aboutsummaryrefslogblamecommitdiff
path: root/src/dotty/tools/dotc/typer/RefChecks.scala
blob: 2ae9a5b97af9d5d97c5d7f6a35c9d7f89cec4a08 (plain) (tree)
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462


















                                                                                                  
                                       



















































































                                                                                                                                                                                                                                                           

                                                                                                      













                                                                               








                                                                                   







                                                                      
                                        
          
                   

















































                                                                                                         

                                                                          























































                                                                                                           
                                                                           

























































                                                                                                                              
                                     
































                                                                                      
                                                                                  
















                                                                                                        

                                                                   














































































































                                                                                                                                     
                                                          
                                                                         


                                                                             





















                                                                                                  
                                                                             











                                                                                     
                                                                  









































































































                                                                                                                                                               
                                     


















                                                                                              




                                                                     





                                                                   
                                         












                                                              
                                                                                    
  
                                                







                                                                                                                 


                                                                            



                                       










                                                                          


                                                                                                   
   
                                                                          


              
                                              
 
                                                
 



























                                                                                   

                                                                                                       

                                                          
                                                                              
                                                                   


                                                                                           
 
                                                                                                                    
 











                                                                                                
 



                                                                                                
 




                                                                                                    

          
 







                                                                                                    
 
                                                                                              
                                                     
                                          


                                                        
 

                                                                                                
                                          
          
     
 










                                                                                                   

     









                                                                                          















                                                                                                                                                             





















































































































































































































































































































































































































































































































































































































































                                                                                                                                               
package dotty.tools.dotc
package typer

import transform._
import core._
import config._
import Symbols._, SymDenotations._, Types._, Contexts._, Decorators._, Flags._, Names._, NameOps._
import StdNames._, Denotations._, Scopes._, Constants.Constant
import Annotations._
import util.Positions._
import scala.collection.{ mutable, immutable }
import ast._
import Trees._
import TreeTransforms._
import util.DotClass
import scala.util.{Try, Success, Failure}
import config.{ScalaVersion, NoScalaVersion}
import typer.ErrorReporting._
import DenotTransformers._
import ValueClasses.isDerivedValueClass

object RefChecks {
  import tpd._

  private def isDefaultGetter(name: Name): Boolean =
    name.isTermName && name.asTermName.defaultGetterIndex >= 0

  private val defaultMethodFilter = new NameFilter {
    def apply(pre: Type, name: Name)(implicit ctx: Context): Boolean = isDefaultGetter(name)
  }

  private val AnyOverride = Override | AbsOverride
  private val AnyOverrideOrSynthetic = AnyOverride | Synthetic

  /** Only one overloaded alternative is allowed to define default arguments */
  private def checkOverloadedRestrictions(clazz: Symbol)(implicit ctx: Context): Unit = {
    // Using the default getters (such as methodName$default$1) as a cheap way of
    // finding methods with default parameters. This way, we can limit the members to
    // those with the DEFAULTPARAM flag, and infer the methods. Looking for the methods
    // directly requires inspecting the parameter list of every one. That modification
    // shaved 95% off the time spent in this method.

    for (
      defaultGetterClass <- List(clazz, clazz.companionModule.moduleClass);
      if defaultGetterClass.isClass
    ) {
      val defaultGetterNames = defaultGetterClass.asClass.memberNames(defaultMethodFilter)
      val defaultMethodNames = defaultGetterNames map (_.asTermName.defaultGetterToMethod)

      for (name <- defaultMethodNames) {
        val methods = clazz.info.member(name).alternatives.map(_.symbol)
        val haveDefaults = methods.filter(_.hasDefaultParams)
        if (haveDefaults.length > 1) {
          val owners = haveDefaults map (_.owner)
          // constructors of different classes are allowed to have defaults
          if (haveDefaults.exists(x => !x.isConstructor) || owners.distinct.size < haveDefaults.size)
            ctx.error(
              "in " + clazz +
                ", multiple overloaded alternatives of " + haveDefaults.head +
                " define default arguments" + (
                  if (owners.forall(_ == clazz)) "."
                  else ".\nThe members with defaults are defined in " + owners.map(_.showLocated).mkString("", " and ", ".")),
              clazz.pos)
        }
      }
    }

    // Check for doomed attempt to overload applyDynamic
    if (clazz derivesFrom defn.DynamicClass) {
      for ((_, m1 :: m2 :: _) <- (clazz.info member nme.applyDynamic).alternatives groupBy (_.symbol.typeParams.length)) {
        ctx.error("implementation restriction: applyDynamic cannot be overloaded except by methods with different numbers of type parameters, e.g. applyDynamic[T1](method: String)(arg: T1) and applyDynamic[T1, T2](method: String)(arg1: T1, arg2: T2)",
          m1.symbol.pos)
      }
    }
  }

  // Override checking ------------------------------------------------------------

  /** 1. Check all members of class `clazz` for overriding conditions.
   *  That is for overriding member M and overridden member O:
   *
   *    1.1. M must have the same or stronger access privileges as O.
   *    1.2. O must not be final.
   *    1.3. O is deferred, or M has `override` modifier.
   *    1.4. If O is stable, then so is M.
   *     // @M: LIFTED 1.5. Neither M nor O are a parameterized type alias
   *    1.6. If O is a type alias, then M is an alias of O.
   *    1.7. If O is an abstract type then
   *       1.7.1 either M is an abstract type, and M's bounds are sharper than O's bounds.
   *             or M is a type alias or class which conforms to O's bounds.
   *       1.7.2 higher-order type arguments must respect bounds on higher-order type parameters  -- @M
   *              (explicit bounds and those implied by variance annotations) -- @see checkKindBounds
   *    1.8. If O and M are values, then
   *    1.8.1  M's type is a subtype of O's type, or
   *    1.8.2  M is of type []S, O is of type ()T and S <: T, or
   *    1.8.3  M is of type ()S, O is of type []T and S <: T, or
   *    1.9.  If M is a macro def, O cannot be deferred unless there's a concrete method overriding O.
   *    1.10. If M is not a macro def, O cannot be a macro def.
   *  2. Check that only abstract classes have deferred members
   *  3. Check that concrete classes do not have deferred definitions
   *     that are not implemented in a subclass.
   *  4. Check that every member with an `override` modifier
   *     overrides some other member.
   *  TODO check that classes are not overridden
   *  TODO This still needs to be cleaned up; the current version is a staright port of what was there
   *       before, but it looks too complicated and method bodies are far too large.
   */
  private def checkAllOverrides(clazz: Symbol)(implicit ctx: Context): Unit = {
    val self = clazz.thisType

    case class MixinOverrideError(member: Symbol, msg: String)

    val mixinOverrideErrors = new mutable.ListBuffer[MixinOverrideError]()

    def printMixinOverrideErrors(): Unit = {
      mixinOverrideErrors.toList match {
        case List() =>
        case List(MixinOverrideError(_, msg)) =>
          ctx.error(msg, clazz.pos)
        case MixinOverrideError(member, msg) :: others =>
          val others1 = others.map(_.member).filter(_.name != member.name).distinct
          def othersMsg = {
            val others1 = others.map(_.member)
              .filter(_.name != member.name)
              .map(_.show).distinct
            if (others1.isEmpty) ""
            else i";\n other members with override errors are:: $others1%, %"
          }
          ctx.error(msg + othersMsg, clazz.pos)
      }
    }

    def infoString(sym: Symbol) = infoString0(sym, sym.owner != clazz)
    def infoStringWithLocation(sym: Symbol) = infoString0(sym, true)

    def infoString0(sym: Symbol, showLocation: Boolean) = {
      val sym1 = sym.underlyingSymbol
      if (showLocation) sym1.showLocated
      else
        sym1.show +
          (if (sym1.isAliasType) ", which equals " + self.memberInfo(sym1)
          else if (sym1.isAbstractType) " with bounds" + self.memberInfo(sym1)
          else if (sym1.is(Module)) ""
          else if (sym1.isTerm) " of type " + self.memberInfo(sym1)
          else "")
    }

    /* Check that all conditions for overriding `other` by `member`
       * of class `clazz` are met.
       */
    def checkOverride(member: Symbol, other: Symbol): Unit = {
      def memberTp = self.memberInfo(member)
      def otherTp = self.memberInfo(other)

      ctx.debuglog("Checking validity of %s overriding %s".format(member.showLocated, other.showLocated))

      def noErrorType = !memberTp.isErroneous && !otherTp.isErroneous

      def overrideErrorMsg(msg: String): String = {
        val isConcreteOverAbstract =
          (other.owner isSubClass member.owner) && other.is(Deferred) && !member.is(Deferred)
        val addendum =
          if (isConcreteOverAbstract)
            ";\n (Note that %s is abstract,\n  and is therefore overridden by concrete %s)".format(
              infoStringWithLocation(other),
              infoStringWithLocation(member))
          else if (ctx.settings.debug.value)
            err.typeMismatchStr(memberTp, otherTp)
          else ""

        "overriding %s;\n %s %s%s".format(
          infoStringWithLocation(other), infoString(member), msg, addendum)
      }
      def emitOverrideError(fullmsg: String) = {
        if (member.owner == clazz) ctx.error(fullmsg, member.pos)
        else mixinOverrideErrors += new MixinOverrideError(member, fullmsg)
      }

      def overrideError(msg: String) = {
        if (noErrorType)
          emitOverrideError(overrideErrorMsg(msg))
      }

      def overrideTypeError() = {
        if (noErrorType) {
          emitOverrideError(overrideErrorMsg("has incompatible type"))
        }
      }

      def overrideAccessError() = {
        ctx.log(i"member: ${member.showLocated} ${member.flags}") // DEBUG
        ctx.log(i"other: ${other.showLocated} ${other.flags}") // DEBUG
        val otherAccess = (other.flags & AccessFlags).toString
        overrideError("has weaker access privileges; it should be " +
          (if (otherAccess == "") "public" else "at least " + otherAccess))
      }

      //Console.println(infoString(member) + " overrides " + infoString(other) + " in " + clazz);//DEBUG

      // return if we already checked this combination elsewhere
      if (member.owner != clazz) {
        def deferredCheck = member.is(Deferred) || !other.is(Deferred)
        def subOther(s: Symbol) = s derivesFrom other.owner
        def subMember(s: Symbol) = s derivesFrom member.owner

        if (subOther(member.owner) && deferredCheck) {
          //Console.println(infoString(member) + " shadows1 " + infoString(other) " in " + clazz);//DEBUG
          return
        }
        val parentSymbols = clazz.info.parents.map(_.typeSymbol)
        if (parentSymbols exists (p => subOther(p) && subMember(p) && deferredCheck)) {
          //Console.println(infoString(member) + " shadows2 " + infoString(other) + " in " + clazz);//DEBUG
          return
        }
        if (parentSymbols forall (p => subOther(p) == subMember(p))) {
          //Console.println(infoString(member) + " shadows " + infoString(other) + " in " + clazz);//DEBUG
          return
        }
      }

      /* Is the intersection between given two lists of overridden symbols empty? */
      def intersectionIsEmpty(syms1: Iterator[Symbol], syms2: Iterator[Symbol]) =
        !(syms1 exists (syms2 contains _))

      // o: public | protected        | package-protected  (aka java's default access)
      // ^-may be overridden by member with access privileges-v
      // m: public | public/protected | public/protected/package-protected-in-same-package-as-o

      if (member.is(Private)) // (1.1)
        overrideError("has weaker access privileges; it should not be private")

      // todo: align accessibility implication checking with isAccessible in Contexts
      val ob = other.accessBoundary(member.owner)
      val mb = member.accessBoundary(member.owner)
      def isOverrideAccessOK = (
        (member.flags & AccessFlags).isEmpty // member is public
        || // - or -
        (!other.is(Protected) || member.is(Protected)) && // if o is protected, so is m, and
        (ob.isContainedIn(mb) || other.is(JavaProtected)) // m relaxes o's access boundary,
        // or o is Java defined and protected (see #3946)
        )
      if (!isOverrideAccessOK) {
        overrideAccessError()
      } else if (other.isClass) {
        overrideError("cannot be used here - class definitions cannot be overridden")
      } else if (!other.is(Deferred) && member.isClass) {
        overrideError("cannot be used here - classes can only override abstract types")
      } else if (other.isEffectivelyFinal) { // (1.2)
        overrideError(i"cannot override final member ${other.showLocated}")
      } else if (!other.is(Deferred) && !isDefaultGetter(other.name) && !member.is(AnyOverrideOrSynthetic)) {
        // (*) Synthetic exclusion for (at least) default getters, fixes SI-5178. We cannot assign the OVERRIDE flag to
        // the default getter: one default getter might sometimes override, sometimes not. Example in comment on ticket.
        if (member.owner != clazz && other.owner != clazz && !(other.owner derivesFrom member.owner))
          emitOverrideError(
            clazz + " inherits conflicting members:\n  "
              + infoStringWithLocation(other) + "  and\n  " + infoStringWithLocation(member)
              + "\n(Note: this can be resolved by declaring an override in " + clazz + ".)")
        else
          overrideError("needs `override' modifier")
      } else if (other.is(AbsOverride) && other.isIncompleteIn(clazz) && !member.is(AbsOverride)) {
        overrideError("needs `abstract override' modifiers")
      } else if (member.is(AnyOverride) && other.is(Accessor) &&
        other.accessedFieldOrGetter.is(Mutable, butNot = Lazy)) {
        // !?! this is not covered by the spec. We need to resolve this either by changing the spec or removing the test here.
        // !!! is there a !?! convention? I'm !!!ing this to make sure it turns up on my searches.
        if (!ctx.settings.overrideVars.value)
          overrideError("cannot override a mutable variable")
      } else if (member.is(AnyOverride) &&
        !(member.owner.thisType.baseClasses exists (_ isSubClass other.owner)) &&
        !member.is(Deferred) && !other.is(Deferred) &&
        intersectionIsEmpty(member.extendedOverriddenSymbols, other.extendedOverriddenSymbols)) {
        overrideError("cannot override a concrete member without a third member that's overridden by both " +
          "(this rule is designed to prevent ``accidental overrides'')")
      } else if (other.isStable && !member.isStable) { // (1.4)
        overrideError("needs to be a stable, immutable value")
      } else if (member.is(Lazy) && !other.isSourceMethod && !other.is(Deferred | Lazy)) {
        overrideError("cannot override a concrete non-lazy value")
      } else if (other.is(Lazy, butNot = Deferred) && !other.isSourceMethod && !member.is(Lazy)) {
        overrideError("must be declared lazy to override a concrete lazy value")
      } else if (other.is(Deferred) && member.is(Macro) && member.extendedOverriddenSymbols.forall(_.is(Deferred))) { // (1.9)
        overrideError("cannot be used here - term macros cannot override abstract methods")
      } else if (other.is(Macro) && !member.is(Macro)) { // (1.10)
        overrideError("cannot be used here - only term macros can override term macros")
      } else {
        checkOverrideDeprecated()
      }
    }

    /* TODO enable; right now the annotation is scala-private, so cannot be seen
         * here.
         */
    def checkOverrideDeprecated() = { /*
          if (other.hasDeprecatedOverridingAnnotation) {
            val suffix = other.deprecatedOverridingMessage map (": " + _) getOrElse ""
            val msg = s"overriding ${other.fullLocationString} is deprecated$suffix"
            unit.deprecationWarning(member.pos, msg)
          }*/
    }

    val opc = new OverridingPairs.Cursor(clazz)
    while (opc.hasNext) {
      checkOverride(opc.overriding, opc.overridden)
      opc.next()
    }
    printMixinOverrideErrors()

    // Verifying a concrete class has nothing unimplemented.
    if (!clazz.is(AbstractOrTrait)) {
      val abstractErrors = new mutable.ListBuffer[String]
      def abstractErrorMessage =
        // a little formatting polish
        if (abstractErrors.size <= 2) abstractErrors mkString " "
        else abstractErrors.tail.mkString(abstractErrors.head + ":\n", "\n", "")

      def abstractClassError(mustBeMixin: Boolean, msg: String): Unit = {
        def prelude = (
          if (clazz.isAnonymousClass || clazz.is(Module)) "object creation impossible"
          else if (mustBeMixin) clazz + " needs to be a mixin"
          else clazz + " needs to be abstract") + ", since"

        if (abstractErrors.isEmpty) abstractErrors ++= List(prelude, msg)
        else abstractErrors += msg
      }

      def hasJavaErasedOverriding(sym: Symbol): Boolean =
        !ctx.erasurePhase.exists || // can't do the test, assume the best
          ctx.atPhase(ctx.erasurePhase.next) { implicit ctx =>
            clazz.info.nonPrivateMember(sym.name).hasAltWith { alt =>
              alt.symbol.is(JavaDefined, butNot = Deferred) &&
                !sym.owner.derivesFrom(alt.symbol.owner) &&
                alt.signature.matches(sym.signature)
            }
          }

      def ignoreDeferred(member: SingleDenotation) =
        member.isType ||
          member.symbol.is(JavaDefined) && hasJavaErasedOverriding(member.symbol)

      // 2. Check that only abstract classes have deferred members
      def checkNoAbstractMembers(): Unit = {
        // Avoid spurious duplicates: first gather any missing members.
        val missing = clazz.thisType.abstractTermMembers.filterNot(ignoreDeferred)
        // Group missing members by the name of the underlying symbol,
        // to consolidate getters and setters.
        val grouped: Map[Name, Seq[SingleDenotation]] = missing groupBy (_.symbol.underlyingSymbol.name)
          // Dotty deviation: Added type annotation for `grouped`.
          // The inferred type is Map[Symbol#ThisName, Seq[SingleDenotation]]
          // but then the definition of isMultiple fails with an error:
          // RefChecks.scala:379: error: type mismatch:
          // found   : underlying.ThisName
          // required: dotty.tools.dotc.core.Symbols.Symbol#ThisName
          //
          //  val isMultiple = grouped.getOrElse(underlying.name(ctx), Nil).size > 1
          //                                                    ^
          // As far as I can see, the complaint is correct, even under the
          // old reading where Symbol#ThisName means x.ThisName forSome { val x }

        val missingMethods = grouped.toList flatMap {
          case (name, syms) =>
            val withoutSetters = syms filterNot (_.symbol.isSetter)
            if (withoutSetters.nonEmpty) withoutSetters else syms
        }

        def stubImplementations: List[String] = {
          // Grouping missing methods by the declaring class
          val regrouped = missingMethods.groupBy(_.symbol.owner).toList
          def membersStrings(members: List[SingleDenotation]) =
            members.sortBy(_.symbol.name.toString).map(_.showDcl + " = ???")

          if (regrouped.tail.isEmpty)
            membersStrings(regrouped.head._2)
          else (regrouped.sortBy("" + _._1.name) flatMap {
            case (owner, members) =>
              ("// Members declared in " + owner.fullName) +: membersStrings(members) :+ ""
          }).init
        }

        // If there are numerous missing methods, we presume they are aware of it and
        // give them a nicely formatted set of method signatures for implementing.
        if (missingMethods.size > 1) {
          abstractClassError(false, "it has " + missingMethods.size + " unimplemented members.")
          val preface =
            """|/** As seen from %s, the missing signatures are as follows.
                 | *  For convenience, these are usable as stub implementations.
                 | */
                 |""".stripMargin.format(clazz)
          abstractErrors += stubImplementations.map("  " + _ + "\n").mkString(preface, "", "")
          return
        }

        for (member <- missing) {
          val memberSym = member.symbol
          def undefined(msg: String) = abstractClassError(false, member.showDcl + " is not defined" + msg)
          val underlying = memberSym.underlyingSymbol

          // Give a specific error message for abstract vars based on why it fails:
          // It could be unimplemented, have only one accessor, or be uninitialized.
          if (underlying.is(Mutable)) {
            val isMultiple = grouped.getOrElse(underlying.name(ctx), Nil).size > 1

            // If both getter and setter are missing, squelch the setter error.
            if (memberSym.isSetter && isMultiple) ()
            else undefined(
              if (memberSym.isSetter) "\n(Note that an abstract var requires a setter in addition to the getter)"
              else if (memberSym.isGetter && !isMultiple) "\n(Note that an abstract var requires a getter in addition to the setter)"
              else err.abstractVarMessage(memberSym))
          } else if (underlying.is(Method)) {
            // If there is a concrete method whose name matches the unimplemented
            // abstract method, and a cursory examination of the difference reveals
            // something obvious to us, let's make it more obvious to them.
            val abstractParams = underlying.info.firstParamTypes
            val matchingName = clazz.info.member(underlying.name).alternatives
            val matchingArity = matchingName filter { m =>
              !m.symbol.is(Deferred) &&
                m.info.firstParamTypes.length == abstractParams.length
            }

            matchingArity match {
              // So far so good: only one candidate method
              case concrete :: Nil =>
                val mismatches =
                  abstractParams.zip(concrete.info.firstParamTypes)
                    .filterNot { case (x, y) => x =:= y }
                mismatches match {
                  // Only one mismatched parameter: say something useful.
                  case (pa, pc) :: Nil =>
                    val abstractSym = pa.typeSymbol
                    val concreteSym = pc.typeSymbol
                    def subclassMsg(c1: Symbol, c2: Symbol) = (
                      ": %s is a subclass of %s, but method parameter types must match exactly.".format(
                        c1.showLocated, c2.showLocated))
                    val addendum =
                      if (abstractSym == concreteSym) {
                        val paArgs = pa.argInfos
                        val pcArgs = pc.argInfos
                        val paConstr = pa.withoutArgs(paArgs)
                        val pcConstr = pc.withoutArgs(pcArgs)
                        (paConstr, pcConstr) match {
                          case (TypeRef(pre1, _), TypeRef(pre2, _)) =>
                            if (pre1 =:= pre2) ": their type parameters differ"
                            else ": their prefixes (i.e. enclosing instances) differ"
                          case _ =>
                            ""
                        }
                      } else if (abstractSym isSubClass concreteSym)
                        subclassMsg(abstractSym, concreteSym)
                      else if (concreteSym isSubClass abstractSym)
                        subclassMsg(concreteSym, abstractSym)
                      else ""

                    undefined("\n(Note that %s does not match %s%s)".format(pa, pc, addendum))
                  case xs =>
                    undefined("")
                }
              case _ =>
                undefined("")
            }
          } else undefined("")
        }
      }

      // 3. Check that concrete classes do not have deferred definitions
      // that are not implemented in a subclass.
      // Note that this is not the same as (2); In a situation like
      //
      // class C { def m: Int = 0}
      // class D extends C { def m: Int }
      //
      // (3) is violated but not (2).
      def checkNoAbstractDecls(bc: Symbol): Unit = {
        for (decl <- bc.info.decls) {
          if (decl.is(Deferred) && !ignoreDeferred(decl)) {
            val impl = decl.matchingMember(clazz.thisType)
            if (impl == NoSymbol || (decl.owner isSubClass impl.owner)) {
              val impl1 = clazz.thisType.nonPrivateMember(decl.name) // DEBUG
              ctx.log(i"${impl1}: ${impl1.info}") // DEBUG
              ctx.log(i"${clazz.thisType.memberInfo(decl)}") // DEBUG
              abstractClassError(false, "there is a deferred declaration of " + infoString(decl) +
                " which is not implemented in a subclass" + err.abstractVarMessage(decl))
            }
          }
        }
        if (bc.asClass.superClass.is(Abstract))
          checkNoAbstractDecls(bc.asClass.superClass)
      }

      checkNoAbstractMembers()
      if (abstractErrors.isEmpty)
        checkNoAbstractDecls(clazz)

      if (abstractErrors.nonEmpty)
        ctx.error(abstractErrorMessage, clazz.pos)
    } else if (clazz.is(Trait) && !(clazz derivesFrom defn.AnyValClass)) {
      // For non-AnyVal classes, prevent abstract methods in interfaces that override
      // final members in Object; see #4431
      for (decl <- clazz.info.decls) {
        // Have to use matchingSymbol, not a method involving overridden symbols,
        // because the scala type system understands that an abstract method here does not
        // override a concrete method in Object. The jvm, however, does not.
        val overridden = decl.matchingDecl(defn.ObjectClass, defn.ObjectType)
        if (overridden.is(Final))
          ctx.error("trait cannot redefine final method from class AnyRef", decl.pos)
      }
    }

    /* Returns whether there is a symbol declared in class `inclazz`
       * (which must be different from `clazz`) whose name and type
       * seen as a member of `class.thisType` matches `member`'s.
       */
    def hasMatchingSym(inclazz: Symbol, member: Symbol): Boolean = {

      def isSignatureMatch(sym: Symbol) = !sym.isTerm ||
        clazz.thisType.memberInfo(sym).matchesLoosely(member.info)

      /* The rules for accessing members which have an access boundary are more
         * restrictive in java than scala.  Since java has no concept of package nesting,
         * a member with "default" (package-level) access can only be accessed by members
         * in the exact same package.  Example:
         *
         *   package a.b;
         *   public class JavaClass { void foo() { } }
         *
         * The member foo() can be accessed only from members of package a.b, and not
         * nested packages like a.b.c.  In the analogous scala class:
         *
         *   package a.b
         *   class ScalaClass { private[b] def foo() = () }
         *
         * The member IS accessible to classes in package a.b.c.  The javaAccessCheck logic
         * is restricting the set of matching signatures according to the above semantics.
         */
      def javaAccessCheck(sym: Symbol) = (
        !inclazz.is(JavaDefined) // not a java defined member
        || !sym.privateWithin.exists // no access boundary
        || sym.is(Protected) // marked protected in java, thus accessible to subclasses
        || sym.privateWithin == member.enclosingPackageClass // exact package match
        )
      def classDecls = inclazz.info.nonPrivateDecl(member.name)

      (inclazz != clazz) &&
        classDecls.hasAltWith(d => isSignatureMatch(d.symbol) && javaAccessCheck(d.symbol))
    }

    // 4. Check that every defined member with an `override` modifier overrides some other member.
    for (member <- clazz.info.decls)
      if (member.is(AnyOverride) && !(clazz.thisType.baseClasses exists (hasMatchingSym(_, member)))) {
        // for (bc <- clazz.info.baseClasses.tail) Console.println("" + bc + " has " + bc.info.decl(member.name) + ":" + bc.info.decl(member.name).tpe);//DEBUG

        val nonMatching = clazz.info.member(member.name).altsWith(alt => alt.owner != clazz && !alt.is(Final))
        def issueError(suffix: String) =
          ctx.error(i"$member overrides nothing$suffix", member.pos)
        nonMatching match {
          case Nil =>
            issueError("")
          case ms =>
            val superSigs = ms.map(_.showDcl).mkString("\n")
            issueError(s".\nNote: the super classes of ${member.owner} contain the following, non final members named ${member.name}:\n${superSigs}")
        }
        member.resetFlag(AnyOverride)
      }
  }

  // Note: if a symbol has both @deprecated and @migration annotations and both
  // warnings are enabled, only the first one checked here will be emitted.
  // I assume that's a consequence of some code trying to avoid noise by suppressing
  // warnings after the first, but I think it'd be better if we didn't have to
  // arbitrarily choose one as more important than the other.
  private def checkUndesiredProperties(sym: Symbol, pos: Position)(implicit ctx: Context): Unit = {
    // If symbol is deprecated, and the point of reference is not enclosed
    // in either a deprecated member or a scala bridge method, issue a warning.
    if (sym.isDeprecated && !ctx.owner.ownersIterator.exists(_.isDeprecated)) {
      ctx.deprecationWarning("%s%s is deprecated%s".format(
        sym, sym.showLocated, sym.deprecationMessage map (": " + _) getOrElse "", pos))
    }
    // Similar to deprecation: check if the symbol is marked with @migration
    // indicating it has changed semantics between versions.
    if (sym.hasAnnotation(defn.MigrationAnnot) && ctx.settings.Xmigration.value != NoScalaVersion) {
      val symVersion: scala.util.Try[ScalaVersion] = sym.migrationVersion.get
      val changed = symVersion match {
        case scala.util.Success(v) =>
          ctx.settings.Xmigration.value < v
        case Failure(ex) =>
          ctx.warning(s"${sym.showLocated} has an unparsable version number: ${ex.getMessage()}", pos)
          false
      }
      if (changed)
        ctx.warning(s"${sym.showLocated} has changed semantics in version $symVersion:\n${sym.migrationMessage.get}")
    }
    /*  (Not enabled yet)
       *  See an explanation of compileTimeOnly in its scaladoc at scala.annotation.compileTimeOnly.
       *
      if (sym.isCompileTimeOnly) {
        def defaultMsg =
          sm"""Reference to ${sym.fullLocationString} should not have survived past type checking,
              |it should have been processed and eliminated during expansion of an enclosing macro."""
        // The getOrElse part should never happen, it's just here as a backstop.
        ctx.error(sym.compileTimeOnlyMessage getOrElse defaultMsg, pos)
      }*/
  }

  /** Check that a deprecated val or def does not override a
   *  concrete, non-deprecated method.  If it does, then
   *  deprecation is meaningless.
   */
  private def checkDeprecatedOvers(tree: Tree)(implicit ctx: Context): Unit = {
    val symbol = tree.symbol
    if (symbol.isDeprecated) {
      val concrOvers =
        symbol.allOverriddenSymbols.filter(sym =>
          !sym.isDeprecated && !sym.is(Deferred))
      if (!concrOvers.isEmpty)
        ctx.deprecationWarning(
          symbol.toString + " overrides concrete, non-deprecated symbol(s):" +
            concrOvers.map(_.name.decode).mkString("    ", ", ", ""), tree.pos)
    }
  }

  /** Verify classes extending AnyVal meet the requirements */
  private def checkAnyValSubclass(clazz: Symbol)(implicit ctx: Context) =
    if (isDerivedValueClass(clazz)) {
      if (clazz.is(Trait))
        ctx.error("Only classes (not traits) are allowed to extend AnyVal", clazz.pos)
      else if (clazz.is(Abstract))
        ctx.error("`abstract' modifier cannot be used with value classes", clazz.pos)
    }

  type LevelAndIndex = immutable.Map[Symbol, (LevelInfo, Int)]

  class OptLevelInfo extends DotClass {
    def levelAndIndex: LevelAndIndex = Map()
    def enterReference(sym: Symbol, pos: Position): Unit = ()
  }

  /** A class to help in forward reference checking */
  class LevelInfo(outerLevelAndIndex: LevelAndIndex, stats: List[Tree])(implicit ctx: Context)
  extends OptLevelInfo {
    override val levelAndIndex: LevelAndIndex =
      ((outerLevelAndIndex, 0) /: stats) {(mi, stat) =>
        val (m, idx) = mi
        val m1 = stat match {
          case stat: MemberDef => m.updated(stat.symbol, (this, idx))
          case _ => m
        }
        (m1, idx + 1)
      }._1
    var maxIndex: Int = Int.MinValue
    var refPos: Position = _
    var refSym: Symbol = _

    override def enterReference(sym: Symbol, pos: Position): Unit =
      if (sym.exists && sym.owner.isTerm)
        levelAndIndex.get(sym) match {
          case Some((level, idx)) if (level.maxIndex < idx) =>
            level.maxIndex = idx
            level.refPos = pos
            level.refSym = sym
          case _ =>
        }
  }

  val NoLevelInfo = new OptLevelInfo()
}
import RefChecks._

/** Post-attribution checking and transformation, which fulfills the following roles
 *
 *  1. This phase performs the following checks.
 *
 *  - only one overloaded alternative defines default arguments
 *  - applyDynamic methods are not overloaded
 *  - all overrides conform to rules laid down by `checkAllOverrides`.
 *  - any value classes conform to rules laid down by `checkAnyValSubClass`.
 *  - this(...) constructor calls do not forward reference other definitions in their block (not even lazy vals).
 *  - no forward reference in a local block jumps over a non-lazy val definition.
 *
 *  2. It warns about references to symbols labeled deprecated or migration.

 *  3. It performs the following transformations:
 *
 *  - if (true) A else B  --> A
 *    if (false) A else B --> B
 *  - macro definitions are eliminated.
 *
 *  4. It makes members not private where necessary. The following members
 *  cannot be private in the Java model:
 *   - term members of traits
 *   - the primary constructor of a value class
 *   - the parameter accessor of a value class
 *   - members accessed from an inner or companion class.
 *  All these members are marked as NotJavaPrivate.
 *  Unlike in Scala 2.x not-private members keep their name. It is
 *  up to the backend to find a unique expanded name for them. The
 *  rationale to do name changes that late is that they are very fragile.

 *  todo: But RefChecks is not done yet. It's still a somewhat dirty port from the Scala 2 version.
 *  todo: move untrivial logic to their own mini-phases
 */
class RefChecks extends MiniPhase with SymTransformer { thisTransformer =>

  import tpd._

  override def phaseName: String = "refchecks"

  val treeTransform = new Transform(NoLevelInfo)

  /** Ensure the following members are not private:
   *   - term members of traits
   *   - the primary constructor of a value class
   *   - the parameter accessor of a value class
   */
  override def transformSym(d: SymDenotation)(implicit ctx: Context) = {
    def mustBePublicInValueClass = d.isPrimaryConstructor || d.is(ParamAccessor)
    def mustBePublicInTrait = !d.is(Method) || d.isSetter || d.is(ParamAccessor)
    def mustBePublic = {
      val cls = d.owner
      (isDerivedValueClass(cls) && mustBePublicInValueClass ||
      cls.is(Trait) && mustBePublicInTrait)
    }
    if ((d is PrivateTerm) && mustBePublic) notPrivate(d) else d
  }

  /** Make private terms accessed from different classes non-private.
   *  Note: this happens also for accesses between class and linked module class.
   *  If we change the scheme at one point to make static module class computations
   *  static members of the companion class, we should tighten the condition below.
   */
  private def ensurePrivateAccessible(d: SymDenotation)(implicit ctx: Context) =
    if (d.is(PrivateTerm) && d.owner != ctx.owner.enclosingClass)
      notPrivate(d).installAfter(thisTransformer)

  private def notPrivate(d: SymDenotation)(implicit ctx: Context) =
    d.copySymDenotation(initFlags = d.flags | NotJavaPrivate)

  class Transform(currentLevel: RefChecks.OptLevelInfo = RefChecks.NoLevelInfo) extends TreeTransform {
    def phase = thisTransformer
    override def treeTransformPhase = thisTransformer.next

    override def prepareForStats(trees: List[Tree])(implicit ctx: Context) = {
      // println(i"preparing for $trees%; %, owner = ${ctx.owner}")
      if (ctx.owner.isTerm) new Transform(new LevelInfo(currentLevel.levelAndIndex, trees))
      else this
    }

    override def transformStats(trees: List[Tree])(implicit ctx: Context, info: TransformerInfo): List[Tree] = trees

    override def transformValDef(tree: ValDef)(implicit ctx: Context, info: TransformerInfo) = {
      checkDeprecatedOvers(tree)
      val sym = tree.symbol
      if (sym.exists && sym.owner.isTerm && !sym.is(Lazy))
        currentLevel.levelAndIndex.get(sym) match {
          case Some((level, symIdx)) if symIdx < level.maxIndex =>
            ctx.debuglog("refsym = " + level.refSym)
            ctx.error(s"forward reference extends over definition of $sym", level.refPos)
          case _ =>
        }
      tree
    }

    override def transformDefDef(tree: DefDef)(implicit ctx: Context, info: TransformerInfo) = {
      checkDeprecatedOvers(tree)
      if (tree.symbol is Macro) EmptyTree else tree
    }

    override def transformTemplate(tree: Template)(implicit ctx: Context, info: TransformerInfo) = {
      val cls = ctx.owner
      checkOverloadedRestrictions(cls)
      checkAllOverrides(cls)
      checkAnyValSubclass(cls)
      tree
    }

    override def transformTypeTree(tree: TypeTree)(implicit ctx: Context, info: TransformerInfo) = {
      if (!tree.original.isEmpty)
        tree.tpe.foreachPart {
          case tp: NamedType => checkUndesiredProperties(tp.symbol, tree.pos)
          case _ =>
        }
      tree
    }

    override def transformIdent(tree: Ident)(implicit ctx: Context, info: TransformerInfo) = {
      checkUndesiredProperties(tree.symbol, tree.pos)
      ensurePrivateAccessible(tree.symbol)
      currentLevel.enterReference(tree.symbol, tree.pos)
      tree
    }

    override def transformSelect(tree: Select)(implicit ctx: Context, info: TransformerInfo) = {
      checkUndesiredProperties(tree.symbol, tree.pos)
      ensurePrivateAccessible(tree.symbol)
      tree
    }

    override def transformApply(tree: Apply)(implicit ctx: Context, info: TransformerInfo) = {
      if (isSelfConstrCall(tree)) {
        assert(currentLevel.isInstanceOf[LevelInfo], ctx.owner + "/" + i"$tree")
        val level = currentLevel.asInstanceOf[LevelInfo]
        if (level.maxIndex > 0) {
          // An implementation restriction to avoid VerifyErrors and lazyvals mishaps; see SI-4717
          ctx.debuglog("refsym = " + level.refSym)
          ctx.error("forward reference not allowed from self constructor invocation", level.refPos)
        }
      }
      tree
    }

    override def transformIf(tree: If)(implicit ctx: Context, info: TransformerInfo) =
      tree.cond.tpe match {
        case ConstantType(value) => if (value.booleanValue) tree.thenp else tree.elsep
        case _ => tree
      }

    override def transformNew(tree: New)(implicit ctx: Context, info: TransformerInfo) = {
      currentLevel.enterReference(tree.tpe.typeSymbol, tree.pos)
      tree
    }

    override def transformTypeApply(tree: tpd.TypeApply)(implicit ctx: Context, info: TransformerInfo): tpd.Tree = {
      tree.fun match {
        case fun@Select(qual, selector) =>
          val sym = tree.symbol

          if (sym == defn.Any_isInstanceOf) {
            val argType = tree.args.head.tpe
            val qualCls = qual.tpe.widen.classSymbol
            val argCls = argType.classSymbol
            if (qualCls.isPrimitiveValueClass && !argCls.isPrimitiveValueClass) ctx.error("isInstanceOf cannot test if value types are references", tree.pos)
          }
        case _ =>
      }
      tree
    }
  }
}

/* todo: rewrite and re-enable

// Comparison checking -------------------------------------------------------

    object normalizeAll extends TypeMap {
      def apply(tp: Type) = mapOver(tp).normalize
    }

    def checkImplicitViewOptionApply(pos: Position, fn: Tree, args: List[Tree]): Unit = if (settings.lint) (fn, args) match {
      case (tap@TypeApply(fun, targs), List(view: ApplyImplicitView)) if fun.symbol == currentRun.runDefinitions.Option_apply =>
        unit.warning(pos, s"Suspicious application of an implicit view (${view.fun}) in the argument to Option.apply.") // SI-6567
      case _ =>
    }

    private def isObjectOrAnyComparisonMethod(sym: Symbol) = sym match {
      case Object_eq | Object_ne | Object_== | Object_!= | Any_== | Any_!= => true
      case _                                                               => false
    }
    /** Check the sensibility of using the given `equals` to compare `qual` and `other`. */
    private def checkSensibleEquals(pos: Position, qual: Tree, name: Name, sym: Symbol, other: Tree) = {
      def isReferenceOp = sym == Object_eq || sym == Object_ne
      def isNew(tree: Tree) = tree match {
        case Function(_, _) | Apply(Select(New(_), nme.CONSTRUCTOR), _) => true
        case _ => false
      }
      def underlyingClass(tp: Type): Symbol = {
        val sym = tp.widen.typeSymbol
        if (sym.isAbstractType) underlyingClass(sym.info.bounds.hi)
        else sym
      }
      val actual   = underlyingClass(other.tpe)
      val receiver = underlyingClass(qual.tpe)
      def onTrees[T](f: List[Tree] => T) = f(List(qual, other))
      def onSyms[T](f: List[Symbol] => T) = f(List(receiver, actual))

      // @MAT normalize for consistency in error message, otherwise only part is normalized due to use of `typeSymbol`
      def typesString = normalizeAll(qual.tpe.widen)+" and "+normalizeAll(other.tpe.widen)

      /* Symbols which limit the warnings we can issue since they may be value types */
      val isMaybeValue = Set[Symbol](AnyClass, AnyRefClass, AnyValClass, ObjectClass, ComparableClass, JavaSerializableClass)

      // Whether def equals(other: Any) has known behavior: it is the default
      // inherited from java.lang.Object, or it is a synthetically generated
      // case equals.  TODO - more cases are warnable if the target is a synthetic
      // equals.
      def isUsingWarnableEquals = {
        val m = receiver.info.member(nme.equals_)
        ((m == Object_equals) || (m == Any_equals) || isMethodCaseEquals(m))
      }
      def isMethodCaseEquals(m: Symbol) = m.isSynthetic && m.owner.isCase
      def isCaseEquals = isMethodCaseEquals(receiver.info.member(nme.equals_))
      // Whether this == or != is one of those defined in Any/AnyRef or an overload from elsewhere.
      def isUsingDefaultScalaOp = sym == Object_== || sym == Object_!= || sym == Any_== || sym == Any_!=
      def haveSubclassRelationship = (actual isSubClass receiver) || (receiver isSubClass actual)

      // Whether the operands+operator represent a warnable combo (assuming anyrefs)
      // Looking for comparisons performed with ==/!= in combination with either an
      // equals method inherited from Object or a case class synthetic equals (for
      // which we know the logic.)
      def isWarnable           = isReferenceOp || (isUsingDefaultScalaOp && isUsingWarnableEquals)
      def isEitherNullable     = (NullTpe <:< receiver.info) || (NullTpe <:< actual.info)
      def isEitherValueClass   = actual.isDerivedValueClass || receiver.isDerivedValueClass
      def isBoolean(s: Symbol) = unboxedValueClass(s) == BooleanClass
      def isUnit(s: Symbol)    = unboxedValueClass(s) == UnitClass
      def isNumeric(s: Symbol) = isNumericValueClass(unboxedValueClass(s)) || isAnyNumber(s)
      def isScalaNumber(s: Symbol) = s isSubClass ScalaNumberClass
      def isJavaNumber(s: Symbol)  = s isSubClass JavaNumberClass
      // includes java.lang.Number if appropriate [SI-5779]
      def isAnyNumber(s: Symbol)     = isScalaNumber(s) || isJavaNumber(s)
      def isMaybeAnyValue(s: Symbol) = isPrimitiveValueClass(unboxedValueClass(s)) || isMaybeValue(s)
      // used to short-circuit unrelatedTypes check if both sides are special
      def isSpecial(s: Symbol) = isMaybeAnyValue(s) || isAnyNumber(s)
      val nullCount            = onSyms(_ filter (_ == NullClass) size)
      def isNonsenseValueClassCompare = (
           !haveSubclassRelationship
        && isUsingDefaultScalaOp
        && isEitherValueClass
        && !isCaseEquals
      )

      // Have we already determined that the comparison is non-sensible? I mean, non-sensical?
      var isNonSensible = false

      def nonSensibleWarning(what: String, alwaysEqual: Boolean) = {
        val msg = alwaysEqual == (name == nme.EQ || name == nme.eq)
        unit.warning(pos, s"comparing $what using `${name.decode}' will always yield $msg")
        isNonSensible = true
      }
      def nonSensible(pre: String, alwaysEqual: Boolean) =
        nonSensibleWarning(s"${pre}values of types $typesString", alwaysEqual)
      def nonSensiblyEq() = nonSensible("", alwaysEqual = true)
      def nonSensiblyNeq() = nonSensible("", alwaysEqual = false)
      def nonSensiblyNew() = nonSensibleWarning("a fresh object", alwaysEqual = false)

      def unrelatedMsg = name match {
        case nme.EQ | nme.eq => "never compare equal"
        case _               => "always compare unequal"
      }
      def unrelatedTypes() = if (!isNonSensible) {
        val weaselWord = if (isEitherValueClass) "" else " most likely"
        unit.warning(pos, s"$typesString are unrelated: they will$weaselWord $unrelatedMsg")
      }

      if (nullCount == 2) // null == null
        nonSensiblyEq()
      else if (nullCount == 1) {
        if (onSyms(_ exists isPrimitiveValueClass)) // null == 5
          nonSensiblyNeq()
        else if (onTrees( _ exists isNew)) // null == new AnyRef
          nonSensiblyNew()
      }
      else if (isBoolean(receiver)) {
        if (!isBoolean(actual) && !isMaybeValue(actual))    // true == 5
          nonSensiblyNeq()
      }
      else if (isUnit(receiver)) {
        if (isUnit(actual)) // () == ()
          nonSensiblyEq()
        else if (!isUnit(actual) && !isMaybeValue(actual))  // () == "abc"
          nonSensiblyNeq()
      }
      else if (isNumeric(receiver)) {
        if (!isNumeric(actual))
          if (isUnit(actual) || isBoolean(actual) || !isMaybeValue(actual))   // 5 == "abc"
            nonSensiblyNeq()
      }
      else if (isWarnable && !isCaseEquals) {
        if (isNew(qual)) // new X == y
          nonSensiblyNew()
        else if (isNew(other) && (receiver.isEffectivelyFinal || isReferenceOp))   // object X ; X == new Y
          nonSensiblyNew()
        else if (receiver.isEffectivelyFinal && !(receiver isSubClass actual) && !actual.isRefinementClass) {  // object X, Y; X == Y
          if (isEitherNullable)
            nonSensible("non-null ", false)
          else
            nonSensiblyNeq()
        }
      }

      // warn if one but not the other is a derived value class
      // this is especially important to enable transitioning from
      // regular to value classes without silent failures.
      if (isNonsenseValueClassCompare)
        unrelatedTypes()
      // possibleNumericCount is insufficient or this will warn on e.g. Boolean == j.l.Boolean
      else if (isWarnable && nullCount == 0 && !(isSpecial(receiver) && isSpecial(actual))) {
        // better to have lubbed and lost
        def warnIfLubless(): Unit = {
          val common = global.lub(List(actual.tpe, receiver.tpe))
          if (ObjectTpe <:< common)
            unrelatedTypes()
        }
        // warn if actual has a case parent that is not same as receiver's;
        // if actual is not a case, then warn if no common supertype, as below
        if (isCaseEquals) {
          def thisCase = receiver.info.member(nme.equals_).owner
          actual.info.baseClasses.find(_.isCase) match {
            case Some(p) if p != thisCase => nonSensible("case class ", false)
            case None =>
              // stronger message on (Some(1) == None)
              //if (receiver.isCase && receiver.isEffectivelyFinal && !(receiver isSubClass actual)) nonSensiblyNeq()
              //else
              // if a class, it must be super to thisCase (and receiver) since not <: thisCase
              if (!actual.isTrait && !(receiver isSubClass actual)) nonSensiblyNeq()
              else if (!haveSubclassRelationship) warnIfLubless()
            case _ =>
          }
        }
        // warn only if they have no common supertype below Object
        else if (!haveSubclassRelationship) {
          warnIfLubless()
        }
      }
    }
    /** Sensibility check examines flavors of equals. */
    def checkSensible(pos: Position, fn: Tree, args: List[Tree]) = fn match {
      case Select(qual, name @ (nme.EQ | nme.NE | nme.eq | nme.ne)) if args.length == 1 && isObjectOrAnyComparisonMethod(fn.symbol) =>
        checkSensibleEquals(pos, qual, name, fn.symbol, args.head)
      case _ =>
    }
*/

/* --------------- Overflow -------------------------------------------------
 *

  def accessFlagsToString(sym: Symbol) = flagsToString(
    sym getFlag (PRIVATE | PROTECTED),
    if (sym.hasAccessBoundary) "" + sym.privateWithin.name else ""
  )

  def overridesTypeInPrefix(tp1: Type, tp2: Type, prefix: Type): Boolean = (tp1.dealiasWiden, tp2.dealiasWiden) match {
    case (MethodType(List(), rtp1), NullaryMethodType(rtp2)) =>
      rtp1 <:< rtp2
    case (NullaryMethodType(rtp1), MethodType(List(), rtp2)) =>
      rtp1 <:< rtp2
    case (TypeRef(_, sym, _),  _) if sym.isModuleClass =>
      overridesTypeInPrefix(NullaryMethodType(tp1), tp2, prefix)
    case _ =>
      def classBoundAsSeen(tp: Type) = tp.typeSymbol.classBound.asSeenFrom(prefix, tp.typeSymbol.owner)

      (tp1 <:< tp2) || (  // object override check
        tp1.typeSymbol.isModuleClass && tp2.typeSymbol.isModuleClass && {
          val cb1 = classBoundAsSeen(tp1)
          val cb2 = classBoundAsSeen(tp2)
          (cb1 <:< cb2) && {
            log("Allowing %s to override %s because %s <:< %s".format(tp1, tp2, cb1, cb2))
            true
          }
        }
      )
  }
    private def checkTypeRef(tp: Type, tree: Tree, skipBounds: Boolean)(implicit ctx: Context) = tp match {
      case TypeRef(pre, sym, args) =>
        tree match {
          case tt: TypeTree if tt.original == null => // SI-7783 don't warn about inferred types
                                                      // FIXME: reconcile this check with one in resetAttrs
          case _ => checkUndesiredProperties(sym, tree.pos)
        }
        if(sym.isJavaDefined)
          sym.typeParams foreach (_.cookJavaRawInfo())
        if (!tp.isHigherKinded && !skipBounds)
          checkBounds(tree, pre, sym.owner, sym.typeParams, args)
      case _ =>
    }

    private def checkTypeRefBounds(tp: Type, tree: Tree) = {
      var skipBounds = false
      tp match {
        case AnnotatedType(ann :: Nil, underlying) if ann.symbol == UncheckedBoundsClass =>
          skipBounds = true
          underlying
        case TypeRef(pre, sym, args) =>
          if (!tp.isHigherKinded && !skipBounds)
            checkBounds(tree, pre, sym.owner, sym.typeParams, args)
          tp
        case _ =>
          tp
      }
    }

    private def checkAnnotations(tpes: List[Type], tree: Tree) = tpes foreach { tp =>
      checkTypeRef(tp, tree, skipBounds = false)
      checkTypeRefBounds(tp, tree)
    }
    private def doTypeTraversal(tree: Tree)(f: Type => Unit) = if (!inPattern) tree.tpe foreach f

    private def applyRefchecksToAnnotations(tree: Tree)(implicit ctx: Context): Unit = {
      def applyChecks(annots: List[Annotation]) = {
        checkAnnotations(annots map (_.atp), tree)
        transformTrees(annots flatMap (_.args))
      }

      tree match {
        case m: MemberDef =>
          val sym = m.symbol
          applyChecks(sym.annotations)
          // validate implicitNotFoundMessage
          analyzer.ImplicitNotFoundMsg.check(sym) foreach { warn =>
            unit.warning(tree.pos, f"Invalid implicitNotFound message for ${sym}%s${sym.locationString}%s:%n$warn")
          }

        case tpt@TypeTree() =>
          if(tpt.original != null) {
            tpt.original foreach {
              case dc@TypeTreeWithDeferredRefCheck() =>
                applyRefchecksToAnnotations(dc.check()) // #2416
              case _ =>
            }
          }

          doTypeTraversal(tree) {
            case tp @ AnnotatedType(annots, _)  =>
              applyChecks(annots)
            case tp =>
          }
        case _ =>
      }
    }

    private def transformCaseApply(tree: Tree, ifNot: => Unit) = {
      val sym = tree.symbol

      def isClassTypeAccessible(tree: Tree): Boolean = tree match {
        case TypeApply(fun, targs) =>
          isClassTypeAccessible(fun)
        case Select(module, apply) =>
          ( // SI-4859 `CaseClass1().InnerCaseClass2()` must not be rewritten to `new InnerCaseClass2()`;
            //          {expr; Outer}.Inner() must not be rewritten to `new Outer.Inner()`.
            treeInfo.isQualifierSafeToElide(module) &&
            // SI-5626 Classes in refinement types cannot be constructed with `new`. In this case,
            // the companion class is actually not a ClassSymbol, but a reference to an abstract type.
            module.symbol.companionClass.isClass
          )
      }

      val doTransform =
        sym.isSourceMethod &&
        sym.isCase &&
        sym.name == nme.apply &&
        isClassTypeAccessible(tree)

      if (doTransform) {
        tree foreach {
          case i@Ident(_) =>
            enterReference(i.pos, i.symbol) // SI-5390 need to `enterReference` for `a` in `a.B()`
          case _ =>
        }
        toConstructor(tree.pos, tree.tpe)
      }
      else {
        ifNot
        tree
      }
    }

    private def transformApply(tree: Apply): Tree = tree match {
      case Apply(
        Select(qual, nme.filter | nme.withFilter),
        List(Function(
          List(ValDef(_, pname, tpt, _)),
          Match(_, CaseDef(pat1, _, _) :: _))))
        if ((pname startsWith nme.CHECK_IF_REFUTABLE_STRING) &&
            isIrrefutable(pat1, tpt.tpe) && (qual.tpe <:< tree.tpe)) =>

          transform(qual)

      case Apply(fn, args) =>
        // sensicality should be subsumed by the unreachability/exhaustivity/irrefutability
        // analyses in the pattern matcher
        if (!inPattern) {
          checkImplicitViewOptionApply(tree.pos, fn, args)
          checkSensible(tree.pos, fn, args)
        }
        currentApplication = tree
        tree
    }
    private def transformSelect(tree: Select): Tree = {
      val Select(qual, _) = tree
      val sym = tree.symbol

      checkUndesiredProperties(sym, tree.pos)
      checkDelayedInitSelect(qual, sym, tree.pos)

      if (!sym.exists)
        devWarning("Select node has NoSymbol! " + tree + " / " + tree.tpe)
      else if (sym.isLocalToThis)
        varianceValidator.checkForEscape(sym, currentClass)

      def checkSuper(mix: Name) =
        // term should have been eliminated by super accessors
        assert(!(qual.symbol.isTrait && sym.isTerm && mix == tpnme.EMPTY), (qual.symbol, sym, mix))

      transformCaseApply(tree,
        qual match {
          case Super(_, mix)  => checkSuper(mix)
          case _              =>
        }
      )
    }
    private def transformIf(tree: If): Tree = {
      val If(cond, thenpart, elsepart) = tree
      def unitIfEmpty(t: Tree): Tree =
        if (t == EmptyTree) Literal(Constant(())).setPos(tree.pos).setType(UnitTpe) else t

      cond.tpe match {
        case ConstantType(value) =>
          val res = if (value.booleanValue) thenpart else elsepart
          unitIfEmpty(res)
        case _ => tree
      }
    }

    // Warning about nullary methods returning Unit. TODO: move to lint
    private def checkNullaryMethodReturnType(sym: Symbol) = sym.tpe match {
      case NullaryMethodType(restpe) if restpe.typeSymbol == UnitClass =>
        // this may be the implementation of e.g. a generic method being parameterized
        // on Unit, in which case we had better let it slide.
        val isOk = (
             sym.isGetter
          || (sym.name containsName nme.DEFAULT_GETTER_STRING)
          || sym.allOverriddenSymbols.exists(over => !(over.tpe.resultType =:= sym.tpe.resultType))
        )
        if (!isOk)
          unit.warning(sym.pos, s"side-effecting nullary methods are discouraged: suggest defining as `def ${sym.name.decode}()` instead")
      case _ => ()
    }

    /* Convert a reference to a case factory of type `tpe` to a new of the class it produces. */
    def toConstructor(pos: Position, tpe: Type)(implicit ctx: Context): Tree = {
      val rtpe = tpe.finalResultType
      assert(rtpe.typeSymbol.is(Case), tpe)
      New(rtpe).withPos(pos).select(rtpe.typeSymbol.primaryConstructor)
    }
    private def isIrrefutable(pat: Tree, seltpe: Type): Boolean = pat match {
      case Apply(_, args) =>
        val clazz = pat.tpe.typeSymbol
        clazz == seltpe.typeSymbol &&
        clazz.isCaseClass &&
        (args corresponds clazz.primaryConstructor.tpe.asSeenFrom(seltpe, clazz).paramTypes)(isIrrefutable)
      case Typed(pat, tpt) =>
        seltpe <:< tpt.tpe
      case Ident(tpnme.WILDCARD) =>
        true
      case Bind(_, pat) =>
        isIrrefutable(pat, seltpe)
      case _ =>
        false
    }
    private def checkDelayedInitSelect(qual: Tree, sym: Symbol, pos: Position) = {
      def isLikelyUninitialized = (
           (sym.owner isSubClass DelayedInitClass)
        && !qual.tpe.isInstanceOf[ThisType]
        && sym.accessedOrSelf.isVal
      )
      if (settings.lint.value && isLikelyUninitialized)
        unit.warning(pos, s"Selecting ${sym} from ${sym.owner}, which extends scala.DelayedInit, is likely to yield an uninitialized value")
    }
    private def lessAccessible(otherSym: Symbol, memberSym: Symbol): Boolean = (
         (otherSym != NoSymbol)
      && !otherSym.isProtected
      && !otherSym.isTypeParameterOrSkolem
      && !otherSym.isExistentiallyBound
      && (otherSym isLessAccessibleThan memberSym)
      && (otherSym isLessAccessibleThan memberSym.enclClass)
    )
    private def lessAccessibleSymsInType(other: Type, memberSym: Symbol): List[Symbol] = {
      val extras = other match {
        case TypeRef(pre, _, args) =>
          // checking the prefix here gives us spurious errors on e.g. a private[process]
          // object which contains a type alias, which normalizes to a visible type.
          args filterNot (_ eq NoPrefix) flatMap (tp => lessAccessibleSymsInType(tp, memberSym))
        case _ =>
          Nil
      }
      if (lessAccessible(other.typeSymbol, memberSym)) other.typeSymbol :: extras
      else extras
    }
    private def warnLessAccessible(otherSym: Symbol, memberSym: Symbol) {
      val comparison = accessFlagsToString(memberSym) match {
        case ""   => ""
        case acc  => " is " + acc + " but"
      }
      val cannot =
        if (memberSym.isDeferred) "may be unable to provide a concrete implementation of"
        else "may be unable to override"

      unit.warning(memberSym.pos,
        "%s%s references %s %s.".format(
          memberSym.fullLocationString, comparison,
          accessFlagsToString(otherSym), otherSym
        ) + "\nClasses which cannot access %s %s %s.".format(
          otherSym.decodedName, cannot, memberSym.decodedName)
      )
    }

    /** Warn about situations where a method signature will include a type which
     *  has more restrictive access than the method itself.
     */
    private def checkAccessibilityOfReferencedTypes(tree: Tree) {
      val member = tree.symbol

      def checkAccessibilityOfType(tpe: Type) {
        val inaccessible = lessAccessibleSymsInType(tpe, member)
        // if the unnormalized type is accessible, that's good enough
        if (inaccessible.isEmpty) ()
        // or if the normalized type is, that's good too
        else if ((tpe ne tpe.normalize) && lessAccessibleSymsInType(tpe.dealiasWiden, member).isEmpty) ()
        // otherwise warn about the inaccessible syms in the unnormalized type
        else inaccessible foreach (sym => warnLessAccessible(sym, member))
      }

      // types of the value parameters
      mapParamss(member)(p => checkAccessibilityOfType(p.tpe))
      // upper bounds of type parameters
      member.typeParams.map(_.info.bounds.hi.widen) foreach checkAccessibilityOfType
    }

    private def checkByNameRightAssociativeDef(tree: DefDef) {
      tree match {
        case DefDef(_, name, _, params :: _, _, _) =>
          if (settings.lint && !treeInfo.isLeftAssoc(name.decodedName) && params.exists(p => isByName(p.symbol)))
            unit.warning(tree.pos,
              "by-name parameters will be evaluated eagerly when called as a right-associative infix operator. For more details, see SI-1980.")
        case _ =>
      }
    }
    override def transform(tree: Tree)(implicit ctx: Context): Tree = {
      //val savedLocalTyper = localTyper
      try {
        val sym = tree.symbol
        checkOverloadedRestrictions(ctx.owner)
            checkAllOverrides(ctx.owner)
            checkAnyValSubclass(ctx.owner)
            if (ctx.owner.isDerivedValueClass)
              ctx.owner.primaryConstructor.makeNotPrivateAfter(NoSymbol, thisTransformer) // SI-6601, must be done *after* pickler!
            tree


        // Apply RefChecks to annotations. Makes sure the annotations conform to
        // type bounds (bug #935), issues deprecation warnings for symbols used
        // inside annotations.
        // applyRefchecksToAnnotations(tree) ???
        var result: Tree = tree match {
          case tree: ValOrDefDef =>
            // move to lint:
            // if (settings.warnNullaryUnit)
            //  checkNullaryMethodReturnType(sym)
            // if (settings.warnInaccessible) {
            //  if (!sym.isConstructor && !sym.isEffectivelyFinal && !sym.isSynthetic)
            //    checkAccessibilityOfReferencedTypes(tree)
            // }
            // tree match {
            //  case dd: DefDef => checkByNameRightAssociativeDef(dd)
            //  case _          =>
            // }
            tree

          case Template(constr, parents, self, body) =>
            // localTyper = localTyper.atOwner(tree, currentOwner)
            checkOverloadedRestrictions(ctx.owner)
            checkAllOverrides(ctx.owner)
            checkAnyValSubclass(ctx.owner)
            if (ctx.owner.isDerivedValueClass)
              ctx.owner.primaryConstructor.makeNotPrivateAfter(NoSymbol, thisTransformer) // SI-6601, must be done *after* pickler!
            tree

          case tpt: TypeTree =>
            transform(tpt.original)
            tree

          case TypeApply(fn, args) =>
            checkBounds(tree, NoPrefix, NoSymbol, fn.tpe.typeParams, args map (_.tpe))
            transformCaseApply(tree, ())

          case x @ Apply(_, _)  =>
            transformApply(x)

          case x @ If(_, _, _)  =>
            transformIf(x)

          case New(tpt) =>
            enterReference(tree.pos, tpt.tpe.typeSymbol)
            tree

          case treeInfo.WildcardStarArg(_) if !isRepeatedParamArg(tree) =>
            unit.error(tree.pos, "no `: _*' annotation allowed here\n"+
              "(such annotations are only allowed in arguments to *-parameters)")
            tree

          case Ident(name) =>
            checkUndesiredProperties(sym, tree.pos)
            transformCaseApply(tree,
              if (name != nme.WILDCARD && name != tpnme.WILDCARD_STAR) {
                assert(sym != NoSymbol, "transformCaseApply: name = " + name.debugString + " tree = " + tree + " / " + tree.getClass) //debug
                enterReference(tree.pos, sym)
              }
            )

          case x @ Select(_, _) =>
            transformSelect(x)

          case UnApply(fun, args) =>
            transform(fun) // just make sure we enterReference for unapply symbols, note that super.transform(tree) would not transform(fun)
                           // transformTrees(args) // TODO: is this necessary? could there be forward references in the args??
                           // probably not, until we allow parameterised extractors
            tree


          case _ => tree
        }

        // skip refchecks in patterns....
        result = result match {
          case CaseDef(pat, guard, body) =>
            val pat1 = savingInPattern {
              inPattern = true
              transform(pat)
            }
            treeCopy.CaseDef(tree, pat1, transform(guard), transform(body))
          case LabelDef(_, _, _) if treeInfo.hasSynthCaseSymbol(result) =>
            savingInPattern {
              inPattern = true
              deriveLabelDef(result)(transform)
            }
          case Apply(fun, args) if fun.symbol.isLabel && treeInfo.isSynthCaseSymbol(fun.symbol) =>
            savingInPattern {
              // SI-7756 If we were in a translated pattern, we can now switch out of pattern mode, as the label apply signals
              //         that we are in the user-supplied code in the case body.
              //
              //         Relies on the translation of:
              //            (null: Any) match { case x: List[_] => x; x.reverse; case _ => }'
              //         to:
              //            <synthetic> val x2: List[_] = (x1.asInstanceOf[List[_]]: List[_]);
              //                  matchEnd4({ x2; x2.reverse}) // case body is an argument to a label apply.
              inPattern = false
              super.transform(result)
            }
          case ValDef(_, _, _, _) if treeInfo.hasSynthCaseSymbol(result) =>
            deriveValDef(result)(transform) // SI-7716 Don't refcheck the tpt of the synthetic val that holds the selector.
          case _ =>
            super.transform(result)
        }
        result match {
          case ClassDef(_, _, _, _)
             | TypeDef(_, _, _, _) =>
            if (result.symbol.isLocalToBlock || result.symbol.isTopLevel)
              varianceValidator.traverse(result)
          case tt @ TypeTree() if tt.original != null =>
            varianceValidator.traverse(tt.original) // See SI-7872
          case _ =>
        }

        checkUnexpandedMacro(result)

        result
      } catch {
        case ex: TypeError =>
          if (settings.debug) ex.printStackTrace()
          unit.error(tree.pos, ex.getMessage())
          tree
      } finally {
        localTyper = savedLocalTyper
        currentApplication = savedCurrentApplication
      }
    }
*/