aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/core/TypeApplications.scala
blob: 60d01c125f514d90c305cb10eb2afc7aba0aa5e1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
package dotty.tools.dotc
package core

import Types._
import Contexts._
import Symbols._
import SymDenotations.TypeParamsCompleter
import Decorators._
import util.Stats._
import util.common._
import Names._
import NameOps._
import Flags._
import StdNames.tpnme
import util.Positions.Position
import config.Printers._
import collection.mutable
import dotty.tools.dotc.config.Config
import java.util.NoSuchElementException

object TypeApplications {

  /** Assert type is not a TypeBounds instance and return it unchanged */
  val noBounds = (tp: Type) => tp match {
    case tp: TypeBounds => throw new AssertionError("no TypeBounds allowed")
    case _ => tp
  }

  /** If `tp` is a TypeBounds instance return its lower bound else return `tp` */
  val boundsToLo = (tp: Type) => tp match {
    case tp: TypeBounds => tp.lo
    case _ => tp
  }

  /** If `tp` is a TypeBounds instance return its upper bound else return `tp` */
  val boundsToHi = (tp: Type) => tp match {
    case tp: TypeBounds => tp.hi
    case _ => tp
  }

  /** Does variance `v1` conform to variance `v2`?
   *  This is the case if the variances are the same or `sym` is nonvariant.
   */
  def varianceConforms(v1: Int, v2: Int)(implicit ctx: Context): Boolean =
    v1 == v2 || v2 == 0

  /** Does the variance of type parameter `tparam1` conform to the variance of type parameter `tparam2`?
   */
  def varianceConforms(tparam1: MemberBinding, tparam2: MemberBinding)(implicit ctx: Context): Boolean =
    varianceConforms(tparam1.memberVariance, tparam2.memberVariance)

  /** Doe the variances of type parameters `tparams1` conform to the variances
   *  of corresponding type parameters `tparams2`?
   *  This is only the case of `tparams1` and `tparams2` have the same length.
   */
  def variancesConform(tparams1: List[MemberBinding], tparams2: List[MemberBinding])(implicit ctx: Context): Boolean =
    tparams1.corresponds(tparams2)(varianceConforms)

  def fallbackTypeParamsOLD(variances: List[Int])(implicit ctx: Context): List[MemberBinding] = {
    def memberBindings(vs: List[Int]): Type = vs match {
      case Nil => NoType
      case v :: vs1 =>
        RefinedType(
            memberBindings(vs1),
            tpnme.hkArgOLD(vs1.length),
            TypeBounds.empty.withBindingKind(BindingKind.fromVariance(v)))
    }
    def decompose(t: Type, acc: List[MemberBinding]): List[MemberBinding] = t match {
      case t: RefinedType => decompose(t.parent, t :: acc)
      case NoType => acc
    }
    decompose(memberBindings(variances), Nil)
  }

  /** Extractor for
   *
   *    [v1 X1: B1, ..., vn Xn: Bn] -> T
   *    ==>
   *    ([X_i := this.$hk_i] T) { type v_i $hk_i: (new)B_i }
   */
  object TypeLambdaOLD {
    def apply(argBindingFns: List[RecType => TypeBounds],
              bodyFn: RecType => Type)(implicit ctx: Context): Type = {
      val argNames = argBindingFns.indices.toList.map(tpnme.hkArgOLD)
      var idx = 0
      RecType.closeOver(rt =>
        (bodyFn(rt) /: argBindingFns) { (parent, argBindingFn) =>
          val res = RefinedType(parent, tpnme.hkArgOLD(idx), argBindingFn(rt))
          idx += 1
          res
        })
    }

    def unapply(tp: Type)(implicit ctx: Context): Option[( /*List[Int], */ List[TypeBounds], Type)] = {
      def decompose(t: Type, acc: List[TypeBounds]): (List[TypeBounds], Type) = t match {
        case t @ RefinedType(p, rname, rinfo: TypeBounds) if t.isTypeParam =>
          decompose(p, rinfo.bounds :: acc)
        case t: RecType =>
          decompose(t.parent, acc)
        case _ =>
          (acc, t)
      }
      decompose(tp, Nil) match {
        case (Nil, _) => None
        case x => Some(x)
      }
    }
  }

  /** Extractor for
   *
   *    [v1 X1: B1, ..., vn Xn: Bn] -> C[X1, ..., Xn]
   *
   *  where v1, ..., vn and B1, ..., Bn are the variances and bounds of the type parameters
   *  of the class C.
   *
   *  @param tycon     C
   */
  object EtaExpansion {
    def apply(tycon: Type)(implicit ctx: Context) = {
      if (!Config.newHK) assert(tycon.isEtaExpandableOLD)
      tycon.EtaExpand(tycon.typeParamSymbols)
    }

    def unapply(tp: Type)(implicit ctx: Context): Option[TypeRef] =
      if (Config.newHK)
        tp match {
          case tp @ TypeLambda(tparams, AppliedType(fn: TypeRef, args))
          if (args == tparams.map(_.toArg)) => Some(fn)
          case _ => None
        }
      else {
        def argsAreForwarders(args: List[Type], n: Int): Boolean = args match {
          case Nil =>
            n == 0
          case TypeRef(RecThis(rt), sel) :: args1 if false =>
            rt.eq(tp) && sel == tpnme.hkArgOLD(n - 1) && argsAreForwarders(args1, n - 1)
          case _ =>
            false
        }
        tp match {
          case TypeLambdaOLD(argBounds, AppliedType(fn: TypeRef, args))
          if argsAreForwarders(args, tp.typeParams.length) => Some(fn)
          case _ => None
        }
      }
  }

  /** Extractor for type application T[U_1, ..., U_n]. This is the refined type
   *
   *     T { type p_1 v_1= U_1; ...; type p_n v_n= U_n }
   *
   *  where v_i, p_i are the variances and names of the type parameters of T.
   */
  object AppliedType {
    def apply(tp: Type, args: List[Type])(implicit ctx: Context): Type = tp.appliedTo(args)

    def unapply(tp: Type)(implicit ctx: Context): Option[(Type, List[Type])] = tp match {
      case tp: RefinedType =>
        var refinements: List[RefinedType] = Nil
        var tycon = tp.stripTypeVar
        while (tycon.isInstanceOf[RefinedType]) {
          val rt = tycon.asInstanceOf[RefinedType]
          refinements = rt :: refinements
          tycon = rt.parent.stripTypeVar
        }
        def collectArgs(tparams: List[MemberBinding],
                        refinements: List[RefinedType],
                        argBuf: mutable.ListBuffer[Type]): Option[(Type, List[Type])] = refinements match {
          case Nil if tparams.isEmpty && argBuf.nonEmpty =>
            Some((tycon, argBuf.toList))
          case RefinedType(_, rname, rinfo) :: refinements1
          if tparams.nonEmpty && rname == tparams.head.memberName =>
            collectArgs(tparams.tail, refinements1, argBuf += rinfo.argInfo)
          case _ =>
            None
        }
        collectArgs(tycon.typeParams, refinements, new mutable.ListBuffer[Type])
      case HKApply(tycon, args) =>
        Some((tycon, args))
      case _ =>
        None
    }
  }

   /** Adapt all arguments to possible higher-kinded type parameters using etaExpandIfHK
   */
  def etaExpandIfHK(tparams: List[MemberBinding], args: List[Type])(implicit ctx: Context): List[Type] =
    if (tparams.isEmpty) args
    else {
      def bounds(tparam: MemberBinding) = tparam match {
        case tparam: Symbol => tparam.infoOrCompleter
        case tparam: RefinedType => tparam.memberBounds
      }
      args.zipWithConserve(tparams)((arg, tparam) => arg.etaExpandIfHK(bounds(tparam)))
    }

  /** The references `<rt>.this.$hk0, ..., <rt>.this.$hk<n-1>`. */
  def argRefsOLD(rt: RecType, n: Int)(implicit ctx: Context) =
    List.range(0, n).map(i => RecThis(rt).select(tpnme.hkArgOLD(i)))

  private class InstMapOLD(fullType: Type)(implicit ctx: Context) extends TypeMap {
    var localRecs: Set[RecType] = Set.empty
    var keptRefs: Set[Name] = Set.empty
    var tyconIsHK: Boolean = true
    def apply(tp: Type): Type = tp match {
      case tp @ TypeRef(RecThis(rt), sel) if sel.isHkArgNameOLD && localRecs.contains(rt) =>
        fullType.member(sel).info match {
          case TypeAlias(alias) => apply(alias)
          case _ => keptRefs += sel; tp
        }
      case tp: TypeVar if !tp.inst.exists =>
        val bounds = tp.instanceOpt.orElse(ctx.typeComparer.bounds(tp.origin))
        bounds.foreachPart {
          case TypeRef(RecThis(rt), sel) if sel.isHkArgNameOLD && localRecs.contains(rt) =>
            keptRefs += sel
          case _ =>
        }
        tp
      case _ =>
        mapOver(tp)
    }
  }
}

import TypeApplications._

/** A decorator that provides methods for modeling type application */
class TypeApplications(val self: Type) extends AnyVal {

  /** The type parameters of this type are:
   *  For a ClassInfo type, the type parameters of its class.
   *  For a typeref referring to a class, the type parameters of the class.
   *  For a typeref referring to a Lambda class, the type parameters of
   *    its right hand side or upper bound.
   *  For a refinement type, the type parameters of its parent, dropping
   *  any type parameter that is-rebound by the refinement. "Re-bind" means:
   *  The refinement contains a TypeAlias for the type parameter, or
   *  it introduces bounds for the type parameter, and we are not in the
   *  special case of a type Lambda, where a LambdaTrait gets refined
   *  with the bounds on its hk args. See `LambdaAbstract`, where these
   *  types get introduced, and see `isBoundedLambda` below for the test.
   */
  final def typeParams(implicit ctx: Context): List[MemberBinding] = /*>|>*/ track("typeParams") /*<|<*/ {
    self match {
      case self: ClassInfo =>
        self.cls.typeParams
      case self: TypeLambda =>
        self.typeParams
      case self: TypeRef =>
        val tsym = self.symbol
        if (tsym.isClass) tsym.typeParams
        else if (!tsym.isCompleting) tsym.info.typeParams
        else Nil
      case self: RefinedType =>
        val precedingParams = self.parent.typeParams.filterNot(_.memberName == self.refinedName)
        if (self.isTypeParam) precedingParams :+ self else precedingParams
      case self: RecType =>
        self.parent.typeParams
      case _: HKApply | _: SingletonType =>
        Nil
      case self: WildcardType =>
        self.optBounds.typeParams
      case self: TypeProxy =>
        self.underlying.typeParams
      case _ =>
        Nil
    }
  }

  /** If `self` is a higher-kinded type, its type parameters $hk_i, otherwise Nil */
  final def hkTypeParams(implicit ctx: Context): List[MemberBinding] =
    if (isHK) typeParams else Nil

  /** If `self` is a generic class, its type parameter symbols, otherwise Nil */
  final def typeParamSymbols(implicit ctx: Context): List[TypeSymbol] = typeParams match {
    case (_: Symbol) :: _ =>
      assert(typeParams.forall(_.isInstanceOf[Symbol]))
      typeParams.asInstanceOf[List[TypeSymbol]]
    case _ => Nil
  }

  /** The named type parameters declared or inherited by this type.
   *  These are all uninstantiated named type parameters of this type or one
   *  of its base types.
   */
  final def namedTypeParams(implicit ctx: Context): Set[TypeSymbol] = self match {
    case self: ClassInfo =>
      self.cls.namedTypeParams
    case self: RefinedType =>
      self.parent.namedTypeParams.filterNot(_.name == self.refinedName)
    case self: SingletonType =>
      Set()
    case self: TypeProxy =>
      self.underlying.namedTypeParams
    case _ =>
      Set()
  }

  /** The smallest supertype of this type that instantiated none of the named type parameters
   *  in `params`. That is, for each named type parameter `p` in `params`, either there is
   *  no type field named `p` in this type, or `p` is a named type parameter of this type.
   *  The first case is important for the recursive case of AndTypes, because some of their operands might
   *  be missing the named parameter altogether, but the AndType as a whole can still
   *  contain it.
   */
  final def widenToNamedTypeParams(params: Set[TypeSymbol])(implicit ctx: Context): Type = {

    /** Is widening not needed for `tp`? */
    def isOK(tp: Type) = {
      val ownParams = tp.namedTypeParams
      def isMissingOrOpen(param: TypeSymbol) = {
        val ownParam = tp.nonPrivateMember(param.name).symbol
        !ownParam.exists || ownParams.contains(ownParam.asType)
      }
      params.forall(isMissingOrOpen)
    }

    /** Widen type by forming the intersection of its widened parents */
    def widenToParents(tp: Type) = {
      val parents = tp.parents.map(p =>
        tp.baseTypeWithArgs(p.symbol).widenToNamedTypeParams(params))
      parents.reduceLeft(ctx.typeComparer.andType(_, _))
    }

    if (isOK(self)) self
    else self match {
      case self @ AppliedType(tycon, args) if !isOK(tycon) =>
        widenToParents(self)
      case self: TypeRef if self.symbol.isClass =>
        widenToParents(self)
      case self: RefinedType =>
        val parent1 = self.parent.widenToNamedTypeParams(params)
        if (params.exists(_.name == self.refinedName)) parent1
        else self.derivedRefinedType(parent1, self.refinedName, self.refinedInfo)
      case self: TypeProxy =>
        self.underlying.widenToNamedTypeParams(params)
      case self: AndOrType =>
        self.derivedAndOrType(
          self.tp1.widenToNamedTypeParams(params), self.tp2.widenToNamedTypeParams(params))
    }
  }

  /** Is self type higher-kinded (i.e. of kind != "*")? */
  def isHK(implicit ctx: Context): Boolean = self.dealias match {
    case self: TypeRef => self.info.isHK
    case self: RefinedType => !Config.newHK && self.isTypeParam
    case self: TypeLambda => true
    case self: HKApply => false
    case self: SingletonType => false
    case self: TypeVar => self.origin.isHK // discrepancy with typeParams, why?
    case self: WildcardType => self.optBounds.isHK
    case self: TypeProxy => self.underlying.isHK
    case _ => false
  }

  /** Computes the kind of `self` without forcing anything.
   *  @return   1   if type is known to be higher-kinded
   *           -1   if type is known to be a * type
   *            0   if kind of `self` is unknown (because symbols have not yet completed)
   */
  def knownHK(implicit ctx: Context): Int = self match {
    case self: TypeRef =>
      val tsym = self.symbol
      if (tsym.isClass) -1
      else tsym.infoOrCompleter match {
        case completer: TypeParamsCompleter =>
          if (completer.completerTypeParams(tsym).nonEmpty) 1 else -1
        case _ =>
          if (!tsym.isCompleting || tsym.isAliasType) tsym.info.knownHK
          else 0
      }
    case self: RefinedType =>
      if (!Config.newHK && self.isTypeParam) 1 else -1
    case self: TypeLambda => 1
    case self: HKApply => -1
    case self: SingletonType => -1
    case self: TypeVar => self.origin.knownHK
    case self: WildcardType => self.optBounds.knownHK
    case self: PolyParam => self.underlying.knownHK
    case self: TypeProxy => self.underlying.knownHK
    case NoType => 0
    case _ => -1
  }

  /** is receiver a higher-kinded application? */
  def isHKApplyOLD(implicit ctx: Context): Boolean = self match {
    case self @ RefinedType(_, name, _) => name.isHkArgNameOLD && !self.isTypeParam
    case _ => false
  }

  /** True if it can be determined without forcing that the class symbol
   *  of this application exists. Equivalent to
   *
   *    self.classSymbol.exists
   *
   *  but without forcing anything.
   */
  def safeIsClassRef(implicit ctx: Context): Boolean = self.stripTypeVar match {
    case self: RefinedOrRecType =>
      self.parent.safeIsClassRef
    case self: TypeRef =>
      self.denot.exists && {
        val sym = self.symbol
        sym.isClass ||
        sym.isCompleted && self.info.isAlias
      }
    case _ =>
      false
  }

  /** Dealias type if it can be done without forcing the TypeRef's info */
  def safeDealias(implicit ctx: Context): Type = self match {
    case self: TypeRef if self.denot.exists && self.symbol.isAliasType =>
      self.info.bounds.hi.stripTypeVar.safeDealias
    case _ =>
      self
  }

  /** Replace references to type parameters with references to hk arguments `this.$hk_i`
   * Care is needed not to cause cyclic reference errors, hence `SafeSubstMap`.
   */
  def recursifyOLD[T <: Type](tparams: List[MemberBinding])(implicit ctx: Context): RecType => T =
    tparams match {
      case (_: Symbol) :: _ =>
        (rt: RecType) =>
          new ctx.SafeSubstMap(tparams.asInstanceOf[List[Symbol]], argRefsOLD(rt, tparams.length))
            .apply(self).asInstanceOf[T]
      case _ =>
        def mapRefs(rt: RecType) = new TypeMap {
          def apply(t: Type): Type = t match {
            case rthis: RecThis if tparams contains rthis.binder.parent => RecThis(rt)
            case _ => mapOver(t)
          }
        }
        mapRefs(_).apply(self).asInstanceOf[T]
    }

  /** Lambda abstract `self` with given type parameters. Examples:
   *
   *      type T[X] = U        becomes    type T = [X] -> U
   *      type T[X] >: L <: U  becomes    type T >: L <: ([X] -> U)
   *
   *  TODO: Handle parameterized lower bounds
   */
  def LambdaAbstract(tparams: List[Symbol])(implicit ctx: Context): Type = {
    def expand(tp: Type) =
      if (Config.newHK)
        TypeLambda(
          tpnme.syntheticLambdaParamNames(tparams.length), tparams.map(_.variance))(
            tl => tparams.map(tparam => tl.lifted(tparams, tparam.info).bounds),
            tl => tl.lifted(tparams, tp))
      else
        TypeLambdaOLD(
          tparams.map(tparam =>
            tparam.memberBoundsAsSeenFrom(self)
              .withBindingKind(BindingKind.fromVariance(tparam.variance))
              .recursifyOLD(tparams)),
          tp.recursifyOLD(tparams))

    assert(!isHK, self)
    if (Config.newHK) self match {
      case self: TypeAlias =>
        self.derivedTypeAlias(expand(self.alias))
      case self @ TypeBounds(lo, hi) =>
        self.derivedTypeBounds(lo, expand(hi))
      case _ => expand(self)
    }
    else self match {
      case self: TypeAlias =>
        self.derivedTypeAlias(expand(self.alias.normalizeHkApplyOLD))
      case self @ TypeBounds(lo, hi) =>
        self.derivedTypeBounds(lo, expand(hi.normalizeHkApplyOLD))
      case _ => expand(self)
    }
  }

  /** If `self` is a * type, perform the following rewritings:
   *
   *  1. For every occurrence of `z.$hk_i`, where `z` is a RecThis type that refers
   *     to some recursive type in `self`, if the member of `self.hk$i` has an alias
   *     type `= U`:
   *
   *         z.$hk_i  -->  U
   *
   *  2. For every top-level binding `type A = z.$hk_i$, where `z` is a RecThis type that refers
   *     to some recursive type in `self`, if the member of `self` has bounds `S..U`:
   *
   *         type A = z.$hk_i  -->  type A >: S <: U
   *
   *  3. If the type constructor preceding all bindings is a * type, delete every top-level
   *     binding `{ type $hk_i ... }` where `$hk_i` does not appear in the prefix of the binding.
   *     I.e.
   *
   *         T { type $hk_i ... }  -->  T
   *
   *     If `$hk_i` does not appear in `T`.
   *
   *  A binding is top-level if it can be reached by
   *
   *   - following aliases unless the type is a LazyRef
   *     (need to keep cycle breakers around, see i974.scala)
   *   - dropping refinements and rec-types
   *   - going from a wildcard type to its upper bound
   */
  def normalizeHkApplyOLD(implicit ctx: Context): Type = self.strictDealias match {
    case self1 @ RefinedType(_, rname, _) if rname.isHkArgNameOLD && self1.typeParams.isEmpty =>
      val inst = new InstMapOLD(self)

      def instTop(tp: Type): Type = tp.strictDealias match {
        case tp: RecType =>
          inst.localRecs += tp
          tp.rebind(instTop(tp.parent))
        case tp @ RefinedType(parent, rname, rinfo) =>
          rinfo match {
            case TypeAlias(TypeRef(RecThis(rt), sel)) if sel.isHkArgNameOLD && inst.localRecs.contains(rt) =>
              val bounds @ TypeBounds(_, _) = self.member(sel).info
              instTop(tp.derivedRefinedType(parent, rname, bounds.withBindingKind(NoBinding)))
            case _ =>
              val parent1 = instTop(parent)
              if (rname.isHkArgNameOLD &&
                !inst.tyconIsHK &&
                !inst.keptRefs.contains(rname)) parent1
              else tp.derivedRefinedType(parent1, rname, inst(rinfo))
          }
        case tp @ WildcardType(bounds @ TypeBounds(lo, hi)) =>
          tp.derivedWildcardType(bounds.derivedTypeBounds(inst(lo), instTop(hi)))
        case tp: LazyRef =>
          instTop(tp.ref)
        case tp =>
          inst.tyconIsHK = tp.isHK
          inst(tp)
      }

      def isLazy(tp: Type): Boolean = tp.strictDealias match {
        case tp: RefinedOrRecType => isLazy(tp.parent)
        case tp @ WildcardType(bounds @ TypeBounds(lo, hi)) => isLazy(hi)
        case tp: LazyRef => true
        case _ => false
      }

      val reduced =
        if (isLazy(self1)) {
          // A strange dance is needed here to make 974.scala compile.
          val res = LazyRef(() => instTop(self))
          res.ref         // without this line, pickling 974.scala fails with an assertion error
                          // saying that we address a RecThis outside its Rec (in the case of RecThis of pickleNewType)
          res             // without this line, typing 974.scala gives a stackoverflow in asSeenFrom.
        }
        else instTop(self)
      if (reduced ne self) {
        hk.println(i"reduce $self  -->  $reduced / ${inst.tyconIsHK}")
        //hk.println(s"reduce $self  -->  $reduced")
      }
      reduced
    case _ => self
  }

  /** A type ref is eta expandable if it refers to a non-lambda class.
   *  In that case we can look for parameterized base types of the type
   *  to eta expand them.
   */
  def isEtaExpandableOLD(implicit ctx: Context) = self match {
    case self: TypeRef => self.symbol.isClass
    case _ => false
  }

  /** Convert a type constructor `TC` which has type parameters `T1, ..., Tn`
   *  in a context where type parameters `U1,...,Un` are expected to
   *
   *     LambdaXYZ { Apply = TC[hk$0, ..., hk$n] }
   *
   *  Here, XYZ corresponds to the variances of
   *   - `U1,...,Un` if the variances of `T1,...,Tn` are pairwise compatible with `U1,...,Un`,
   *   - `T1,...,Tn` otherwise.
   *  v1 is compatible with v2, if v1 = v2 or v2 is non-variant.
   */
  def EtaExpand(tparams: List[TypeSymbol])(implicit ctx: Context): Type = {
    val tparamsToUse = if (variancesConform(typeParams, tparams)) tparams else typeParamSymbols
    self.appliedTo(tparams map (_.typeRef)).LambdaAbstract(tparamsToUse)
      //.ensuring(res => res.EtaReduce =:= self, s"res = $res, core = ${res.EtaReduce}, self = $self, hc = ${res.hashCode}")
  }

  /** Eta expand the prefix in front of any refinements. */
  def EtaExpandCore(implicit ctx: Context): Type = self.stripTypeVar match {
    case self: RefinedType =>
      self.derivedRefinedType(self.parent.EtaExpandCore, self.refinedName, self.refinedInfo)
    case _ =>
      self.EtaExpand(self.typeParamSymbols)
  }

  /** If self is not higher-kinded, eta expand it. */
  def ensureHK(implicit ctx: Context): Type =
    if (isHK) self else EtaExpansion(self)

  /** Eta expand if `self` is a (non-lambda) class reference and `bound` is a higher-kinded type */
  def etaExpandIfHK(bound: Type)(implicit ctx: Context): Type = {
    val hkParams = bound.hkTypeParams
    if (hkParams.isEmpty) self
    else self match {
      case self: TypeRef if self.symbol.isClass && self.typeParams.length == hkParams.length =>
        EtaExpansion(self)
      case _ => self
    }
  }

  /** If argument A and type parameter P are higher-kinded, adapt the variances
   *  of A to those of P, ensuring that the variances of the type lambda A
   *  agree with the variances of corresponding higher-kinded type parameters of P. Example:
   *
   *     class GenericCompanion[+CC[X]]
   *     GenericCompanion[List]
   *
   *  with adaptHkVariances, the argument `List` will expand to
   *
   *     [X] => List[X]
   *
   *  instead of
   *
   *     [+X] => List[X]
   *
   *  even though `List` is covariant. This adaptation is necessary to ignore conflicting
   *  variances in overriding members that have types of hk-type parameters such as
   *  `GenericCompanion[GenTraversable]` or `GenericCompanion[ListBuffer]`.
   *  When checking overriding, we need to validate the subtype relationship
   *
   *      GenericCompanion[[X] -> ListBuffer[X]] <: GenericCompanion[[+X] -> GenTraversable[X]]
   *
   *   Without adaptation, this would be false, and hence an overriding error would
   *   result. But with adaptation, the rhs argument will be adapted to
   *
   *     [X] -> GenTraversable[X]
   *
   *   which makes the subtype test succeed. The crucial point here is that, since
   *   GenericCompanion only expects a non-variant CC, the fact that GenTraversable
   *   is covariant is irrelevant, so can be ignored.
   */
  def adaptHkVariances(bound: Type)(implicit ctx: Context): Type = {
    val hkParams = bound.hkTypeParams
    if (hkParams.isEmpty) self
    else {
      def adaptArg(arg: Type): Type = arg match {
        case arg @ TypeLambda(tparams, body) if
             !tparams.corresponds(hkParams)(_.memberVariance == _.memberVariance) &&
             tparams.corresponds(hkParams)(varianceConforms) =>
          TypeLambda(tparams.map(_.memberName), hkParams.map(_.memberVariance))(
            tl => arg.paramBounds.map(_.subst(arg, tl).bounds),
            tl => arg.resultType.subst(arg, tl)
          )
        case arg @ TypeLambdaOLD(tparamBounds, body) if
             !arg.typeParams.corresponds(hkParams)(_.memberVariance == _.memberVariance) &&
             arg.typeParams.corresponds(hkParams)(varianceConforms) =>
          def adjustVariance(bounds: TypeBounds, tparam: MemberBinding): TypeBounds =
            bounds.withBindingKind(BindingKind.fromVariance(tparam.memberVariance))
          def lift[T <: Type](tp: T): (RecType => T) = arg match {
            case rt0: RecType => tp.subst(rt0, _).asInstanceOf[T]
            case _ => (x => tp)
          }
          val adjusted = (tparamBounds, hkParams).zipped.map(adjustVariance)
          TypeLambdaOLD(adjusted.map(lift), lift(body))
        case arg @ TypeAlias(alias) =>
          arg.derivedTypeAlias(adaptArg(alias))
        case arg @ TypeBounds(lo, hi) =>
          arg.derivedTypeBounds(lo, adaptArg(hi))
        case _ =>
          arg
      }
      adaptArg(self)
    }
  }

  /** Encode
   *
   *     T[U1, ..., Un]
   *
   *  where
   *  @param  self   = `T`
   *  @param  args   = `U1,...,Un`
   *  performing the following simplifications
   *
   *  1. If `T` is an eta expansion `[X1,..,Xn] -> C[X1,...,Xn]` of class `C` compute
   *     `C[U1, ..., Un]` instead.
   *  2. If `T` is some other type lambda `[X1,...,Xn] -> S` none of the arguments
   *     `U1,...,Un` is a wildcard, compute `[X1:=U1, ..., Xn:=Un]S` instead.
   *  3. If `T` is a polytype, instantiate it to `U1,...,Un`.
   */
  final def appliedTo(args: List[Type])(implicit ctx: Context): Type = /*>|>*/ track("appliedTo") /*<|<*/ {
    if (args.isEmpty || ctx.erasedTypes) self
    else self.stripTypeVar match { // TODO investigate why we can't do safeDealias here
      case self: PolyType if !args.exists(_.isInstanceOf[TypeBounds]) =>
        self.instantiate(args)
      case EtaExpansion(self1) =>
        self1.appliedTo(args)
      case TypeLambdaOLD(_, body) if !args.exists(_.isInstanceOf[TypeBounds]) =>
        def substHkArgs = new TypeMap {
          def apply(tp: Type): Type = tp match {
            case TypeRef(RecThis(rt), name) if rt.eq(self) && name.isHkArgNameOLD =>
              args(name.hkArgIndexOLD)
            case _ =>
              mapOver(tp)
          }
        }
        substHkArgs(body)
      case self1: WildcardType =>
        self1
      case _ =>
        self.safeDealias.appliedTo(args, typeParams)
    }
  }

  /** Encode application `T[U1, ..., Un]` without simplifications, where
   *  @param self     = `T`
   *  @param args     = `U1, ..., Un`
   *  @param tparams  are assumed to be the type parameters of `T`.
   */
  final def appliedTo(args: List[Type], typParams: List[MemberBinding])(implicit ctx: Context): Type = {
    def matchParams(t: Type, tparams: List[MemberBinding], args: List[Type])(implicit ctx: Context): Type = args match {
      case arg :: args1 =>
        try {
          val tparam :: tparams1 = tparams
          matchParams(RefinedType(t, tparam.memberName, arg.toBounds(tparam)), tparams1, args1)
        } catch {
          case ex: MatchError =>
            println(s"applied type mismatch: $self with underlying ${self.underlyingIfProxy}, args = $args, typeParams = $typParams") // !!! DEBUG
            //println(s"precomplete decls = ${self.typeSymbol.unforcedDecls.toList.map(_.denot).mkString("\n  ")}")
            throw ex
        }
      case nil => t
    }
    assert(args.nonEmpty)
    self.stripTypeVar match {
      case self: TypeLambda if !args.exists(_.isInstanceOf[TypeBounds]) =>
        self.instantiate(args)
      case self: AndOrType =>
        self.derivedAndOrType(self.tp1.appliedTo(args), self.tp2.appliedTo(args))
      case self: LazyRef =>
        LazyRef(() => self.ref.appliedTo(args, typParams))
      case _ if typParams.isEmpty || typParams.head.isInstanceOf[LambdaParam] =>
        HKApply(self, args)
      case _ =>
        matchParams(self, typParams, args) match {
          case refined @ RefinedType(_, pname, _) if !Config.newHK && pname.isHkArgNameOLD =>
            refined.betaReduceOLD
          case refined =>
            refined
        }
    }
  }

  final def appliedTo(arg: Type)(implicit ctx: Context): Type = appliedTo(arg :: Nil)
  final def appliedTo(arg1: Type, arg2: Type)(implicit ctx: Context): Type = appliedTo(arg1 :: arg2 :: Nil)

  final def applyIfParameterized(args: List[Type])(implicit ctx: Context): Type =
    if (typeParams.nonEmpty) appliedTo(args) else self

  /** A cycle-safe version of `appliedTo` where computing type parameters do not force
   *  the typeconstructor. Instead, if the type constructor is completing, we make
   *  up hk type parameters matching the arguments. This is needed when unpickling
   *  Scala2 files such as `scala.collection.generic.Mapfactory`.
   */
  final def safeAppliedTo(args: List[Type])(implicit ctx: Context) =
    if (Config.newHK)
      self match {
        case self: TypeRef if !self.symbol.isClass && self.symbol.isCompleting =>
          HKApply(self, args)
        case _ =>
          appliedTo(args, typeParams)
      }
    else {
      val safeTypeParams = self match {
        case self: TypeRef if !self.symbol.isClass && self.symbol.isCompleting =>
          // This happens when unpickling e.g. scala$collection$generic$GenMapFactory$$CC
          ctx.warning(i"encountered F-bounded higher-kinded type parameters for ${self.symbol}; assuming they are invariant")
          fallbackTypeParamsOLD(args map alwaysZero)
        case _ =>
          typeParams
      }
      appliedTo(args, safeTypeParams)
    }

  /** Turn this type, which is used as an argument for
   *  type parameter `tparam`, into a TypeBounds RHS
   */
  final def toBounds(tparam: MemberBinding)(implicit ctx: Context): TypeBounds = self match {
    case self: TypeBounds => // this can happen for wildcard args
      self
    case _ =>
      val v = tparam.memberVariance
      /* Not neeeded.
      if (v > 0 && !(tparam is Local) && !(tparam is ExpandedTypeParam)) TypeBounds.upper(self)
      else if (v < 0 && !(tparam is Local) && !(tparam is ExpandedTypeParam)) TypeBounds.lower(self)
      else
      */
      TypeAlias(self, v)
  }

  /** The type arguments of this type's base type instance wrt. `base`.
   *  Existential types in arguments are returned as TypeBounds instances.
   */
  final def baseArgInfos(base: Symbol)(implicit ctx: Context): List[Type] =
    if (self derivesFrom base)
      self match {
        case self: HKApply => self.upperBound.baseArgInfos(base)
        case _ => base.typeParams.map(param => self.member(param.name).info.argInfo)
      }
    else
      Nil

  /** The type arguments of this type's base type instance wrt.`base`.
   *  Existential types in arguments are disallowed.
   */
  final def baseArgTypes(base: Symbol)(implicit ctx: Context): List[Type] =
    baseArgInfos(base) mapConserve noBounds

  /** The type arguments of this type's base type instance wrt.`base`.
   *  Existential types in arguments are approximated by their lower bound.
   */
  final def baseArgTypesLo(base: Symbol)(implicit ctx: Context): List[Type] =
    baseArgInfos(base) mapConserve boundsToLo

  /** The type arguments of this type's base type instance wrt.`base`.
   *  Existential types in arguments are approximated by their upper bound.
   */
  final def baseArgTypesHi(base: Symbol)(implicit ctx: Context): List[Type] =
    baseArgInfos(base) mapConserve boundsToHi

  /** The first type argument of the base type instance wrt `base` of this type */
  final def firstBaseArgInfo(base: Symbol)(implicit ctx: Context): Type = base.typeParams match {
    case param :: _ if self derivesFrom base =>
      self match {
        case self: HKApply => self.upperBound.firstBaseArgInfo(base)
        case _ => self.member(param.name).info.argInfo
      }
    case _ =>
      NoType
  }

  /** The base type including all type arguments and applicable refinements
   *  of this type. Refinements are applicable if they refine a member of
   *  the parent type which furthermore is not a name-mangled type parameter.
   *  Existential types in arguments are returned as TypeBounds instances.
   */
  final def baseTypeWithArgs(base: Symbol)(implicit ctx: Context): Type = ctx.traceIndented(s"btwa ${self.show} wrt $base", core, show = true) {
    def default = self.baseTypeRef(base).appliedTo(baseArgInfos(base))
    self match {
      case tp: TypeRef =>
        tp.info match {
          case TypeBounds(_, hi) => hi.baseTypeWithArgs(base)
          case _ => default
        }
      case tp @ RefinedType(parent, name, _) if !tp.member(name).symbol.is(ExpandedTypeParam) =>
        tp.wrapIfMember(parent.baseTypeWithArgs(base))
      case tp: TermRef =>
        tp.underlying.baseTypeWithArgs(base)
      case tp: HKApply =>
        tp.upperBound.baseTypeWithArgs(base)
      case AndType(tp1, tp2) =>
        tp1.baseTypeWithArgs(base) & tp2.baseTypeWithArgs(base)
      case OrType(tp1, tp2) =>
        tp1.baseTypeWithArgs(base) | tp2.baseTypeWithArgs(base)
      case _ =>
        default
    }
  }

  /** Translate a type of the form From[T] to To[T], keep other types as they are.
   *  `from` and `to` must be static classes, both with one type parameter, and the same variance.
   *  Do the same for by name types => From[T] and => To[T]
   */
  def translateParameterized(from: ClassSymbol, to: ClassSymbol)(implicit ctx: Context): Type = self match {
    case self @ ExprType(tp) =>
      self.derivedExprType(tp.translateParameterized(from, to))
    case _ =>
      if (self.derivesFrom(from))
        if (ctx.erasedTypes) to.typeRef
        else RefinedType(to.typeRef, to.typeParams.head.name, self.member(from.typeParams.head.name).info)
      else self
  }

  /** If this is repeated parameter type, its underlying Seq type,
   *  or, if isJava is true, Array type, else the type itself.
   */
  def underlyingIfRepeated(isJava: Boolean)(implicit ctx: Context): Type =
    if (self.isRepeatedParam) {
      val seqClass = if (isJava) defn.ArrayClass else defn.SeqClass
      translateParameterized(defn.RepeatedParamClass, seqClass)
    }
    else self

  /** If this is an encoding of a (partially) applied type, return its arguments,
   *  otherwise return Nil.
   *  Existential types in arguments are returned as TypeBounds instances.
   */
  final def argInfos(implicit ctx: Context): List[Type] = self match {
    case AppliedType(tycon, args) => args
    case _ => Nil
  }

  /** Argument types where existential types in arguments are disallowed */
  def argTypes(implicit ctx: Context) = argInfos mapConserve noBounds

  /** Argument types where existential types in arguments are approximated by their lower bound */
  def argTypesLo(implicit ctx: Context) = argInfos mapConserve boundsToLo

  /** Argument types where existential types in arguments are approximated by their upper bound  */
  def argTypesHi(implicit ctx: Context) = argInfos mapConserve boundsToHi

  /** The core type without any type arguments.
   *  @param `typeArgs` must be the type arguments of this type.
   */
  final def withoutArgs(typeArgs: List[Type]): Type = self match {
    case HKApply(tycon, args) => tycon
    case _ =>
      typeArgs match {
        case _ :: typeArgs1 =>
          val RefinedType(tycon, _, _) = self
          tycon.withoutArgs(typeArgs1)
        case nil =>
          self
      }
  }

  final def typeConstructor(implicit ctx: Context): Type = self.stripTypeVar match {
    case AppliedType(tycon, _) => tycon
    case self => self
  }

  /** If this is the image of a type argument; recover the type argument,
   *  otherwise NoType.
   */
  final def argInfo(implicit ctx: Context): Type = self match {
    case self: TypeAlias => self.alias
    case self: TypeBounds => self
    case _ => NoType
  }

  /** If this is a type alias, its underlying type, otherwise the type itself */
  def dropAlias(implicit ctx: Context): Type = self match {
    case TypeAlias(alias) => alias
    case _ => self
  }

  /** The element type of a sequence or array */
  def elemType(implicit ctx: Context): Type = self match {
    case defn.ArrayOf(elemtp) => elemtp
    case JavaArrayType(elemtp) => elemtp
    case _ => firstBaseArgInfo(defn.SeqClass)
  }
}