aboutsummaryrefslogtreecommitdiff
path: root/compiler/src/dotty/tools/dotc/typer/Inferencing.scala
blob: 632dbff76c89eaa70e4d2cbec990ffc6780d75b8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
package dotty.tools
package dotc
package typer

import core._
import ast._
import Contexts._, Types._, Flags._, Denotations._, Names._, StdNames._, NameOps._, Symbols._
import Trees._
import Constants._
import Scopes._
import ProtoTypes._
import annotation.unchecked
import util.Positions._
import util.{Stats, SimpleMap}
import util.common._
import Decorators._
import Uniques._
import config.Printers.{typr, constr}
import annotation.tailrec
import reporting._
import collection.mutable

object Inferencing {

  import tpd._

  /** Is type fully defined, meaning the type does not contain wildcard types
   *  or uninstantiated type variables. As a side effect, this will minimize
   *  any uninstantiated type variables, according to the given force degree,
   *  but only if the overall result of `isFullyDefined` is `true`.
   *  Variables that are successfully minimized do not count as uninstantiated.
   */
  def isFullyDefined(tp: Type, force: ForceDegree.Value)(implicit ctx: Context): Boolean = {
    val nestedCtx = ctx.fresh.setNewTyperState
    val result = new IsFullyDefinedAccumulator(force)(nestedCtx).process(tp)
    if (result) nestedCtx.typerState.commit()
    result
  }

  /** The fully defined type, where all type variables are forced.
   *  Throws an error if type contains wildcards.
   */
  def fullyDefinedType(tp: Type, what: String, pos: Position)(implicit ctx: Context) =
    if (isFullyDefined(tp, ForceDegree.all)) tp
    else throw new Error(i"internal error: type of $what $tp is not fully defined, pos = $pos") // !!! DEBUG


  /** Instantiate selected type variables `tvars` in type `tp` */
  def instantiateSelected(tp: Type, tvars: List[Type])(implicit ctx: Context): Unit =
    new IsFullyDefinedAccumulator(new ForceDegree.Value(tvars.contains, minimizeAll = true)).process(tp)

  /** The accumulator which forces type variables using the policy encoded in `force`
   *  and returns whether the type is fully defined. The direction in which
   *  a type variable is instantiated is determined as follows:
   *   1. T is minimized if the constraint over T is only from below (i.e.
   *      constrained lower bound != given lower bound and
   *      constrained upper bound == given upper bound).
   *   2. T is maximized if the constraint over T is only from above (i.e.
   *      constrained upper bound != given upper bound and
   *      constrained lower bound == given lower bound).
   *  If (1) and (2) do not apply:
   *   3. T is maximized if it appears only contravariantly in the given type.
   *   4. T is minimized in all other cases.
   *
   *  The instantiation is done in two phases:
   *  1st Phase: Try to instantiate minimizable type variables to
   *  their lower bound. Record whether successful.
   *  2nd Phase: If first phase was successful, instantiate all remaining type variables
   *  to their upper bound.
   */
  private class IsFullyDefinedAccumulator(force: ForceDegree.Value)(implicit ctx: Context) extends TypeAccumulator[Boolean] {
    private def instantiate(tvar: TypeVar, fromBelow: Boolean): Type = {
      val inst = tvar.instantiate(fromBelow)
      typr.println(i"forced instantiation of ${tvar.origin} = $inst")
      inst
    }
    private var toMaximize: Boolean = false
    def apply(x: Boolean, tp: Type): Boolean = tp.dealias match {
      case _: WildcardType | _: ProtoType =>
        false
      case tvar: TypeVar
      if !tvar.isInstantiated && ctx.typerState.constraint.contains(tvar) =>
        force.appliesTo(tvar) && {
          val direction = instDirection(tvar.origin)
          if (direction != 0) {
            //if (direction > 0) println(s"inst $tvar dir = up")
            instantiate(tvar, direction < 0)
          }
          else {
            val minimize =
              force.minimizeAll ||
              variance >= 0 && !(
                force == ForceDegree.noBottom &&
                defn.isBottomType(ctx.typeComparer.approximation(tvar.origin, fromBelow = true)))
            if (minimize) instantiate(tvar, fromBelow = true)
            else toMaximize = true
          }
          foldOver(x, tvar)
        }
      case tp =>
        foldOver(x, tp)
    }

    private class UpperInstantiator(implicit ctx: Context) extends TypeAccumulator[Unit] {
      def apply(x: Unit, tp: Type): Unit = {
        tp match {
          case tvar: TypeVar if !tvar.isInstantiated =>
            instantiate(tvar, fromBelow = false)
          case _ =>
        }
        foldOver(x, tp)
      }
    }

    def process(tp: Type): Boolean = {
      val res = apply(true, tp)
      if (res && toMaximize) new UpperInstantiator().apply((), tp)
      res
    }
  }

  /** If `tree` has a type lambda type, infer its type parameters by comparing with expected type `pt` */
  def inferTypeParams(tree: Tree, pt: Type)(implicit ctx: Context): Tree = tree.tpe match {
    case tl: TypeLambda =>
      val (tl1, tvars) = constrained(tl, tree)
      val tree1 = tree.withType(tl1).appliedToTypeTrees(tvars)
      tree1.tpe <:< pt
      fullyDefinedType(tree1.tpe, "template parent", tree.pos)
      tree1
    case _ =>
      tree
  }

  /** The list of uninstantiated type variables bound by some prefix of type `T` which
   *  occur in at least one formal parameter type of a prefix application.
   *  Considered prefixes are:
   *    - The function `f` of an application node `f(e1, .., en)`
   *    - The function `f` of a type application node `f[T1, ..., Tn]`
   *    - The prefix `p` of a selection `p.f`.
   *    - The result expression `e` of a block `{s1; .. sn; e}`.
   */
  def tvarsInParams(tree: Tree)(implicit ctx: Context): List[TypeVar] = {
    @tailrec def boundVars(tree: Tree, acc: List[TypeVar]): List[TypeVar] = tree match {
      case Apply(fn, _) => boundVars(fn, acc)
      case TypeApply(fn, targs) =>
        val tvars = targs.tpes.collect {
          case tvar: TypeVar if !tvar.isInstantiated => tvar
        }
        boundVars(fn, acc ::: tvars)
      case Select(pre, _) => boundVars(pre, acc)
      case Block(_, expr) => boundVars(expr, acc)
      case _ => acc
    }
    @tailrec def occurring(tree: Tree, toTest: List[TypeVar], acc: List[TypeVar]): List[TypeVar] =
      if (toTest.isEmpty) acc
      else tree match {
        case Apply(fn, _) =>
          fn.tpe.widen match {
            case mtp: MethodType =>
              val (occ, nocc) = toTest.partition(tvar => mtp.paramInfos.exists(tvar.occursIn))
              occurring(fn, nocc, occ ::: acc)
            case _ =>
              occurring(fn, toTest, acc)
          }
        case TypeApply(fn, targs) => occurring(fn, toTest, acc)
        case Select(pre, _) => occurring(pre, toTest, acc)
        case Block(_, expr) => occurring(expr, toTest, acc)
        case _ => acc
      }
    occurring(tree, boundVars(tree, Nil), Nil)
  }

  /** The instantiation direction for given poly param computed
   *  from the constraint:
   *  @return   1 (maximize) if constraint is uniformly from above,
   *           -1 (minimize) if constraint is uniformly from below,
   *            0 if unconstrained, or constraint is from below and above.
   */
  private def instDirection(param: TypeParamRef)(implicit ctx: Context): Int = {
    val constrained = ctx.typerState.constraint.fullBounds(param)
    val original = param.binder.paramInfos(param.paramNum)
    val cmp = ctx.typeComparer
    val approxBelow =
      if (!cmp.isSubTypeWhenFrozen(constrained.lo, original.lo)) 1 else 0
    val approxAbove =
      if (!cmp.isSubTypeWhenFrozen(original.hi, constrained.hi)) 1 else 0
    approxAbove - approxBelow
  }

  /** Recursively widen and also follow type declarations and type aliases. */
  def widenForMatchSelector(tp: Type)(implicit ctx: Context): Type = tp.widen match {
    case tp: TypeRef if !tp.symbol.isClass =>
      widenForMatchSelector(tp.superType)
    case tp: HKApply =>
      widenForMatchSelector(tp.superType)
    case tp: AnnotatedType =>
      tp.derivedAnnotatedType(widenForMatchSelector(tp.tpe), tp.annot)
    case tp => tp
  }

  /** Following type aliases and stripping refinements and annotations, if one arrives at a
   *  class type reference where the class has a companion module, a reference to
   *  that companion module. Otherwise NoType
   */
  def companionRef(tp: Type)(implicit ctx: Context): Type =
    tp.underlyingClassRef(refinementOK = true) match {
      case tp: TypeRef =>
        val companion = tp.classSymbol.companionModule
        if (companion.exists)
          companion.valRef.asSeenFrom(tp.prefix, companion.symbol.owner)
        else NoType
      case _ => NoType
    }

  /** Interpolate those undetermined type variables in the widened type of this tree
   *  which are introduced by type application contained in the tree.
   *  If such a variable appears covariantly in type `tp` or does not appear at all,
   *  approximate it by its lower bound. Otherwise, if it appears contravariantly
   *  in type `tp` approximate it by its upper bound.
   *  @param ownedBy  if it is different from NoSymbol, all type variables owned by
   *                  `ownedBy` qualify, independent of position.
   *                  Without that second condition, it can be that certain variables escape
   *                  interpolation, for instance when their tree was eta-lifted, so
   *                  the typechecked tree is no longer the tree in which the variable
   *                  was declared. A concrete example of this phenomenon can be
   *                  observed when compiling core.TypeOps#asSeenFrom.
   */
  def interpolateUndetVars(tree: Tree, ownedBy: Symbol)(implicit ctx: Context): Unit = {
    val constraint = ctx.typerState.constraint
    val qualifies = (tvar: TypeVar) =>
      (tree contains tvar.bindingTree) || ownedBy.exists && tvar.owner == ownedBy
    def interpolate() = Stats.track("interpolateUndetVars") {
      val tp = tree.tpe.widen
      constr.println(s"interpolate undet vars in ${tp.show}, pos = ${tree.pos}, mode = ${ctx.mode}, undets = ${constraint.uninstVars map (tvar => s"${tvar.show}@${tvar.bindingTree.pos}")}")
      constr.println(s"qualifying undet vars: ${constraint.uninstVars filter qualifies map (tvar => s"$tvar / ${tvar.show}")}, constraint: ${constraint.show}")

      val vs = variances(tp, qualifies)
      val hasUnreportedErrors = ctx.typerState.reporter match {
        case r: StoreReporter if r.hasErrors => true
        case _ => false
      }
      // Avoid interpolating variables if typerstate has unreported errors.
      // Reason: The errors might reflect unsatisfiable constraints. In that
      // case interpolating without taking account the constraints risks producing
      // nonsensical types that then in turn produce incomprehensible errors.
      // An example is in neg/i1240.scala. Without the condition in the next code line
      // we get for
      //
      //      val y: List[List[String]] = List(List(1))
      //
      //     i1430.scala:5: error: type mismatch:
      //     found   : Int(1)
      //     required: Nothing
      //     val y: List[List[String]] = List(List(1))
      //                                           ^
      // With the condition, we get the much more sensical:
      //
      //     i1430.scala:5: error: type mismatch:
      //     found   : Int(1)
      //     required: String
      //     val y: List[List[String]] = List(List(1))
      if (!hasUnreportedErrors)
        vs foreachBinding { (tvar, v) =>
          if (v != 0) {
            typr.println(s"interpolate ${if (v == 1) "co" else "contra"}variant ${tvar.show} in ${tp.show}")
            tvar.instantiate(fromBelow = v == 1)
          }
        }
      for (tvar <- constraint.uninstVars)
        if (!(vs contains tvar) && qualifies(tvar)) {
          typr.println(s"instantiating non-occurring ${tvar.show} in ${tp.show} / $tp")
          tvar.instantiate(fromBelow = true)
        }
    }
    if (constraint.uninstVars exists qualifies) interpolate()
  }

  /** Instantiate undetermined type variables to that type `tp` is
   *  maximized and return None. If this is not possible, because a non-variant
   *  typevar is not uniquely determined, return that typevar in a Some.
   */
  def maximizeType(tp: Type)(implicit ctx: Context): Option[TypeVar] = Stats.track("maximizeType") {
    val vs = variances(tp, alwaysTrue)
    var result: Option[TypeVar] = None
    vs foreachBinding { (tvar, v) =>
      if (v == 1) tvar.instantiate(fromBelow = false)
      else if (v == -1) tvar.instantiate(fromBelow = true)
      else {
        val bounds = ctx.typerState.constraint.fullBounds(tvar.origin)
        if (!(bounds.hi <:< bounds.lo)) result = Some(tvar)
        tvar.instantiate(fromBelow = false)
      }
    }
    result
  }

  type VarianceMap = SimpleMap[TypeVar, Integer]

  /** All occurrences of type vars in this type that satisfy predicate
   *  `include` mapped to their variances (-1/0/1) in this type, where
   *  -1 means: only covariant occurrences
   *  +1 means: only covariant occurrences
   *  0 means: mixed or non-variant occurrences
   *
   *  Note: We intentionally use a relaxed version of variance here,
   *  where the variance does not change under a prefix of a named type
   *  (the strict version makes prefixes invariant). This turns out to be
   *  better for type inference. In a nutshell, if a type variable occurs
   *  like this:
   *
   *     (U? >: x.type) # T
   *
   *  we want to instantiate U to x.type right away. No need to wait further.
   */
  private def variances(tp: Type, include: TypeVar => Boolean)(implicit ctx: Context): VarianceMap = Stats.track("variances") {
    val constraint = ctx.typerState.constraint

    object accu extends TypeAccumulator[VarianceMap] {
      def setVariance(v: Int) = variance = v
      def apply(vmap: VarianceMap, t: Type): VarianceMap = t match {
        case t: TypeVar
        if !t.isInstantiated && (ctx.typerState.constraint contains t) && include(t) =>
          val v = vmap(t)
          if (v == null) vmap.updated(t, variance)
          else if (v == variance || v == 0) vmap
          else vmap.updated(t, 0)
        case _ =>
          foldOver(vmap, t)
      }
      override def applyToPrefix(vmap: VarianceMap, t: NamedType) =
        apply(vmap, t.prefix)
    }

    /** Include in `vmap` type variables occurring in the constraints of type variables
     *  already in `vmap`. Specifically:
     *   - if `tvar` is covariant in `vmap`, include all variables in its lower bound
     *     (because they influence the minimal solution of `tvar`),
     *   - if `tvar` is contravariant in `vmap`, include all variables in its upper bound
     *     at flipped variances (because they influence the maximal solution of `tvar`),
     *   - if `tvar` is nonvariant in `vmap`, include all variables in its upper and lower
     *     bounds as non-variant.
     *  Do this in a fixpoint iteration until `vmap` stabilizes.
     */
    def propagate(vmap: VarianceMap): VarianceMap = {
      var vmap1 = vmap
      def traverse(tp: Type) = { vmap1 = accu(vmap1, tp) }
      vmap.foreachBinding { (tvar, v) =>
        val param = tvar.origin
        val e = constraint.entry(param)
        accu.setVariance(v)
        if (v >= 0) {
          traverse(e.bounds.lo)
          constraint.lower(param).foreach(p => traverse(constraint.typeVarOfParam(p)))
        }
        if (v <= 0) {
          traverse(e.bounds.hi)
          constraint.upper(param).foreach(p => traverse(constraint.typeVarOfParam(p)))
        }
      }
      if (vmap1 eq vmap) vmap else propagate(vmap1)
    }

    propagate(accu(SimpleMap.Empty, tp))
  }
}

/** An enumeration controlling the degree of forcing in "is-dully-defined" checks. */
@sharable object ForceDegree {
  class Value(val appliesTo: TypeVar => Boolean, val minimizeAll: Boolean)
  val none = new Value(_ => false, minimizeAll = false)
  val all = new Value(_ => true, minimizeAll = false)
  val noBottom = new Value(_ => true, minimizeAll = false)
}