aboutsummaryrefslogtreecommitdiff
path: root/compiler/src/dotty/tools/dotc/core/OrderingConstraint.scala
blob: 84b0bfc6de46c03d4dbb59df26eac61f34a09147 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
package dotty.tools
package dotc
package core

import Types._, Contexts._, Symbols._, Decorators._
import util.SimpleMap
import collection.mutable
import printing.{Printer, Showable}
import printing.Texts._
import config.Config
import collection.immutable.BitSet
import reflect.ClassTag
import annotation.tailrec

object OrderingConstraint {

  type ArrayValuedMap[T] = SimpleMap[TypeLambda, Array[T]]

  /** The type of `OrderingConstraint#boundsMap` */
  type ParamBounds = ArrayValuedMap[Type]

  /** The type of `OrderingConstraint#lowerMap`, `OrderingConstraint#upperMap` */
  type ParamOrdering = ArrayValuedMap[List[TypeParamRef]]

  /** A new constraint with given maps */
  private def newConstraint(boundsMap: ParamBounds, lowerMap: ParamOrdering, upperMap: ParamOrdering)(implicit ctx: Context) : OrderingConstraint = {
    val result = new OrderingConstraint(boundsMap, lowerMap, upperMap)
    if (Config.checkConstraintsNonCyclic) result.checkNonCyclic()
    ctx.runInfo.recordConstraintSize(result, result.boundsMap.size)
    result
  }

  /** A lens for updating a single entry array in one of the three constraint maps */
  abstract class ConstraintLens[T <: AnyRef: ClassTag] {
    def entries(c: OrderingConstraint, poly: TypeLambda): Array[T]
    def updateEntries(c: OrderingConstraint, poly: TypeLambda, entries: Array[T])(implicit ctx: Context): OrderingConstraint
    def initial: T

    def apply(c: OrderingConstraint, poly: TypeLambda, idx: Int) = {
      val es = entries(c, poly)
      if (es == null) initial else es(idx)
    }

    /** The `current` constraint but with the entry for `param` updated to `entry`.
     *  `current` is used linearly. If it is different from `prev` it is
     *  known to be dead after the call. Hence it is OK to update destructively
     *  parts of `current` which are not shared by `prev`.
     */
    def update(prev: OrderingConstraint, current: OrderingConstraint,
        poly: TypeLambda, idx: Int, entry: T)(implicit ctx: Context): OrderingConstraint = {
      var es = entries(current, poly)
      if (es != null && (es(idx) eq entry)) current
      else {
        val result =
          if (es == null) {
            es = Array.fill(poly.paramNames.length)(initial)
            updateEntries(current, poly, es)
          }
          else if (es ne entries(prev, poly))
            current // can re-use existing entries array.
          else {
            es = es.clone
            updateEntries(current, poly, es)
          }
        es(idx) = entry
        result
      }
    }

    def update(prev: OrderingConstraint, current: OrderingConstraint,
        param: TypeParamRef, entry: T)(implicit ctx: Context): OrderingConstraint =
      update(prev, current, param.binder, param.paramNum, entry)

    def map(prev: OrderingConstraint, current: OrderingConstraint,
        poly: TypeLambda, idx: Int, f: T => T)(implicit ctx: Context): OrderingConstraint =
     update(prev, current, poly, idx, f(apply(current, poly, idx)))

    def map(prev: OrderingConstraint, current: OrderingConstraint,
        param: TypeParamRef, f: T => T)(implicit ctx: Context): OrderingConstraint =
      map(prev, current, param.binder, param.paramNum, f)
  }

  val boundsLens = new ConstraintLens[Type] {
    def entries(c: OrderingConstraint, poly: TypeLambda): Array[Type] =
      c.boundsMap(poly)
    def updateEntries(c: OrderingConstraint, poly: TypeLambda, entries: Array[Type])(implicit ctx: Context): OrderingConstraint =
      newConstraint(c.boundsMap.updated(poly, entries), c.lowerMap, c.upperMap)
    def initial = NoType
  }

  val lowerLens = new ConstraintLens[List[TypeParamRef]] {
    def entries(c: OrderingConstraint, poly: TypeLambda): Array[List[TypeParamRef]] =
      c.lowerMap(poly)
    def updateEntries(c: OrderingConstraint, poly: TypeLambda, entries: Array[List[TypeParamRef]])(implicit ctx: Context): OrderingConstraint =
      newConstraint(c.boundsMap, c.lowerMap.updated(poly, entries), c.upperMap)
    def initial = Nil
  }

  val upperLens = new ConstraintLens[List[TypeParamRef]] {
    def entries(c: OrderingConstraint, poly: TypeLambda): Array[List[TypeParamRef]] =
      c.upperMap(poly)
    def updateEntries(c: OrderingConstraint, poly: TypeLambda, entries: Array[List[TypeParamRef]])(implicit ctx: Context): OrderingConstraint =
      newConstraint(c.boundsMap, c.lowerMap, c.upperMap.updated(poly, entries))
    def initial = Nil
  }
}

import OrderingConstraint._

/** Constraint over undetermined type parameters that keeps separate maps to
 *  reflect parameter orderings.
 *  @param boundsMap a map from TypeLambda to arrays.
 *               Each array contains twice the number of entries as there a type parameters
 *               in the TypeLambda. The first half of the array contains the type bounds that constrain the
 *               lambda's type parameters. The second half might contain type variables that
 *               track the corresponding parameters, or is left empty (filled with nulls).
 *               An instantiated type parameter is represented by having its instance type in
 *               the corresponding array entry. The dual use of arrays for poly params
 *               and typevars is to save space and hopefully gain some speed.
 *
 *  @param lowerMap a map from TypeLambdas to arrays. Each array entry corresponds
 *               to a parameter P of the type lambda; it contains all constrained parameters
 *               Q that are known to be smaller than P, i.e. Q <: P.
 *  @param upperMap a map from TypeLambdas to arrays. Each array entry corresponds
 *               to a parameter P of the type lambda; it contains all constrained parameters
 *               Q that are known to be greater than P, i.e. P <: Q.
 */
class OrderingConstraint(private val boundsMap: ParamBounds,
                         private val lowerMap : ParamOrdering,
                         private val upperMap : ParamOrdering) extends Constraint {

  type This = OrderingConstraint

// ----------- Basic indices --------------------------------------------------

  /** The number of type parameters in the given entry array */
  private def paramCount(entries: Array[Type]) = entries.length >> 1

  /** The type variable corresponding to parameter numbered `n`, null if none was created */
  private def typeVar(entries: Array[Type], n: Int): Type =
    entries(paramCount(entries) + n)

  /** The `boundsMap` entry corresponding to `param` */
  def entry(param: TypeParamRef): Type = {
    val entries = boundsMap(param.binder)
    if (entries == null) NoType
    else entries(param.paramNum)
  }

// ----------- Contains tests --------------------------------------------------

  def contains(pt: TypeLambda): Boolean = boundsMap(pt) != null

  def contains(param: TypeParamRef): Boolean = {
    val entries = boundsMap(param.binder)
    entries != null && isBounds(entries(param.paramNum))
  }

  def contains(tvar: TypeVar): Boolean = {
    val origin = tvar.origin
    val entries = boundsMap(origin.binder)
    val pnum = origin.paramNum
    entries != null && isBounds(entries(pnum)) && (typeVar(entries, pnum) eq tvar)
  }

  private def isBounds(tp: Type) = tp.isInstanceOf[TypeBounds]

// ---------- Dependency handling ----------------------------------------------

  def lower(param: TypeParamRef): List[TypeParamRef] = lowerLens(this, param.binder, param.paramNum)
  def upper(param: TypeParamRef): List[TypeParamRef] = upperLens(this, param.binder, param.paramNum)

  def minLower(param: TypeParamRef): List[TypeParamRef] = {
    val all = lower(param)
    all.filterNot(p => all.exists(isLess(p, _)))
  }

  def minUpper(param: TypeParamRef): List[TypeParamRef] = {
    val all = upper(param)
    all.filterNot(p => all.exists(isLess(_, p)))
  }

  def exclusiveLower(param: TypeParamRef, butNot: TypeParamRef): List[TypeParamRef] =
    lower(param).filterNot(isLess(_, butNot))

  def exclusiveUpper(param: TypeParamRef, butNot: TypeParamRef): List[TypeParamRef] =
    upper(param).filterNot(isLess(butNot, _))

// ---------- Info related to TypeParamRefs -------------------------------------------

  def isLess(param1: TypeParamRef, param2: TypeParamRef): Boolean =
    upper(param1).contains(param2)

  def nonParamBounds(param: TypeParamRef): TypeBounds =
    entry(param).asInstanceOf[TypeBounds]

  def fullLowerBound(param: TypeParamRef)(implicit ctx: Context): Type =
    (nonParamBounds(param).lo /: minLower(param))(_ | _)

  def fullUpperBound(param: TypeParamRef)(implicit ctx: Context): Type =
    (nonParamBounds(param).hi /: minUpper(param))(_ & _)

  def fullBounds(param: TypeParamRef)(implicit ctx: Context): TypeBounds =
    nonParamBounds(param).derivedTypeBounds(fullLowerBound(param), fullUpperBound(param))

  def typeVarOfParam(param: TypeParamRef): Type = {
    val entries = boundsMap(param.binder)
    if (entries == null) NoType
    else {
      val tvar = typeVar(entries, param.paramNum)
      if (tvar != null) tvar else NoType
    }
  }

// ---------- Adding TypeLambdas --------------------------------------------------

  /** The list of parameters P such that, for a fresh type parameter Q:
   *
   *    Q <: tp  implies  Q <: P      and isUpper = true, or
   *    tp <: Q  implies  P <: Q      and isUpper = false
   */
  def dependentParams(tp: Type, isUpper: Boolean): List[TypeParamRef] = tp match {
    case param: TypeParamRef if contains(param) =>
      param :: (if (isUpper) upper(param) else lower(param))
    case tp: AndOrType =>
      val ps1 = dependentParams(tp.tp1, isUpper)
      val ps2 = dependentParams(tp.tp2, isUpper)
      if (isUpper == tp.isAnd) ps1.union(ps2) else ps1.intersect(ps2)
    case _ =>
      Nil
  }

  /** The bound type `tp` without constrained parameters which are clearly
   *  dependent. A parameter in an upper bound is clearly dependent if it appears
   *  in a hole of a context H given by:
   *
   *      H = []
   *          H & T
   *          T & H
   *
   *  (the idea is that a parameter P in a H context is guaranteed to be a supertype of the
   *   bounded parameter.)
   *  Analogously, a parameter in a lower bound is clearly dependent if it appears
   *  in a hole of a context H given by:
   *
   *      L = []
   *          L | T
   *          T | L
   *
   *  "Clearly dependent" is not synonymous with "dependent" in the sense
   *  it is defined in `dependentParams`. Dependent parameters are handled
   *  in `updateEntry`. The idea of stripping off clearly dependent parameters
   *  and to handle them separately is for efficiency, so that type expressions
   *  used as bounds become smaller.
   *
   *  @param isUpper   If true, `bound` is an upper bound, else a lower bound.
   */
  private def stripParams(tp: Type, paramBuf: mutable.ListBuffer[TypeParamRef],
      isUpper: Boolean)(implicit ctx: Context): Type = tp match {
    case param: TypeParamRef if contains(param) =>
      if (!paramBuf.contains(param)) paramBuf += param
      NoType
    case tp: AndOrType if isUpper == tp.isAnd =>
      val tp1 = stripParams(tp.tp1, paramBuf, isUpper)
      val tp2 = stripParams(tp.tp2, paramBuf, isUpper)
      if (tp1.exists)
        if (tp2.exists) tp.derivedAndOrType(tp1, tp2)
        else tp1
      else tp2
    case _ =>
      tp
  }

  /** The bound type `tp` without clearly dependent parameters.
   *  A top or bottom type if type consists only of dependent parameters.
   *  @param isUpper   If true, `bound` is an upper bound, else a lower bound.
   */
  private def normalizedType(tp: Type, paramBuf: mutable.ListBuffer[TypeParamRef],
      isUpper: Boolean)(implicit ctx: Context): Type =
    stripParams(tp, paramBuf, isUpper)
      .orElse(if (isUpper) defn.AnyType else defn.NothingType)

  def add(poly: TypeLambda, tvars: List[TypeVar])(implicit ctx: Context): This = {
    assert(!contains(poly))
    val nparams = poly.paramNames.length
    val entries1 = new Array[Type](nparams * 2)
    poly.paramInfos.copyToArray(entries1, 0)
    tvars.copyToArray(entries1, nparams)
    newConstraint(boundsMap.updated(poly, entries1), lowerMap, upperMap).init(poly)
  }

  /** Split dependent parameters off the bounds for parameters in `poly`.
   *  Update all bounds to be normalized and update ordering to account for
   *  dependent parameters.
   */
  private def init(poly: TypeLambda)(implicit ctx: Context): This = {
    var current = this
    val loBuf, hiBuf = new mutable.ListBuffer[TypeParamRef]
    var i = 0
    while (i < poly.paramNames.length) {
      val param = TypeParamRef(poly, i)
      val bounds = nonParamBounds(param)
      val lo = normalizedType(bounds.lo, loBuf, isUpper = false)
      val hi = normalizedType(bounds.hi, hiBuf, isUpper = true)
      current = updateEntry(current, param, bounds.derivedTypeBounds(lo, hi))
      current = (current /: loBuf)(order(_, _, param))
      current = (current /: hiBuf)(order(_, param, _))
      loBuf.clear()
      hiBuf.clear()
      i += 1
    }
    if (Config.checkConstraintsNonCyclic) checkNonCyclic()
    current
  }

// ---------- Updates ------------------------------------------------------------

  /** Add the fact `param1 <: param2` to the constraint `current` and propagate
   *  `<:<` relationships between parameters ("edges") but not bounds.
   */
  private def order(current: This, param1: TypeParamRef, param2: TypeParamRef)(implicit ctx: Context): This =
    if (param1 == param2 || current.isLess(param1, param2)) this
    else {
      assert(contains(param1))
      assert(contains(param2))
      val newUpper = param2 :: exclusiveUpper(param2, param1)
      val newLower = param1 :: exclusiveLower(param1, param2)
      val current1 = (current /: newLower)(upperLens.map(this, _, _, newUpper ::: _))
      val current2 = (current1 /: newUpper)(lowerLens.map(this, _, _, newLower ::: _))
      current2
    }

  def addLess(param1: TypeParamRef, param2: TypeParamRef)(implicit ctx: Context): This =
    order(this, param1, param2)

  def updateEntry(current: This, param: TypeParamRef, tp: Type)(implicit ctx: Context): This = {
    var current1 = boundsLens.update(this, current, param, tp)
    tp match {
      case TypeBounds(lo, hi) =>
        for (p <- dependentParams(lo, isUpper = false))
          current1 = order(current1, p, param)
        for (p <- dependentParams(hi, isUpper = true))
          current1 = order(current1, param, p)
      case _ =>
    }
    current1
  }

  def updateEntry(param: TypeParamRef, tp: Type)(implicit ctx: Context): This =
    updateEntry(this, param, tp)

  def unify(p1: TypeParamRef, p2: TypeParamRef)(implicit ctx: Context): This = {
    val p1Bounds = (nonParamBounds(p1) & nonParamBounds(p2)).substParam(p2, p1)
    updateEntry(p1, p1Bounds).replace(p2, p1)
  }

// ---------- Removals ------------------------------------------------------------

  /** A new constraint which is derived from this constraint by removing
   *  the type parameter `param` from the domain and replacing all top-level occurrences
   *  of the parameter elsewhere in the constraint by type `tp`, or a conservative
   *  approximation of it if that is needed to avoid cycles.
   *  Occurrences nested inside a refinement or prefix are not affected.
   *
   *  The reason we need to substitute top-level occurrences of the parameter
   *  is to deal with situations like the following. Say we have in the constraint
   *
   *      P <: Q & String
   *      Q
   *
   *  and we replace Q with P. Then substitution gives
   *
   *      P <: P & String
   *
   *  this would be a cyclic constraint is therefore changed by `normalize` and
   *  `recombine` below to
   *
   *      P <: String
   *
   *  approximating the RHS occurrence of P with Any. Without the substitution we
   *  would not find out where we need to approximate. Occurrences of parameters
   *  that are not top-level are not affected.
   */
  def replace(param: TypeParamRef, tp: Type)(implicit ctx: Context): OrderingConstraint = {
    val replacement = tp.dealias.stripTypeVar
    if (param == replacement) this
    else {
      assert(replacement.isValueTypeOrLambda)
      val poly = param.binder
      val idx = param.paramNum

      def removeParam(ps: List[TypeParamRef]) =
        ps.filterNot(p => p.binder.eq(poly) && p.paramNum == idx)

      def replaceParam(tp: Type, atPoly: TypeLambda, atIdx: Int): Type = tp match {
        case bounds @ TypeBounds(lo, hi) =>

          def recombine(andor: AndOrType, op: (Type, Boolean) => Type, isUpper: Boolean): Type = {
            val tp1 = op(andor.tp1, isUpper)
            val tp2 = op(andor.tp2, isUpper)
            if ((tp1 eq andor.tp1) && (tp2 eq andor.tp2)) andor
            else if (andor.isAnd) tp1 & tp2
            else tp1 | tp2
          }

          def normalize(tp: Type, isUpper: Boolean): Type = tp match {
            case p: TypeParamRef if p.binder == atPoly && p.paramNum == atIdx =>
              if (isUpper) defn.AnyType else defn.NothingType
            case tp: AndOrType if isUpper == tp.isAnd => recombine(tp, normalize, isUpper)
            case _ => tp
          }

          def replaceIn(tp: Type, isUpper: Boolean): Type = tp match {
            case `param` => normalize(replacement, isUpper)
            case tp: AndOrType if isUpper == tp.isAnd => recombine(tp, replaceIn, isUpper)
            case _ => tp.substParam(param, replacement)
          }

          bounds.derivedTypeBounds(replaceIn(lo, isUpper = false), replaceIn(hi, isUpper = true))
        case _ =>
          tp.substParam(param, replacement)
      }

      var current =
        if (isRemovable(poly)) remove(poly) else updateEntry(param, replacement)
      current.foreachParam {(p, i) =>
        current = boundsLens.map(this, current, p, i, replaceParam(_, p, i))
        current = lowerLens.map(this, current, p, i, removeParam)
        current = upperLens.map(this, current, p, i, removeParam)
      }
      current
    }
  }

  def remove(pt: TypeLambda)(implicit ctx: Context): This = {
    def removeFromOrdering(po: ParamOrdering) = {
      def removeFromBoundss(key: TypeLambda, bndss: Array[List[TypeParamRef]]): Array[List[TypeParamRef]] = {
        val bndss1 = bndss.map(_.filterConserve(_.binder ne pt))
        if (bndss.corresponds(bndss1)(_ eq _)) bndss else bndss1
      }
      po.remove(pt).mapValuesNow(removeFromBoundss)
    }
    newConstraint(boundsMap.remove(pt), removeFromOrdering(lowerMap), removeFromOrdering(upperMap))
  }

  def isRemovable(pt: TypeLambda): Boolean = {
    val entries = boundsMap(pt)
    @tailrec def allRemovable(last: Int): Boolean =
      if (last < 0) true
      else typeVar(entries, last) match {
        case tv: TypeVar => tv.inst.exists && allRemovable(last - 1)
        case _ => false
      }
    allRemovable(paramCount(entries) - 1)
  }

// ---------- Exploration --------------------------------------------------------

  def domainLambdas: List[TypeLambda] = boundsMap.keys

  def domainParams: List[TypeParamRef] =
    for {
      (poly, entries) <- boundsMap.toList
      n <- 0 until paramCount(entries)
      if entries(n).exists
    } yield TypeParamRef(poly, n)

  def forallParams(p: TypeParamRef => Boolean): Boolean = {
    boundsMap.foreachBinding { (poly, entries) =>
      for (i <- 0 until paramCount(entries))
        if (isBounds(entries(i)) && !p(TypeParamRef(poly, i))) return false
    }
    true
  }

  def foreachParam(p: (TypeLambda, Int) => Unit): Unit =
    boundsMap.foreachBinding { (poly, entries) =>
      0.until(poly.paramNames.length).foreach(p(poly, _))
    }

  def foreachTypeVar(op: TypeVar => Unit): Unit =
    boundsMap.foreachBinding { (poly, entries) =>
      for (i <- 0 until paramCount(entries)) {
        typeVar(entries, i) match {
          case tv: TypeVar if !tv.inst.exists => op(tv)
          case _ =>
        }
      }
    }

  def & (other: Constraint)(implicit ctx: Context) = {
    def merge[T](m1: ArrayValuedMap[T], m2: ArrayValuedMap[T], join: (T, T) => T): ArrayValuedMap[T] = {
      var merged = m1
      def mergeArrays(xs1: Array[T], xs2: Array[T]) = {
        val xs = xs1.clone
        for (i <- xs.indices) xs(i) = join(xs1(i), xs2(i))
        xs
      }
      m2.foreachBinding { (poly, xs2) =>
        merged = merged.updated(poly,
            if (m1.contains(poly)) mergeArrays(m1(poly), xs2) else xs2)
      }
      merged
    }

    def mergeParams(ps1: List[TypeParamRef], ps2: List[TypeParamRef]) =
      (ps1 /: ps2)((ps1, p2) => if (ps1.contains(p2)) ps1 else p2 :: ps1)

    def mergeEntries(e1: Type, e2: Type): Type = e1 match {
        case e1: TypeBounds =>
          e2 match {
            case e2: TypeBounds => e1 & e2
            case _ if e1 contains e2 => e2
            case _ => mergeError
          }
        case tv1: TypeVar =>
          e2 match {
            case tv2: TypeVar if tv1.instanceOpt eq tv2.instanceOpt => e1
            case _ => mergeError
          }
        case _ if e1 eq e2 => e1
        case _ => mergeError
    }

    def mergeError = throw new AssertionError(i"cannot merge $this with $other")

    val that = other.asInstanceOf[OrderingConstraint]
    new OrderingConstraint(
        merge(this.boundsMap, that.boundsMap, mergeEntries),
        merge(this.lowerMap, that.lowerMap, mergeParams),
        merge(this.upperMap, that.upperMap, mergeParams))
  }

  override def checkClosed()(implicit ctx: Context): Unit = {
    def isFreeTypeParamRef(tp: Type) = tp match {
      case TypeParamRef(binder: TypeLambda, _) => !contains(binder)
      case _ => false
    }
    def checkClosedType(tp: Type, where: String) =
      if (tp != null)
        assert(!tp.existsPart(isFreeTypeParamRef), i"unclosed constraint: $this refers to $tp in $where")
    boundsMap.foreachBinding((_, tps) => tps.foreach(checkClosedType(_, "bounds")))
    lowerMap.foreachBinding((_, paramss) => paramss.foreach(_.foreach(checkClosedType(_, "lower"))))
    upperMap.foreachBinding((_, paramss) => paramss.foreach(_.foreach(checkClosedType(_, "upper"))))
  }

  private var myUninstVars: mutable.ArrayBuffer[TypeVar] = _

  /** The uninstantiated typevars of this constraint */
  def uninstVars: collection.Seq[TypeVar] = {
    if (myUninstVars == null) {
      myUninstVars = new mutable.ArrayBuffer[TypeVar]
      boundsMap.foreachBinding { (poly, entries) =>
        for (i <- 0 until paramCount(entries)) {
          typeVar(entries, i) match {
            case tv: TypeVar if !tv.inst.exists && isBounds(entries(i)) => myUninstVars += tv
            case _ =>
          }
        }
      }
    }
    myUninstVars
  }

// ---------- Cyclic checking -------------------------------------------

  def checkNonCyclic()(implicit ctx: Context): Unit =
    domainParams.foreach(checkNonCyclic)

  private def checkNonCyclic(param: TypeParamRef)(implicit ctx: Context): Unit =
    assert(!isLess(param, param), i"cyclic constraint involving $param in $this")

// ---------- toText -----------------------------------------------------

  override def toText(printer: Printer): Text = {
    def entryText(tp: Type) = tp match {
      case tp: TypeBounds =>
        tp.toText(printer)
      case _ =>
        " := " ~ tp.toText(printer)
    }
    val indent = 3
    val header: Text = "Constraint("
    val uninstVarsText = " uninstVars = " ~
      Text(uninstVars map (_.toText(printer)), ", ") ~ ";"
    val constrainedText =
      " constrained types = " ~ Text(domainLambdas map (_.toText(printer)), ", ")
    val boundsText =
      " bounds = " ~ {
        val assocs =
          for (param <- domainParams)
          yield (" " * indent) ~ param.toText(printer) ~ entryText(entry(param))
        Text(assocs, "\n")
      }
    val orderingText =
      " ordering = " ~ {
        val deps =
          for {
            param <- domainParams
            ups = minUpper(param)
            if ups.nonEmpty
          }
          yield
            (" " * indent) ~ param.toText(printer) ~ " <: " ~
              Text(ups.map(_.toText(printer)), ", ")
        Text(deps, "\n")
      }
    Text.lines(List(header, uninstVarsText, constrainedText, boundsText, orderingText, ")"))
  }

  override def toString: String = {
    def entryText(tp: Type): String = tp match {
      case tp: TypeBounds => tp.toString
      case _ =>" := " + tp
    }
    val constrainedText =
      " constrained types = " + domainLambdas.mkString("\n")
    val boundsText = domainLambdas
      " bounds = " + {
        val assocs =
          for (param <- domainParams)
          yield
            param.binder.paramNames(param.paramNum) + ": " + entryText(entry(param))
        assocs.mkString("\n")
    }
    constrainedText + "\n" + boundsText
  }
}