aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/ast/Desugar.scala
blob: cd3de4fd414e0231a865d86c6a9c3835d6a3dd68 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
package dotty.tools
package dotc
package ast

import core._
import util.Positions._, Types._, Contexts._, Constants._, Names._, NameOps._, Flags._
import SymDenotations._, Symbols._, StdNames._, Annotations._, Trees._
import Decorators._
import language.higherKinds
import collection.mutable.ListBuffer
import typer.ErrorReporting.InfoString
import typer.Mode

object desugar {

  /** Are we using the new unboxed pair scheme? */
  private final val unboxedPairs = false

  import untpd._

  private type VarInfo = (NameTree, Tree)

  /**   var x: Int = expr
   *  ==>
   *    def x: Int = expr
   *    def x_=($1: <TypeTree()>): Unit = ()
   */
  def valDef(vdef: ValDef)(implicit ctx: Context): Tree = {
    val ValDef(mods, name, tpt, rhs) = vdef
    def setterNeeded =
      (mods is Mutable) && ctx.owner.isClass && (!(mods is Private) || (ctx.owner is Trait))
    if (setterNeeded) {
      // todo: copy of vdef as getter needed?
      // val getter = ValDef(mods, name, tpt, rhs) withPos vdef.pos ?
      // right now vdef maps via expandedTree to a thicket which concerns itself.
      // I don't see a problem with that but if there is one we can avoid it by making a copy here.
      val setterParam = makeSyntheticParameter(tpt = TypeTree())
      val setterRhs = if (vdef.rhs.isEmpty) EmptyTree else unitLiteral
      val setter = cpy.DefDef(vdef,
        mods | Accessor, name.setterName, Nil, (setterParam :: Nil) :: Nil,
        TypeTree(defn.UnitType), setterRhs) // rhs gets filled in later, when field is generated and getter has parameters
      Thicket(vdef, setter)
    }
    else vdef
  }

  /** Expand context bounds to evidence params. E.g.,
   *
   *      def f[T >: L <: H : B](params)
   *  ==>
   *      def f[T >: L <: H](params)(implicit evidence$0: B[T])
   *
   *  Expand default arguments to default getters. E.g,
   *
   *      def f(x: Int = 1)(y: String = x + "m") = ...
   *  ==>
   *      def f(x: Int)(y: String) = ...
   *      def f$default$1 = 1
   *      def f$default$2(x: Int) = x + "m"
   */
  def defDef(meth: DefDef, isPrimaryConstructor: Boolean = false)(implicit ctx: Context): Tree = {
    val DefDef(mods, name, tparams, vparamss, tpt, rhs) = meth
    val epbuf = new ListBuffer[ValDef]
    val tparams1 = tparams mapConserve {
      case tparam @ TypeDef(mods, name, ContextBounds(tbounds, cxbounds)) =>
        for (cxbound <- cxbounds) {
          val paramFlags: FlagSet = if (isPrimaryConstructor) PrivateLocalParamAccessor else Param
          val epname = (nme.EVIDENCE_PARAM_PREFIX.toString + epbuf.length).toTermName
          epbuf +=
            ValDef(Modifiers(paramFlags | Implicit), epname, cxbound, EmptyTree)
        }
        cpy.TypeDef(tparam, mods, name, tbounds, tparam.tparams)
      case tparam =>
        tparam
    }

    val meth1 = epbuf.toList match {
      case Nil =>
        meth
      case evidenceParams =>
        val vparamss1 = vparamss.reverse match {
          case (vparams @ (vparam :: _)) :: rvparamss if vparam.mods is Implicit =>
            ((vparams ++ evidenceParams) :: rvparamss).reverse
          case _ =>
            vparamss :+ evidenceParams
        }
        cpy.DefDef(meth, mods, name, tparams1, vparamss1, tpt, rhs)
    }

    /** The longest prefix of parameter lists in vparamss whose total length does not exceed `n` */
    def takeUpTo(vparamss: List[List[ValDef]], n: Int): List[List[ValDef]] = vparamss match {
      case vparams :: vparamss1 =>
        val len = vparams.length
        if (n >= len) vparams :: takeUpTo(vparamss1, n - len) else Nil
      case _ =>
        Nil
    }

    def normalizedVparamss = vparamss map (_ map (vparam =>
      cpy.ValDef(vparam, vparam.mods, vparam.name, vparam.tpt, EmptyTree)))

    def defaultGetters(vparamss: List[List[ValDef]], n: Int): List[DefDef] = vparamss match {
      case (vparam :: vparams) :: vparamss1 =>
        def defaultGetter: DefDef =
          DefDef(
            mods = vparam.mods & AccessFlags,
            name = meth.name.defaultGetterName(n),
            tparams = meth.tparams,
            vparamss = takeUpTo(normalizedVparamss, n),
            tpt = TypeTree(),
            rhs = vparam.rhs)
        val rest = defaultGetters(vparams :: vparamss1, n + 1)
        if (vparam.rhs.isEmpty) rest else defaultGetter :: rest
      case Nil :: vparamss1 =>
        defaultGetters(vparamss1, n)
      case nil =>
        Nil
    }

    val defGetters = defaultGetters(vparamss, 0)
    if (defGetters.isEmpty) meth1
    else {
      val mods1 = meth1.mods | DefaultParameterized
      val meth2 = cpy.DefDef(meth1, meth1.mods | DefaultParameterized,
          meth1.name, meth1.tparams, normalizedVparamss, meth1.tpt, meth1.rhs)
      Thicket(meth2 :: defGetters)
    }
  }

  /** Fill in empty type bounds with Nothing/Any. Expand private local type parameters as follows:
   *
   *     class C[T]
   * ==>
   *     class C { type C$T; type T = C$T }
   */
  def typeDef(tdef: TypeDef)(implicit ctx: Context): Tree = {
    val TypeDef(mods, name, rhs) = tdef
    val rhs1 = rhs match {
      case TypeBoundsTree(lo, hi) =>
        val lo1 = if (lo.isEmpty) untpd.TypeTree(defn.NothingType) else lo
        val hi1 = if (hi.isEmpty) untpd.TypeTree(defn.AnyType) else hi
        cpy.TypeBoundsTree(rhs, lo1, hi1)
      case _ =>
        rhs
    }
    if (mods is PrivateLocalParam) {
      val tparam = cpy.TypeDef(tdef,
        mods &~ PrivateLocal | ExpandedName, name.expandedName(ctx.owner), rhs1, tdef.tparams)
      val alias = cpy.TypeDef(tdef,
        Modifiers(PrivateLocalParamAccessor | Synthetic), name, refOfDef(tparam))
      Thicket(tparam, alias)
    }
    else cpy.TypeDef(tdef, mods, name, rhs1)
  }

  private val synthetic = Modifiers(Synthetic)

  def classDef(cdef: TypeDef)(implicit ctx: Context): Tree = {
    val TypeDef(
      mods, name, impl @ Template(constr0, parents, self, body)) = cdef

    val (constr1, defaultGetters) = defDef(constr0, isPrimaryConstructor = true) match {
      case meth: DefDef => (meth, Nil)
      case Thicket((meth: DefDef) :: defaults) => (meth, defaults)
    }

    val tparams = constr1.tparams.map(tparam => cpy.TypeDef(tparam,
      Modifiers(Param), tparam.name, tparam.rhs, tparam.tparams))

    // ensure parameter list is non-empty
    val vparamss =
      if (constr1.vparamss.isEmpty) {
        if (mods is Case)
          ctx.error("case class needs to have at least one parameter list", cdef.pos)
        ListOfNil
      } else
        constr1.vparamss.nestedMap(vparam => cpy.ValDef(vparam,
          Modifiers(Param), vparam.name, vparam.tpt, vparam.rhs))

    val constr = cpy.DefDef(constr1,
      constr1.mods, constr1.name, tparams, vparamss, constr1.tpt, constr1.rhs)

    val classTypeRef = {
      val tycon = Ident(cdef.name) withPos cdef.pos.startPos
      val tparams = impl.constr.tparams
      if (tparams.isEmpty) tycon else AppliedTypeTree(tycon, tparams map refOfDef)
    }

    lazy val creatorExpr = New(classTypeRef, vparamss nestedMap refOfDef)

    val caseClassMeths =
      if (mods is Case) {
        val caseParams = vparamss.head.toArray
        def syntheticProperty(name: TermName, rhs: Tree) =
          DefDef(synthetic, name, Nil, Nil, EmptyTree, rhs)
        val isDefinedMeth = syntheticProperty(nme.isDefined, Literal(Constant(true)))
        val productArityMeth = syntheticProperty(nme.productArity, Literal(Constant(caseParams.length)))
        val productElemMeths = for (i <- 0 until caseParams.length) yield
          syntheticProperty(("_" + (i + 1)).toTermName, Select(This(EmptyTypeName), caseParams(i).name))
        val copyMeths =
          if (mods is Abstract) Nil
          else {
            val copyFirstParams = vparamss.head.map(vparam =>
              cpy.ValDef(vparam, vparam.mods, vparam.name, vparam.tpt, refOfDef(vparam)))
            val copyRestParamss = vparamss.tail.nestedMap(vparam =>
              cpy.ValDef(vparam, vparam.mods, vparam.name, vparam.tpt, EmptyTree))
            DefDef(synthetic, nme.copy, tparams, copyFirstParams :: copyRestParamss, EmptyTree, creatorExpr) :: Nil
          }
        copyMeths ::: isDefinedMeth :: productArityMeth :: productElemMeths.toList
      }
      else Nil

    def anyRef = ref(defn.AnyRefAlias.typeRef)
    def parentConstr(tpt: Tree) = Select(New(tpt), nme.CONSTRUCTOR)

    val parents1 = if (parents.isEmpty) parentConstr(anyRef) :: Nil else parents

    def companionDefs(parentTpt: Tree, defs: List[Tree]) =
      moduleDef(
        ModuleDef(
          Modifiers(Synthetic), name.toTermName,
          Template(emptyConstructor, parentConstr(parentTpt) :: Nil, EmptyValDef, defs))).toList

    val companions =
      if (mods is Case) {
        val parent =
          if (tparams.nonEmpty) anyRef
          else (vparamss :\ classTypeRef) ((vparams, restpe) => Function(vparams map (_.tpt), restpe))
        val applyMeths =
          if (mods is Abstract) Nil
          else DefDef(synthetic, nme.apply, tparams, vparamss, EmptyTree, creatorExpr) :: Nil
        val unapplyMeth = {
          val unapplyParam = makeSyntheticParameter(tpt = classTypeRef)
          DefDef(synthetic, nme.unapply, tparams, (unapplyParam :: Nil) :: Nil,
              EmptyTree, Ident(unapplyParam.name))
        }
        companionDefs(parent, applyMeths ::: unapplyMeth :: defaultGetters)
      }
      else if (defaultGetters.nonEmpty)
        companionDefs(anyRef, defaultGetters)
      else Nil

    val implicitWrappers =
      if (mods is Implicit) {
        if (ctx.owner is Package)
          ctx.error("implicit classes may not be toplevel", cdef.pos)
        if (mods is Case)
          ctx.error("implicit classes may not case classes", cdef.pos)
        DefDef(Modifiers(Synthetic | Implicit), name.toTermName,
          tparams, vparamss, TypeTree(), creatorExpr) :: Nil
      }
      else Nil

    val cdef1 = cpy.TypeDef(cdef, mods, name,
      cpy.Template(impl, constr, parents1, self,
        constr1.tparams ::: constr1.vparamss.flatten ::: body ::: caseClassMeths))
    flatTree(cdef1 :: companions ::: implicitWrappers)
  }

  /** Expand
   *
   *    object name extends parents { self => body }
   *
   *  to:
   *    <module> val name: name$ = New(name$)
   *    <module> final class name$ extends parents { self: name.type => body }
   */
  def moduleDef(mdef: ModuleDef)(implicit ctx: Context): Tree = {
    val ModuleDef(mods, name, tmpl @ Template(constr, parents, self, body)) = mdef
    val clsName = name.moduleClassName
    val clsRef = Ident(clsName)
    val modul = ValDef(mods | ModuleCreationFlags, name, clsRef, New(clsRef, Nil)) withPos mdef.pos
    val ValDef(selfMods, selfName, selfTpt, selfRhs) = self
    if (!selfTpt.isEmpty) ctx.error("object definition may not have a self type", self.pos)
    val clsSelf = ValDef(selfMods, selfName, SingletonTypeTree(Ident(name)), selfRhs)
      .withPos(self.pos orElse tmpl.pos.startPos)
    val clsTmpl = cpy.Template(tmpl, constr, parents, clsSelf, body)
    val cls = TypeDef(mods.toTypeFlags & AccessFlags | ModuleClassCreationFlags, clsName, clsTmpl)
    Thicket(modul, classDef(cls))
  }

  def patDef(pdef: PatDef)(implicit ctx: Context): Tree = {
    val PatDef(mods, pats, tpt, rhs) = pdef
    val pats1 = if (tpt.isEmpty) pats else pats map (Typed(_, tpt))
    flatTree(pats1 map (makePatDef(mods, _, rhs)))
  }

  def defTree(tree: Tree)(implicit ctx: Context): Tree = tree match {
    case tree: ValDef => valDef(tree)
    case tree: TypeDef => if (tree.isClassDef) classDef(tree) else typeDef(tree)
    case tree: DefDef => defDef(tree)
    case tree: ModuleDef => moduleDef(tree)
    case tree: PatDef => patDef(tree)
  }

  def block(tree: Block)(implicit ctx: Context): Block = tree.expr match {
    case EmptyTree =>
      cpy.Block(tree, tree.stats,
        unitLiteral withPos (if (tree.stats.isEmpty) tree.pos else tree.pos.endPos))
    case _ =>
      tree
  }

  /** In case there is exactly one variable x_1 in pattern
   *   val/var p = e  ==>  val/var x_1 = (e: @unchecked) match (case p => (x_1))
   *
   *   in case there are zero or more than one variables in pattern
   *   val/var p = e  ==>  private synthetic val t$ = (e: @unchecked) match (case p => (x_1, ..., x_N))
   *                   val/var x_1 = t$._1
   *                   ...
   *                  val/var x_N = t$._N
   *  If the original pattern variable carries a type annotation, so does the corresponding
   *  ValDef.
   */
  def makePatDef(mods: Modifiers, pat: Tree, rhs: Tree)(implicit ctx: Context): Tree = pat match {
    case VarPattern(named, tpt) =>
      derivedValDef(mods, named, tpt, rhs)
    case _ =>
      val rhsUnchecked = makeAnnotated(defn.UncheckedAnnot, rhs)
      val vars = getVariables(pat)
      val ids = for ((named, _) <- vars) yield Ident(named.name)
      val caseDef = CaseDef(pat, EmptyTree, makeTuple(ids))
      val matchExpr = Match(rhsUnchecked, caseDef :: Nil)
      vars match {
        case (named, tpt) :: Nil =>
          derivedValDef(mods, named, tpt, matchExpr)
        case _ =>
          val tmpName = ctx.freshName().toTermName
          val patMods = Modifiers(PrivateLocal | Synthetic | (mods.flags & Lazy))
          val firstDef = ValDef(patMods, tmpName, TypeTree(), matchExpr)
          def selector(n: Int) = Select(Ident(tmpName), ("_" + n).toTermName)
          val restDefs =
            for (((named, tpt), n) <- vars.zipWithIndex)
              yield derivedValDef(mods, named, tpt, selector(n))
          flatTree(firstDef :: restDefs)
      }
  }

  /** Make closure corresponding to function  params => body */
  def makeClosure(params: List[ValDef], body: Tree) =
    Block(
      DefDef(Modifiers(Synthetic), nme.ANON_FUN, Nil, params :: Nil, TypeTree(), body),
      Closure(Nil, Ident(nme.ANON_FUN), EmptyTree))

  /** Make closure corresponding to partial function  { cases } */
  def makeCaseLambda(cases: List[CaseDef])(implicit ctx: Context) = {
    val param = makeSyntheticParameter()
    Function(param :: Nil, Match(Ident(param.name), cases))
  }

  def makeAnnotated(cls: Symbol, tree: Tree)(implicit ctx: Context) =
    Annotated(TypedSplice(tpd.New(cls.typeRef)), tree)

  private def derivedValDef(mods: Modifiers, named: NameTree, tpt: Tree, rhs: Tree) =
    ValDef(mods, named.name.asTermName, tpt, rhs).withPos(named.pos)

  def apply(tree: Tree)(implicit ctx: Context): Tree = {

    def labelDefAndCall(lname: TermName, rhs: Tree, call: Tree) = {
      val ldef = DefDef(Modifiers(Label), lname, Nil, ListOfNil, TypeTree(), rhs)
      Block(ldef, call)
    }

    /** Translate infix operation expression  left op right
     */
    def makeBinop(left: Tree, op: Name, right: Tree): Tree = {
      def assignToNamedArg(arg: Tree) = arg match {
        case Assign(Ident(name), rhs) => cpy.NamedArg(arg, name, rhs)
        case _ => arg
      }
      if (isLeftAssoc(op)) {
        val args: List[Tree] = right match {
          case Parens(arg) => assignToNamedArg(arg) :: Nil
          case Tuple(args) => args mapConserve assignToNamedArg
          case _ => right :: Nil
        }
        Apply(Select(left, op), args)
      } else {
        val x = ctx.freshName().toTermName
        Block(
          ValDef(Modifiers(Synthetic), x, TypeTree(), left),
          Apply(Select(right, op), Ident(x)))
      }
    }

    /** Create tree for for-comprehension <for (enums) do body> or
     *   <for (enums) yield body> where mapName and flatMapName are chosen
     *  corresponding to whether this is a for-do or a for-yield.
     *  The creation performs the following rewrite rules:
     *
     *  1.
     *
     *    for (P <- G) E   ==>   G.foreach (P => E)
     *
     *     Here and in the following (P => E) is interpreted as the function (P => E)
     *     if P is a variable pattern and as the partial function { case P => E } otherwise.
     *
     *  2.
     *
     *    for (P <- G) yield E  ==>  G.map (P => E)
     *
     *  3.
     *
     *    for (P_1 <- G_1; P_2 <- G_2; ...) ...
     *      ==>
     *    G_1.flatMap (P_1 => for (P_2 <- G_2; ...) ...)
     *
     *  4.
     *
     *    for (P <- G; E; ...) ...
     *      =>
     *    for (P <- G.filter (P => E); ...) ...
     *
     *  5. For any N:
     *
     *    for (P_1 <- G; P_2 = E_2; val P_N = E_N; ...)
     *      ==>
     *    for (TupleN(P_1, P_2, ... P_N) <-
     *      for (x_1 @ P_1 <- G) yield {
     *        val x_2 @ P_2 = E_2
     *        ...
     *        val x_N & P_N = E_N
     *        TupleN(x_1, ..., x_N)
     *      } ...)
     *
     *    If any of the P_i are variable patterns, the corresponding `x_i @ P_i' is not generated
     *    and the variable constituting P_i is used instead of x_i
     *
     *  @param mapName      The name to be used for maps (either map or foreach)
     *  @param flatMapName  The name to be used for flatMaps (either flatMap or foreach)
     *  @param enums        The enumerators in the for expression
     *  @param body         The body of the for expression
     */
    def makeFor(mapName: TermName, flatMapName: TermName, enums: List[Tree], body: Tree): Tree = {

      /** Make a function value pat => body.
       *  If pat is a var pattern id: T then this gives (id: T) => body
       *  Otherwise this gives { case pat => body }
       */
      def makeLambda(pat: Tree, body: Tree): Tree = pat match {
        case VarPattern(named, tpt) =>
          Function(derivedValDef(Modifiers(Param), named, tpt, EmptyTree) :: Nil, body)
        case _ =>
          makeCaseLambda(CaseDef(pat, EmptyTree, body) :: Nil)
      }

      /** If `pat` is not yet a `Bind` wrap it in one with a fresh name
       */
      def makeBind(pat: Tree): Tree = pat match {
        case Bind(_, _) => pat
        case _ => Bind(ctx.freshName().toTermName, pat)
      }

      /** Make a pattern filter:
       *    rhs.withFilter { case pat => true case _ => false }
       *
       *  On handling irrefutable patterns:
       *  The idea is to wait until the pattern matcher sees a call
       *
       *      xs withFilter { cases }
       *
       *  where cases can be proven to be refutable i.e. cases would be
       *  equivalent to  { case _ => true }
       *
       *  In that case, compile to
       *
       *      xs withFilter alwaysTrue
       *
       *  where `alwaysTrue` is a predefined function value:
       *
       *      val alwaysTrue: Any => Boolean = true
       *
       *  In the libraries operations can take advantage of alwaysTrue to shortcircuit the
       *  withFilter call.
       *
       *  def withFilter(f: Elem => Boolean) =
       *    if (f eq alwaysTrue) this // or rather identity filter monadic applied to this
       *    else real withFilter
       */
      def makePatFilter(rhs: Tree, pat: Tree): Tree = {
        val cases = List(
          CaseDef(pat, EmptyTree, Literal(Constant(true))),
          CaseDef(Ident(nme.WILDCARD), EmptyTree, Literal(Constant(false))))
        Apply(Select(rhs, nme.withFilter), Match(EmptyTree, cases))
      }

      /** Is pattern `pat` irrefutable when matched against `rhs`?
       *  We only can do a simple syntactic check here; a more refined check
       *  is done later prompted by the presence of a "withFilterIfRefutable" call.
       */
      def isIrrefutable(pat: Tree, rhs: Tree): Boolean = {
        def matchesTuple(pats: List[Tree], rhs: Tree): Boolean = rhs match {
          case Tuple(trees) => (pats corresponds trees)(isIrrefutable)
          case Parens(rhs1) => matchesTuple(pats, rhs1)
          case Block(_, rhs1) => matchesTuple(pats, rhs1)
          case If(_, thenp, elsep) => matchesTuple(pats, thenp) && matchesTuple(pats, elsep)
          case Match(_, cases) => cases forall (matchesTuple(pats, _))
          case CaseDef(_, _, rhs1) => matchesTuple(pats, rhs)
          case Throw(_) => true
          case _ => false
        }
        pat match {
          case Bind(_, pat1) => isIrrefutable(pat1, rhs)
          case Parens(pat1) => isIrrefutable(pat1, rhs)
          case Tuple(pats) => matchesTuple(pats, rhs)
          case _ => isVarPattern(pat)
        }
      }

      /** rhs.name with a pattern filter on rhs unless `pat` is irrefutable when
       *  matched against `rhs`.
       */
      def rhsSelect(rhs: Tree, name: TermName, pat: Tree) = {
        val rhs1 = if (isIrrefutable(pat, rhs)) rhs else makePatFilter(rhs, pat)
        Select(rhs1, name)
      }

      enums match {
        case (enum @ GenFrom(pat, rhs)) :: Nil =>
          Apply(rhsSelect(rhs, mapName, pat), makeLambda(pat, body))
        case GenFrom(pat, rhs) :: (rest @ (GenFrom(_, _) :: _)) =>
          val cont = makeFor(mapName, flatMapName, rest, body)
          Apply(rhsSelect(rhs, flatMapName, pat), makeLambda(pat, cont))
        case (enum @ GenFrom(pat, rhs)) :: (rest @ GenAlias(_, _) :: _) =>
          val (valeqs, rest1) = rest.span(_.isInstanceOf[GenAlias])
          val pats = valeqs map { case GenAlias(pat, _) => pat }
          val rhss = valeqs map { case GenAlias(_, rhs) => rhs }
          val defpat1 = makeBind(pat)
          val defpats = pats map makeBind
          val pdefs = (defpats, rhss).zipped map (makePatDef(Modifiers(), _, _))
          val ids = (defpat1 :: defpats) map { case Bind(name, _) => Ident(name) }
          val rhs1 = makeFor(nme.map, nme.flatMap, GenFrom(defpat1, rhs) :: Nil, Block(pdefs, makeTuple(ids)))
          val allpats = pat :: pats
          val vfrom1 = GenFrom(makeTuple(allpats), rhs1)
          makeFor(mapName, flatMapName, vfrom1 :: rest1, body)
        case (enum @ GenFrom(pat, rhs)) :: test :: rest =>
          val filtered = Apply(rhsSelect(rhs, nme.withFilter, pat), makeLambda(pat, test))
          makeFor(mapName, flatMapName, GenFrom(pat, filtered) :: rest, body)
        case _ =>
          EmptyTree //may happen for erroneous input
      }
    }

    // begin desugar
    tree match {
      case SymbolLit(str) =>
        New(ref(defn.SymbolClass.typeRef), (Literal(Constant(str)) :: Nil) :: Nil)
      case InterpolatedString(id, strs, elems) =>
        Apply(Select(Apply(Ident(nme.StringContext), strs), id), elems)
      case InfixOp(l, op, r) =>
        if (ctx.mode is Mode.Type)
          AppliedTypeTree(Ident(op), l :: r :: Nil) // op[l, r]
        else if (ctx.mode is Mode.Pattern)
          Apply(Ident(op), l :: r :: Nil) // op(l, r)
        else // l.op(r), or val x = r; l.op(x), plus handle named args specially
          makeBinop(l, op, r)
      case PostfixOp(t, op) =>
        if ((ctx.mode is Mode.Type) && op == nme.raw.STAR)
          AppliedTypeTree(ref(defn.RepeatedParamType), t)
        else {
          assert(ctx.mode.isExpr, ctx.mode)
          Select(t, op)
        }
      case PrefixOp(op, t) =>
        if ((ctx.mode is Mode.Type) && op == nme.ARROWkw)
          AppliedTypeTree(ref(defn.ByNameParamClass.typeRef), t)
        else
          Select(t, nme.UNARY_PREFIX ++ op)
      case Parens(t) =>
        t
      case Tuple(ts) =>
        if (unboxedPairs) {
          def PairTypeTree(l: Tree, r: Tree) =
            AppliedTypeTree(ref(defn.PairClass.typeRef), l :: r :: Nil)
          if (ctx.mode is Mode.Type) ts.reduceRight(PairTypeTree)
          else if (ts.isEmpty) unitLiteral
          else ts.reduceRight(Pair(_, _))
        }
        else {
          val arity = ts.length
          def tupleClass = defn.TupleClass(arity)
          if (arity > Definitions.MaxTupleArity) {
            ctx.error(s"tuple too long (max allowed: ${Definitions.MaxTupleArity})", tree.pos)
            unitLiteral
          }
          else if (arity == 1) ts.head
          else if (ctx.mode is Mode.Type) AppliedTypeTree(ref(tupleClass.typeRef), ts)
          else if (arity == 0) unitLiteral
          else Apply(ref(tupleClass.companionModule.valRef), ts)
        }
      case WhileDo(cond, body) =>
        // { <label> def while$(): Unit = if (cond) { body; while$() } ; while$() }
        val call = Apply(Ident(nme.WHILE_PREFIX), Nil)
        val rhs = If(cond, Block(body, call), unitLiteral)
        labelDefAndCall(nme.WHILE_PREFIX, rhs, call)
      case DoWhile(body, cond) =>
        // { label def doWhile$(): Unit = { body; if (cond) doWhile$() } ; doWhile$() }
        val call = Apply(Ident(nme.DO_WHILE_PREFIX), Nil)
        val rhs = Block(body, If(cond, call, unitLiteral))
        labelDefAndCall(nme.DO_WHILE_PREFIX, rhs, call)
      case ForDo(enums, body) =>
        makeFor(nme.foreach, nme.foreach, enums, body) orElse tree
      case ForYield(enums, body) =>
        makeFor(nme.map, nme.flatMap, enums, body) orElse tree
      case PatDef(mods, pats, tpt, rhs) =>
        val pats1 = if (tpt.isEmpty) pats else pats map (Typed(_, tpt))
        flatTree(pats1 map (makePatDef(mods, _, rhs)))
    }
  }.withPos(tree.pos)

  def refinedTypeToClass(tree: RefinedTypeTree)(implicit ctx: Context): TypeDef = {
    val impl = Template(emptyConstructor, tree.tpt :: Nil, EmptyValDef, tree.refinements)
    TypeDef(Modifiers(), tpnme.REFINE_CLASS, impl)
  }

 /** If tree is a variable pattern, return its name and type, otherwise return None.
   */
  private object VarPattern {
    def unapply(tree: Tree)(implicit ctx: Context): Option[VarInfo] = tree match {
      case id: Ident => Some(id, TypeTree())
      case Typed(id: Ident, tpt) => Some((id, tpt))
      case _ => None
    }
  }

  /** Traverse pattern and collect all variable names with their types in buffer.
   *  Works for expanded as well as unexpanded patterns
   */
  private object getVars extends UntypedTreeAccumulator[ListBuffer[VarInfo]] {
    override def apply(buf: ListBuffer[VarInfo], tree: Tree): ListBuffer[VarInfo] = {
      def seenName(name: Name) = buf exists (_._1.name == name)
      def add(named: NameTree, t: Tree): ListBuffer[VarInfo] =
        if (seenName(named.name)) buf else buf += ((named, t))
      tree match {
        case Bind(nme.WILDCARD, _) =>
          foldOver(buf, tree)
        case tree @ Bind(_, Typed(tree1, tpt)) if !mayBeTypePat(tpt) =>
          apply(add(tree, tpt), tree1)
        case tree @ Bind(_, tree1) =>
          apply(add(tree, TypeTree()), tree1)
        case Typed(id: Ident, t) if isVarPattern(id) =>
          add(id, t)
        case id: Ident if isVarPattern(id) =>
          add(id, TypeTree())
        case _ =>
          foldOver(buf, tree)
      }
    }
  }

  /** Returns list of all pattern variables, possibly with their types,
   *  without duplicates
   */
  private def getVariables(tree: Tree): List[VarInfo] =
    getVars(new ListBuffer[VarInfo], tree).toList
}