/* * Copyright (C) 2009-2011 Nick Johnson * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #define M_E2 (M_E * M_E) #define M_E4 (M_E2 * M_E2) #define M_E8 (M_E4 * M_E4) #define M_E16 (M_E8 * M_E8) #define M_E32 (M_E16 * M_E16) #define M_E64 (M_E32 * M_E32) #define M_E128 (M_E64 * M_E64) #define M_E256 (M_E128 * M_E128) #define M_E512 (M_E256 * M_E256) #define M_E1024 (M_E512 * M_E512) static double _expi_square_tbl[11] = { M_E, // e^1 M_E2, // e^2 M_E4, // e^4 M_E8, // e^8 M_E16, // e^16 M_E32, // e^32 M_E64, // e^64 M_E128, // e^128 M_E256, // e^256 M_E512, // e^512 M_E1024, // e^1024 }; static double _expi(size_t n) { size_t i; double val; if (n > 1024) { return INFINITY; } val = 1.0; for (i = 0; n; i++) { if (n & (1 << i)) { n &= ~(1 << i); val *= _expi_square_tbl[i]; } } return val; } static float _flt_inv_fact[] = { 1.0 / 1.0, // 1/0! 1.0 / 1.0, // 1/1! 1.0 / 2.0, // 1/2! 1.0 / 6.0, // 1/3! 1.0 / 24.0, // 1/4! 1.0 / 120.0, // 1/5! 1.0 / 720.0, // 1/6! 1.0 / 5040.0, // 1/7! 1.0 / 40320.0, // 1/8! 1.0 / 362880.0, // 1/9! 1.0 / 3628800.0, // 1/10! }; float expf(float x) { size_t int_part; bool invert; float value; float x0; size_t i; if (x == 0) { return 1; } else if (x < 0) { invert = true; x = -x; } else { invert = false; } /* extract integer component */ int_part = (size_t) x; /* set x to fractional component */ x -= (float) int_part; /* perform Taylor series approximation with eleven terms */ value = 0.0; x0 = 1.0; for (i = 0; i < 10; i++) { value += x0 * _flt_inv_fact[i]; x0 *= x; } /* multiply by exp of the integer component */ value *= _expi(int_part); if (invert) { return (1.0 / value); } else { return value; } } static double _dbl_inv_fact[] = { 1.0 / 1.0, // 1 / 0! 1.0 / 1.0, // 1 / 1! 1.0 / 2.0, // 1 / 2! 1.0 / 6.0, // 1 / 3! 1.0 / 24.0, // 1 / 4! 1.0 / 120.0, // 1 / 5! 1.0 / 720.0, // 1 / 6! 1.0 / 5040.0, // 1 / 7! 1.0 / 40320.0, // 1 / 8! 1.0 / 362880.0, // 1 / 9! 1.0 / 3628800.0, // 1 / 10! 1.0 / 39916800.0, // 1 / 11! 1.0 / 479001600.0, // 1 / 12! 1.0 / 6227020800.0, // 1 / 13! 1.0 / 87178291200.0, // 1 / 14! 1.0 / 1307674368000.0, // 1 / 15! 1.0 / 20922789888000.0, // 1 / 16! 1.0 / 355687428096000.0, // 1 / 17! 1.0 / 6402373705728000.0, // 1 / 18! }; double exp(double x) { size_t int_part; bool invert; double value; double x0; size_t i; if (x == 0) { return 1; } else if (x < 0) { invert = true; x = -x; } else { invert = false; } /* extract integer component */ int_part = (size_t) x; /* set x to fractional component */ x -= (double) int_part; /* perform Taylor series approximation with nineteen terms */ value = 0.0; x0 = 1.0; for (i = 0; i < 19; i++) { value += x0 * _dbl_inv_fact[i]; x0 *= x; } /* multiply by exp of the integer component */ value *= _expi(int_part); if (invert) { return (1.0 / value); } else { return value; } } static long double _ldbl_inv_fact[] = { 1.0 / 1.0, // 1 / 0! 1.0 / 1.0, // 1 / 1! 1.0 / 2.0, // 1 / 2! 1.0 / 6.0, // 1 / 3! 1.0 / 24.0, // 1 / 4! 1.0 / 120.0, // 1 / 5! 1.0 / 720.0, // 1 / 6! 1.0 / 5040.0, // 1 / 7! 1.0 / 40320.0, // 1 / 8! 1.0 / 362880.0, // 1 / 9! 1.0 / 3628800.0, // 1 / 10! 1.0 / 39916800.0, // 1 / 11! 1.0 / 479001600.0, // 1 / 12! 1.0 / 6227020800.0, // 1 / 13! 1.0 / 87178291200.0, // 1 / 14! 1.0 / 1307674368000.0, // 1 / 15! 1.0 / 20922789888000.0, // 1 / 16! 1.0 / 355687428096000.0, // 1 / 17! 1.0 / 6402373705728000.0, // 1 / 18! }; long double expl(long double x) { size_t int_part; bool invert; long double value; long double x0; size_t i; if (x == 0) { return 1; } else if (x < 0) { invert = true; x = -x; } else { invert = false; } /* extract integer component */ int_part = (size_t) x; /* set x to fractional component */ x -= (long double) int_part; /* perform Taylor series approximation with nineteen terms */ value = 0.0; x0 = 1.0; for (i = 0; i < 19; i++) { value += x0 * _ldbl_inv_fact[i]; x0 *= x; } /* multiply by exp of the integer component */ value *= _expi(int_part); if (invert) { return (1.0 / value); } else { return value; } }