aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/core/TypeComparer.scala
diff options
context:
space:
mode:
Diffstat (limited to 'src/dotty/tools/dotc/core/TypeComparer.scala')
-rw-r--r--src/dotty/tools/dotc/core/TypeComparer.scala1502
1 files changed, 0 insertions, 1502 deletions
diff --git a/src/dotty/tools/dotc/core/TypeComparer.scala b/src/dotty/tools/dotc/core/TypeComparer.scala
deleted file mode 100644
index f78820fff..000000000
--- a/src/dotty/tools/dotc/core/TypeComparer.scala
+++ /dev/null
@@ -1,1502 +0,0 @@
-package dotty.tools
-package dotc
-package core
-
-import Types._, Contexts._, Symbols._, Flags._, Names._, NameOps._, Denotations._
-import Decorators._
-import StdNames.{nme, tpnme}
-import collection.mutable
-import util.{Stats, DotClass, SimpleMap}
-import config.Config
-import config.Printers.{typr, constr, subtyping, noPrinter}
-import TypeErasure.{erasedLub, erasedGlb}
-import TypeApplications._
-import scala.util.control.NonFatal
-
-/** Provides methods to compare types.
- */
-class TypeComparer(initctx: Context) extends DotClass with ConstraintHandling {
- implicit val ctx: Context = initctx
-
- val state = ctx.typerState
- import state.constraint
-
- private var pendingSubTypes: mutable.Set[(Type, Type)] = null
- private var recCount = 0
-
- private var needsGc = false
-
- /** Is a subtype check in progress? In that case we may not
- * permanently instantiate type variables, because the corresponding
- * constraint might still be retracted and the instantiation should
- * then be reversed.
- */
- def subtypeCheckInProgress: Boolean = {
- val result = recCount > 0
- if (result) {
- constr.println("*** needsGC ***")
- needsGc = true
- }
- result
- }
-
- /** For statistics: count how many isSubTypes are part of successful comparisons */
- private var successCount = 0
- private var totalCount = 0
-
- private var myAnyClass: ClassSymbol = null
- private var myNothingClass: ClassSymbol = null
- private var myNullClass: ClassSymbol = null
- private var myObjectClass: ClassSymbol = null
- private var myAnyType: TypeRef = null
- private var myNothingType: TypeRef = null
-
- def AnyClass = {
- if (myAnyClass == null) myAnyClass = defn.AnyClass
- myAnyClass
- }
- def NothingClass = {
- if (myNothingClass == null) myNothingClass = defn.NothingClass
- myNothingClass
- }
- def NullClass = {
- if (myNullClass == null) myNullClass = defn.NullClass
- myNullClass
- }
- def ObjectClass = {
- if (myObjectClass == null) myObjectClass = defn.ObjectClass
- myObjectClass
- }
- def AnyType = {
- if (myAnyType == null) myAnyType = AnyClass.typeRef
- myAnyType
- }
- def NothingType = {
- if (myNothingType == null) myNothingType = NothingClass.typeRef
- myNothingType
- }
-
- /** Indicates whether a previous subtype check used GADT bounds */
- var GADTused = false
-
- /** Record that GADT bounds of `sym` were used in a subtype check.
- * But exclude constructor type parameters, as these are aliased
- * to the corresponding class parameters, which does not constitute
- * a true usage of a GADT symbol.
- */
- private def GADTusage(sym: Symbol) = {
- if (!sym.owner.isConstructor) GADTused = true
- true
- }
-
- // Subtype testing `<:<`
-
- def topLevelSubType(tp1: Type, tp2: Type): Boolean = {
- if (tp2 eq NoType) return false
- if ((tp2 eq tp1) || (tp2 eq WildcardType)) return true
- try isSubType(tp1, tp2)
- finally
- if (Config.checkConstraintsSatisfiable)
- assert(isSatisfiable, constraint.show)
- }
-
- protected def isSubType(tp1: Type, tp2: Type): Boolean = ctx.traceIndented(s"isSubType ${traceInfo(tp1, tp2)}", subtyping) {
- if (tp2 eq NoType) false
- else if (tp1 eq tp2) true
- else {
- val saved = constraint
- val savedSuccessCount = successCount
- try {
- recCount = recCount + 1
- val result =
- if (recCount < Config.LogPendingSubTypesThreshold) firstTry(tp1, tp2)
- else monitoredIsSubType(tp1, tp2)
- recCount = recCount - 1
- if (!result) constraint = saved
- else if (recCount == 0 && needsGc) {
- state.gc()
- needsGc = false
- }
- if (Stats.monitored) recordStatistics(result, savedSuccessCount)
- result
- } catch {
- case NonFatal(ex) =>
- if (ex.isInstanceOf[AssertionError]) showGoal(tp1, tp2)
- recCount -= 1
- constraint = saved
- successCount = savedSuccessCount
- throw ex
- }
- }
- }
-
- private def monitoredIsSubType(tp1: Type, tp2: Type) = {
- if (pendingSubTypes == null) {
- pendingSubTypes = new mutable.HashSet[(Type, Type)]
- ctx.log(s"!!! deep subtype recursion involving ${tp1.show} <:< ${tp2.show}, constraint = ${state.constraint.show}")
- ctx.log(s"!!! constraint = ${constraint.show}")
- //if (ctx.settings.YnoDeepSubtypes.value) {
- // new Error("deep subtype").printStackTrace()
- //}
- assert(!ctx.settings.YnoDeepSubtypes.value)
- if (Config.traceDeepSubTypeRecursions && !this.isInstanceOf[ExplainingTypeComparer])
- ctx.log(TypeComparer.explained(implicit ctx => ctx.typeComparer.isSubType(tp1, tp2)))
- }
- val p = (tp1, tp2)
- !pendingSubTypes(p) && {
- try {
- pendingSubTypes += p
- firstTry(tp1, tp2)
- } finally {
- pendingSubTypes -= p
- }
- }
- }
-
- private def firstTry(tp1: Type, tp2: Type): Boolean = tp2 match {
- case tp2: NamedType =>
- def compareNamed(tp1: Type, tp2: NamedType): Boolean = {
- implicit val ctx: Context = this.ctx
- tp2.info match {
- case info2: TypeAlias => isSubType(tp1, info2.alias)
- case _ => tp1 match {
- case tp1: NamedType =>
- tp1.info match {
- case info1: TypeAlias =>
- if (isSubType(info1.alias, tp2)) return true
- if (tp1.prefix.isStable) return false
- // If tp1.prefix is stable, the alias does contain all information about the original ref, so
- // there's no need to try something else. (This is important for performance).
- // To see why we cannot in general stop here, consider:
- //
- // trait C { type A }
- // trait D { type A = String }
- // (C & D)#A <: C#A
- //
- // Following the alias leads to the judgment `String <: C#A` which is false.
- // However the original judgment should be true.
- case _ =>
- }
- val sym1 =
- if (tp1.symbol.is(ModuleClass) && tp2.symbol.is(ModuleVal))
- // For convenience we want X$ <:< X.type
- // This is safe because X$ self-type is X.type
- tp1.symbol.companionModule
- else
- tp1.symbol
- if ((sym1 ne NoSymbol) && (sym1 eq tp2.symbol))
- ctx.erasedTypes ||
- sym1.isStaticOwner ||
- isSubType(tp1.prefix, tp2.prefix) ||
- thirdTryNamed(tp1, tp2)
- else
- ( (tp1.name eq tp2.name)
- && isSubType(tp1.prefix, tp2.prefix)
- && tp1.signature == tp2.signature
- && !tp1.isInstanceOf[WithFixedSym]
- && !tp2.isInstanceOf[WithFixedSym]
- ) ||
- thirdTryNamed(tp1, tp2)
- case _ =>
- secondTry(tp1, tp2)
- }
- }
- }
- compareNamed(tp1, tp2)
- case tp2: ProtoType =>
- isMatchedByProto(tp2, tp1)
- case tp2: BoundType =>
- tp2 == tp1 || secondTry(tp1, tp2)
- case tp2: TypeVar =>
- isSubType(tp1, tp2.underlying)
- case tp2: WildcardType =>
- def compareWild = tp2.optBounds match {
- case TypeBounds(_, hi) => isSubType(tp1, hi)
- case NoType => true
- }
- compareWild
- case tp2: LazyRef =>
- !tp2.evaluating && isSubType(tp1, tp2.ref)
- case tp2: AnnotatedType =>
- isSubType(tp1, tp2.tpe) // todo: refine?
- case tp2: ThisType =>
- def compareThis = {
- val cls2 = tp2.cls
- tp1 match {
- case tp1: ThisType =>
- // We treat two prefixes A.this, B.this as equivalent if
- // A's selftype derives from B and B's selftype derives from A.
- val cls1 = tp1.cls
- cls1.classInfo.selfType.derivesFrom(cls2) &&
- cls2.classInfo.selfType.derivesFrom(cls1)
- case tp1: NamedType if cls2.is(Module) && cls2.eq(tp1.widen.typeSymbol) =>
- cls2.isStaticOwner ||
- isSubType(tp1.prefix, cls2.owner.thisType) ||
- secondTry(tp1, tp2)
- case _ =>
- secondTry(tp1, tp2)
- }
- }
- compareThis
- case tp2: SuperType =>
- def compareSuper = tp1 match {
- case tp1: SuperType =>
- isSubType(tp1.thistpe, tp2.thistpe) &&
- isSameType(tp1.supertpe, tp2.supertpe)
- case _ =>
- secondTry(tp1, tp2)
- }
- compareSuper
- case AndType(tp21, tp22) =>
- isSubType(tp1, tp21) && isSubType(tp1, tp22)
- case OrType(tp21, tp22) =>
- if (tp21.stripTypeVar eq tp22.stripTypeVar) isSubType(tp1, tp21)
- else secondTry(tp1, tp2)
- case TypeErasure.ErasedValueType(tycon1, underlying2) =>
- def compareErasedValueType = tp1 match {
- case TypeErasure.ErasedValueType(tycon2, underlying1) =>
- (tycon1.symbol eq tycon2.symbol) && isSameType(underlying1, underlying2)
- case _ =>
- secondTry(tp1, tp2)
- }
- compareErasedValueType
- case ErrorType =>
- true
- case _ =>
- secondTry(tp1, tp2)
- }
-
- private def secondTry(tp1: Type, tp2: Type): Boolean = tp1 match {
- case tp1: NamedType =>
- tp1.info match {
- case info1: TypeAlias =>
- if (isSubType(info1.alias, tp2)) return true
- if (tp1.prefix.isStable) return false
- case _ =>
- }
- thirdTry(tp1, tp2)
- case tp1: PolyParam =>
- def flagNothingBound = {
- if (!frozenConstraint && tp2.isRef(defn.NothingClass) && state.isGlobalCommittable) {
- def msg = s"!!! instantiated to Nothing: $tp1, constraint = ${constraint.show}"
- if (Config.failOnInstantiationToNothing) assert(false, msg)
- else ctx.log(msg)
- }
- true
- }
- def comparePolyParam =
- ctx.mode.is(Mode.TypevarsMissContext) ||
- isSubTypeWhenFrozen(bounds(tp1).hi, tp2) || {
- if (canConstrain(tp1)) addConstraint(tp1, tp2, fromBelow = false) && flagNothingBound
- else thirdTry(tp1, tp2)
- }
- comparePolyParam
- case tp1: ThisType =>
- val cls1 = tp1.cls
- tp2 match {
- case tp2: TermRef if cls1.is(Module) && cls1.eq(tp2.widen.typeSymbol) =>
- cls1.isStaticOwner ||
- isSubType(cls1.owner.thisType, tp2.prefix) ||
- thirdTry(tp1, tp2)
- case _ =>
- thirdTry(tp1, tp2)
- }
- case tp1: SkolemType =>
- tp2 match {
- case tp2: SkolemType if !ctx.phase.isTyper && tp1.info <:< tp2.info => true
- case _ => thirdTry(tp1, tp2)
- }
- case tp1: TypeVar =>
- isSubType(tp1.underlying, tp2)
- case tp1: WildcardType =>
- def compareWild = tp1.optBounds match {
- case TypeBounds(lo, _) => isSubType(lo, tp2)
- case _ => true
- }
- compareWild
- case tp1: LazyRef =>
- // If `tp1` is in train of being evaluated, don't force it
- // because that would cause an assertionError. Return false instead.
- // See i859.scala for an example where we hit this case.
- !tp1.evaluating && isSubType(tp1.ref, tp2)
- case tp1: AnnotatedType =>
- isSubType(tp1.tpe, tp2)
- case AndType(tp11, tp12) =>
- if (tp11.stripTypeVar eq tp12.stripTypeVar) isSubType(tp11, tp2)
- else thirdTry(tp1, tp2)
- case tp1 @ OrType(tp11, tp12) =>
- def joinOK = tp2.dealias match {
- case tp12: HKApply =>
- // If we apply the default algorithm for `A[X] | B[Y] <: C[Z]` where `C` is a
- // type parameter, we will instantiate `C` to `A` and then fail when comparing
- // with `B[Y]`. To do the right thing, we need to instantiate `C` to the
- // common superclass of `A` and `B`.
- isSubType(tp1.join, tp2)
- case _ =>
- false
- }
- joinOK || isSubType(tp11, tp2) && isSubType(tp12, tp2)
- case ErrorType =>
- true
- case _ =>
- thirdTry(tp1, tp2)
- }
-
- private def thirdTryNamed(tp1: Type, tp2: NamedType): Boolean = tp2.info match {
- case TypeBounds(lo2, _) =>
- def compareGADT: Boolean = {
- val gbounds2 = ctx.gadt.bounds(tp2.symbol)
- (gbounds2 != null) &&
- (isSubTypeWhenFrozen(tp1, gbounds2.lo) ||
- narrowGADTBounds(tp2, tp1, isUpper = false)) &&
- GADTusage(tp2.symbol)
- }
- ((frozenConstraint || !isCappable(tp1)) && isSubType(tp1, lo2) ||
- compareGADT ||
- fourthTry(tp1, tp2))
-
- case _ =>
- val cls2 = tp2.symbol
- if (cls2.isClass) {
- val base = tp1.baseTypeRef(cls2)
- if (base.exists && (base ne tp1)) return isSubType(base, tp2)
- if (cls2 == defn.SingletonClass && tp1.isStable) return true
- }
- fourthTry(tp1, tp2)
- }
-
- private def thirdTry(tp1: Type, tp2: Type): Boolean = tp2 match {
- case tp2: NamedType =>
- thirdTryNamed(tp1, tp2)
- case tp2: PolyParam =>
- def comparePolyParam =
- (ctx.mode is Mode.TypevarsMissContext) ||
- isSubTypeWhenFrozen(tp1, bounds(tp2).lo) || {
- if (canConstrain(tp2)) addConstraint(tp2, tp1.widenExpr, fromBelow = true)
- else fourthTry(tp1, tp2)
- }
- comparePolyParam
- case tp2: RefinedType =>
- def compareRefinedSlow: Boolean = {
- val name2 = tp2.refinedName
- isSubType(tp1, tp2.parent) &&
- (name2 == nme.WILDCARD || hasMatchingMember(name2, tp1, tp2))
- }
- def compareRefined: Boolean = {
- val tp1w = tp1.widen
- val skipped2 = skipMatching(tp1w, tp2)
- if ((skipped2 eq tp2) || !Config.fastPathForRefinedSubtype)
- tp1 match {
- case tp1: AndType =>
- // Delay calling `compareRefinedSlow` because looking up a member
- // of an `AndType` can lead to a cascade of subtyping checks
- // This twist is needed to make collection/generic/ParFactory.scala compile
- fourthTry(tp1, tp2) || compareRefinedSlow
- case _ =>
- compareRefinedSlow || fourthTry(tp1, tp2)
- }
- else // fast path, in particular for refinements resulting from parameterization.
- isSubRefinements(tp1w.asInstanceOf[RefinedType], tp2, skipped2) &&
- isSubType(tp1, skipped2)
- }
- compareRefined
- case tp2: RecType =>
- def compareRec = tp1.safeDealias match {
- case tp1: RecType =>
- val rthis1 = RecThis(tp1)
- isSubType(tp1.parent, tp2.parent.substRecThis(tp2, rthis1))
- case _ =>
- val tp1stable = ensureStableSingleton(tp1)
- isSubType(fixRecs(tp1stable, tp1stable.widenExpr), tp2.parent.substRecThis(tp2, tp1stable))
- }
- compareRec
- case tp2 @ HKApply(tycon2, args2) =>
- compareHkApply2(tp1, tp2, tycon2, args2)
- case tp2 @ PolyType(tparams2, body2) =>
- def compareHkLambda: Boolean = tp1.stripTypeVar match {
- case tp1 @ PolyType(tparams1, body1) =>
- /* Don't compare bounds of lambdas under language:Scala2, or t2994 will fail
- * The issue is that, logically, bounds should compare contravariantly,
- * but that would invalidate a pattern exploited in t2994:
- *
- * [X0 <: Number] -> Number <:< [X0] -> Any
- *
- * Under the new scheme, `[X0] -> Any` is NOT a kind that subsumes
- * all other bounds. You'd have to write `[X0 >: Any <: Nothing] -> Any` instead.
- * This might look weird, but is the only logically correct way to do it.
- *
- * Note: it would be nice if this could trigger a migration warning, but I
- * am not sure how, since the code is buried so deep in subtyping logic.
- */
- def boundsOK =
- ctx.scala2Mode ||
- tparams1.corresponds(tparams2)((tparam1, tparam2) =>
- isSubType(tparam2.paramBounds.subst(tp2, tp1), tparam1.paramBounds))
- val saved = comparedPolyTypes
- comparedPolyTypes += tp1
- comparedPolyTypes += tp2
- try
- variancesConform(tparams1, tparams2) &&
- boundsOK &&
- isSubType(body1, body2.subst(tp2, tp1))
- finally comparedPolyTypes = saved
- case _ =>
- if (!tp1.isHK) {
- tp2 match {
- case EtaExpansion(tycon2) if tycon2.symbol.isClass =>
- return isSubType(tp1, tycon2)
- case _ =>
- }
- }
- fourthTry(tp1, tp2)
- }
- compareHkLambda
- case OrType(tp21, tp22) =>
- // Rewrite T1 <: (T211 & T212) | T22 to T1 <: (T211 | T22) and T1 <: (T212 | T22)
- // and analogously for T1 <: T21 | (T221 & T222)
- // `|' types to the right of <: are problematic, because
- // we have to choose one constraint set or another, which might cut off
- // solutions. The rewriting delays the point where we have to choose.
- tp21 match {
- case AndType(tp211, tp212) =>
- return isSubType(tp1, OrType(tp211, tp22)) && isSubType(tp1, OrType(tp212, tp22))
- case _ =>
- }
- tp22 match {
- case AndType(tp221, tp222) =>
- return isSubType(tp1, OrType(tp21, tp221)) && isSubType(tp1, OrType(tp21, tp222))
- case _ =>
- }
- either(isSubType(tp1, tp21), isSubType(tp1, tp22)) || fourthTry(tp1, tp2)
- case tp2 @ MethodType(_, formals2) =>
- def compareMethod = tp1 match {
- case tp1 @ MethodType(_, formals1) =>
- (tp1.signature consistentParams tp2.signature) &&
- matchingParams(formals1, formals2, tp1.isJava, tp2.isJava) &&
- tp1.isImplicit == tp2.isImplicit && // needed?
- isSubType(tp1.resultType, tp2.resultType.subst(tp2, tp1))
- case _ =>
- false
- }
- compareMethod
- case tp2 @ ExprType(restpe2) =>
- def compareExpr = tp1 match {
- // We allow ()T to be a subtype of => T.
- // We need some subtype relationship between them so that e.g.
- // def toString and def toString() don't clash when seen
- // as members of the same type. And it seems most logical to take
- // ()T <:< => T, since everything one can do with a => T one can
- // also do with a ()T by automatic () insertion.
- case tp1 @ MethodType(Nil, _) => isSubType(tp1.resultType, restpe2)
- case _ => isSubType(tp1.widenExpr, restpe2)
- }
- compareExpr
- case tp2 @ TypeBounds(lo2, hi2) =>
- def compareTypeBounds = tp1 match {
- case tp1 @ TypeBounds(lo1, hi1) =>
- (tp2.variance > 0 && tp1.variance >= 0 || (lo2 eq NothingType) || isSubType(lo2, lo1)) &&
- (tp2.variance < 0 && tp1.variance <= 0 || (hi2 eq AnyType) || isSubType(hi1, hi2))
- case tp1: ClassInfo =>
- tp2 contains tp1
- case _ =>
- false
- }
- compareTypeBounds
- case ClassInfo(pre2, cls2, _, _, _) =>
- def compareClassInfo = tp1 match {
- case ClassInfo(pre1, cls1, _, _, _) =>
- (cls1 eq cls2) && isSubType(pre1, pre2)
- case _ =>
- false
- }
- compareClassInfo
- case _ =>
- fourthTry(tp1, tp2)
- }
-
- private def fourthTry(tp1: Type, tp2: Type): Boolean = tp1 match {
- case tp1: TypeRef =>
- tp1.info match {
- case TypeBounds(_, hi1) =>
- def compareGADT = {
- val gbounds1 = ctx.gadt.bounds(tp1.symbol)
- (gbounds1 != null) &&
- (isSubTypeWhenFrozen(gbounds1.hi, tp2) ||
- narrowGADTBounds(tp1, tp2, isUpper = true)) &&
- GADTusage(tp1.symbol)
- }
- isSubType(hi1, tp2) || compareGADT
- case _ =>
- def isNullable(tp: Type): Boolean = tp.widenDealias match {
- case tp: TypeRef => tp.symbol.isNullableClass
- case tp: RefinedOrRecType => isNullable(tp.parent)
- case AndType(tp1, tp2) => isNullable(tp1) && isNullable(tp2)
- case OrType(tp1, tp2) => isNullable(tp1) || isNullable(tp2)
- case _ => false
- }
- (tp1.symbol eq NothingClass) && tp2.isValueTypeOrLambda ||
- (tp1.symbol eq NullClass) && isNullable(tp2)
- }
- case tp1: SingletonType =>
- /** if `tp2 == p.type` and `p: q.type` then try `tp1 <:< q.type` as a last effort.*/
- def comparePaths = tp2 match {
- case tp2: TermRef =>
- tp2.info.widenExpr match {
- case tp2i: SingletonType =>
- isSubType(tp1, tp2i) // see z1720.scala for a case where this can arise even in typer.
- case _ => false
- }
- case _ =>
- false
- }
- isNewSubType(tp1.underlying.widenExpr, tp2) || comparePaths
- case tp1: RefinedType =>
- isNewSubType(tp1.parent, tp2)
- case tp1: RecType =>
- isNewSubType(tp1.parent, tp2)
- case tp1 @ HKApply(tycon1, args1) =>
- compareHkApply1(tp1, tycon1, args1, tp2)
- case EtaExpansion(tycon1) =>
- isSubType(tycon1, tp2)
- case AndType(tp11, tp12) =>
- // Rewrite (T111 | T112) & T12 <: T2 to (T111 & T12) <: T2 and (T112 | T12) <: T2
- // and analogously for T11 & (T121 | T122) & T12 <: T2
- // `&' types to the left of <: are problematic, because
- // we have to choose one constraint set or another, which might cut off
- // solutions. The rewriting delays the point where we have to choose.
- tp11 match {
- case OrType(tp111, tp112) =>
- return isSubType(AndType(tp111, tp12), tp2) && isSubType(AndType(tp112, tp12), tp2)
- case _ =>
- }
- tp12 match {
- case OrType(tp121, tp122) =>
- return isSubType(AndType(tp11, tp121), tp2) && isSubType(AndType(tp11, tp122), tp2)
- case _ =>
- }
- either(isSubType(tp11, tp2), isSubType(tp12, tp2))
- case JavaArrayType(elem1) =>
- def compareJavaArray = tp2 match {
- case JavaArrayType(elem2) => isSubType(elem1, elem2)
- case _ => tp2 isRef ObjectClass
- }
- compareJavaArray
- case tp1: ExprType if ctx.phase.id > ctx.gettersPhase.id =>
- // getters might have converted T to => T, need to compensate.
- isSubType(tp1.widenExpr, tp2)
- case _ =>
- false
- }
-
- /** Subtype test for the hk application `tp2 = tycon2[args2]`.
- */
- def compareHkApply2(tp1: Type, tp2: HKApply, tycon2: Type, args2: List[Type]): Boolean = {
- val tparams = tycon2.typeParams
- if (tparams.isEmpty) return false // can happen for ill-typed programs, e.g. neg/tcpoly_overloaded.scala
-
- /** True if `tp1` and `tp2` have compatible type constructors and their
- * corresponding arguments are subtypes relative to their variance (see `isSubArgs`).
- */
- def isMatchingApply(tp1: Type): Boolean = tp1 match {
- case HKApply(tycon1, args1) =>
- tycon1.dealias match {
- case tycon1: PolyParam =>
- (tycon1 == tycon2 ||
- canConstrain(tycon1) && tryInstantiate(tycon1, tycon2)) &&
- isSubArgs(args1, args2, tparams)
- case tycon1: TypeRef =>
- tycon2.dealias match {
- case tycon2: TypeRef if tycon1.symbol == tycon2.symbol =>
- isSubType(tycon1.prefix, tycon2.prefix) &&
- isSubArgs(args1, args2, tparams)
- case _ =>
- false
- }
- case tycon1: TypeVar =>
- isMatchingApply(tycon1.underlying)
- case tycon1: AnnotatedType =>
- isMatchingApply(tycon1.underlying)
- case _ =>
- false
- }
- case _ =>
- false
- }
-
- /** `param2` can be instantiated to a type application prefix of the LHS
- * or to a type application prefix of one of the LHS base class instances
- * and the resulting type application is a supertype of `tp1`,
- * or fallback to fourthTry.
- */
- def canInstantiate(tycon2: PolyParam): Boolean = {
-
- /** Let
- *
- * `tparams_1, ..., tparams_k-1` be the type parameters of the rhs
- * `tparams1_1, ..., tparams1_n-1` be the type parameters of the constructor of the lhs
- * `args1_1, ..., args1_n-1` be the type arguments of the lhs
- * `d = n - k`
- *
- * Returns `true` iff `d >= 0` and `tycon2` can be instantiated to
- *
- * [tparams1_d, ... tparams1_n-1] -> tycon1a[args_1, ..., args_d-1, tparams_d, ... tparams_n-1]
- *
- * such that the resulting type application is a supertype of `tp1`.
- */
- def tyconOK(tycon1a: Type, args1: List[Type]) = {
- var tycon1b = tycon1a
- val tparams1a = tycon1a.typeParams
- val lengthDiff = tparams1a.length - tparams.length
- lengthDiff >= 0 && {
- val tparams1 = tparams1a.drop(lengthDiff)
- variancesConform(tparams1, tparams) && {
- if (lengthDiff > 0)
- tycon1b = PolyType(tparams1.map(_.paramName), tparams1.map(_.paramVariance))(
- tl => tparams1.map(tparam => tl.lifted(tparams, tparam.paramBounds).bounds),
- tl => tycon1a.appliedTo(args1.take(lengthDiff) ++
- tparams1.indices.toList.map(PolyParam(tl, _))))
- (ctx.mode.is(Mode.TypevarsMissContext) ||
- tryInstantiate(tycon2, tycon1b.ensureHK)) &&
- isSubType(tp1, tycon1b.appliedTo(args2))
- }
- }
- }
-
- tp1.widen match {
- case tp1w @ HKApply(tycon1, args1) =>
- tyconOK(tycon1, args1)
- case tp1w =>
- tp1w.typeSymbol.isClass && {
- val classBounds = tycon2.classSymbols
- def liftToBase(bcs: List[ClassSymbol]): Boolean = bcs match {
- case bc :: bcs1 =>
- classBounds.exists(bc.derivesFrom) &&
- tyconOK(tp1w.baseTypeRef(bc), tp1w.baseArgInfos(bc)) ||
- liftToBase(bcs1)
- case _ =>
- false
- }
- liftToBase(tp1w.baseClasses)
- } ||
- fourthTry(tp1, tp2)
- }
- }
-
- /** Fall back to comparing either with `fourthTry` or against the lower
- * approximation of the rhs.
- * @param tyconLo The type constructor's lower approximation.
- */
- def fallback(tyconLo: Type) =
- either(fourthTry(tp1, tp2), isSubType(tp1, tyconLo.applyIfParameterized(args2)))
-
- /** Let `tycon2bounds` be the bounds of the RHS type constructor `tycon2`.
- * Let `app2 = tp2` where the type constructor of `tp2` is replaced by
- * `tycon2bounds.lo`.
- * If both bounds are the same, continue with `tp1 <:< app2`.
- * otherwise continue with either
- *
- * tp1 <:< tp2 using fourthTry (this might instantiate params in tp1)
- * tp1 <:< app2 using isSubType (this might instantiate params in tp2)
- */
- def compareLower(tycon2bounds: TypeBounds, tyconIsTypeRef: Boolean): Boolean =
- if (tycon2bounds.lo eq tycon2bounds.hi)
- isSubType(tp1,
- if (tyconIsTypeRef) tp2.superType
- else tycon2bounds.lo.applyIfParameterized(args2))
- else
- fallback(tycon2bounds.lo)
-
- tycon2 match {
- case param2: PolyParam =>
- isMatchingApply(tp1) || {
- if (canConstrain(param2)) canInstantiate(param2)
- else compareLower(bounds(param2), tyconIsTypeRef = false)
- }
- case tycon2: TypeRef =>
- isMatchingApply(tp1) ||
- compareLower(tycon2.info.bounds, tyconIsTypeRef = true)
- case _: TypeVar | _: AnnotatedType =>
- isSubType(tp1, tp2.superType)
- case tycon2: HKApply =>
- fallback(tycon2.lowerBound)
- case _ =>
- false
- }
- }
-
- /** Subtype test for the hk application `tp1 = tycon1[args1]`.
- */
- def compareHkApply1(tp1: HKApply, tycon1: Type, args1: List[Type], tp2: Type): Boolean =
- tycon1 match {
- case param1: PolyParam =>
- def canInstantiate = tp2 match {
- case AppliedType(tycon2, args2) =>
- tryInstantiate(param1, tycon2.ensureHK) && isSubArgs(args1, args2, tycon2.typeParams)
- case _ =>
- false
- }
- canConstrain(param1) && canInstantiate ||
- isSubType(bounds(param1).hi.applyIfParameterized(args1), tp2)
- case tycon1: TypeProxy =>
- isSubType(tp1.superType, tp2)
- case _ =>
- false
- }
-
- /** Subtype test for corresponding arguments in `args1`, `args2` according to
- * variances in type parameters `tparams`.
- */
- def isSubArgs(args1: List[Type], args2: List[Type], tparams: List[TypeParamInfo]): Boolean =
- if (args1.isEmpty) args2.isEmpty
- else args2.nonEmpty && {
- val v = tparams.head.paramVariance
- (v > 0 || isSubType(args2.head, args1.head)) &&
- (v < 0 || isSubType(args1.head, args2.head))
- } && isSubArgs(args1.tail, args2.tail, tparams)
-
- /** Test whether `tp1` has a base type of the form `B[T1, ..., Tn]` where
- * - `B` derives from one of the class symbols of `tp2`,
- * - the type parameters of `B` match one-by-one the variances of `tparams`,
- * - `B` satisfies predicate `p`.
- */
- private def testLifted(tp1: Type, tp2: Type, tparams: List[TypeParamInfo], p: Type => Boolean): Boolean = {
- val classBounds = tp2.classSymbols
- def recur(bcs: List[ClassSymbol]): Boolean = bcs match {
- case bc :: bcs1 =>
- val baseRef = tp1.baseTypeRef(bc)
- (classBounds.exists(bc.derivesFrom) &&
- variancesConform(baseRef.typeParams, tparams) &&
- p(baseRef.appliedTo(tp1.baseArgInfos(bc)))
- ||
- recur(bcs1))
- case nil =>
- false
- }
- recur(tp1.baseClasses)
- }
-
- /** Replace any top-level recursive type `{ z => T }` in `tp` with
- * `[z := anchor]T`.
- */
- private def fixRecs(anchor: SingletonType, tp: Type): Type = {
- def fix(tp: Type): Type = tp.stripTypeVar match {
- case tp: RecType => fix(tp.parent).substRecThis(tp, anchor)
- case tp @ RefinedType(parent, rname, rinfo) => tp.derivedRefinedType(fix(parent), rname, rinfo)
- case tp: PolyParam => fixOrElse(bounds(tp).hi, tp)
- case tp: TypeProxy => fixOrElse(tp.underlying, tp)
- case tp: AndOrType => tp.derivedAndOrType(fix(tp.tp1), fix(tp.tp2))
- case tp => tp
- }
- def fixOrElse(tp: Type, fallback: Type) = {
- val tp1 = fix(tp)
- if (tp1 ne tp) tp1 else fallback
- }
- fix(tp)
- }
-
- /** Returns true iff the result of evaluating either `op1` or `op2` is true,
- * trying at the same time to keep the constraint as wide as possible.
- * E.g, if
- *
- * tp11 <:< tp12 = true with post-constraint c1
- * tp12 <:< tp22 = true with post-constraint c2
- *
- * and c1 subsumes c2, then c2 is kept as the post-constraint of the result,
- * otherwise c1 is kept.
- *
- * This method is used to approximate a solution in one of the following cases
- *
- * T1 & T2 <:< T3
- * T1 <:< T2 | T3
- *
- * In the first case (the second one is analogous), we have a choice whether we
- * want to establish the subtyping judgement using
- *
- * T1 <:< T3 or T2 <:< T3
- *
- * as a precondition. Either precondition might constrain type variables.
- * The purpose of this method is to pick the precondition that constrains less.
- * The method is not complete, because sometimes there is no best solution. Example:
- *
- * A? & B? <: T
- *
- * Here, each precondition leads to a different constraint, and neither of
- * the two post-constraints subsumes the other.
- */
- private def either(op1: => Boolean, op2: => Boolean): Boolean = {
- val preConstraint = constraint
- op1 && {
- val leftConstraint = constraint
- constraint = preConstraint
- if (!(op2 && subsumes(leftConstraint, constraint, preConstraint))) {
- if (constr != noPrinter && !subsumes(constraint, leftConstraint, preConstraint))
- constr.println(i"CUT - prefer $leftConstraint over $constraint")
- constraint = leftConstraint
- }
- true
- } || op2
- }
-
- /** Like tp1 <:< tp2, but returns false immediately if we know that
- * the case was covered previously during subtyping.
- */
- private def isNewSubType(tp1: Type, tp2: Type): Boolean =
- if (isCovered(tp1) && isCovered(tp2)) {
- //println(s"useless subtype: $tp1 <:< $tp2")
- false
- } else isSubType(tp1, tp2)
-
- /** Does type `tp1` have a member with name `name` whose normalized type is a subtype of
- * the normalized type of the refinement `tp2`?
- * Normalization is as follows: If `tp2` contains a skolem to its refinement type,
- * rebase both itself and the member info of `tp` on a freshly created skolem type.
- */
- protected def hasMatchingMember(name: Name, tp1: Type, tp2: RefinedType): Boolean = {
- val rinfo2 = tp2.refinedInfo
- val mbr = tp1.member(name)
-
- def qualifies(m: SingleDenotation) = isSubType(m.info, rinfo2)
-
- def memberMatches: Boolean = mbr match { // inlined hasAltWith for performance
- case mbr: SingleDenotation => qualifies(mbr)
- case _ => mbr hasAltWith qualifies
- }
-
- // special case for situations like:
- // class C { type T }
- // val foo: C
- // foo.type <: C { type T {= , <: , >:} foo.T }
- def selfReferentialMatch = tp1.isInstanceOf[SingletonType] && {
- rinfo2 match {
- case rinfo2: TypeBounds =>
- val mbr1 = tp1.select(name)
- !defn.isBottomType(tp1.widen) &&
- (mbr1 =:= rinfo2.hi || (rinfo2.hi ne rinfo2.lo) && mbr1 =:= rinfo2.lo)
- case _ => false
- }
- }
-
- /*>|>*/ ctx.traceIndented(i"hasMatchingMember($tp1 . $name :? ${tp2.refinedInfo}) ${mbr.info.show} $rinfo2", subtyping) /*<|<*/ {
- memberMatches || selfReferentialMatch
- }
- }
-
- final def ensureStableSingleton(tp: Type): SingletonType = tp.stripTypeVar match {
- case tp: SingletonType if tp.isStable => tp
- case tp: ValueType => SkolemType(tp)
- case tp: TypeProxy => ensureStableSingleton(tp.underlying)
- }
-
- /** Skip refinements in `tp2` which match corresponding refinements in `tp1`.
- * "Match" means:
- * - they appear in the same order,
- * - they refine the same names,
- * - the refinement in `tp1` is an alias type, and
- * - neither refinement refers back to the refined type via a refined this.
- * @return The parent type of `tp2` after skipping the matching refinements.
- */
- private def skipMatching(tp1: Type, tp2: RefinedType): Type = tp1 match {
- case tp1 @ RefinedType(parent1, name1, rinfo1: TypeAlias) if name1 == tp2.refinedName =>
- tp2.parent match {
- case parent2: RefinedType => skipMatching(parent1, parent2)
- case parent2 => parent2
- }
- case _ => tp2
- }
-
- /** Are refinements in `tp1` pairwise subtypes of the refinements of `tp2`
- * up to parent type `limit`?
- * @pre `tp1` has the necessary number of refinements, they are type aliases,
- * and their names match the corresponding refinements in `tp2`.
- * Further, no refinement refers back to the refined type via a refined this.
- * The precondition is established by `skipMatching`.
- */
- private def isSubRefinements(tp1: RefinedType, tp2: RefinedType, limit: Type): Boolean = {
- def hasSubRefinement(tp1: RefinedType, refine2: Type): Boolean = {
- isSubType(tp1.refinedInfo, refine2) || {
- // last effort: try to adapt variances of higher-kinded types if this is sound.
- val adapted2 = refine2.adaptHkVariances(tp1.parent.member(tp1.refinedName).symbol.info)
- adapted2.ne(refine2) && hasSubRefinement(tp1, adapted2)
- }
- }
- hasSubRefinement(tp1, tp2.refinedInfo) && (
- (tp2.parent eq limit) ||
- isSubRefinements(
- tp1.parent.asInstanceOf[RefinedType], tp2.parent.asInstanceOf[RefinedType], limit))
- }
-
- /** A type has been covered previously in subtype checking if it
- * is some combination of TypeRefs that point to classes, where the
- * combiners are RefinedTypes, RecTypes, AndTypes or AnnotatedTypes.
- * One exception: Refinements referring to basetype args are never considered
- * to be already covered. This is necessary because such refined types might
- * still need to be compared with a compareAliasRefined.
- */
- private def isCovered(tp: Type): Boolean = tp.dealias.stripTypeVar match {
- case tp: TypeRef => tp.symbol.isClass && tp.symbol != NothingClass && tp.symbol != NullClass
- case tp: ProtoType => false
- case tp: RefinedOrRecType => isCovered(tp.parent)
- case tp: AnnotatedType => isCovered(tp.underlying)
- case AndType(tp1, tp2) => isCovered(tp1) && isCovered(tp2)
- case _ => false
- }
-
- /** Defer constraining type variables when compared against prototypes */
- def isMatchedByProto(proto: ProtoType, tp: Type) = tp.stripTypeVar match {
- case tp: PolyParam if constraint contains tp => true
- case _ => proto.isMatchedBy(tp)
- }
-
- /** Can type `tp` be constrained from above by adding a constraint to
- * a typevar that it refers to? In that case we have to be careful not
- * to approximate with the lower bound of a type in `thirdTry`. Instead,
- * we should first unroll `tp1` until we hit the type variable and bind the
- * type variable with (the corresponding type in) `tp2` instead.
- */
- private def isCappable(tp: Type): Boolean = tp match {
- case tp: PolyParam => constraint contains tp
- case tp: TypeProxy => isCappable(tp.underlying)
- case tp: AndOrType => isCappable(tp.tp1) || isCappable(tp.tp2)
- case _ => false
- }
-
- /** Narrow gadt.bounds for the type parameter referenced by `tr` to include
- * `bound` as an upper or lower bound (which depends on `isUpper`).
- * Test that the resulting bounds are still satisfiable.
- */
- private def narrowGADTBounds(tr: NamedType, bound: Type, isUpper: Boolean): Boolean =
- ctx.mode.is(Mode.GADTflexible) && !frozenConstraint && {
- val tparam = tr.symbol
- typr.println(i"narrow gadt bound of $tparam: ${tparam.info} from ${if (isUpper) "above" else "below"} to $bound ${bound.isRef(tparam)}")
- if (bound.isRef(tparam)) false
- else bound match {
- case bound: TypeRef
- if bound.symbol.is(BindDefinedType) &&
- ctx.gadt.bounds.contains(bound.symbol) &&
- !tr.symbol.is(BindDefinedType) =>
- // Avoid having pattern-bound types in gadt bounds,
- // as these might be eliminated once the pattern is typechecked.
- // Pattern-bound type symbols should be narrowed first, only if that fails
- // should symbols in the environment be constrained.
- narrowGADTBounds(bound, tr, !isUpper)
- case _ =>
- val oldBounds = ctx.gadt.bounds(tparam)
- val newBounds =
- if (isUpper) TypeBounds(oldBounds.lo, oldBounds.hi & bound)
- else TypeBounds(oldBounds.lo | bound, oldBounds.hi)
- isSubType(newBounds.lo, newBounds.hi) &&
- { ctx.gadt.setBounds(tparam, newBounds); true }
- }
- }
-
- // Tests around `matches`
-
- /** A function implementing `tp1` matches `tp2`. */
- final def matchesType(tp1: Type, tp2: Type, relaxed: Boolean): Boolean = tp1.widen match {
- case tp1: MethodType =>
- tp2.widen match {
- case tp2: MethodType =>
- tp1.isImplicit == tp2.isImplicit &&
- matchingParams(tp1.paramTypes, tp2.paramTypes, tp1.isJava, tp2.isJava) &&
- matchesType(tp1.resultType, tp2.resultType.subst(tp2, tp1), relaxed)
- case tp2 =>
- relaxed && tp1.paramNames.isEmpty &&
- matchesType(tp1.resultType, tp2, relaxed)
- }
- case tp1: PolyType =>
- tp2.widen match {
- case tp2: PolyType =>
- sameLength(tp1.paramNames, tp2.paramNames) &&
- matchesType(tp1.resultType, tp2.resultType.subst(tp2, tp1), relaxed)
- case _ =>
- false
- }
- case _ =>
- tp2.widen match {
- case _: PolyType =>
- false
- case tp2: MethodType =>
- relaxed && tp2.paramNames.isEmpty &&
- matchesType(tp1, tp2.resultType, relaxed)
- case tp2 =>
- relaxed || isSameType(tp1, tp2)
- }
- }
-
- /** Are `syms1` and `syms2` parameter lists with pairwise equivalent types? */
- def matchingParams(formals1: List[Type], formals2: List[Type], isJava1: Boolean, isJava2: Boolean): Boolean = formals1 match {
- case formal1 :: rest1 =>
- formals2 match {
- case formal2 :: rest2 =>
- (isSameTypeWhenFrozen(formal1, formal2)
- || isJava1 && (formal2 isRef ObjectClass) && (formal1 isRef AnyClass)
- || isJava2 && (formal1 isRef ObjectClass) && (formal2 isRef AnyClass)) &&
- matchingParams(rest1, rest2, isJava1, isJava2)
- case nil =>
- false
- }
- case nil =>
- formals2.isEmpty
- }
-
- /** Do generic types `poly1` and `poly2` have type parameters that
- * have the same bounds (after renaming one set to the other)?
- */
- def matchingTypeParams(poly1: PolyType, poly2: PolyType): Boolean =
- (poly1.paramBounds corresponds poly2.paramBounds)((b1, b2) =>
- isSameType(b1, b2.subst(poly2, poly1)))
-
- // Type equality =:=
-
- /** Two types are the same if are mutual subtypes of each other */
- def isSameType(tp1: Type, tp2: Type): Boolean =
- if (tp1 eq NoType) false
- else if (tp1 eq tp2) true
- else isSubType(tp1, tp2) && isSubType(tp2, tp1)
-
- /** Same as `isSameType` but also can be applied to overloaded TermRefs, where
- * two overloaded refs are the same if they have pairwise equal alternatives
- */
- def isSameRef(tp1: Type, tp2: Type): Boolean = ctx.traceIndented(s"isSameRef($tp1, $tp2") {
- def isSubRef(tp1: Type, tp2: Type): Boolean = tp1 match {
- case tp1: TermRef if tp1.isOverloaded =>
- tp1.alternatives forall (isSubRef(_, tp2))
- case _ =>
- tp2 match {
- case tp2: TermRef if tp2.isOverloaded =>
- tp2.alternatives exists (isSubRef(tp1, _))
- case _ =>
- isSubType(tp1, tp2)
- }
- }
- isSubRef(tp1, tp2) && isSubRef(tp2, tp1)
- }
-
- /** The greatest lower bound of two types */
- def glb(tp1: Type, tp2: Type): Type = /*>|>*/ ctx.traceIndented(s"glb(${tp1.show}, ${tp2.show})", subtyping, show = true) /*<|<*/ {
- if (tp1 eq tp2) tp1
- else if (!tp1.exists) tp2
- else if (!tp2.exists) tp1
- else if ((tp1 isRef AnyClass) || (tp2 isRef NothingClass)) tp2
- else if ((tp2 isRef AnyClass) || (tp1 isRef NothingClass)) tp1
- else tp2 match { // normalize to disjunctive normal form if possible.
- case OrType(tp21, tp22) =>
- tp1 & tp21 | tp1 & tp22
- case _ =>
- tp1 match {
- case OrType(tp11, tp12) =>
- tp11 & tp2 | tp12 & tp2
- case _ =>
- val t1 = mergeIfSub(tp1, tp2)
- if (t1.exists) t1
- else {
- val t2 = mergeIfSub(tp2, tp1)
- if (t2.exists) t2
- else tp1 match {
- case tp1: ConstantType =>
- tp2 match {
- case tp2: ConstantType =>
- // Make use of the fact that the intersection of two constant types
- // types which are not subtypes of each other is known to be empty.
- // Note: The same does not apply to singleton types in general.
- // E.g. we could have a pattern match against `x.type & y.type`
- // which might succeed if `x` and `y` happen to be the same ref
- // at run time. It would not work to replace that with `Nothing`.
- // However, maybe we can still apply the replacement to
- // types which are not explicitly written.
- defn.NothingType
- case _ => andType(tp1, tp2)
- }
- case _ => andType(tp1, tp2)
- }
- }
- }
- }
- }
-
- /** The greatest lower bound of a list types */
- final def glb(tps: List[Type]): Type =
- ((defn.AnyType: Type) /: tps)(glb)
-
- /** The least upper bound of two types
- * @note We do not admit singleton types in or-types as lubs.
- */
- def lub(tp1: Type, tp2: Type): Type = /*>|>*/ ctx.traceIndented(s"lub(${tp1.show}, ${tp2.show})", subtyping, show = true) /*<|<*/ {
- if (tp1 eq tp2) tp1
- else if (!tp1.exists) tp1
- else if (!tp2.exists) tp2
- else if ((tp1 isRef AnyClass) || (tp2 isRef NothingClass)) tp1
- else if ((tp2 isRef AnyClass) || (tp1 isRef NothingClass)) tp2
- else {
- val t1 = mergeIfSuper(tp1, tp2)
- if (t1.exists) t1
- else {
- val t2 = mergeIfSuper(tp2, tp1)
- if (t2.exists) t2
- else {
- val tp1w = tp1.widen
- val tp2w = tp2.widen
- if ((tp1 ne tp1w) || (tp2 ne tp2w)) lub(tp1w, tp2w)
- else orType(tp1w, tp2w) // no need to check subtypes again
- }
- }
- }
- }
-
- /** The least upper bound of a list of types */
- final def lub(tps: List[Type]): Type =
- ((defn.NothingType: Type) /: tps)(lub)
-
- /** Merge `t1` into `tp2` if t1 is a subtype of some &-summand of tp2.
- */
- private def mergeIfSub(tp1: Type, tp2: Type): Type =
- if (isSubTypeWhenFrozen(tp1, tp2))
- if (isSubTypeWhenFrozen(tp2, tp1)) tp2 else tp1 // keep existing type if possible
- else tp2 match {
- case tp2 @ AndType(tp21, tp22) =>
- val lower1 = mergeIfSub(tp1, tp21)
- if (lower1 eq tp21) tp2
- else if (lower1.exists) lower1 & tp22
- else {
- val lower2 = mergeIfSub(tp1, tp22)
- if (lower2 eq tp22) tp2
- else if (lower2.exists) tp21 & lower2
- else NoType
- }
- case _ =>
- NoType
- }
-
- /** Merge `tp1` into `tp2` if tp1 is a supertype of some |-summand of tp2.
- */
- private def mergeIfSuper(tp1: Type, tp2: Type): Type =
- if (isSubTypeWhenFrozen(tp2, tp1))
- if (isSubTypeWhenFrozen(tp1, tp2)) tp2 else tp1 // keep existing type if possible
- else tp2 match {
- case tp2 @ OrType(tp21, tp22) =>
- val higher1 = mergeIfSuper(tp1, tp21)
- if (higher1 eq tp21) tp2
- else if (higher1.exists) higher1 | tp22
- else {
- val higher2 = mergeIfSuper(tp1, tp22)
- if (higher2 eq tp22) tp2
- else if (higher2.exists) tp21 | higher2
- else NoType
- }
- case _ =>
- NoType
- }
-
- /** Form a normalized conjunction of two types.
- * Note: For certain types, `&` is distributed inside the type. This holds for
- * all types which are not value types (e.g. TypeBounds, ClassInfo,
- * ExprType, MethodType, PolyType). Also, when forming an `&`,
- * instantiated TypeVars are dereferenced and annotations are stripped.
- * Finally, refined types with the same refined name are
- * opportunistically merged.
- *
- * Sometimes, the conjunction of two types cannot be formed because
- * the types are in conflict of each other. In particular:
- *
- * 1. Two different class types are conflicting.
- * 2. A class type conflicts with a type bounds that does not include the class reference.
- * 3. Two method or poly types with different (type) parameters but the same
- * signature are conflicting
- *
- * In these cases, a MergeError is thrown.
- */
- final def andType(tp1: Type, tp2: Type, erased: Boolean = ctx.erasedTypes) = ctx.traceIndented(s"glb(${tp1.show}, ${tp2.show})", subtyping, show = true) {
- val t1 = distributeAnd(tp1, tp2)
- if (t1.exists) t1
- else {
- val t2 = distributeAnd(tp2, tp1)
- if (t2.exists) t2
- else if (erased) erasedGlb(tp1, tp2, isJava = false)
- else liftIfHK(tp1, tp2, AndType(_, _), _ & _)
- }
- }
-
- /** Form a normalized conjunction of two types.
- * Note: For certain types, `|` is distributed inside the type. This holds for
- * all types which are not value types (e.g. TypeBounds, ClassInfo,
- * ExprType, MethodType, PolyType). Also, when forming an `|`,
- * instantiated TypeVars are dereferenced and annotations are stripped.
- *
- * Sometimes, the disjunction of two types cannot be formed because
- * the types are in conflict of each other. (@see `andType` for an enumeration
- * of these cases). In cases of conflict a `MergeError` is raised.
- *
- * @param erased Apply erasure semantics. If erased is true, instead of creating
- * an OrType, the lub will be computed using TypeCreator#erasedLub.
- */
- final def orType(tp1: Type, tp2: Type, erased: Boolean = ctx.erasedTypes) = {
- val t1 = distributeOr(tp1, tp2)
- if (t1.exists) t1
- else {
- val t2 = distributeOr(tp2, tp1)
- if (t2.exists) t2
- else if (erased) erasedLub(tp1, tp2)
- else liftIfHK(tp1, tp2, OrType(_, _), _ | _)
- }
- }
-
- /** `op(tp1, tp2)` unless `tp1` and `tp2` are type-constructors with at least
- * some unnamed type parameters.
- * In the latter case, combine `tp1` and `tp2` under a type lambda like this:
- *
- * [X1, ..., Xn] -> op(tp1[X1, ..., Xn], tp2[X1, ..., Xn])
- *
- * Note: There is a tension between named and positional parameters here, which
- * is impossible to resolve completely. Say you have
- *
- * C[type T], D[type U]
- *
- * Then do you expand `C & D` to `[T] -> C[T] & D[T]` or not? Under the named
- * type parameter interpretation, this would be wrong whereas under the traditional
- * higher-kinded interpretation this would be required. The problem arises from
- * allowing both interpretations. A possible remedy is to be somehow stricter
- * in where we allow which interpretation.
- */
- private def liftIfHK(tp1: Type, tp2: Type, op: (Type, Type) => Type, original: (Type, Type) => Type) = {
- val tparams1 = tp1.typeParams
- val tparams2 = tp2.typeParams
- if (tparams1.isEmpty)
- if (tparams2.isEmpty) op(tp1, tp2)
- else original(tp1, tp2.appliedTo(tp2.typeParams.map(_.paramBoundsAsSeenFrom(tp2))))
- else if (tparams2.isEmpty)
- original(tp1.appliedTo(tp1.typeParams.map(_.paramBoundsAsSeenFrom(tp1))), tp2)
- else
- PolyType(
- paramNames = tpnme.syntheticTypeParamNames(tparams1.length),
- variances = (tparams1, tparams2).zipped.map((tparam1, tparam2) =>
- (tparam1.paramVariance + tparam2.paramVariance) / 2))(
- paramBoundsExp = tl => (tparams1, tparams2).zipped.map((tparam1, tparam2) =>
- tl.lifted(tparams1, tparam1.paramBoundsAsSeenFrom(tp1)).bounds &
- tl.lifted(tparams2, tparam2.paramBoundsAsSeenFrom(tp2)).bounds),
- resultTypeExp = tl =>
- original(tl.lifted(tparams1, tp1).appliedTo(tl.paramRefs),
- tl.lifted(tparams2, tp2).appliedTo(tl.paramRefs)))
- }
-
- /** Try to distribute `&` inside type, detect and handle conflicts
- * @pre !(tp1 <: tp2) && !(tp2 <:< tp1) -- these cases were handled before
- */
- private def distributeAnd(tp1: Type, tp2: Type): Type = tp1 match {
- // opportunistically merge same-named refinements
- // this does not change anything semantically (i.e. merging or not merging
- // gives =:= types), but it keeps the type smaller.
- case tp1: RefinedType =>
- tp2 match {
- case tp2: RefinedType if tp1.refinedName == tp2.refinedName =>
- // Given two refinements `T1 { X = S1 }` and `T2 { X = S2 }`, if `S1 =:= S2`
- // (possibly by instantiating type parameters), rewrite to `T1 & T2 { X = S1 }`.
- // Otherwise rewrite to `T1 & T2 { X B }` where `B` is the conjunction of
- // the bounds of `X` in `T1` and `T2`.
- // The first rule above is contentious because it cuts the constraint set.
- // But without it we would replace the two aliases by
- // `T { X >: S1 | S2 <: S1 & S2 }`, which looks weird and is probably
- // not what's intended.
- val rinfo1 = tp1.refinedInfo
- val rinfo2 = tp2.refinedInfo
- val parent = tp1.parent & tp2.parent
- val rinfo =
- if (rinfo1.isAlias && rinfo2.isAlias && isSameType(rinfo1, rinfo2))
- rinfo1
- else
- rinfo1 & rinfo2
- tp1.derivedRefinedType(parent, tp1.refinedName, rinfo)
- case _ =>
- NoType
- }
- case tp1: RecType =>
- tp1.rebind(distributeAnd(tp1.parent, tp2))
- case ExprType(rt1) =>
- tp2 match {
- case ExprType(rt2) =>
- ExprType(rt1 & rt2)
- case _ =>
- rt1 & tp2
- }
- case tp1: TypeVar if tp1.isInstantiated =>
- tp1.underlying & tp2
- case tp1: AnnotatedType =>
- tp1.underlying & tp2
- case _ =>
- NoType
- }
-
- /** Try to distribute `|` inside type, detect and handle conflicts
- * Note that, unlike for `&`, a disjunction cannot be pushed into
- * a refined or applied type. Example:
- *
- * List[T] | List[U] is not the same as List[T | U].
- *
- * The rhs is a proper supertype of the lhs.
- */
- private def distributeOr(tp1: Type, tp2: Type): Type = tp1 match {
- case ExprType(rt1) =>
- ExprType(rt1 | tp2.widenExpr)
- case tp1: TypeVar if tp1.isInstantiated =>
- tp1.underlying | tp2
- case tp1: AnnotatedType =>
- tp1.underlying | tp2
- case _ =>
- NoType
- }
-
- /** Show type, handling type types better than the default */
- private def showType(tp: Type)(implicit ctx: Context) = tp match {
- case ClassInfo(_, cls, _, _, _) => cls.showLocated
- case bounds: TypeBounds => "type bounds" + bounds.show
- case _ => tp.show
- }
-
- /** A comparison function to pick a winner in case of a merge conflict */
- private def isAsGood(tp1: Type, tp2: Type): Boolean = tp1 match {
- case tp1: ClassInfo =>
- tp2 match {
- case tp2: ClassInfo =>
- isSubTypeWhenFrozen(tp1.prefix, tp2.prefix) || (tp1.cls.owner derivesFrom tp2.cls.owner)
- case _ =>
- false
- }
- case tp1: PolyType =>
- tp2 match {
- case tp2: PolyType =>
- tp1.typeParams.length == tp2.typeParams.length &&
- isAsGood(tp1.resultType, tp2.resultType.subst(tp2, tp1))
- case _ =>
- false
- }
- case tp1: MethodType =>
- tp2 match {
- case tp2: MethodType =>
- def asGoodParams(formals1: List[Type], formals2: List[Type]) =
- (formals2 corresponds formals1)(isSubTypeWhenFrozen)
- asGoodParams(tp1.paramTypes, tp2.paramTypes) &&
- (!asGoodParams(tp2.paramTypes, tp1.paramTypes) ||
- isAsGood(tp1.resultType, tp2.resultType))
- case _ =>
- false
- }
- case _ =>
- false
- }
-
- /** A new type comparer of the same type as this one, using the given context. */
- def copyIn(ctx: Context) = new TypeComparer(ctx)
-
- // ----------- Diagnostics --------------------------------------------------
-
- /** A hook for showing subtype traces. Overridden in ExplainingTypeComparer */
- def traceIndented[T](str: String)(op: => T): T = op
-
- private def traceInfo(tp1: Type, tp2: Type) =
- s"${tp1.show} <:< ${tp2.show}" + {
- if (ctx.settings.verbose.value || Config.verboseExplainSubtype) {
- s" ${tp1.getClass}, ${tp2.getClass}" +
- (if (frozenConstraint) " frozen" else "") +
- (if (ctx.mode is Mode.TypevarsMissContext) " tvars-miss-ctx" else "")
- }
- else ""
- }
-
- /** Show subtype goal that led to an assertion failure */
- def showGoal(tp1: Type, tp2: Type)(implicit ctx: Context) = {
- println(ex"assertion failure for $tp1 <:< $tp2, frozen = $frozenConstraint")
- def explainPoly(tp: Type) = tp match {
- case tp: PolyParam => ctx.echo(s"polyparam ${tp.show} found in ${tp.binder.show}")
- case tp: TypeRef if tp.symbol.exists => ctx.echo(s"typeref ${tp.show} found in ${tp.symbol.owner.show}")
- case tp: TypeVar => ctx.echo(s"typevar ${tp.show}, origin = ${tp.origin}")
- case _ => ctx.echo(s"${tp.show} is a ${tp.getClass}")
- }
- explainPoly(tp1)
- explainPoly(tp2)
- }
-
- /** Record statistics about the total number of subtype checks
- * and the number of "successful" subtype checks, i.e. checks
- * that form part of a subtype derivation tree that's ultimately successful.
- */
- def recordStatistics(result: Boolean, prevSuccessCount: Int) = {
- // Stats.record(s"isSubType ${tp1.show} <:< ${tp2.show}")
- totalCount += 1
- if (result) successCount += 1 else successCount = prevSuccessCount
- if (recCount == 0) {
- Stats.record("successful subType", successCount)
- Stats.record("total subType", totalCount)
- successCount = 0
- totalCount = 0
- }
- }
-}
-
-object TypeComparer {
-
- /** Show trace of comparison operations when performing `op` as result string */
- def explained[T](op: Context => T)(implicit ctx: Context): String = {
- val nestedCtx = ctx.fresh.setTypeComparerFn(new ExplainingTypeComparer(_))
- op(nestedCtx)
- nestedCtx.typeComparer.toString
- }
-}
-
-/** A type comparer that can record traces of subtype operations */
-class ExplainingTypeComparer(initctx: Context) extends TypeComparer(initctx) {
- private var indent = 0
- private val b = new StringBuilder
-
- private var skipped = false
-
- override def traceIndented[T](str: String)(op: => T): T =
- if (skipped) op
- else {
- indent += 2
- b append "\n" append (" " * indent) append "==> " append str
- val res = op
- b append "\n" append (" " * indent) append "<== " append str append " = " append show(res)
- indent -= 2
- res
- }
-
- private def show(res: Any) = res match {
- case res: printing.Showable if !ctx.settings.Yexplainlowlevel.value => res.show
- case _ => String.valueOf(res)
- }
-
- override def isSubType(tp1: Type, tp2: Type) =
- traceIndented(s"${show(tp1)} <:< ${show(tp2)}${if (Config.verboseExplainSubtype) s" ${tp1.getClass} ${tp2.getClass}" else ""}${if (frozenConstraint) " frozen" else ""}") {
- super.isSubType(tp1, tp2)
- }
-
- override def hasMatchingMember(name: Name, tp1: Type, tp2: RefinedType): Boolean =
- traceIndented(s"hasMatchingMember(${show(tp1)} . $name, ${show(tp2.refinedInfo)}), member = ${show(tp1.member(name).info)}") {
- super.hasMatchingMember(name, tp1, tp2)
- }
-
- override def lub(tp1: Type, tp2: Type) =
- traceIndented(s"lub(${show(tp1)}, ${show(tp2)})") {
- super.lub(tp1, tp2)
- }
-
- override def glb(tp1: Type, tp2: Type) =
- traceIndented(s"glb(${show(tp1)}, ${show(tp2)})") {
- super.glb(tp1, tp2)
- }
-
- override def addConstraint(param: PolyParam, bound: Type, fromBelow: Boolean): Boolean =
- traceIndented(i"add constraint $param ${if (fromBelow) ">:" else "<:"} $bound $frozenConstraint, constraint = ${ctx.typerState.constraint}") {
- super.addConstraint(param, bound, fromBelow)
- }
-
- override def copyIn(ctx: Context) = new ExplainingTypeComparer(ctx)
-
- override def compareHkApply2(tp1: Type, tp2: HKApply, tycon2: Type, args2: List[Type]): Boolean = {
- def addendum = ""
- traceIndented(i"compareHkApply $tp1, $tp2$addendum") {
- super.compareHkApply2(tp1, tp2, tycon2, args2)
- }
- }
-
- override def toString = "Subtype trace:" + { try b.toString finally b.clear() }
-}