aboutsummaryrefslogtreecommitdiff
path: root/compiler/src/dotty/tools/dotc/core/ConstraintHandling.scala
blob: de96f644a91c12e49dd375d3154d7ee8f313e2b2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
package dotty.tools
package dotc
package core

import Types._, Contexts._, Symbols._
import Decorators._
import config.Config
import config.Printers.{constr, typr}
import TypeApplications.EtaExpansion
import collection.mutable

/** Methods for adding constraints and solving them.
 *
 * What goes into a Constraint as opposed to a ConstrainHandler?
 *
 * Constraint code is purely functional: Operations get constraints and produce new ones.
 * Constraint code does not have access to a type-comparer. Anything regarding lubs and glbs has to be done
 * elsewhere.
 *
 * By comparison: Constraint handlers are parts of type comparers and can use their functionality.
 * Constraint handlers update the current constraint as a side effect.
 */
trait ConstraintHandling {

  implicit val ctx: Context

  protected def isSubType(tp1: Type, tp2: Type): Boolean
  protected def isSameType(tp1: Type, tp2: Type): Boolean

  val state: TyperState
  import state.constraint

  private var addConstraintInvocations = 0

  /** If the constraint is frozen we cannot add new bounds to the constraint. */
  protected var frozenConstraint = false

  /** If set, align arguments `S1`, `S2`when taking the glb
   *  `T1 { X = S1 } & T2 { X = S2 }` of a constraint upper bound for some type parameter.
   *  Aligning means computing `S1 =:= S2` which may change the current constraint.
   *  See note in TypeComparer#distributeAnd.
   */
  protected var homogenizeArgs = false

  /** We are currently comparing type lambdas. Used as a flag for
   *  optimization: when `false`, no need to do an expensive `pruneLambdaParams`
   */
  protected var comparedTypeLambdas: Set[TypeLambda] = Set.empty

  private def addOneBound(param: TypeParamRef, bound: Type, isUpper: Boolean): Boolean =
    !constraint.contains(param) || {
      def occursIn(bound: Type): Boolean = {
        val b = bound.dealias
        (b eq param) || {
          b match {
            case b: AndOrType => occursIn(b.tp1) || occursIn(b.tp2)
            case b: TypeVar => occursIn(b.origin)
            case b: TermRef => occursIn(b.underlying)
            case _ => false
          }
        }
      }
      if (Config.checkConstraintsSeparated)
        assert(!occursIn(bound), s"$param occurs in $bound")
      val newBound = narrowedBound(param, bound, isUpper)
      val c1 = constraint.updateEntry(param, newBound)
      (c1 eq constraint) || {
        constraint = c1
        val TypeBounds(lo, hi) = constraint.entry(param)
        isSubType(lo, hi)
      }
    }

  /** Narrow one of the bounds of type parameter `param`
   *  If `isUpper` is true, ensure that `param <: `bound`, otherwise ensure
   *  that `param >: bound`.
   */
  def narrowedBound(param: TypeParamRef, bound: Type, isUpper: Boolean)(implicit ctx: Context): TypeBounds = {
    val oldBounds @ TypeBounds(lo, hi) = constraint.nonParamBounds(param)
    val saved = homogenizeArgs
    homogenizeArgs = Config.alignArgsInAnd
    try
      if (isUpper) oldBounds.derivedTypeBounds(lo, hi & bound)
      else oldBounds.derivedTypeBounds(lo | bound, hi)
    finally homogenizeArgs = saved
  }

  protected def addUpperBound(param: TypeParamRef, bound: Type): Boolean = {
    def description = i"constraint $param <: $bound to\n$constraint"
    if (bound.isRef(defn.NothingClass) && ctx.typerState.isGlobalCommittable) {
      def msg = s"!!! instantiated to Nothing: $param, constraint = ${constraint.show}"
      if (Config.failOnInstantiationToNothing) assert(false, msg)
      else ctx.log(msg)
    }
    constr.println(i"adding $description in ${ctx.typerState.hashesStr}")
    val lower = constraint.lower(param)
    val res =
      addOneBound(param, bound, isUpper = true) &&
      lower.forall(addOneBound(_, bound, isUpper = true))
    constr.println(i"added $description = $res in ${ctx.typerState.hashesStr}")
    res
  }

  protected def addLowerBound(param: TypeParamRef, bound: Type): Boolean = {
    def description = i"constraint $param >: $bound to\n$constraint"
    constr.println(i"adding $description")
    val upper = constraint.upper(param)
    val res =
      addOneBound(param, bound, isUpper = false) &&
      upper.forall(addOneBound(_, bound, isUpper = false))
    constr.println(i"added $description = $res in ${ctx.typerState.hashesStr}")
    res
  }

  protected def addLess(p1: TypeParamRef, p2: TypeParamRef): Boolean = {
    def description = i"ordering $p1 <: $p2 to\n$constraint"
    val res =
      if (constraint.isLess(p2, p1)) unify(p2, p1)
      else {
        val down1 = p1 :: constraint.exclusiveLower(p1, p2)
        val up2 = p2 :: constraint.exclusiveUpper(p2, p1)
        val lo1 = constraint.nonParamBounds(p1).lo
        val hi2 = constraint.nonParamBounds(p2).hi
        constr.println(i"adding $description down1 = $down1, up2 = $up2 ${ctx.typerState.hashesStr}")
        constraint = constraint.addLess(p1, p2)
        down1.forall(addOneBound(_, hi2, isUpper = true)) &&
        up2.forall(addOneBound(_, lo1, isUpper = false))
      }
    constr.println(i"added $description = $res ${ctx.typerState.hashesStr}")
    res
  }

  /** Make p2 = p1, transfer all bounds of p2 to p1
   *  @pre  less(p1)(p2)
   */
  private def unify(p1: TypeParamRef, p2: TypeParamRef): Boolean = {
    constr.println(s"unifying $p1 $p2")
    assert(constraint.isLess(p1, p2))
    val down = constraint.exclusiveLower(p2, p1)
    val up = constraint.exclusiveUpper(p1, p2)
    constraint = constraint.unify(p1, p2)
    val bounds = constraint.nonParamBounds(p1)
    val lo = bounds.lo
    val hi = bounds.hi
    isSubType(lo, hi) &&
    down.forall(addOneBound(_, hi, isUpper = true)) &&
    up.forall(addOneBound(_, lo, isUpper = false))
  }


  protected def isSubType(tp1: Type, tp2: Type, whenFrozen: Boolean): Boolean = {
    if (whenFrozen)
      isSubTypeWhenFrozen(tp1, tp2)
    else
      isSubType(tp1, tp2)
  }

  final def isSubTypeWhenFrozen(tp1: Type, tp2: Type): Boolean = {
    val saved = frozenConstraint
    frozenConstraint = true
    try isSubType(tp1, tp2)
    finally frozenConstraint = saved
  }

  final def isSameTypeWhenFrozen(tp1: Type, tp2: Type): Boolean = {
    val saved = frozenConstraint
    frozenConstraint = true
    try isSameType(tp1, tp2)
    finally frozenConstraint = saved
  }

  /** Test whether the lower bounds of all parameters in this
   *  constraint are a solution to the constraint.
   */
  protected final def isSatisfiable: Boolean =
    constraint.forallParams { param =>
      val TypeBounds(lo, hi) = constraint.entry(param)
      isSubType(lo, hi) || {
        ctx.log(i"sub fail $lo <:< $hi")
        false
      }
    }

  /** Solve constraint set for given type parameter `param`.
   *  If `fromBelow` is true the parameter is approximated by its lower bound,
   *  otherwise it is approximated by its upper bound. However, any occurrences
   *  of the parameter in a refinement somewhere in the bound are removed. Also
   *  wildcard types in bounds are approximated by their upper or lower bounds.
   *  (Such occurrences can arise for F-bounded types).
   *  The constraint is left unchanged.
   *  @return the instantiating type
   *  @pre `param` is in the constraint's domain.
   */
  final def approximation(param: TypeParamRef, fromBelow: Boolean): Type = {
    val avoidParam = new TypeMap {
      override def stopAtStatic = true
      def apply(tp: Type) = mapOver {
        tp match {
          case tp: RefinedType if param occursIn tp.refinedInfo => tp.parent
          case tp: WildcardType =>
            val bounds = tp.optBounds.orElse(TypeBounds.empty).bounds
            // Try to instantiate the wildcard to a type that is known to conform to it.
            // This means:
            //  If fromBelow is true, we minimize the type overall
            //  Hence, if variance < 0, pick the maximal safe type: bounds.lo
            //           (i.e. the whole bounds range is over the type)
            //         if variance > 0, pick the minimal safe type: bounds.hi
            //           (i.e. the whole bounds range is under the type)
            //         if variance == 0, pick bounds.lo anyway (this is arbitrary but in line with
            //           the principle that we pick the smaller type when in doubt).
            //  If fromBelow is false, we maximize the type overall and reverse the bounds
            //  if variance != 0. For variance == 0, we still minimize.
            //  In summary we pick the bound given by this table:
            //
            //  variance    | -1  0   1
            //  ------------------------
            //  from below  | lo  lo  hi
            //  from above  | hi  lo  lo
            //
            if (variance == 0 || fromBelow == (variance < 0)) bounds.lo else bounds.hi
          case _ => tp
        }
      }
    }
    assert(constraint.contains(param))
    val bound = if (fromBelow) constraint.fullLowerBound(param) else constraint.fullUpperBound(param)
    val inst = avoidParam(bound)
    typr.println(s"approx ${param.show}, from below = $fromBelow, bound = ${bound.show}, inst = ${inst.show}")
    inst
  }

  /** The instance type of `param` in the current constraint (which contains `param`).
   *  If `fromBelow` is true, the instance type is the lub of the parameter's
   *  lower bounds; otherwise it is the glb of its upper bounds. However,
   *  a lower bound instantiation can be a singleton type only if the upper bound
   *  is also a singleton type.
   */
  def instanceType(param: TypeParamRef, fromBelow: Boolean): Type = {
    def upperBound = constraint.fullUpperBound(param)
    def isSingleton(tp: Type): Boolean = tp match {
      case tp: SingletonType => true
      case AndType(tp1, tp2) => isSingleton(tp1) | isSingleton(tp2)
      case OrType(tp1, tp2) => isSingleton(tp1) & isSingleton(tp2)
      case _ => false
    }
    def isFullyDefined(tp: Type): Boolean = tp match {
      case tp: TypeVar => tp.isInstantiated && isFullyDefined(tp.instanceOpt)
      case tp: TypeProxy => isFullyDefined(tp.underlying)
      case tp: AndOrType => isFullyDefined(tp.tp1) && isFullyDefined(tp.tp2)
      case _ => true
    }
    def isOrType(tp: Type): Boolean = tp.stripTypeVar.dealias match {
      case tp: OrType => true
      case tp: RefinedOrRecType => isOrType(tp.parent)
      case AndType(tp1, tp2) => isOrType(tp1) | isOrType(tp2)
      case WildcardType(bounds: TypeBounds) => isOrType(bounds.hi)
      case _ => false
    }

    // First, solve the constraint.
    var inst = approximation(param, fromBelow)

    // Then, approximate by (1.) - (3.) and simplify as follows.
    // 1. If instance is from below and is a singleton type, yet
    // upper bound is not a singleton type, widen the instance.
    if (fromBelow && isSingleton(inst) && !isSingleton(upperBound))
      inst = inst.widen

    inst = inst.simplified

    // 2. If instance is from below and is a fully-defined union type, yet upper bound
    // is not a union type, approximate the union type from above by an intersection
    // of all common base types.
    if (fromBelow && isOrType(inst) && isFullyDefined(inst) && !isOrType(upperBound))
      inst = ctx.harmonizeUnion(inst)

    inst
  }

  /** Constraint `c1` subsumes constraint `c2`, if under `c2` as constraint we have
   *  for all poly params `p` defined in `c2` as `p >: L2 <: U2`:
   *
   *     c1 defines p with bounds p >: L1 <: U1, and
   *     L2 <: L1, and
   *     U1 <: U2
   *
   *  Both `c1` and `c2` are required to derive from constraint `pre`, possibly
   *  narrowing it with further bounds.
   */
  protected final def subsumes(c1: Constraint, c2: Constraint, pre: Constraint): Boolean =
    if (c2 eq pre) true
    else if (c1 eq pre) false
    else {
      val saved = constraint
      try
        c2.forallParams(p =>
          c1.contains(p) &&
          c2.upper(p).forall(c1.isLess(p, _)) &&
          isSubTypeWhenFrozen(c1.nonParamBounds(p), c2.nonParamBounds(p)))
      finally constraint = saved
    }

  /** The current bounds of type parameter `param` */
  final def bounds(param: TypeParamRef): TypeBounds = {
    val e = constraint.entry(param)
    if (e.exists) e.bounds else param.binder.paramInfos(param.paramNum)
  }

  /** Add type lambda `tl`, possibly with type variables `tvars`, to current constraint
   *  and propagate all bounds.
   *  @param tvars   See Constraint#add
   */
  def addToConstraint(tl: TypeLambda, tvars: List[TypeVar]): Unit =
    assert {
      checkPropagated(i"initialized $tl") {
        constraint = constraint.add(tl, tvars)
        tl.paramNames.indices.forall { i =>
          val param = TypeParamRef(tl, i)
          val bounds = constraint.nonParamBounds(param)
          val lower = constraint.lower(param)
          val upper = constraint.upper(param)
          if (lower.nonEmpty && !bounds.lo.isRef(defn.NothingClass) ||
            upper.nonEmpty && !bounds.hi.isRef(defn.AnyClass)) constr.println(i"INIT*** $tl")
          lower.forall(addOneBound(_, bounds.hi, isUpper = true)) &&
            upper.forall(addOneBound(_, bounds.lo, isUpper = false))
        }
      }
    }

  /** Can `param` be constrained with new bounds? */
  final def canConstrain(param: TypeParamRef): Boolean =
    !frozenConstraint && (constraint contains param)

  /** Add constraint `param <: bound` if `fromBelow` is false, `param >: bound` otherwise.
   *  `bound` is assumed to be in normalized form, as specified in `firstTry` and
   *  `secondTry` of `TypeComparer`. In particular, it should not be an alias type,
   *  lazy ref, typevar, wildcard type, error type. In addition, upper bounds may
   *  not be AndTypes and lower bounds may not be OrTypes. This is assured by the
   *  way isSubType is organized.
   */
  protected def addConstraint(param: TypeParamRef, bound: Type, fromBelow: Boolean): Boolean = {
    def description = i"constr $param ${if (fromBelow) ">:" else "<:"} $bound:\n$constraint"
    //checkPropagated(s"adding $description")(true) // DEBUG in case following fails
    checkPropagated(s"added $description") {
      addConstraintInvocations += 1

      /** When comparing lambdas we might get constraints such as
       *  `A <: X0` or `A = List[X0]` where `A` is a constrained parameter
       *  and `X0` is a lambda parameter. The constraint for `A` is not allowed
       *  to refer to such a lambda parameter because the lambda parameter is
       *  not visible where `A` is defined. Consequently, we need to
       *  approximate the bound so that the lambda parameter does not appear in it.
       *  If `tp` is an upper bound, we need to approximate with something smaller,
       *  otherwise something larger.
       *  Test case in pos/i94-nada.scala. This test crashes with an illegal instance
       *  error in Test2 when the rest of the SI-2712 fix is applied but `pruneLambdaParams` is
       *  missing.
       */
      def pruneLambdaParams(tp: Type) =
        if (comparedTypeLambdas.nonEmpty) {
          val approx = new ApproximatingTypeMap {
            def apply(t: Type): Type = t match {
              case t @ TypeParamRef(tl: TypeLambda, n) if comparedTypeLambdas contains tl =>
                val effectiveVariance = if (fromBelow) -variance else variance
                val bounds = tl.paramInfos(n)
                if (effectiveVariance > 0) bounds.lo
                else if (effectiveVariance < 0) bounds.hi
                else NoType
              case _ =>
                mapOver(t)
            }
          }
          approx(tp)
        }
        else tp

      def addParamBound(bound: TypeParamRef) =
        if (fromBelow) addLess(bound, param) else addLess(param, bound)

      /** Drop all constrained parameters that occur at the toplevel in `bound` and
       *  handle them by `addLess` calls.
       *  The preconditions make sure that such parameters occur only
       *  in one of two ways:
       *
       *  1.
       *
       *    P <: Ts1 | ... | Tsm   (m > 0)
       *    Tsi = T1 & ... Tn      (n >= 0)
       *    Some of the Ti are constrained parameters
       *
       *  2.
       *
       *    Ts1 & ... & Tsm <: P   (m > 0)
       *    Tsi = T1 | ... | Tn    (n >= 0)
       *    Some of the Ti are constrained parameters
       *
       *  In each case we cannot leave the parameter in place,
       *  because that would risk making a parameter later a subtype or supertype
       *  of a bound where the parameter occurs again at toplevel, which leads to cycles
       *  in the subtyping test. So we intentionally narrow the constraint by
       *  recording an isLess relationship instead (even though this is not implied
       *  by the bound).
       *
       *  Narrowing a constraint is better than widening it, because narrowing leads
       *  to incompleteness (which we face anyway, see for instance eitherIsSubType)
       *  but widening leads to unsoundness.
       *
       *  A test case that demonstrates the problem is i864.scala.
       *  Turn Config.checkConstraintsSeparated on to get an accurate diagnostic
       *  of the cycle when it is created.
       *
       *  @return The pruned type if all `addLess` calls succeed, `NoType` otherwise.
       */
      def prune(bound: Type): Type = bound match {
        case bound: AndOrType =>
          val p1 = prune(bound.tp1)
          val p2 = prune(bound.tp2)
          if (p1.exists && p2.exists) bound.derivedAndOrType(p1, p2)
          else NoType
        case bound: TypeVar if constraint contains bound.origin =>
          prune(bound.underlying)
        case bound: TypeParamRef =>
          constraint.entry(bound) match {
            case NoType => pruneLambdaParams(bound)
            case _: TypeBounds =>
              if (!addParamBound(bound)) NoType
              else if (fromBelow) defn.NothingType
              else defn.AnyType
            case inst =>
              prune(inst)
          }
        case _ =>
          pruneLambdaParams(bound)
      }

      try bound match {
        case bound: TypeParamRef if constraint contains bound =>
          addParamBound(bound)
        case _ =>
          val pbound = prune(bound)
          pbound.exists && (
            if (fromBelow) addLowerBound(param, pbound) else addUpperBound(param, pbound))
      }
      finally addConstraintInvocations -= 1
    }
  }

  /** Instantiate `param` to `tp` if the constraint stays satisfiable */
  protected def tryInstantiate(param: TypeParamRef, tp: Type): Boolean = {
    val saved = constraint
    constraint =
      if (addConstraint(param, tp, fromBelow = true) &&
          addConstraint(param, tp, fromBelow = false)) constraint.replace(param, tp)
      else saved
    constraint ne saved
  }

  /** Check that constraint is fully propagated. See comment in Config.checkConstraintsPropagated */
  def checkPropagated(msg: => String)(result: Boolean): Boolean = {
    if (Config.checkConstraintsPropagated && result && addConstraintInvocations == 0) {
      val saved = frozenConstraint
      frozenConstraint = true
      for (p <- constraint.domainParams) {
        def check(cond: => Boolean, q: TypeParamRef, ordering: String, explanation: String): Unit =
          assert(cond, i"propagation failure for $p $ordering $q: $explanation\n$msg")
        for (u <- constraint.upper(p))
          check(bounds(p).hi <:< bounds(u).hi, u, "<:", "upper bound not propagated")
        for (l <- constraint.lower(p)) {
          check(bounds(l).lo <:< bounds(p).hi, l, ">:", "lower bound not propagated")
          check(constraint.isLess(l, p), l, ">:", "reverse ordering (<:) missing")
        }
      }
      frozenConstraint = saved
    }
    result
  }
}