fixed size blocks. That is most likely not true, but the client * will expect the device logic to do whatever is necessary to make it * appear so. */ geo->blocksize = (1 << priv->pageshift); geo->erasesize = geo->blocksize; geo->neraseblocks = priv->npages; ret = OK; fvdbg("blocksize: %d erasesize: %d neraseblocks: %d\n", geo->blocksize, geo->erasesize, geo->neraseblocks); } } break; case MTDIOC_BULKERASE: { /* Take the lock so that we have exclusive access to the bus, then * power up the FLASH device. */ at45db_lock(priv); at45db_resume(priv); /* Erase the entire device */ ret = at32db_chiperase(priv); at45db_pwrdown(priv); at45db_unlock(priv); } break; case MTDIOC_XIPBASE: default: ret = -ENOTTY; /* Bad command */ break; } fvdbg("return %d\n", ret); return ret; } /************************************************************************************ * Public Functions ************************************************************************************/ /************************************************************************************ * Name: at45db_initialize * * Description: * Create an initialize MTD device instance. MTD devices are not registered * in the file system, but are created as instances that can be bound to * other functions (such as a block or character driver front end). * ************************************************************************************/ FAR struct mtd_dev_s *at45db_initialize(FAR struct spi_dev_s *spi) { FAR struct at45db_dev_s *priv; uint8_t sr; int ret; fvdbg("spi: %p\n", spi); /* Allocate a state structure (we allocate the structure instead of using * a fixed, static allocation so that we can handle multiple FLASH devices. * The current implementation would handle only one FLASH part per SPI * device (only because of the SPIDEV_FLASH definition) and so would have * to be extended to handle multiple FLASH parts on the same SPI bus. */ priv = (FAR struct at45db_dev_s *)kzalloc(sizeof(struct at45db_dev_s)); if (priv) { /* Initialize the allocated structure. (unsupported methods were * nullified by kzalloc). */ priv->mtd.erase = at45db_erase; priv->mtd.bread = at45db_bread; priv->mtd.bwrite = at45db_bwrite; priv->mtd.read = at45db_read; priv->mtd.ioctl = at45db_ioctl; priv->spi = spi; /* Deselect the FLASH */ SPI_SELECT(spi, SPIDEV_FLASH, false); /* Lock and configure the SPI bus. */ at45db_lock(priv); at45db_resume(priv); /* Identify the FLASH chip and get its capacity */ ret = at45db_rdid(priv); if (ret != OK) { /* Unrecognized! Discard all of that work we just did and return NULL */ fdbg("Unrecognized\n"); goto errout; } /* Get the value of the status register (as soon as the device is ready) */ sr = at45db_waitbusy(priv); /* Check if the device is configured as 256, 512 or 1024 bytes-per-page device */ if ((sr & AT45DB_SR_PGSIZE) == 0) { /* No, re-program it for the binary page size. NOTE: A power cycle * is required after the device has be re-programmed. */ fdbg("Reprogramming page size\n"); SPI_SELECT(priv->spi, SPIDEV_FLASH, true); SPI_SNDBLOCK(priv->spi, g_binpgsize, BINPGSIZE_SIZE); SPI_SELECT(priv->spi, SPIDEV_FLASH, false); goto errout; } /* Release the lock and power down the device */ at45db_pwrdown(priv); at45db_unlock(priv); } fvdbg("Return %p\n", priv); return (FAR struct mtd_dev_s *)priv; /* On any failure, we need free memory allocations and release the lock that * we hold on the SPI bus. On failures, assume that we cannot talk to the * device to do any more. */ errout: at45db_unlock(priv); kfree(priv); return NULL; }