aboutsummaryrefslogtreecommitdiff
path: root/compiler/src/dotty/tools/dotc/core/TypeApplications.scala
blob: b37ed2b0af8b5e7fa4c6f21b5d829092e7b320ba (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
package dotty.tools
package dotc
package core

import Types._
import Contexts._
import Symbols._
import SymDenotations.{LazyType, TypeParamsCompleter}
import Decorators._
import util.Stats._
import util.common._
import Names._
import NameOps._
import NameKinds._
import Flags._
import StdNames.tpnme
import util.Positions.Position
import config.Printers.core
import collection.mutable
import dotty.tools.dotc.config.Config
import java.util.NoSuchElementException

object TypeApplications {

  type TypeParamInfo = ParamInfo.Of[TypeName]

  /** Assert type is not a TypeBounds instance and return it unchanged */
  val noBounds = (tp: Type) => tp match {
    case tp: TypeBounds => throw new AssertionError("no TypeBounds allowed")
    case _ => tp
  }

  /** If `tp` is a TypeBounds instance return its lower bound else return `tp` */
  val boundsToLo = (tp: Type) => tp match {
    case tp: TypeBounds => tp.lo
    case _ => tp
  }

  /** If `tp` is a TypeBounds instance return its upper bound else return `tp` */
  val boundsToHi = (tp: Type) => tp match {
    case tp: TypeBounds => tp.hi
    case _ => tp
  }

  /** Does variance `v1` conform to variance `v2`?
   *  This is the case if the variances are the same or `sym` is nonvariant.
   */
  def varianceConforms(v1: Int, v2: Int): Boolean =
    v1 == v2 || v2 == 0

  /** Does the variance of type parameter `tparam1` conform to the variance of type parameter `tparam2`?
   */
  def varianceConforms(tparam1: TypeParamInfo, tparam2: TypeParamInfo)(implicit ctx: Context): Boolean =
    varianceConforms(tparam1.paramVariance, tparam2.paramVariance)

  /** Do the variances of type parameters `tparams1` conform to the variances
   *  of corresponding type parameters `tparams2`?
   *  This is only the case of `tparams1` and `tparams2` have the same length.
   */
  def variancesConform(tparams1: List[TypeParamInfo], tparams2: List[TypeParamInfo])(implicit ctx: Context): Boolean =
    tparams1.corresponds(tparams2)(varianceConforms)

  /** Extractor for
   *
   *    [v1 X1: B1, ..., vn Xn: Bn] -> C[X1, ..., Xn]
   *
   *  where v1, ..., vn and B1, ..., Bn are the variances and bounds of the type parameters
   *  of the class C.
   *
   *  @param tycon     C
   */
  object EtaExpansion {
    def apply(tycon: Type)(implicit ctx: Context) = {
      assert(tycon.typeParams.nonEmpty, tycon)
      tycon.EtaExpand(tycon.typeParamSymbols)
    }

    def unapply(tp: Type)(implicit ctx: Context): Option[TypeRef] = tp match {
      case tp @ HKTypeLambda(tparams, AppliedType(fn: TypeRef, args)) if (args == tparams.map(_.toArg)) => Some(fn)
      case _ => None
    }
  }

  /** Extractor for type application T[U_1, ..., U_n]. This is the refined type
   *
   *     T { type p_1 v_1= U_1; ...; type p_n v_n= U_n }
   *
   *  where v_i, p_i are the variances and names of the type parameters of T.
   */
  object AppliedType {
    def apply(tp: Type, args: List[Type])(implicit ctx: Context): Type = tp.appliedTo(args)

    def unapply(tp: Type)(implicit ctx: Context): Option[(Type, List[Type])] = tp match {
      case tp: RefinedType =>
        var refinements: List[RefinedType] = Nil
        var tycon = tp.stripTypeVar
        while (tycon.isInstanceOf[RefinedType]) {
          val rt = tycon.asInstanceOf[RefinedType]
          refinements = rt :: refinements
          tycon = rt.parent.stripTypeVar
        }
        def collectArgs(tparams: List[TypeParamInfo],
                        refinements: List[RefinedType],
                        argBuf: mutable.ListBuffer[Type]): Option[(Type, List[Type])] = refinements match {
          case Nil if tparams.isEmpty && argBuf.nonEmpty =>
            Some((tycon, argBuf.toList))
          case RefinedType(_, rname, rinfo) :: refinements1
          if tparams.nonEmpty && rname == tparams.head.paramName =>
            collectArgs(tparams.tail, refinements1, argBuf += rinfo.argInfo)
          case _ =>
            None
        }
        collectArgs(tycon.typeParams, refinements, new mutable.ListBuffer[Type])
      case HKApply(tycon, args) =>
        Some((tycon, args))
      case _ =>
        None
    }
  }

   /** Adapt all arguments to possible higher-kinded type parameters using etaExpandIfHK
   */
  def EtaExpandIfHK(tparams: List[TypeParamInfo], args: List[Type])(implicit ctx: Context): List[Type] =
    if (tparams.isEmpty) args
    else args.zipWithConserve(tparams)((arg, tparam) => arg.EtaExpandIfHK(tparam.paramInfoOrCompleter))

  /** A type map that tries to reduce (part of) the result type of the type lambda `tycon`
   *  with the given `args`(some of which are wildcard arguments represented by type bounds).
   *  Non-wildcard arguments are substituted everywhere as usual. A wildcard argument
   *  `>: L <: H` is substituted for a type lambda parameter `X` only under certain conditions.
   *
   *  1. If Mode.AllowLambdaWildcardApply is set:
   *  The wildcard argument is substituted only if `X` appears in a toplevel refinement of the form
   *
   *        { type A = X }
   *
   *  and there are no other occurrences of `X` in the reduced type. In that case
   *  the refinement above is replaced by
   *
   *        { type A >: L <: U }
   *
   *  The `allReplaced` field indicates whether all occurrences of type lambda parameters
   *  in the reduced type have been replaced with arguments.
   *
   *  2. If Mode.AllowLambdaWildcardApply is not set:
   *  All refinements of the form
   *
   *        { type A = X }
   *
   *  are replaced by:
   *
   *        { type A >: L <: U }
   *
   *  Any other occurrence of `X` in `tycon` is replaced by `U`, if the
   *  occurrence of `X` in `tycon` is covariant, or nonvariant, or by `L`,
   *  if the occurrence is contravariant.
   *
   *  The idea is that the `AllowLambdaWildcardApply` mode is used to check whether
   *  a type can be soundly reduced, and to give an error or warning if that
   *  is not the case. By contrast, the default mode, with `AllowLambdaWildcardApply`
   *  not set, reduces all applications even if this yields a different type, so
   *  its postcondition is that no type parameters of `tycon` appear in the
   *  result type. Using this mode, we can guarantee that `appliedTo` will never
   *  produce a higher-kinded application with a type lambda as type constructor.
   */
  class Reducer(tycon: TypeLambda, args: List[Type])(implicit ctx: Context) extends TypeMap {
    private var available = (0 until args.length).toSet
    var allReplaced = true
    def hasWildcardArg(p: TypeParamRef) =
      p.binder == tycon && args(p.paramNum).isInstanceOf[TypeBounds]
    def canReduceWildcard(p: TypeParamRef) =
      !ctx.mode.is(Mode.AllowLambdaWildcardApply) || available.contains(p.paramNum)
    def apply(t: Type) = t match {
      case t @ TypeAlias(p: TypeParamRef) if hasWildcardArg(p) && canReduceWildcard(p) =>
        available -= p.paramNum
        args(p.paramNum)
      case p: TypeParamRef if p.binder == tycon =>
        args(p.paramNum) match {
          case TypeBounds(lo, hi) =>
            if (ctx.mode.is(Mode.AllowLambdaWildcardApply)) { allReplaced = false; p }
            else if (variance < 0) lo
            else hi
          case arg =>
            arg
        }
      case _: TypeBounds | _: HKApply =>
        val saved = available
        available = Set()
        try mapOver(t)
        finally available = saved
      case _ =>
        mapOver(t)
    }
  }
}

import TypeApplications._

/** A decorator that provides methods for modeling type application */
class TypeApplications(val self: Type) extends AnyVal {

  /** The type parameters of this type are:
   *  For a ClassInfo type, the type parameters of its class.
   *  For a typeref referring to a class, the type parameters of the class.
   *  For a typeref referring to a Lambda class, the type parameters of
   *    its right hand side or upper bound.
   *  For a refinement type, the type parameters of its parent, dropping
   *  any type parameter that is-rebound by the refinement. "Re-bind" means:
   *  The refinement contains a TypeAlias for the type parameter, or
   *  it introduces bounds for the type parameter, and we are not in the
   *  special case of a type Lambda, where a LambdaTrait gets refined
   *  with the bounds on its hk args. See `LambdaAbstract`, where these
   *  types get introduced, and see `isBoundedLambda` below for the test.
   */
  final def typeParams(implicit ctx: Context): List[TypeParamInfo] = /*>|>*/ track("typeParams") /*<|<*/ {
    self match {
      case self: ClassInfo =>
        self.cls.typeParams
      case self: HKTypeLambda =>
        self.typeParams
      case self: TypeRef =>
        val tsym = self.symbol
        if (tsym.isClass) tsym.typeParams
        else if (!tsym.isCompleting) tsym.info.typeParams
        else Nil
      case self: RefinedType =>
        self.parent.typeParams.filterNot(_.paramName == self.refinedName)
      case self: RecType =>
        self.parent.typeParams
      case _: SingletonType =>
        Nil
      case self: WildcardType =>
        self.optBounds.typeParams
      case self: TypeProxy =>
        self.superType.typeParams
      case _ =>
        Nil
    }
  }

  /** If `self` is a higher-kinded type, its type parameters, otherwise Nil */
  final def hkTypeParams(implicit ctx: Context): List[TypeParamInfo] =
    if (isHK) typeParams else Nil

  /** If `self` is a generic class, its type parameter symbols, otherwise Nil */
  final def typeParamSymbols(implicit ctx: Context): List[TypeSymbol] = typeParams match {
    case (_: Symbol) :: _ =>
      assert(typeParams.forall(_.isInstanceOf[Symbol]))
      typeParams.asInstanceOf[List[TypeSymbol]]
    case _ => Nil
  }

  /** Is self type higher-kinded (i.e. of kind != "*")? */
  def isHK(implicit ctx: Context): Boolean = self.dealias match {
    case self: TypeRef => self.info.isHK
    case self: RefinedType => false
    case self: HKTypeLambda => true
    case self: SingletonType => false
    case self: TypeVar =>
      // Using `origin` instead of `underlying`, as is done for typeParams,
      // avoids having to set ephemeral in some cases.
      self.origin.isHK
    case self: WildcardType => self.optBounds.isHK
    case self: TypeProxy => self.superType.isHK
    case _ => false
  }

  /** Dealias type if it can be done without forcing the TypeRef's info */
  def safeDealias(implicit ctx: Context): Type = self match {
    case self: TypeRef if self.denot.exists && self.symbol.isAliasType =>
      self.superType.stripTypeVar.safeDealias
    case _ =>
      self
  }

  /** Convert a type constructor `TC` which has type parameters `T1, ..., Tn`
   *  in a context where type parameters `U1,...,Un` are expected to
   *
   *     LambdaXYZ { Apply = TC[hk$0, ..., hk$n] }
   *
   *  Here, XYZ corresponds to the variances of
   *   - `U1,...,Un` if the variances of `T1,...,Tn` are pairwise compatible with `U1,...,Un`,
   *   - `T1,...,Tn` otherwise.
   *  v1 is compatible with v2, if v1 = v2 or v2 is non-variant.
   */
  def EtaExpand(tparams: List[TypeSymbol])(implicit ctx: Context): Type = {
    val tparamsToUse = if (variancesConform(typeParams, tparams)) tparams else typeParamSymbols
    HKTypeLambda.fromParams(tparamsToUse, self.appliedTo(tparams map (_.typeRef)))
      //.ensuring(res => res.EtaReduce =:= self, s"res = $res, core = ${res.EtaReduce}, self = $self, hc = ${res.hashCode}")
  }

  /** If self is not higher-kinded, eta expand it. */
  def ensureHK(implicit ctx: Context): Type =
    if (isHK) self else EtaExpansion(self)

  /** Eta expand if `self` is a (non-lambda) class reference and `bound` is a higher-kinded type */
  def EtaExpandIfHK(bound: Type)(implicit ctx: Context): Type = {
    val hkParams = bound.hkTypeParams
    if (hkParams.isEmpty) self
    else self match {
      case self: TypeRef if self.symbol.isClass && self.typeParams.length == hkParams.length =>
        EtaExpansion(self)
      case _ => self
    }
  }

  /** If argument A and type parameter P are higher-kinded, adapt the variances
   *  of A to those of P, ensuring that the variances of the type lambda A
   *  agree with the variances of corresponding higher-kinded type parameters of P. Example:
   *
   *     class GenericCompanion[+CC[X]]
   *     GenericCompanion[List]
   *
   *  with adaptHkVariances, the argument `List` will expand to
   *
   *     [X] => List[X]
   *
   *  instead of
   *
   *     [+X] => List[X]
   *
   *  even though `List` is covariant. This adaptation is necessary to ignore conflicting
   *  variances in overriding members that have types of hk-type parameters such as
   *  `GenericCompanion[GenTraversable]` or `GenericCompanion[ListBuffer]`.
   *  When checking overriding, we need to validate the subtype relationship
   *
   *      GenericCompanion[[X] -> ListBuffer[X]] <: GenericCompanion[[+X] -> GenTraversable[X]]
   *
   *   Without adaptation, this would be false, and hence an overriding error would
   *   result. But with adaptation, the rhs argument will be adapted to
   *
   *     [X] -> GenTraversable[X]
   *
   *   which makes the subtype test succeed. The crucial point here is that, since
   *   GenericCompanion only expects a non-variant CC, the fact that GenTraversable
   *   is covariant is irrelevant, so can be ignored.
   */
  def adaptHkVariances(bound: Type)(implicit ctx: Context): Type = {
    val hkParams = bound.hkTypeParams
    if (hkParams.isEmpty) self
    else {
      def adaptArg(arg: Type): Type = arg match {
        case arg @ HKTypeLambda(tparams, body) if
             !tparams.corresponds(hkParams)(_.paramVariance == _.paramVariance) &&
             tparams.corresponds(hkParams)(varianceConforms) =>
          HKTypeLambda(
            (tparams, hkParams).zipped.map((tparam, hkparam) =>
              tparam.paramName.withVariance(hkparam.paramVariance)))(
            tl => arg.paramInfos.map(_.subst(arg, tl).bounds),
            tl => arg.resultType.subst(arg, tl)
          )
        case arg @ TypeAlias(alias) =>
          arg.derivedTypeAlias(adaptArg(alias))
        case arg @ TypeBounds(lo, hi) =>
          arg.derivedTypeBounds(adaptArg(lo), adaptArg(hi))
        case _ =>
          arg
      }
      adaptArg(self)
    }
  }

  /** The type representing
   *
   *     T[U1, ..., Un]
   *
   *  where
   *  @param  self   = `T`
   *  @param  args   = `U1,...,Un`
   */
  final def appliedTo(args: List[Type])(implicit ctx: Context): Type = /*>|>*/ track("appliedTo") /*<|<*/ {
    val typParams = self.typeParams
    def matchParams(t: Type, tparams: List[ParamInfo], args: List[Type])(implicit ctx: Context): Type = args match {
      case arg :: args1 =>
        try {
          val tparam :: tparams1 = tparams
          matchParams(RefinedType(t, tparam.paramName, arg.toBounds(tparam)), tparams1, args1)
        } catch {
          case ex: MatchError =>
            println(s"applied type mismatch: $self with underlying ${self.underlyingIfProxy}, args = $args, typeParams = $typParams") // !!! DEBUG
            //println(s"precomplete decls = ${self.typeSymbol.unforcedDecls.toList.map(_.denot).mkString("\n  ")}")
            throw ex
        }
      case nil => t
    }
    val stripped = self.stripTypeVar
    val dealiased = stripped.safeDealias
    if (args.isEmpty || ctx.erasedTypes) self
    else dealiased match {
      case dealiased: HKTypeLambda =>
        def tryReduce =
          if (!args.exists(_.isInstanceOf[TypeBounds])) {
            val followAlias = Config.simplifyApplications && {
              dealiased.resType match {
                case AppliedType(tyconBody, dealiasedArgs) =>
                  // Reduction should not affect type inference when it's
                  // just eta-reduction (ignoring variance annotations).
                  // See i2201*.scala for examples where more aggressive
                  // reduction would break type inference.
                  dealiased.paramRefs == dealiasedArgs
                case _ => false
              }
            }
            if ((dealiased eq stripped) || followAlias) dealiased.instantiate(args)
            else HKApply(self, args)
          }
          else dealiased.resType match {
            case AppliedType(tycon, args1) if tycon.safeDealias ne tycon =>
              // In this case we should always dealias since we cannot handle
              // higher-kinded applications to wildcard arguments.
              dealiased
                .derivedLambdaType(resType = tycon.safeDealias.appliedTo(args1))
                .appliedTo(args)
            case _ =>
              val reducer = new Reducer(dealiased, args)
              val reduced = reducer(dealiased.resType)
              if (reducer.allReplaced) reduced
              else HKApply(dealiased, args)
          }
        tryReduce
      case dealiased: PolyType =>
        dealiased.instantiate(args)
      case dealiased: AndOrType =>
        dealiased.derivedAndOrType(dealiased.tp1.appliedTo(args), dealiased.tp2.appliedTo(args))
      case dealiased: TypeAlias =>
        dealiased.derivedTypeAlias(dealiased.alias.appliedTo(args))
      case dealiased: TypeBounds =>
        dealiased.derivedTypeBounds(dealiased.lo.appliedTo(args), dealiased.hi.appliedTo(args))
      case dealiased: LazyRef =>
        LazyRef(() => dealiased.ref.appliedTo(args))
      case dealiased: WildcardType =>
        WildcardType(dealiased.optBounds.appliedTo(args).bounds)
      case dealiased: TypeRef if dealiased.symbol == defn.NothingClass =>
        dealiased
      case _ if typParams.isEmpty || typParams.head.isInstanceOf[LambdaParam] =>
        HKApply(self, args)
      case dealiased =>
        matchParams(dealiased, typParams, args)
    }
  }

  final def appliedTo(arg: Type)(implicit ctx: Context): Type = appliedTo(arg :: Nil)
  final def appliedTo(arg1: Type, arg2: Type)(implicit ctx: Context): Type = appliedTo(arg1 :: arg2 :: Nil)

  final def applyIfParameterized(args: List[Type])(implicit ctx: Context): Type =
    if (typeParams.nonEmpty) appliedTo(args) else self

  /** A cycle-safe version of `appliedTo` where computing type parameters do not force
   *  the typeconstructor. Instead, if the type constructor is completing, we make
   *  up hk type parameters matching the arguments. This is needed when unpickling
   *  Scala2 files such as `scala.collection.generic.Mapfactory`.
   */
  final def safeAppliedTo(args: List[Type])(implicit ctx: Context) = self match {
    case self: TypeRef if !self.symbol.isClass && self.symbol.isCompleting =>
      HKApply(self, args)
    case _ =>
      appliedTo(args)
  }

  /** Turn this type, which is used as an argument for
   *  type parameter `tparam`, into a TypeBounds RHS
   */
  final def toBounds(tparam: ParamInfo)(implicit ctx: Context): TypeBounds = self match {
    case self: TypeBounds => // this can happen for wildcard args
      self
    case _ =>
      val v = tparam.paramVariance
      TypeAlias(self, v)
  }

  /** The type arguments of this type's base type instance wrt. `base`.
   *  Existential types in arguments are returned as TypeBounds instances.
   */
  final def baseArgInfos(base: Symbol)(implicit ctx: Context): List[Type] =
    if (self derivesFrom base)
      self.dealias match {
        case self: TypeRef if !self.symbol.isClass => self.superType.baseArgInfos(base)
        case self: HKApply => self.superType.baseArgInfos(base)
        case _ => base.typeParams.map(param => self.member(param.name).info.argInfo)
      }
    else
      Nil

  /** The type arguments of this type's base type instance wrt.`base`.
   *  Existential types in arguments are disallowed.
   */
  final def baseArgTypes(base: Symbol)(implicit ctx: Context): List[Type] =
    baseArgInfos(base) mapConserve noBounds

  /** The type arguments of this type's base type instance wrt.`base`.
   *  Existential types in arguments are approximated by their lower bound.
   */
  final def baseArgTypesLo(base: Symbol)(implicit ctx: Context): List[Type] =
    baseArgInfos(base) mapConserve boundsToLo

  /** The type arguments of this type's base type instance wrt.`base`.
   *  Existential types in arguments are approximated by their upper bound.
   */
  final def baseArgTypesHi(base: Symbol)(implicit ctx: Context): List[Type] =
    baseArgInfos(base) mapConserve boundsToHi

  /** The base type including all type arguments and applicable refinements
   *  of this type. Refinements are applicable if they refine a member of
   *  the parent type which furthermore is not a name-mangled type parameter.
   *  Existential types in arguments are returned as TypeBounds instances.
   */
  final def baseTypeWithArgs(base: Symbol)(implicit ctx: Context): Type = ctx.traceIndented(s"btwa ${self.show} wrt $base", core, show = true) {
    def default = self.baseTypeRef(base).appliedTo(baseArgInfos(base))
    def isExpandedTypeParam(sym: Symbol) = sym.is(TypeParam) && sym.name.is(ExpandedName)
    self match {
      case tp: TypeRef =>
        tp.info match {
          case TypeBounds(_, hi) => hi.baseTypeWithArgs(base)
          case _ => default
        }
      case tp @ RefinedType(parent, name, _) if !isExpandedTypeParam(tp.member(name).symbol) =>
        tp.wrapIfMember(parent.baseTypeWithArgs(base))
      case tp: TermRef =>
        tp.underlying.baseTypeWithArgs(base)
      case tp: HKApply =>
        tp.superType.baseTypeWithArgs(base)
      case AndType(tp1, tp2) =>
        tp1.baseTypeWithArgs(base) & tp2.baseTypeWithArgs(base)
      case OrType(tp1, tp2) =>
        tp1.baseTypeWithArgs(base) | tp2.baseTypeWithArgs(base)
      case _ =>
        default
    }
  }

  /** Translate a type of the form From[T] to To[T], keep other types as they are.
   *  `from` and `to` must be static classes, both with one type parameter, and the same variance.
   *  Do the same for by name types => From[T] and => To[T]
   */
  def translateParameterized(from: ClassSymbol, to: ClassSymbol)(implicit ctx: Context): Type = self match {
    case self @ ExprType(tp) =>
      self.derivedExprType(tp.translateParameterized(from, to))
    case _ =>
      if (self.derivesFrom(from))
        if (ctx.erasedTypes) to.typeRef
        else RefinedType(to.typeRef, to.typeParams.head.name, self.member(from.typeParams.head.name).info)
      else self
  }

  /** If this is repeated parameter type, its underlying Seq type,
   *  or, if isJava is true, Array type, else the type itself.
   */
  def underlyingIfRepeated(isJava: Boolean)(implicit ctx: Context): Type =
    if (self.isRepeatedParam) {
      val seqClass = if (isJava) defn.ArrayClass else defn.SeqClass
      translateParameterized(defn.RepeatedParamClass, seqClass)
    }
    else self

  /** If this is an encoding of a (partially) applied type, return its arguments,
   *  otherwise return Nil.
   *  Existential types in arguments are returned as TypeBounds instances.
   */
  final def argInfos(implicit ctx: Context): List[Type] = self match {
    case AppliedType(tycon, args) => args
    case _ => Nil
  }

  /** Argument types where existential types in arguments are disallowed */
  def argTypes(implicit ctx: Context) = argInfos mapConserve noBounds

  /** Argument types where existential types in arguments are approximated by their lower bound */
  def argTypesLo(implicit ctx: Context) = argInfos mapConserve boundsToLo

  /** Argument types where existential types in arguments are approximated by their upper bound  */
  def argTypesHi(implicit ctx: Context) = argInfos mapConserve boundsToHi

  /** The core type without any type arguments.
   *  @param `typeArgs` must be the type arguments of this type.
   */
  final def withoutArgs(typeArgs: List[Type]): Type = self match {
    case HKApply(tycon, args) => tycon
    case _ =>
      typeArgs match {
        case _ :: typeArgs1 =>
          val RefinedType(tycon, _, _) = self
          tycon.withoutArgs(typeArgs1)
        case nil =>
          self
      }
  }

  /** If this is the image of a type argument; recover the type argument,
   *  otherwise NoType.
   */
  final def argInfo(implicit ctx: Context): Type = self match {
    case self: TypeAlias => self.alias
    case self: TypeBounds => self
    case _ => NoType
  }

  /** If this is a type alias, its underlying type, otherwise the type itself */
  def dropAlias(implicit ctx: Context): Type = self match {
    case TypeAlias(alias) => alias
    case _ => self
  }

  /** The element type of a sequence or array */
  def elemType(implicit ctx: Context): Type = self match {
    case defn.ArrayOf(elemtp) => elemtp
    case JavaArrayType(elemtp) => elemtp
    case _ => baseArgInfos(defn.SeqClass).headOption.getOrElse(NoType)
  }
}