aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/core/TypeApplications.scala
blob: 4b251f1839e285f2b41e28b86b3b380a14adbf52 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
package dotty.tools.dotc
package core

import Types._
import Contexts._
import Symbols._
import Decorators._
import util.Stats._
import util.common._
import Names._
import Flags._
import util.Positions.Position
import config.Printers._
import collection.mutable

object TypeApplications {

  /** Assert type is not a TypeBounds instance and return it unchanged */
  val noBounds = (tp: Type) => tp match {
    case tp: TypeBounds => throw new AssertionError("no TypeBounds allowed")
    case _ => tp
  }

  /** If `tp` is a TypeBounds instance return its lower bound else return `tp` */
  val boundsToLo = (tp: Type) => tp match {
    case tp: TypeBounds => tp.lo
    case _ => tp
  }

  /** If `tp` is a TypeBounds instance return its upper bound else return `tp` */
  val boundsToHi = (tp: Type) => tp match {
    case tp: TypeBounds => tp.hi
    case _ => tp
  }
}

import TypeApplications._

/** A decorator that provides methods for modeling type application */
class TypeApplications(val self: Type) extends AnyVal {

  def canHaveTypeParams(implicit ctx: Context) = !ctx.erasedTypes || self.isRef(defn.ArrayClass)

  /** The type parameters of this type are:
   *  For a ClassInfo type, the type parameters of its class.
   *  For a typeref referring to a class, the type parameters of the class.
   *  For a typeref referring to an alias type, the type parameters of the aliased type.
   *  For a typeref referring to an abstract type with a HigherKindedXYZ bound, the
   *  type parameters of the HigherKinded class.
   *  For a refinement type, the type parameters of its parent, unless there's a
   *  refinement with the same name. Inherited by all other type proxies.
   *  For an intersection type A & B, the type parameters of its left operand, A.
   *  Empty list for all other types.
   */
  final def typeParams(implicit ctx: Context): List[TypeSymbol] = /*>|>*/ track("typeParams") /*<|<*/ {
    self match {
      case tp: ClassInfo =>
        tp.cls.typeParams
      case tp: TypeRef =>
        val tsym = tp.typeSymbol
        if (tsym.isClass) tsym.typeParams
        else if (tsym.info.isAlias) tp.underlying.typeParams
        else tp.info.bounds.hi match {
          case AndType(hkBound, other) if defn.hkTraits contains hkBound.typeSymbol =>
            hkBound.typeSymbol.typeParams
          case _ =>
            Nil
        }
      case tp: RefinedType =>
        tp.parent.typeParams filterNot (_.name == tp.refinedName)
      case tp: TypeProxy =>
        tp.underlying.typeParams
      case tp: AndType =>
        tp.tp1.typeParams
      case _ =>
        Nil
    }
  }
  /** The type parameters of the underlying class.
   *  This is like `typeParams`, except for 3 differences.
   *  First, it does not adjust type parameters in refined types. I.e. type arguments
   *  do not remove corresponding type parameters.
   *  Second, it will return Nil for BoundTypes because we might get a NullPointer exception
   *  on PolyParam#underlying otherwise (demonstrated by showClass test).
   *  Third, it won't return higher-kinded type parameters.
   */
  final def safeUnderlyingTypeParams(implicit ctx: Context): List[TypeSymbol] = {
    def ifCompleted(sym: Symbol): Symbol = if (sym.isCompleted) sym else NoSymbol
    self match {
      case tp: ClassInfo =>
        tp.cls.typeParams
      case tp: TypeRef =>
        val tsym = tp.typeSymbol
        if (tsym.isClass) tsym.typeParams
        else if (tsym.isAliasType) tp.underlying.safeUnderlyingTypeParams
        else Nil
      case tp: BoundType =>
        Nil
      case tp: TypeProxy =>
        tp.underlying.safeUnderlyingTypeParams
      case tp: AndType =>
        tp.tp1.safeUnderlyingTypeParams
      case _ =>
        Nil
    }
  }

  def uninstantiatedTypeParams(implicit ctx: Context): List[TypeSymbol] =
    typeParams filter (tparam => self.member(tparam.name).symbol == tparam)

  /** Encode the type resulting from applying this type to given arguments */
  final def appliedTo(args: List[Type])(implicit ctx: Context): Type = /*>|>*/ track("appliedTo") /*<|<*/ {

    def recur(tp: Type, tparams: List[TypeSymbol], args: List[Type]): Type = args match {
      case arg :: args1 =>
        if (tparams.isEmpty) {
          println(s"applied type mismatch: $self $args, typeParams = $typeParams, tsym = ${self.typeSymbol.debugString}") // !!! DEBUG
          println(s"precomplete decls = ${self.typeSymbol.decls.toList.map(_.denot).mkString("\n  ")}")
        }
        val tparam = tparams.head
        val tp1 = RefinedType(tp, tparam.name, arg.toBounds(tparam))
        recur(tp1, tparams.tail, args1)
      case nil => tp
    }

    def safeTypeParams(tsym: Symbol) =
      if (tsym.isClass || !self.typeSymbol.isCompleting) typeParams
      else {
        ctx.warning("encountered F-bounded higher-kinded type parameters; assuming they are invariant")
        defn.hkTrait(args map alwaysZero).typeParams
      }

    if (args.isEmpty || !canHaveTypeParams) self
    else self match {
      case tp: TypeRef =>
        val tsym = tp.symbol
        if (tsym.isAliasType) tp.underlying.appliedTo(args)
        else recur(tp, safeTypeParams(tsym), args)
      case tp: TypeProxy =>
        tp.underlying.appliedTo(args)
      case AndType(l, r) =>
        l.appliedTo(args) & r
      case tp: PolyType =>
        tp.instantiate(args)
      case ErrorType =>
        self
    }
  }

  final def appliedTo(arg: Type)(implicit ctx: Context): Type = appliedTo(arg :: Nil)
  final def appliedTo(arg1: Type, arg2: Type)(implicit ctx: Context): Type = appliedTo(arg1 :: arg2 :: Nil)

  /** Turn this type, which is used as an argument for
   *  type parameter `tparam`, into a TypeBounds RHS
   */
  final def toBounds(tparam: Symbol)(implicit ctx: Context): TypeBounds = self match {
    case self: TypeBounds => // this can happen for wildcard args
      self
    case _ =>
      val v = tparam.variance
      if (v > 0 && !(tparam is Local) && !(tparam is ExpandedTypeParam)) TypeBounds.upper(self)
      else if (v < 0 && !(tparam is Local) && !(tparam is ExpandedTypeParam)) TypeBounds.lower(self)
      else TypeAlias(self, v)
  }

  /** The type arguments of this type's base type instance wrt.`base`.
   *  Existential types in arguments are returned as TypeBounds instances.
   */
  final def baseArgInfos(base: Symbol)(implicit ctx: Context): List[Type] =
    if (self derivesFrom base)
      base.typeParams map (param => self.member(param.name).info.argInfo(param))
    else
      Nil

  /** The type arguments of this type's base type instance wrt.`base`.
   *  Existential types in arguments are disallowed.
   */
  final def baseArgTypes(base: Symbol)(implicit ctx: Context): List[Type] =
    baseArgInfos(base) mapConserve noBounds

  /** The type arguments of this type's base type instance wrt.`base`.
   *  Existential types in arguments are approximanted by their lower bound.
   */
  final def baseArgTypesLo(base: Symbol)(implicit ctx: Context): List[Type] =
    baseArgInfos(base) mapConserve boundsToLo

  /** The type arguments of this type's base type instance wrt.`base`.
   *  Existential types in arguments are approximanted by their upper bound.
   */
  final def baseArgTypesHi(base: Symbol)(implicit ctx: Context): List[Type] =
    baseArgInfos(base) mapConserve boundsToHi

  /** The first type argument of the base type instance wrt `base` of this type */
  final def firstBaseArgInfo(base: Symbol)(implicit ctx: Context): Type = base.typeParams match {
    case param :: _ if self derivesFrom base =>
      self.member(param.name).info.argInfo(param)
    case _ =>
      NoType
  }

  /** The base type including all type arguments and applicable refinements
   *  of this type. Refinements are applicable if they refine a member of
   *  the parent type which furthermore is not a name-mangled type parameter.
   *  Existential types in arguments are returned as TypeBounds instances.
   */
  final def baseTypeWithArgs(base: Symbol)(implicit ctx: Context): Type = ctx.traceIndented(s"btwa ${self.show} wrt $base", core, show = true) {
    def default = self.baseTypeRef(base).appliedTo(baseArgInfos(base))
    self match {
      case tp: TypeRef =>
        tp.info match {
          case TypeBounds(_, hi) => hi.baseTypeWithArgs(base)
          case _ => default
        }
      case tp @ RefinedType(parent, name) if !tp.member(name).symbol.is(ExpandedTypeParam) =>
        val pbase = parent.baseTypeWithArgs(base)
        if (pbase.member(name).exists) RefinedType(pbase, name, tp.refinedInfo)
        else pbase
      case tp: TermRef =>
        tp.underlying.baseTypeWithArgs(base)
      case AndType(tp1, tp2) =>
        tp1.baseTypeWithArgs(base) & tp2.baseTypeWithArgs(base)
      case OrType(tp1, tp2) =>
        tp1.baseTypeWithArgs(base) | tp2.baseTypeWithArgs(base)
      case _ =>
        default
    }
  }

  /** Translate a type of the form From[T] to To[T], keep other types as they are.
   *  `from` and `to` must be static classes, both with one type parameter, and the same variance.
   */
  def translateParameterized(from: ClassSymbol, to: ClassSymbol)(implicit ctx: Context): Type =
    if (self.derivesFrom(from))
      if (canHaveTypeParams)
        RefinedType(to.typeRef, to.typeParams.head.name, self.member(from.typeParams.head.name).info)
      else
        to.typeRef
    else self

  /** If this is an encoding of a (partially) applied type, return its arguments,
   *  otherwise return Nil.
   *  Existential types in arguments are returned as TypeBounds instances.
   */
  final def argInfos(implicit ctx: Context): List[Type] = {
    var tparams: List[TypeSymbol] = null
    def recur(tp: Type, refineCount: Int): mutable.ListBuffer[Type] = tp.stripTypeVar match {
      case tp @ RefinedType(tycon, name) =>
        val buf = recur(tycon, refineCount + 1)
        if (buf == null) null
        else {
          if (tparams == null) tparams = tycon.typeParams
          if (buf.size < tparams.length) {
            val tparam = tparams(buf.size)
            if (name == tparam.name) buf += tp.refinedInfo.argInfo(tparam)
            else null
          } else null
        }
      case _ =>
        if (refineCount == 0) null
        else new mutable.ListBuffer[Type]
    }
    val buf = recur(self, 0)
    if (buf == null) Nil else buf.toList
  }

  /** Argument types where existential types in arguments are disallowed */
  def argTypes(implicit ctx: Context) = argInfos mapConserve noBounds

  /** Argument types where existential types in arguments are approximated by their lower bound */
  def argTypesLo(implicit ctx: Context) = argInfos mapConserve boundsToLo

  /** Argument types where existential types in arguments are approximated by their upper bound  */
  def argTypesHi(implicit ctx: Context) = argInfos mapConserve boundsToHi

  /** The core type without any type arguments.
   *  @param `typeArgs` must be the type arguments of this type.
   */
  final def withoutArgs(typeArgs: List[Type]): Type = typeArgs match {
    case _ :: typeArgs1 =>
      val RefinedType(tycon, _) = self
      tycon.withoutArgs(typeArgs1)
    case nil =>
      self
  }

  /** If this is the image of a type argument to type parameter `tparam`,
   *  recover the type argument, otherwise NoType.
   */
  final def argInfo(tparam: Symbol)(implicit ctx: Context): Type = self match {
    case TypeBounds(lo, hi) =>
      if (lo eq hi) hi
      else {
        val v = tparam.variance
        if (v > 0 && (lo isRef defn.NothingClass)) hi
        else if (v < 0 && (hi isRef defn.AnyClass)) lo
        else self // it's wildcard type; return its bounds
      }
    case _ =>
      NoType
  }

  /** The element type of a sequence or array */
  def elemType(implicit ctx: Context): Type =
    firstBaseArgInfo(defn.SeqClass) orElse firstBaseArgInfo(defn.ArrayClass)

  /** Given a type alias
   *
   *      type T[boundSyms] = p.C[targs]
   *
   *  produce its equivalent right hand side RHS that makes no reference to the bound
   *  symbols on the left hand side. I.e. the type alias can be replaced by
   *
   *      type T = RHS
   *
   *  It is required that `C` is a class and that every bound symbol in `boundSyms` appears
   *  as an argument in `targs`. If these requirements are not met an error is
   *  signalled by calling the parameter `error`.
   *
   *  The rewriting replaces bound symbols by references to the
   *  parameters of class C. Example:
   *
   *  Say we have:
   *
   *     class Triple[type T1, type T2, type T3]
   *     type A[X] = Triple[(X, X), X, String]
   *
   *  Then this is rewritable, as `X` appears as second type argument to `Triple`.
   *  Occurrences of `X` are rewritten to `this.T2` and the whole definition becomes:
   *
   *     type A = Triple { type T1 = (this.T2, this.T2); type T3 = String }
   *
   *  If the RHS is an intersection type A & B, we Lambda abstract on A instead and
   *  then recombine with & B.
   */
  def LambdaAbstract(boundSyms: List[Symbol])(error: (String, Position) => Unit)(implicit ctx: Context): Type = self match {
    case AndType(l, r) =>
      AndType(l.LambdaAbstract(boundSyms)(error), r)
    case _ =>
      val cls = self.typeSymbol
      if (!cls.isClass)
        error("right-hand side of parameterized alias type must refer to a class", cls.pos)

      val correspondingParamName: Map[Symbol, TypeName] = {
        for {
          (tparam, targ: TypeRef) <- cls.typeParams zip argInfos
          if boundSyms contains targ.symbol
        } yield targ.symbol -> tparam.name
      }.toMap

      val correspondingNames = correspondingParamName.values.toSet

      def replacements(rt: RefinedType): List[Type] =
        for (sym <- boundSyms) yield {
          correspondingParamName get sym match {
            case Some(name) =>
              TypeRef(RefinedThis(rt), name)
            case None =>
              error(s"parameter $sym of type alias does not appear as type argument of the aliased $cls", sym.pos)
              defn.AnyType
          }
        }

      def rewrite(tp: Type): Type = tp match {
        case tp @ RefinedType(parent, name: TypeName) =>
          if (correspondingNames contains name) rewrite(parent)
          else RefinedType(
            rewrite(parent),
            name,
            rt => tp.refinedInfo.subst(boundSyms, replacements(rt)))
        case tp =>
          tp
      }

      rewrite(self)
  }
}