aboutsummaryrefslogtreecommitdiff
path: root/compiler/src/dotty/tools/dotc/core/TypeComparer.scala
blob: 54b96a2530b3e0888aabdda5a307357d84107b6d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
package dotty.tools
package dotc
package core

import Types._, Contexts._, Symbols._, Flags._, Names._, NameOps._, Denotations._
import Decorators._
import StdNames.{nme, tpnme}
import collection.mutable
import util.{Stats, DotClass, SimpleMap}
import config.Config
import config.Printers.{typr, constr, subtyping, noPrinter}
import TypeErasure.{erasedLub, erasedGlb}
import TypeApplications._
import scala.util.control.NonFatal

/** Provides methods to compare types.
 */
class TypeComparer(initctx: Context) extends DotClass with ConstraintHandling {
  implicit val ctx = initctx

  val state = ctx.typerState
  import state.constraint

  private var pendingSubTypes: mutable.Set[(Type, Type)] = null
  private var recCount = 0

  private var needsGc = false

  /** Is a subtype check in progress? In that case we may not
   *  permanently instantiate type variables, because the corresponding
   *  constraint might still be retracted and the instantiation should
   *  then be reversed.
   */
  def subtypeCheckInProgress: Boolean = {
    val result = recCount > 0
    if (result) {
      constr.println("*** needsGC ***")
      needsGc = true
    }
    result
  }

  /** For statistics: count how many isSubTypes are part of successful comparisons */
  private var successCount = 0
  private var totalCount = 0

  private var myAnyClass: ClassSymbol = null
  private var myNothingClass: ClassSymbol = null
  private var myNullClass: ClassSymbol = null
  private var myObjectClass: ClassSymbol = null
  private var myAnyType: TypeRef = null
  private var myNothingType: TypeRef = null

  def AnyClass = {
    if (myAnyClass == null) myAnyClass = defn.AnyClass
    myAnyClass
  }
  def NothingClass = {
    if (myNothingClass == null) myNothingClass = defn.NothingClass
    myNothingClass
  }
  def NullClass = {
    if (myNullClass == null) myNullClass = defn.NullClass
    myNullClass
  }
  def ObjectClass = {
    if (myObjectClass == null) myObjectClass = defn.ObjectClass
    myObjectClass
  }
  def AnyType = {
    if (myAnyType == null) myAnyType = AnyClass.typeRef
    myAnyType
  }
  def NothingType = {
    if (myNothingType == null) myNothingType = NothingClass.typeRef
    myNothingType
  }

  /** Indicates whether a previous subtype check used GADT bounds */
  var GADTused = false

  /** Record that GADT bounds of `sym` were used in a subtype check.
   *  But exclude constructor type parameters, as these are aliased
   *  to the corresponding class parameters, which does not constitute
   *  a true usage of a GADT symbol.
   */
  private def GADTusage(sym: Symbol) = {
    if (!sym.owner.isConstructor) GADTused = true
    true
  }

  // Subtype testing `<:<`

  def topLevelSubType(tp1: Type, tp2: Type): Boolean = {
    if (tp2 eq NoType) return false
    if ((tp2 eq tp1) || (tp2 eq WildcardType)) return true
    try isSubType(tp1, tp2)
    finally
      if (Config.checkConstraintsSatisfiable)
        assert(isSatisfiable, constraint.show)
  }

  protected def isSubType(tp1: Type, tp2: Type): Boolean = ctx.traceIndented(s"isSubType ${traceInfo(tp1, tp2)}", subtyping) {
    if (tp2 eq NoType) false
    else if (tp1 eq tp2) true
    else {
      val saved = constraint
      val savedSuccessCount = successCount
      try {
        recCount = recCount + 1
        val result =
          if (recCount < Config.LogPendingSubTypesThreshold) firstTry(tp1, tp2)
          else monitoredIsSubType(tp1, tp2)
        recCount = recCount - 1
        if (!result) constraint = saved
        else if (recCount == 0 && needsGc) {
          state.gc()
          needsGc = false
        }
        if (Stats.monitored) recordStatistics(result, savedSuccessCount)
        result
      } catch {
        case NonFatal(ex) =>
          if (ex.isInstanceOf[AssertionError]) showGoal(tp1, tp2)
          recCount -= 1
          constraint = saved
          successCount = savedSuccessCount
          throw ex
      }
    }
  }

  private def monitoredIsSubType(tp1: Type, tp2: Type) = {
    if (pendingSubTypes == null) {
      pendingSubTypes = new mutable.HashSet[(Type, Type)]
      ctx.log(s"!!! deep subtype recursion involving ${tp1.show} <:< ${tp2.show}, constraint = ${state.constraint.show}")
      ctx.log(s"!!! constraint = ${constraint.show}")
      //if (ctx.settings.YnoDeepSubtypes.value) {
      //  new Error("deep subtype").printStackTrace()
      //}
      assert(!ctx.settings.YnoDeepSubtypes.value)
      if (Config.traceDeepSubTypeRecursions && !this.isInstanceOf[ExplainingTypeComparer])
        ctx.log(TypeComparer.explained(implicit ctx => ctx.typeComparer.isSubType(tp1, tp2)))
    }
    val p = (tp1, tp2)
    !pendingSubTypes(p) && {
      try {
        pendingSubTypes += p
        firstTry(tp1, tp2)
      } finally {
        pendingSubTypes -= p
      }
    }
  }

  private def firstTry(tp1: Type, tp2: Type): Boolean = tp2 match {
    case tp2: NamedType =>
      def compareNamed(tp1: Type, tp2: NamedType): Boolean = {
        implicit val ctx = this.ctx
        tp2.info match {
          case info2: TypeAlias => isSubType(tp1, info2.alias)
          case _ => tp1 match {
            case tp1: NamedType =>
              tp1.info match {
                case info1: TypeAlias =>
                  if (isSubType(info1.alias, tp2)) return true
                  if (tp1.prefix.isStable) return false
                    // If tp1.prefix is stable, the alias does contain all information about the original ref, so
                    // there's no need to try something else. (This is important for performance).
                    // To see why we cannot in general stop here, consider:
                    //
                    //     trait C { type A }
                    //     trait D { type A = String }
                    //     (C & D)#A <: C#A
                    //
                    // Following the alias leads to the judgment `String <: C#A` which is false.
                    // However the original judgment should be true.
                case _ =>
              }
              val sym1 =
                if (tp1.symbol.is(ModuleClass) && tp2.symbol.is(ModuleVal))
                  // For convenience we want X$ <:< X.type
                  // This is safe because X$ self-type is X.type
                  tp1.symbol.companionModule
                else
                  tp1.symbol
              if ((sym1 ne NoSymbol) && (sym1 eq tp2.symbol))
                ctx.erasedTypes ||
                sym1.isStaticOwner ||
                isSubType(tp1.prefix, tp2.prefix) ||
                thirdTryNamed(tp1, tp2)
              else
                (  (tp1.name eq tp2.name)
                && isSubType(tp1.prefix, tp2.prefix)
                && tp1.signature == tp2.signature
                && !tp1.isInstanceOf[WithFixedSym]
                && !tp2.isInstanceOf[WithFixedSym]
                ) ||
                thirdTryNamed(tp1, tp2)
            case _ =>
              secondTry(tp1, tp2)
          }
        }
      }
      compareNamed(tp1, tp2)
    case tp2: ProtoType =>
      isMatchedByProto(tp2, tp1)
    case tp2: BoundType =>
      tp2 == tp1 || secondTry(tp1, tp2)
    case tp2: TypeVar =>
      isSubType(tp1, tp2.underlying)
    case tp2: WildcardType =>
      def compareWild = tp2.optBounds match {
        case TypeBounds(_, hi) => isSubType(tp1, hi)
        case NoType => true
      }
      compareWild
    case tp2: LazyRef =>
      !tp2.evaluating && isSubType(tp1, tp2.ref)
    case tp2: AnnotatedType =>
      isSubType(tp1, tp2.tpe) // todo: refine?
    case tp2: ThisType =>
      def compareThis = {
        val cls2 = tp2.cls
        tp1 match {
          case tp1: ThisType =>
            // We treat two prefixes A.this, B.this as equivalent if
            // A's selftype derives from B and B's selftype derives from A.
            val cls1 = tp1.cls
            cls1.classInfo.selfType.derivesFrom(cls2) &&
            cls2.classInfo.selfType.derivesFrom(cls1)
          case tp1: NamedType if cls2.is(Module) && cls2.eq(tp1.widen.typeSymbol) =>
            cls2.isStaticOwner ||
            isSubType(tp1.prefix, cls2.owner.thisType) ||
            secondTry(tp1, tp2)
          case _ =>
            secondTry(tp1, tp2)
        }
      }
      compareThis
    case tp2: SuperType =>
      def compareSuper = tp1 match {
        case tp1: SuperType =>
          isSubType(tp1.thistpe, tp2.thistpe) &&
          isSameType(tp1.supertpe, tp2.supertpe)
        case _ =>
          secondTry(tp1, tp2)
      }
      compareSuper
    case AndType(tp21, tp22) =>
      isSubType(tp1, tp21) && isSubType(tp1, tp22)
    case OrType(tp21, tp22) =>
      if (tp21.stripTypeVar eq tp22.stripTypeVar) isSubType(tp1, tp21)
      else secondTry(tp1, tp2)
    case TypeErasure.ErasedValueType(tycon1, underlying2) =>
      def compareErasedValueType = tp1 match {
        case TypeErasure.ErasedValueType(tycon2, underlying1) =>
          (tycon1.symbol eq tycon2.symbol) && isSameType(underlying1, underlying2)
        case _ =>
          secondTry(tp1, tp2)
      }
      compareErasedValueType
    case ConstantType(v2) =>
      tp1 match {
        case ConstantType(v1) => v1.value == v2.value
        case _ => secondTry(tp1, tp2)
      }
    case _: FlexType =>
      true
    case _ =>
      secondTry(tp1, tp2)
  }

  private def secondTry(tp1: Type, tp2: Type): Boolean = tp1 match {
    case tp1: NamedType =>
      tp1.info match {
        case info1: TypeAlias =>
          if (isSubType(info1.alias, tp2)) return true
          if (tp1.prefix.isStable) return false
        case _ =>
      }
      thirdTry(tp1, tp2)
    case tp1: TypeParamRef =>
      def flagNothingBound = {
        if (!frozenConstraint && tp2.isRef(defn.NothingClass) && state.isGlobalCommittable) {
          def msg = s"!!! instantiated to Nothing: $tp1, constraint = ${constraint.show}"
          if (Config.failOnInstantiationToNothing) assert(false, msg)
          else ctx.log(msg)
        }
        true
      }
      def compareTypeParamRef =
        ctx.mode.is(Mode.TypevarsMissContext) ||
        isSubTypeWhenFrozen(bounds(tp1).hi, tp2) || {
          if (canConstrain(tp1)) addConstraint(tp1, tp2, fromBelow = false) && flagNothingBound
          else thirdTry(tp1, tp2)
        }
      compareTypeParamRef
    case tp1: ThisType =>
      val cls1 = tp1.cls
      tp2 match {
        case tp2: TermRef if cls1.is(Module) && cls1.eq(tp2.widen.typeSymbol) =>
          cls1.isStaticOwner ||
          isSubType(cls1.owner.thisType, tp2.prefix) ||
          thirdTry(tp1, tp2)
        case _ =>
          thirdTry(tp1, tp2)
      }
    case tp1: SkolemType =>
      tp2 match {
        case tp2: SkolemType if !ctx.phase.isTyper && tp1.info <:< tp2.info => true
        case _ => thirdTry(tp1, tp2)
      }
    case tp1: TypeVar =>
      isSubType(tp1.underlying, tp2)
    case tp1: WildcardType =>
      def compareWild = tp1.optBounds match {
        case TypeBounds(lo, _) => isSubType(lo, tp2)
        case _ => true
      }
      compareWild
    case tp1: LazyRef =>
      // If `tp1` is in train of being evaluated, don't force it
      // because that would cause an assertionError. Return false instead.
      // See i859.scala for an example where we hit this case.
      !tp1.evaluating && isSubType(tp1.ref, tp2)
    case tp1: AnnotatedType =>
      isSubType(tp1.tpe, tp2)
    case AndType(tp11, tp12) =>
      if (tp11.stripTypeVar eq tp12.stripTypeVar) isSubType(tp11, tp2)
      else thirdTry(tp1, tp2)
    case tp1 @ OrType(tp11, tp12) =>
      def joinOK = tp2.dealias match {
        case tp12: HKApply =>
          // If we apply the default algorithm for `A[X] | B[Y] <: C[Z]` where `C` is a
          // type parameter, we will instantiate `C` to `A` and then fail when comparing
          // with `B[Y]`. To do the right thing, we need to instantiate `C` to the
          // common superclass of `A` and `B`.
          isSubType(tp1.join, tp2)
        case _ =>
          false
      }
      joinOK || isSubType(tp11, tp2) && isSubType(tp12, tp2)
    case _: FlexType =>
      true
    case _ =>
      thirdTry(tp1, tp2)
  }

  private def thirdTryNamed(tp1: Type, tp2: NamedType): Boolean = tp2.info match {
    case TypeBounds(lo2, _) =>
      def compareGADT: Boolean = {
        val gbounds2 = ctx.gadt.bounds(tp2.symbol)
        (gbounds2 != null) &&
          (isSubTypeWhenFrozen(tp1, gbounds2.lo) ||
            narrowGADTBounds(tp2, tp1, isUpper = false)) &&
          GADTusage(tp2.symbol)
      }
      ((frozenConstraint || !isCappable(tp1)) && isSubType(tp1, lo2) ||
        compareGADT ||
        fourthTry(tp1, tp2))

    case _ =>
      val cls2 = tp2.symbol
      if (cls2.isClass) {
        val base = tp1.baseTypeRef(cls2)
        if (base.exists && (base ne tp1)) return isSubType(base, tp2)
        if (cls2 == defn.SingletonClass && tp1.isStable) return true
      }
      fourthTry(tp1, tp2)
  }

  private def thirdTry(tp1: Type, tp2: Type): Boolean = tp2 match {
    case tp2: NamedType =>
      thirdTryNamed(tp1, tp2)
    case tp2: TypeParamRef =>
      def compareTypeParamRef =
        (ctx.mode is Mode.TypevarsMissContext) || {
        val alwaysTrue =
          // The following condition is carefully formulated to catch all cases
          // where the subtype relation is true without needing to add a constraint
          // It's tricky because we might need to either appriximate tp2 by its
          // lower bound or else widen tp1 and check that the result is a subtype of tp2.
          // So if the constraint is not yet frozen, we do the same comparison again
          // with a frozen constraint, which means that we get a chance to do the
          // widening in `fourthTry` before adding to the constraint.
          if (frozenConstraint) isSubType(tp1, bounds(tp2).lo)
          else isSubTypeWhenFrozen(tp1, tp2)
        alwaysTrue || {
          if (canConstrain(tp2)) addConstraint(tp2, tp1.widenExpr, fromBelow = true)
          else fourthTry(tp1, tp2)
        }
      }
      compareTypeParamRef
    case tp2: RefinedType =>
      def compareRefinedSlow: Boolean = {
        val name2 = tp2.refinedName
        isSubType(tp1, tp2.parent) &&
          (name2 == nme.WILDCARD || hasMatchingMember(name2, tp1, tp2))
      }
      def compareRefined: Boolean = {
        val tp1w = tp1.widen
        val skipped2 = skipMatching(tp1w, tp2)
        if ((skipped2 eq tp2) || !Config.fastPathForRefinedSubtype)
          tp1 match {
            case tp1: AndType =>
              // Delay calling `compareRefinedSlow` because looking up a member
              // of an `AndType` can lead to a cascade of subtyping checks
              // This twist is needed to make collection/generic/ParFactory.scala compile
              fourthTry(tp1, tp2) || compareRefinedSlow
            case _ =>
              compareRefinedSlow || fourthTry(tp1, tp2)
          }
        else // fast path, in particular for refinements resulting from parameterization.
          isSubRefinements(tp1w.asInstanceOf[RefinedType], tp2, skipped2) &&
          isSubType(tp1, skipped2)
      }
      compareRefined
    case tp2: RecType =>
      def compareRec = tp1.safeDealias match {
        case tp1: RecType =>
          val rthis1 = RecThis(tp1)
          isSubType(tp1.parent, tp2.parent.substRecThis(tp2, rthis1))
        case _ =>
          val tp1stable = ensureStableSingleton(tp1)
          isSubType(fixRecs(tp1stable, tp1stable.widenExpr), tp2.parent.substRecThis(tp2, tp1stable))
      }
      compareRec
    case tp2 @ HKApply(tycon2, args2) =>
      compareHkApply2(tp1, tp2, tycon2, args2)
    case tp2: HKTypeLambda =>
      def compareTypeLambda: Boolean = tp1.stripTypeVar match {
        case tp1: HKTypeLambda =>
          /* Don't compare bounds of lambdas under language:Scala2, or t2994 will fail
           * The issue is that, logically, bounds should compare contravariantly,
           * but that would invalidate a pattern exploited in t2994:
           *
           *    [X0 <: Number] -> Number   <:<    [X0] -> Any
           *
           * Under the new scheme, `[X0] -> Any` is NOT a kind that subsumes
           * all other bounds. You'd have to write `[X0 >: Any <: Nothing] -> Any` instead.
           * This might look weird, but is the only logically correct way to do it.
           *
           * Note: it would be nice if this could trigger a migration warning, but I
           * am not sure how, since the code is buried so deep in subtyping logic.
           */
          def boundsOK =
            ctx.scala2Mode ||
            tp1.typeParams.corresponds(tp2.typeParams)((tparam1, tparam2) =>
              isSubType(tparam2.paramInfo.subst(tp2, tp1), tparam1.paramInfo))
          val saved = comparedTypeLambdas
          comparedTypeLambdas += tp1
          comparedTypeLambdas += tp2
          try
            variancesConform(tp1.typeParams, tp2.typeParams) &&
            boundsOK &&
            isSubType(tp1.resType, tp2.resType.subst(tp2, tp1))
          finally comparedTypeLambdas = saved
        case _ =>
          if (!tp1.isHK) {
            tp2 match {
              case EtaExpansion(tycon2) if tycon2.symbol.isClass =>
                return isSubType(tp1, tycon2)
              case _ =>
            }
          }
          fourthTry(tp1, tp2)
      }
      compareTypeLambda
    case OrType(tp21, tp22) =>
      // Rewrite T1 <: (T211 & T212) | T22 to T1 <: (T211 | T22) and T1 <: (T212 | T22)
      // and analogously for T1 <: T21 | (T221 & T222)
      // `|' types to the right of <: are problematic, because
      // we have to choose one constraint set or another, which might cut off
      // solutions. The rewriting delays the point where we have to choose.
      tp21 match {
        case AndType(tp211, tp212) =>
          return isSubType(tp1, OrType(tp211, tp22)) && isSubType(tp1, OrType(tp212, tp22))
        case _ =>
      }
      tp22 match {
        case AndType(tp221, tp222) =>
          return isSubType(tp1, OrType(tp21, tp221)) && isSubType(tp1, OrType(tp21, tp222))
        case _ =>
      }
      either(isSubType(tp1, tp21), isSubType(tp1, tp22)) || fourthTry(tp1, tp2)
    case tp2: MethodOrPoly =>
      def compareMethod = tp1 match {
        case tp1: MethodOrPoly =>
          (tp1.signature consistentParams tp2.signature) &&
            matchingParams(tp1, tp2) &&
            tp1.isImplicit == tp2.isImplicit &&
            isSubType(tp1.resultType, tp2.resultType.subst(tp2, tp1))
        case _ =>
          false
      }
      compareMethod
    case tp2 @ ExprType(restpe2) =>
      def compareExpr = tp1 match {
        // We allow ()T to be a subtype of => T.
        // We need some subtype relationship between them so that e.g.
        // def toString   and   def toString()   don't clash when seen
        // as members of the same type. And it seems most logical to take
        // ()T <:< => T, since everything one can do with a => T one can
        // also do with a ()T by automatic () insertion.
        case tp1 @ MethodType(Nil) => isSubType(tp1.resultType, restpe2)
        case _ => isSubType(tp1.widenExpr, restpe2)
      }
      compareExpr
    case tp2 @ TypeBounds(lo2, hi2) =>
      def compareTypeBounds = tp1 match {
        case tp1 @ TypeBounds(lo1, hi1) =>
          (tp2.variance > 0 && tp1.variance >= 0 || (lo2 eq NothingType) || isSubType(lo2, lo1)) &&
          (tp2.variance < 0 && tp1.variance <= 0 || (hi2 eq AnyType) || isSubType(hi1, hi2))
        case tp1: ClassInfo =>
          tp2 contains tp1
        case _ =>
          false
      }
      compareTypeBounds
    case ClassInfo(pre2, cls2, _, _, _) =>
      def compareClassInfo = tp1 match {
        case ClassInfo(pre1, cls1, _, _, _) =>
          (cls1 eq cls2) && isSubType(pre1, pre2)
        case _ =>
          false
      }
      compareClassInfo
    case _ =>
      fourthTry(tp1, tp2)
  }

  private def fourthTry(tp1: Type, tp2: Type): Boolean = tp1 match {
    case tp1: TypeRef =>
      tp1.info match {
        case TypeBounds(_, hi1) =>
          def compareGADT = {
            val gbounds1 = ctx.gadt.bounds(tp1.symbol)
            (gbounds1 != null) &&
              (isSubTypeWhenFrozen(gbounds1.hi, tp2) ||
               narrowGADTBounds(tp1, tp2, isUpper = true)) &&
              GADTusage(tp1.symbol)
          }
          isSubType(hi1, tp2) || compareGADT
        case _ =>
          def isNullable(tp: Type): Boolean = tp.widenDealias match {
            case tp: TypeRef => tp.symbol.isNullableClass
            case tp: RefinedOrRecType => isNullable(tp.parent)
            case AndType(tp1, tp2) => isNullable(tp1) && isNullable(tp2)
            case OrType(tp1, tp2) => isNullable(tp1) || isNullable(tp2)
            case _ => false
          }
          (tp1.symbol eq NothingClass) && tp2.isValueTypeOrLambda ||
          (tp1.symbol eq NullClass) && isNullable(tp2)
      }
    case tp1: SingletonType =>
      /** if `tp2 == p.type` and `p: q.type` then try `tp1 <:< q.type` as a last effort.*/
      def comparePaths = tp2 match {
        case tp2: TermRef =>
          tp2.info.widenExpr.dealias match {
            case tp2i: SingletonType =>
              isSubType(tp1, tp2i)
                // see z1720.scala for a case where this can arise even in typer.
                // Also, i1753.scala, to show why the dealias above is necessary.
            case _ => false
          }
        case _ =>
          false
      }
      isNewSubType(tp1.underlying.widenExpr, tp2) || comparePaths
    case tp1: RefinedType =>
      isNewSubType(tp1.parent, tp2)
    case tp1: RecType =>
      isNewSubType(tp1.parent, tp2)
    case tp1 @ HKApply(tycon1, args1) =>
      compareHkApply1(tp1, tycon1, args1, tp2)
    case EtaExpansion(tycon1) =>
      isSubType(tycon1, tp2)
    case AndType(tp11, tp12) =>
      // Rewrite (T111 | T112) & T12 <: T2 to (T111 & T12) <: T2 and (T112 | T12) <: T2
      // and analogously for T11 & (T121 | T122) & T12 <: T2
      // `&' types to the left of <: are problematic, because
      // we have to choose one constraint set or another, which might cut off
      // solutions. The rewriting delays the point where we have to choose.
      tp11 match {
        case OrType(tp111, tp112) =>
          return isSubType(AndType(tp111, tp12), tp2) && isSubType(AndType(tp112, tp12), tp2)
        case _ =>
      }
      tp12 match {
        case OrType(tp121, tp122) =>
          return isSubType(AndType(tp11, tp121), tp2) && isSubType(AndType(tp11, tp122), tp2)
        case _ =>
      }
      either(isSubType(tp11, tp2), isSubType(tp12, tp2))
    case JavaArrayType(elem1) =>
      def compareJavaArray = tp2 match {
        case JavaArrayType(elem2) => isSubType(elem1, elem2)
        case _ => tp2 isRef ObjectClass
      }
      compareJavaArray
    case tp1: ExprType if ctx.phase.id > ctx.gettersPhase.id =>
      // getters might have converted T to => T, need to compensate.
      isSubType(tp1.widenExpr, tp2)
    case _ =>
      false
  }

  /** Subtype test for the hk application `tp2 = tycon2[args2]`.
   */
  def compareHkApply2(tp1: Type, tp2: HKApply, tycon2: Type, args2: List[Type]): Boolean = {
    val tparams = tycon2.typeParams
    if (tparams.isEmpty) return false // can happen for ill-typed programs, e.g. neg/tcpoly_overloaded.scala

    /** True if `tp1` and `tp2` have compatible type constructors and their
     *  corresponding arguments are subtypes relative to their variance (see `isSubArgs`).
     */
    def isMatchingApply(tp1: Type): Boolean = tp1 match {
      case HKApply(tycon1, args1) =>
        tycon1.dealias match {
          case tycon1: TypeParamRef =>
            (tycon1 == tycon2 ||
             canConstrain(tycon1) && tryInstantiate(tycon1, tycon2)) &&
            isSubArgs(args1, args2, tparams)
          case tycon1: TypeRef =>
            tycon2.dealias match {
              case tycon2: TypeRef if tycon1.symbol == tycon2.symbol =>
                isSubType(tycon1.prefix, tycon2.prefix) &&
                isSubArgs(args1, args2, tparams)
              case _ =>
                false
            }
          case tycon1: TypeVar =>
            isMatchingApply(tycon1.underlying)
          case tycon1: AnnotatedType =>
            isMatchingApply(tycon1.underlying)
          case _ =>
            false
        }
      case _ =>
        false
    }

    /** `param2` can be instantiated to a type application prefix of the LHS
     *  or to a type application prefix of one of the LHS base class instances
     *  and the resulting type application is a supertype of `tp1`,
     *  or fallback to fourthTry.
     */
    def canInstantiate(tycon2: TypeParamRef): Boolean = {

      /** Let
       *
       *    `tparams_1, ..., tparams_k-1`    be the type parameters of the rhs
       *    `tparams1_1, ..., tparams1_n-1`  be the type parameters of the constructor of the lhs
       *    `args1_1, ..., args1_n-1`        be the type arguments of the lhs
       *    `d  =  n - k`
       *
       *  Returns `true` iff `d >= 0` and `tycon2` can be instantiated to
       *
       *      [tparams1_d, ... tparams1_n-1] -> tycon1a[args_1, ..., args_d-1, tparams_d, ... tparams_n-1]
       *
       *  such that the resulting type application is a supertype of `tp1`.
       */
      def tyconOK(tycon1a: Type, args1: List[Type]) = {
        var tycon1b = tycon1a
        val tparams1a = tycon1a.typeParams
        val lengthDiff = tparams1a.length - tparams.length
        lengthDiff >= 0 && {
          val tparams1 = tparams1a.drop(lengthDiff)
          variancesConform(tparams1, tparams) && {
            if (lengthDiff > 0)
              tycon1b = HKTypeLambda(tparams1.map(_.paramName))(
                tl => tparams1.map(tparam => tl.integrate(tparams, tparam.paramInfo).bounds),
                tl => tycon1a.appliedTo(args1.take(lengthDiff) ++
                        tparams1.indices.toList.map(TypeParamRef(tl, _))))
            (ctx.mode.is(Mode.TypevarsMissContext) ||
              tryInstantiate(tycon2, tycon1b.ensureHK)) &&
              isSubType(tp1, tycon1b.appliedTo(args2))
          }
        }
      }

      tp1.widen match {
        case tp1w @ HKApply(tycon1, args1) =>
          tyconOK(tycon1, args1)
        case tp1w =>
          tp1w.typeSymbol.isClass && {
            val classBounds = tycon2.classSymbols
            def liftToBase(bcs: List[ClassSymbol]): Boolean = bcs match {
              case bc :: bcs1 =>
                classBounds.exists(bc.derivesFrom) &&
                tyconOK(tp1w.baseTypeRef(bc), tp1w.baseArgInfos(bc)) ||
                liftToBase(bcs1)
              case _ =>
                false
            }
            liftToBase(tp1w.baseClasses)
          } ||
          fourthTry(tp1, tp2)
      }
    }

    /** Fall back to comparing either with `fourthTry` or against the lower
     *  approximation of the rhs.
     *  @param   tyconLo   The type constructor's lower approximation.
     */
    def fallback(tyconLo: Type) =
      either(fourthTry(tp1, tp2), isSubType(tp1, tyconLo.applyIfParameterized(args2)))

    /** Let `tycon2bounds` be the bounds of the RHS type constructor `tycon2`.
     *  Let `app2 = tp2` where the type constructor of `tp2` is replaced by
     *  `tycon2bounds.lo`.
     *  If both bounds are the same, continue with `tp1 <:< app2`.
     *  otherwise continue with either
     *
     *    tp1 <:< tp2    using fourthTry (this might instantiate params in tp1)
     *    tp1 <:< app2   using isSubType (this might instantiate params in tp2)
     */
    def compareLower(tycon2bounds: TypeBounds, tyconIsTypeRef: Boolean): Boolean =
      if (tycon2bounds.lo eq tycon2bounds.hi)
        isSubType(tp1,
            if (tyconIsTypeRef) tp2.superType
            else tycon2bounds.lo.applyIfParameterized(args2))
      else
        fallback(tycon2bounds.lo)

    tycon2 match {
      case param2: TypeParamRef =>
        isMatchingApply(tp1) ||
        canConstrain(param2) && canInstantiate(param2) ||
        compareLower(bounds(param2), tyconIsTypeRef = false)
      case tycon2: TypeRef =>
        isMatchingApply(tp1) ||
        compareLower(tycon2.info.bounds, tyconIsTypeRef = true)
      case _: TypeVar | _: AnnotatedType =>
        isSubType(tp1, tp2.superType)
      case tycon2: HKApply =>
        fallback(tycon2.lowerBound)
      case _ =>
        false
    }
  }

  /** Subtype test for the hk application `tp1 = tycon1[args1]`.
   */
  def compareHkApply1(tp1: HKApply, tycon1: Type, args1: List[Type], tp2: Type): Boolean =
    tycon1 match {
      case param1: TypeParamRef =>
        def canInstantiate = tp2 match {
          case AppliedType(tycon2, args2) =>
            tryInstantiate(param1, tycon2.ensureHK) && isSubArgs(args1, args2, tycon2.typeParams)
          case _ =>
            false
        }
        canConstrain(param1) && canInstantiate ||
          isSubType(bounds(param1).hi.applyIfParameterized(args1), tp2)
      case tycon1: TypeProxy =>
        isSubType(tp1.superType, tp2)
      case _ =>
        false
    }

  /** Subtype test for corresponding arguments in `args1`, `args2` according to
   *  variances in type parameters `tparams`.
   */
  def isSubArgs(args1: List[Type], args2: List[Type], tparams: List[ParamInfo]): Boolean =
    if (args1.isEmpty) args2.isEmpty
    else args2.nonEmpty && {
      val v = tparams.head.paramVariance
      def isSub(tp1: Type, tp2: Type) = tp2 match {
        case tp2: TypeBounds =>
          tp2.contains(tp1)
        case _ =>
          (v > 0 || isSubType(tp2, tp1)) &&
          (v < 0 || isSubType(tp1, tp2))
      }
      isSub(args1.head, args2.head)
    } && isSubArgs(args1.tail, args2.tail, tparams)

  /** Test whether `tp1` has a base type of the form `B[T1, ..., Tn]` where
   *   - `B` derives from one of the class symbols of `tp2`,
   *   - the type parameters of `B` match one-by-one the variances of `tparams`,
   *   - `B` satisfies predicate `p`.
   */
  private def testLifted(tp1: Type, tp2: Type, tparams: List[TypeParamInfo], p: Type => Boolean): Boolean = {
    val classBounds = tp2.classSymbols
    def recur(bcs: List[ClassSymbol]): Boolean = bcs match {
      case bc :: bcs1 =>
        val baseRef = tp1.baseTypeRef(bc)
        (classBounds.exists(bc.derivesFrom) &&
         variancesConform(baseRef.typeParams, tparams) &&
         p(baseRef.appliedTo(tp1.baseArgInfos(bc)))
         ||
         recur(bcs1))
      case nil =>
        false
    }
    recur(tp1.baseClasses)
  }

  /** Replace any top-level recursive type `{ z => T }` in `tp` with
   *  `[z := anchor]T`.
   */
  private def fixRecs(anchor: SingletonType, tp: Type): Type = {
    def fix(tp: Type): Type = tp.stripTypeVar match {
      case tp: RecType => fix(tp.parent).substRecThis(tp, anchor)
      case tp @ RefinedType(parent, rname, rinfo) => tp.derivedRefinedType(fix(parent), rname, rinfo)
      case tp: TypeParamRef => fixOrElse(bounds(tp).hi, tp)
      case tp: TypeProxy => fixOrElse(tp.underlying, tp)
      case tp: AndOrType => tp.derivedAndOrType(fix(tp.tp1), fix(tp.tp2))
      case tp => tp
    }
    def fixOrElse(tp: Type, fallback: Type) = {
      val tp1 = fix(tp)
      if (tp1 ne tp) tp1 else fallback
    }
    fix(tp)
  }

  /** Returns true iff the result of evaluating either `op1` or `op2` is true,
   *  trying at the same time to keep the constraint as wide as possible.
   *  E.g, if
   *
   *    tp11 <:< tp12 = true   with post-constraint c1
   *    tp12 <:< tp22 = true   with post-constraint c2
   *
   *  and c1 subsumes c2, then c2 is kept as the post-constraint of the result,
   *  otherwise c1 is kept.
   *
   *  This method is used to approximate a solution in one of the following cases
   *
   *     T1 & T2 <:< T3
   *     T1 <:< T2 | T3
   *
   *  In the first case (the second one is analogous), we have a choice whether we
   *  want to establish the subtyping judgement using
   *
   *     T1 <:< T3   or    T2 <:< T3
   *
   *  as a precondition. Either precondition might constrain type variables.
   *  The purpose of this method is to pick the precondition that constrains less.
   *  The method is not complete, because sometimes there is no best solution. Example:
   *
   *     A? & B?  <:  T
   *
   *  Here, each precondition leads to a different constraint, and neither of
   *  the two post-constraints subsumes the other.
   */
  private def either(op1: => Boolean, op2: => Boolean): Boolean = {
    val preConstraint = constraint
    op1 && {
      val leftConstraint = constraint
      constraint = preConstraint
      if (!(op2 && subsumes(leftConstraint, constraint, preConstraint))) {
        if (constr != noPrinter && !subsumes(constraint, leftConstraint, preConstraint))
          constr.println(i"CUT - prefer $leftConstraint over $constraint")
        constraint = leftConstraint
      }
      true
    } || op2
  }

  /** Like tp1 <:< tp2, but returns false immediately if we know that
   *  the case was covered previously during subtyping.
   */
  private def isNewSubType(tp1: Type, tp2: Type): Boolean =
    if (isCovered(tp1) && isCovered(tp2)) {
      //println(s"useless subtype: $tp1 <:< $tp2")
      false
    } else isSubType(tp1, tp2)

  /** Does type `tp1` have a member with name `name` whose normalized type is a subtype of
   *  the normalized type of the refinement `tp2`?
   *  Normalization is as follows: If `tp2` contains a skolem to its refinement type,
   *  rebase both itself and the member info of `tp` on a freshly created skolem type.
   */
  protected def hasMatchingMember(name: Name, tp1: Type, tp2: RefinedType): Boolean = {
    val rinfo2 = tp2.refinedInfo
    val mbr = tp1.member(name)

    def qualifies(m: SingleDenotation) = isSubType(m.info, rinfo2)

    def memberMatches: Boolean = mbr match { // inlined hasAltWith for performance
      case mbr: SingleDenotation => qualifies(mbr)
      case _ => mbr hasAltWith qualifies
    }

    // special case for situations like:
    //    class C { type T }
    //    val foo: C
    //    foo.type <: C { type T {= , <: , >:} foo.T }
    def selfReferentialMatch = tp1.isInstanceOf[SingletonType] && {
      rinfo2 match {
        case rinfo2: TypeBounds =>
          val mbr1 = tp1.select(name)
          !defn.isBottomType(tp1.widen) &&
          (mbr1 =:= rinfo2.hi || (rinfo2.hi ne rinfo2.lo) && mbr1 =:= rinfo2.lo)
        case _ => false
      }
    }

    /*>|>*/ ctx.traceIndented(i"hasMatchingMember($tp1 . $name :? ${tp2.refinedInfo}) ${mbr.info.show} $rinfo2", subtyping) /*<|<*/ {
      memberMatches || selfReferentialMatch
    }
  }

  final def ensureStableSingleton(tp: Type): SingletonType = tp.stripTypeVar match {
    case tp: SingletonType if tp.isStable => tp
    case tp: ValueType => SkolemType(tp)
    case tp: TypeProxy => ensureStableSingleton(tp.underlying)
  }

  /** Skip refinements in `tp2` which match corresponding refinements in `tp1`.
   *  "Match" means:
   *   - they appear in the same order,
   *   - they refine the same names,
   *   - the refinement in `tp1` is an alias type, and
   *   - neither refinement refers back to the refined type via a refined this.
   *  @return  The parent type of `tp2` after skipping the matching refinements.
   */
  private def skipMatching(tp1: Type, tp2: RefinedType): Type = tp1 match {
    case tp1 @ RefinedType(parent1, name1, rinfo1: TypeAlias) if name1 == tp2.refinedName =>
      tp2.parent match {
        case parent2: RefinedType => skipMatching(parent1, parent2)
        case parent2 => parent2
      }
    case _ => tp2
  }

  /** Are refinements in `tp1` pairwise subtypes of the refinements of `tp2`
   *  up to parent type `limit`?
   *  @pre `tp1` has the necessary number of refinements, they are type aliases,
   *       and their names match the corresponding refinements in `tp2`.
   *       Further, no refinement refers back to the refined type via a refined this.
   *  The precondition is established by `skipMatching`.
   */
  private def isSubRefinements(tp1: RefinedType, tp2: RefinedType, limit: Type): Boolean = {
    def hasSubRefinement(tp1: RefinedType, refine2: Type): Boolean = {
      isSubType(tp1.refinedInfo, refine2) || {
        // last effort: try to adapt variances of higher-kinded types if this is sound.
        val adapted2 = refine2.adaptHkVariances(tp1.parent.member(tp1.refinedName).symbol.info)
        adapted2.ne(refine2) && hasSubRefinement(tp1, adapted2)
      }
    }
    hasSubRefinement(tp1, tp2.refinedInfo) && (
      (tp2.parent eq limit) ||
      isSubRefinements(
        tp1.parent.asInstanceOf[RefinedType], tp2.parent.asInstanceOf[RefinedType], limit))
  }

  /** A type has been covered previously in subtype checking if it
   *  is some combination of TypeRefs that point to classes, where the
   *  combiners are RefinedTypes, RecTypes, AndTypes or AnnotatedTypes.
   *  One exception: Refinements referring to basetype args are never considered
   *  to be already covered. This is necessary because such refined types might
   *  still need to be compared with a compareAliasRefined.
   */
  private def isCovered(tp: Type): Boolean = tp.dealias.stripTypeVar match {
    case tp: TypeRef => tp.symbol.isClass && tp.symbol != NothingClass && tp.symbol != NullClass
    case tp: ProtoType => false
    case tp: RefinedOrRecType => isCovered(tp.parent)
    case tp: AnnotatedType => isCovered(tp.underlying)
    case AndType(tp1, tp2) => isCovered(tp1) && isCovered(tp2)
    case _ => false
  }

  /** Defer constraining type variables when compared against prototypes */
  def isMatchedByProto(proto: ProtoType, tp: Type) = tp.stripTypeVar match {
    case tp: TypeParamRef if constraint contains tp => true
    case _ => proto.isMatchedBy(tp)
  }

  /** Can type `tp` be constrained from above by adding a constraint to
   *  a typevar that it refers to? In that case we have to be careful not
   *  to approximate with the lower bound of a type in `thirdTry`. Instead,
   *  we should first unroll `tp1` until we hit the type variable and bind the
   *  type variable with (the corresponding type in) `tp2` instead.
   */
  private def isCappable(tp: Type): Boolean = tp match {
    case tp: TypeParamRef => constraint contains tp
    case tp: TypeProxy => isCappable(tp.underlying)
    case tp: AndOrType => isCappable(tp.tp1) || isCappable(tp.tp2)
    case _ => false
  }

  /** Narrow gadt.bounds for the type parameter referenced by `tr` to include
   *  `bound` as an upper or lower bound (which depends on `isUpper`).
   *  Test that the resulting bounds are still satisfiable.
   */
  private def narrowGADTBounds(tr: NamedType, bound: Type, isUpper: Boolean): Boolean =
    ctx.mode.is(Mode.GADTflexible) && !frozenConstraint && {
      val tparam = tr.symbol
      typr.println(i"narrow gadt bound of $tparam: ${tparam.info} from ${if (isUpper) "above" else "below"} to $bound ${bound.isRef(tparam)}")
      if (bound.isRef(tparam)) false
      else bound match {
        case bound: TypeRef
        if bound.symbol.is(BindDefinedType) &&
           ctx.gadt.bounds.contains(bound.symbol) &&
           !tr.symbol.is(BindDefinedType) =>
          // Avoid having pattern-bound types in gadt bounds,
          // as these might be eliminated once the pattern is typechecked.
          // Pattern-bound type symbols should be narrowed first, only if that fails
          // should symbols in the environment be constrained.
          narrowGADTBounds(bound, tr, !isUpper)
        case _ =>
          val oldBounds = ctx.gadt.bounds(tparam)
          val newBounds =
            if (isUpper) TypeBounds(oldBounds.lo, oldBounds.hi & bound)
            else TypeBounds(oldBounds.lo | bound, oldBounds.hi)
          isSubType(newBounds.lo, newBounds.hi) &&
            { ctx.gadt.setBounds(tparam, newBounds); true }
      }
    }

  // Tests around `matches`

  /** A function implementing `tp1` matches `tp2`. */
  final def matchesType(tp1: Type, tp2: Type, relaxed: Boolean): Boolean = tp1.widen match {
    case tp1: MethodType =>
      tp2.widen match {
        case tp2: MethodType =>
          // implicitness is ignored when matching
          matchingParams(tp1, tp2) &&
          matchesType(tp1.resultType, tp2.resultType.subst(tp2, tp1), relaxed)
        case tp2 =>
          relaxed && tp1.paramNames.isEmpty &&
            matchesType(tp1.resultType, tp2, relaxed)
      }
    case tp1: PolyType =>
      tp2.widen match {
        case tp2: PolyType =>
          sameLength(tp1.paramNames, tp2.paramNames) &&
          matchesType(tp1.resultType, tp2.resultType.subst(tp2, tp1), relaxed)
        case _ =>
          false
      }
    case _ =>
      tp2.widen match {
        case _: PolyType =>
          false
        case tp2: MethodType =>
          relaxed && tp2.paramNames.isEmpty &&
            matchesType(tp1, tp2.resultType, relaxed)
        case tp2 =>
          relaxed || isSameType(tp1, tp2)
      }
  }

  /** Do lambda types `lam1` and `lam2` have parameters that have the same types
   *  and the same implicit status? (after renaming one set to the other)
   */
  def matchingParams(lam1: MethodOrPoly, lam2: MethodOrPoly): Boolean = {
    /** Are `syms1` and `syms2` parameter lists with pairwise equivalent types? */
    def loop(formals1: List[Type], formals2: List[Type]): Boolean = formals1 match {
      case formal1 :: rest1 =>
        formals2 match {
          case formal2 :: rest2 =>
            val formal2a = if (lam2.isParamDependent) formal2.subst(lam2, lam1) else formal2
            (isSameTypeWhenFrozen(formal1, formal2a)
            || lam1.isJava && (formal2 isRef ObjectClass) && (formal1 isRef AnyClass)
            || lam2.isJava && (formal1 isRef ObjectClass) && (formal2 isRef AnyClass)) &&
            loop(rest1, rest2)
          case nil =>
            false
        }
      case nil =>
        formals2.isEmpty
    }
    loop(lam1.paramInfos, lam2.paramInfos)
  }

  // Type equality =:=

  /** Two types are the same if are mutual subtypes of each other */
  def isSameType(tp1: Type, tp2: Type): Boolean =
    if (tp1 eq NoType) false
    else if (tp1 eq tp2) true
    else isSubType(tp1, tp2) && isSubType(tp2, tp1)

  /** Same as `isSameType` but also can be applied to overloaded TermRefs, where
   *  two overloaded refs are the same if they have pairwise equal alternatives
   */
  def isSameRef(tp1: Type, tp2: Type): Boolean = ctx.traceIndented(s"isSameRef($tp1, $tp2") {
    def isSubRef(tp1: Type, tp2: Type): Boolean = tp1 match {
      case tp1: TermRef if tp1.isOverloaded =>
        tp1.alternatives forall (isSubRef(_, tp2))
      case _ =>
        tp2 match {
          case tp2: TermRef if tp2.isOverloaded =>
            tp2.alternatives exists (isSubRef(tp1, _))
          case _ =>
            isSubType(tp1, tp2)
        }
    }
    isSubRef(tp1, tp2) && isSubRef(tp2, tp1)
  }

  /** The greatest lower bound of two types */
  def glb(tp1: Type, tp2: Type): Type = /*>|>*/ ctx.traceIndented(s"glb(${tp1.show}, ${tp2.show})", subtyping, show = true) /*<|<*/ {
    if (tp1 eq tp2) tp1
    else if (!tp1.exists) tp2
    else if (!tp2.exists) tp1
    else if ((tp1 isRef AnyClass) || (tp2 isRef NothingClass)) tp2
    else if ((tp2 isRef AnyClass) || (tp1 isRef NothingClass)) tp1
    else tp2 match {  // normalize to disjunctive normal form if possible.
      case OrType(tp21, tp22) =>
        tp1 & tp21 | tp1 & tp22
      case _ =>
        tp1 match {
          case OrType(tp11, tp12) =>
            tp11 & tp2 | tp12 & tp2
          case _ =>
            val t1 = mergeIfSub(tp1, tp2)
            if (t1.exists) t1
            else {
              val t2 = mergeIfSub(tp2, tp1)
              if (t2.exists) t2
              else tp1 match {
                case tp1: ConstantType =>
                  tp2 match {
                    case tp2: ConstantType =>
                      // Make use of the fact that the intersection of two constant types
                      // types which are not subtypes of each other is known to be empty.
                      // Note: The same does not apply to singleton types in general.
                      // E.g. we could have a pattern match against `x.type & y.type`
                      // which might succeed if `x` and `y` happen to be the same ref
                      // at run time. It would not work to replace that with `Nothing`.
                      // However, maybe we can still apply the replacement to
                      // types which are not explicitly written.
                      defn.NothingType
                    case _ => andType(tp1, tp2)
                  }
                case _ => andType(tp1, tp2)
              }
          }
        }
    }
  }

  /** The greatest lower bound of a list types */
  final def glb(tps: List[Type]): Type =
    ((defn.AnyType: Type) /: tps)(glb)

  /** The least upper bound of two types
   *  @param canConstrain  If true, new constraints might be added to simplify the lub.
   *  @note  We do not admit singleton types in or-types as lubs.
   */
  def lub(tp1: Type, tp2: Type, canConstrain: Boolean = false): Type = /*>|>*/ ctx.traceIndented(s"lub(${tp1.show}, ${tp2.show}, canConstrain=$canConstrain)", subtyping, show = true) /*<|<*/ {
    if (tp1 eq tp2) tp1
    else if (!tp1.exists) tp1
    else if (!tp2.exists) tp2
    else if ((tp1 isRef AnyClass) || (tp2 isRef NothingClass)) tp1
    else if ((tp2 isRef AnyClass) || (tp1 isRef NothingClass)) tp2
    else {
      val t1 = mergeIfSuper(tp1, tp2, canConstrain)
      if (t1.exists) t1
      else {
        val t2 = mergeIfSuper(tp2, tp1, canConstrain)
        if (t2.exists) t2
        else {
          val tp1w = tp1.widen
          val tp2w = tp2.widen
          if ((tp1 ne tp1w) || (tp2 ne tp2w)) lub(tp1w, tp2w)
          else orType(tp1w, tp2w) // no need to check subtypes again
        }
      }
    }
  }

  /** The least upper bound of a list of types */
  final def lub(tps: List[Type]): Type =
    ((defn.NothingType: Type) /: tps)(lub(_,_, canConstrain = false))

  /** Merge `t1` into `tp2` if t1 is a subtype of some &-summand of tp2.
   */
  private def mergeIfSub(tp1: Type, tp2: Type): Type =
    if (isSubTypeWhenFrozen(tp1, tp2))
      if (isSubTypeWhenFrozen(tp2, tp1)) tp2 else tp1 // keep existing type if possible
    else tp2 match {
      case tp2 @ AndType(tp21, tp22) =>
        val lower1 = mergeIfSub(tp1, tp21)
        if (lower1 eq tp21) tp2
        else if (lower1.exists) lower1 & tp22
        else {
          val lower2 = mergeIfSub(tp1, tp22)
          if (lower2 eq tp22) tp2
          else if (lower2.exists) tp21 & lower2
          else NoType
        }
      case _ =>
        NoType
    }

  /** Merge `tp1` into `tp2` if tp1 is a supertype of some |-summand of tp2.
   *  @param canConstrain  If true, new constraints might be added to make the merge possible.
   */
  private def mergeIfSuper(tp1: Type, tp2: Type, canConstrain: Boolean): Type =
    if (isSubType(tp2, tp1, whenFrozen = !canConstrain))
      if (isSubType(tp1, tp2, whenFrozen = !canConstrain)) tp2 else tp1 // keep existing type if possible
    else tp2 match {
      case tp2 @ OrType(tp21, tp22) =>
        val higher1 = mergeIfSuper(tp1, tp21, canConstrain)
        if (higher1 eq tp21) tp2
        else if (higher1.exists) higher1 | tp22
        else {
          val higher2 = mergeIfSuper(tp1, tp22, canConstrain)
          if (higher2 eq tp22) tp2
          else if (higher2.exists) tp21 | higher2
          else NoType
        }
      case _ =>
        NoType
    }

  /** Form a normalized conjunction of two types.
   *  Note: For certain types, `&` is distributed inside the type. This holds for
   *  all types which are not value types (e.g. TypeBounds, ClassInfo,
   *  ExprType, LambdaType). Also, when forming an `&`,
   *  instantiated TypeVars are dereferenced and annotations are stripped.
   *  Finally, refined types with the same refined name are
   *  opportunistically merged.
   *
   *  Sometimes, the conjunction of two types cannot be formed because
   *  the types are in conflict of each other. In particular:
   *
   *    1. Two different class types are conflicting.
   *    2. A class type conflicts with a type bounds that does not include the class reference.
   *    3. Two method or poly types with different (type) parameters but the same
   *       signature are conflicting
   *
   *  In these cases, a MergeError is thrown.
   */
  final def andType(tp1: Type, tp2: Type, erased: Boolean = ctx.erasedTypes) = ctx.traceIndented(s"glb(${tp1.show}, ${tp2.show})", subtyping, show = true) {
    val t1 = distributeAnd(tp1, tp2)
    if (t1.exists) t1
    else {
      val t2 = distributeAnd(tp2, tp1)
      if (t2.exists) t2
      else if (erased) erasedGlb(tp1, tp2, isJava = false)
      else liftIfHK(tp1, tp2, AndType(_, _), _ & _)
    }
  }

  /** Form a normalized conjunction of two types.
   *  Note: For certain types, `|` is distributed inside the type. This holds for
   *  all types which are not value types (e.g. TypeBounds, ClassInfo,
   *  ExprType, LambdaType). Also, when forming an `|`,
   *  instantiated TypeVars are dereferenced and annotations are stripped.
   *
   *  Sometimes, the disjunction of two types cannot be formed because
   *  the types are in conflict of each other. (@see `andType` for an enumeration
   *  of these cases). In cases of conflict a `MergeError` is raised.
   *
   *  @param erased   Apply erasure semantics. If erased is true, instead of creating
   *                  an OrType, the lub will be computed using TypeCreator#erasedLub.
   */
  final def orType(tp1: Type, tp2: Type, erased: Boolean = ctx.erasedTypes) = {
    val t1 = distributeOr(tp1, tp2)
    if (t1.exists) t1
    else {
      val t2 = distributeOr(tp2, tp1)
      if (t2.exists) t2
      else if (erased) erasedLub(tp1, tp2)
      else liftIfHK(tp1, tp2, OrType(_, _), _ | _)
    }
  }

  /** `op(tp1, tp2)` unless `tp1` and `tp2` are type-constructors.
   *  In the latter case, combine `tp1` and `tp2` under a type lambda like this:
   *
   *    [X1, ..., Xn] -> op(tp1[X1, ..., Xn], tp2[X1, ..., Xn])
   */
  private def liftIfHK(tp1: Type, tp2: Type, op: (Type, Type) => Type, original: (Type, Type) => Type) = {
    val tparams1 = tp1.typeParams
    val tparams2 = tp2.typeParams
    if (tparams1.isEmpty)
      if (tparams2.isEmpty) op(tp1, tp2)
      else original(tp1, tp2.appliedTo(tp2.typeParams.map(_.paramInfoAsSeenFrom(tp2))))
    else if (tparams2.isEmpty)
      original(tp1.appliedTo(tp1.typeParams.map(_.paramInfoAsSeenFrom(tp1))), tp2)
    else
      HKTypeLambda(
        paramNames = (HKTypeLambda.syntheticParamNames(tparams1.length), tparams1, tparams2)
          .zipped.map((pname, tparam1, tparam2) =>
            pname.withVariance((tparam1.paramVariance + tparam2.paramVariance) / 2)))(
        paramInfosExp = tl => (tparams1, tparams2).zipped.map((tparam1, tparam2) =>
          tl.integrate(tparams1, tparam1.paramInfoAsSeenFrom(tp1)).bounds &
          tl.integrate(tparams2, tparam2.paramInfoAsSeenFrom(tp2)).bounds),
        resultTypeExp = tl =>
          original(tl.integrate(tparams1, tp1).appliedTo(tl.paramRefs),
             tl.integrate(tparams2, tp2).appliedTo(tl.paramRefs)))
  }

  /** Try to distribute `&` inside type, detect and handle conflicts
   *  @pre !(tp1 <: tp2) && !(tp2 <:< tp1) -- these cases were handled before
   */
  private def distributeAnd(tp1: Type, tp2: Type): Type = tp1 match {
    // opportunistically merge same-named refinements
    // this does not change anything semantically (i.e. merging or not merging
    // gives =:= types), but it keeps the type smaller.
    case tp1: RefinedType =>
      tp2 match {
        case tp2: RefinedType if tp1.refinedName == tp2.refinedName =>
          // Given two refinements `T1 { X = S1 }` and `T2 { X = S2 }` rewrite to
          // `T1 & T2 { X B }` where `B` is the conjunction of the bounds of `X` in `T1` and `T2`.
          //
          // However, if `homogenizeArgs` is set, and both aliases `X = Si` are
          // nonvariant, and `S1 =:= S2` (possibly by instantiating type parameters),
          // rewrite instead to `T1 & T2 { X = S1 }`. This rule is contentious because
          // it cuts the constraint set. On the other hand, without it we would replace
          // the two aliases by `T { X >: S1 | S2 <: S1 & S2 }`, which looks weird
          // and is probably not what's intended.
          val rinfo1 = tp1.refinedInfo
          val rinfo2 = tp2.refinedInfo
          val parent = tp1.parent & tp2.parent

          def isNonvariantAlias(tp: Type) = tp match {
            case tp: TypeAlias => tp.variance == 0
            case _ => false
          }
          if (homogenizeArgs &&
              isNonvariantAlias(rinfo1) && isNonvariantAlias(rinfo2))
            isSameType(rinfo1, rinfo2) // establish new constraint

          tp1.derivedRefinedType(parent, tp1.refinedName, rinfo1 & rinfo2)
        case _ =>
          NoType
      }
    case tp1: RecType =>
      tp1.rebind(distributeAnd(tp1.parent, tp2))
    case ExprType(rt1) =>
      tp2 match {
        case ExprType(rt2) =>
          ExprType(rt1 & rt2)
        case _ =>
          rt1 & tp2
      }
    case tp1: TypeVar if tp1.isInstantiated =>
      tp1.underlying & tp2
    case tp1: AnnotatedType =>
      tp1.underlying & tp2
    case _ =>
      NoType
  }

  /** Try to distribute `|` inside type, detect and handle conflicts
   *  Note that, unlike for `&`, a disjunction cannot be pushed into
   *  a refined or applied type. Example:
   *
   *     List[T] | List[U] is not the same as List[T | U].
   *
   *  The rhs is a proper supertype of the lhs.
   */
  private def distributeOr(tp1: Type, tp2: Type): Type = tp1 match {
    case ExprType(rt1) =>
      ExprType(rt1 | tp2.widenExpr)
    case tp1: TypeVar if tp1.isInstantiated =>
      tp1.underlying | tp2
    case tp1: AnnotatedType =>
      tp1.underlying | tp2
    case _ =>
      NoType
  }

  /** Show type, handling type types better than the default */
  private def showType(tp: Type)(implicit ctx: Context) = tp match {
    case ClassInfo(_, cls, _, _, _) => cls.showLocated
    case bounds: TypeBounds => "type bounds" + bounds.show
    case _ => tp.show
  }

  /** A comparison function to pick a winner in case of a merge conflict */
  private def isAsGood(tp1: Type, tp2: Type): Boolean = tp1 match {
    case tp1: ClassInfo =>
      tp2 match {
        case tp2: ClassInfo =>
          isSubTypeWhenFrozen(tp1.prefix, tp2.prefix) || (tp1.cls.owner derivesFrom tp2.cls.owner)
        case _ =>
          false
      }
    case tp1: PolyType =>
      tp2 match {
        case tp2: PolyType =>
          tp1.typeParams.length == tp2.typeParams.length &&
          isAsGood(tp1.resultType, tp2.resultType.subst(tp2, tp1))
        case _ =>
          false
      }
    case tp1: MethodType =>
      tp2 match {
        case tp2: MethodType =>
          def asGoodParams(formals1: List[Type], formals2: List[Type]) =
            (formals2 corresponds formals1)(isSubTypeWhenFrozen)
          asGoodParams(tp1.paramInfos, tp2.paramInfos) &&
          (!asGoodParams(tp2.paramInfos, tp1.paramInfos) ||
           isAsGood(tp1.resultType, tp2.resultType))
        case _ =>
          false
      }
    case _ =>
      false
  }

  /** A new type comparer of the same type as this one, using the given context. */
  def copyIn(ctx: Context) = new TypeComparer(ctx)

  // ----------- Diagnostics --------------------------------------------------

  /** A hook for showing subtype traces. Overridden in ExplainingTypeComparer */
  def traceIndented[T](str: String)(op: => T): T = op

  private def traceInfo(tp1: Type, tp2: Type) =
    s"${tp1.show} <:< ${tp2.show}" + {
      if (ctx.settings.verbose.value || Config.verboseExplainSubtype) {
        s" ${tp1.getClass}, ${tp2.getClass}" +
        (if (frozenConstraint) " frozen" else "") +
        (if (ctx.mode is Mode.TypevarsMissContext) " tvars-miss-ctx" else "")
      }
      else ""
    }

  /** Show subtype goal that led to an assertion failure */
  def showGoal(tp1: Type, tp2: Type)(implicit ctx: Context) = {
    println(ex"assertion failure for $tp1 <:< $tp2, frozen = $frozenConstraint")
    def explainPoly(tp: Type) = tp match {
      case tp: TypeParamRef => ctx.echo(s"TypeParamRef ${tp.show} found in ${tp.binder.show}")
      case tp: TypeRef if tp.symbol.exists => ctx.echo(s"typeref ${tp.show} found in ${tp.symbol.owner.show}")
      case tp: TypeVar => ctx.echo(s"typevar ${tp.show}, origin = ${tp.origin}")
      case _ => ctx.echo(s"${tp.show} is a ${tp.getClass}")
    }
    explainPoly(tp1)
    explainPoly(tp2)
  }

  /** Record statistics about the total number of subtype checks
   *  and the number of "successful" subtype checks, i.e. checks
   *  that form part of a subtype derivation tree that's ultimately successful.
   */
  def recordStatistics(result: Boolean, prevSuccessCount: Int) = {
    // Stats.record(s"isSubType ${tp1.show} <:< ${tp2.show}")
    totalCount += 1
    if (result) successCount += 1 else successCount = prevSuccessCount
    if (recCount == 0) {
      Stats.record("successful subType", successCount)
      Stats.record("total subType", totalCount)
      successCount = 0
      totalCount = 0
    }
  }
}

object TypeComparer {

  /** Show trace of comparison operations when performing `op` as result string */
  def explained[T](op: Context => T)(implicit ctx: Context): String = {
    val nestedCtx = ctx.fresh.setTypeComparerFn(new ExplainingTypeComparer(_))
    op(nestedCtx)
    nestedCtx.typeComparer.toString
  }
}

/** A type comparer that can record traces of subtype operations */
class ExplainingTypeComparer(initctx: Context) extends TypeComparer(initctx) {
  private var indent = 0
  private val b = new StringBuilder

  private var skipped = false

  override def traceIndented[T](str: String)(op: => T): T =
    if (skipped) op
    else {
      indent += 2
      b append "\n" append (" " * indent) append "==> " append str
      val res = op
      b append "\n" append (" " * indent) append "<== " append str append " = " append show(res)
      indent -= 2
      res
    }

  private def show(res: Any) = res match {
    case res: printing.Showable if !ctx.settings.Yexplainlowlevel.value => res.show
    case _ => String.valueOf(res)
  }

  override def isSubType(tp1: Type, tp2: Type) =
    traceIndented(s"${show(tp1)} <:< ${show(tp2)}${if (Config.verboseExplainSubtype) s" ${tp1.getClass} ${tp2.getClass}" else ""}${if (frozenConstraint) " frozen" else ""}") {
      super.isSubType(tp1, tp2)
    }

  override def hasMatchingMember(name: Name, tp1: Type, tp2: RefinedType): Boolean =
    traceIndented(s"hasMatchingMember(${show(tp1)} . $name, ${show(tp2.refinedInfo)}), member = ${show(tp1.member(name).info)}") {
      super.hasMatchingMember(name, tp1, tp2)
    }

  override def lub(tp1: Type, tp2: Type, canConstrain: Boolean = false) =
    traceIndented(s"lub(${show(tp1)}, ${show(tp2)}, canConstrain=$canConstrain)") {
      super.lub(tp1, tp2, canConstrain)
    }

  override def glb(tp1: Type, tp2: Type) =
    traceIndented(s"glb(${show(tp1)}, ${show(tp2)})") {
      super.glb(tp1, tp2)
    }

  override def addConstraint(param: TypeParamRef, bound: Type, fromBelow: Boolean): Boolean =
    traceIndented(i"add constraint $param ${if (fromBelow) ">:" else "<:"} $bound $frozenConstraint, constraint = ${ctx.typerState.constraint}") {
      super.addConstraint(param, bound, fromBelow)
    }

  override def copyIn(ctx: Context) = new ExplainingTypeComparer(ctx)

  override def compareHkApply2(tp1: Type, tp2: HKApply, tycon2: Type, args2: List[Type]): Boolean = {
    def addendum = ""
    traceIndented(i"compareHkApply $tp1, $tp2$addendum") {
      super.compareHkApply2(tp1, tp2, tycon2, args2)
    }
  }

  override def toString = "Subtype trace:" + { try b.toString finally b.clear() }
}