aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/core/TypeComparer.scala
blob: 53098e943dc6ddff585f1b78e38459558663effe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
package dotty.tools
package dotc
package core

import Types._, Contexts._, Symbols._, Flags._, Names._, NameOps._
import Decorators._
import StdNames.{nme, tpnme}
import collection.mutable
import printing.Disambiguation.disambiguated
import util.SimpleMap
import config.Config

/** Provides methods to compare types.
 *  @param  constraint The initial constraint which is assumed to hold for the comparisons.
 *                      The constraint set is updated when undetermined type parameters
 *                      in the constraint's domain are compared.
 */
class TypeComparer(initctx: Context) extends DotClass {
  implicit val ctx = initctx

  val state = ctx.typerState
  import state.constraint

  private var pendingSubTypes: mutable.Set[(Type, Type)] = null
  private var recCount = 0

  protected var frozenConstraint = false

  private var myAnyClass: ClassSymbol = null
  private var myNothingClass: ClassSymbol = null
  private var myNullClass: ClassSymbol = null
  private var myObjectClass: ClassSymbol = null
  def AnyClass = {
    if (myAnyClass == null) myAnyClass = defn.AnyClass
    myAnyClass
  }
  def NothingClass = {
    if (myNothingClass == null) myNothingClass = defn.NothingClass
    myNothingClass
  }
  def NullClass = {
    if (myNullClass == null) myNullClass = defn.NullClass
    myNullClass
  }
  def ObjectClass = {
    if (myObjectClass == null) myObjectClass = defn.ObjectClass
    myObjectClass
  }

  /** Add the constraint `<bounds.lo <: param <: bounds.hi>`
   *  to `constraint`.
   *  @pre `param` is in the constraint's domain
   */
  def addConstraint1(param: PolyParam, bound: Type, fromBelow: Boolean): Boolean = {
      val oldBounds = constraint.bounds(param)
      val newBounds =
        if (fromBelow) oldBounds.derivedTypeBounds(oldBounds.lo | bound, oldBounds.hi)
        else oldBounds.derivedTypeBounds(oldBounds.lo, oldBounds.hi & bound)
      if (oldBounds ne newBounds)
        constraint = constraint.updated(param, newBounds)
      isSubType(newBounds.lo, newBounds.hi)
    }

  def addConstraint(param: PolyParam, bound: Type, fromBelow: Boolean): Boolean =
    param == bound ||
    !frozenConstraint && {
      println(s"adding ${param.show} ${if (fromBelow) ">:>" else "<:<"} ${bound.show} to ${constraint.show}")
      bound match {
        case bound: PolyParam if constraint contains bound =>
          addConstraint1(param, bound, fromBelow) &&
          addConstraint1(bound, param, !fromBelow)
        case _ =>
          addConstraint1(param, bound, fromBelow)
      }
    }

  /** Solve constraint for given type parameter `param`.
   *  If `fromBelow` is true the parameter is approximated by its lower bound,
   *  otherwise it is approximated by its upper bound. However, any occurrences
   *  of the parameter in a refinement somewhere in the bound are removed.
   *  (Such occurrences can arise for F-bounded types).
   *  The constraint is left unchanged.
   *  @return the instantiating type
   *  @pre `param` is associated with type bounds in the current constraint.
   */
  def approximation(param: PolyParam, fromBelow: Boolean): Type = {
    val avoidParam = new TypeMap {
      override def apply(tp: Type) = mapOver {
        tp match {
          case tp: RefinedType if param occursIn tp.refinedInfo => tp.parent
          case _ => tp
        }
      }
    }
    val bounds = constraint.bounds(param)
    val bound = if (fromBelow) bounds.lo else bounds.hi
    val inst = avoidParam(bound)
    println(s"approx ${param.show}, from below = $fromBelow, bound = ${bound.show}, inst = ${inst.show}")
    inst
  }

  def isSubTypeWhenFrozen(tp1: Type, tp2: Type): Boolean = {
    val saved = frozenConstraint
    frozenConstraint = true
    try isSubType(tp1, tp2)
    finally frozenConstraint = saved
  }

  def isSubType(tp1: Type, tp2: Type): Boolean =
    if (tp1 == NoType || tp2 == NoType) false
    else if (tp1 eq tp2) true
    else {
      val cs = constraint
      try {
        recCount += 1
/* !!! DEBUG
        if (isWatched(tp1) && isWatched(tp2) && !(this.isInstanceOf[ExplainingTypeComparer])) {
          val explained = new ExplainingTypeComparer(ctx)
          println("***** watched:")
          println(TypeComparer.explained(_.typeComparer.isSubType(tp1, tp2)))
        }
*/
        val result =
          if (recCount < LogPendingSubTypesThreshold) firstTry(tp1, tp2)
          else monitoredIsSubType(tp1, tp2)
        recCount -= 1
        if (!result) constraint = cs
        result
      } catch {
        case ex: Throwable =>
          if (ex.isInstanceOf[AssertionError]) { // !!!DEBUG
            println(disambiguated(implicit ctx => s"assertion failure for ${tp1.show} <:< ${tp2.show}"))
            def explainPoly(tp: Type) = tp match {
              case tp: PolyParam => println(s"polyparam ${tp.show} found in ${tp.binder.show}")
              case tp: TypeRef => println(s"typeref ${tp.show} found in ${tp.symbol.owner.show}")
              case tp: TypeVar => println(s"typevar ${tp.show}, origin = ${tp.origin}")
              case _ => println(s"${tp.show} is a ${tp.getClass}")
            }
            explainPoly(tp1)
            explainPoly(tp2)
          }
          recCount -= 1
          constraint = cs
          throw ex
      }
    }

  def monitoredIsSubType(tp1: Type, tp2: Type) = {
    if (pendingSubTypes == null) {
      pendingSubTypes = new mutable.HashSet[(Type, Type)]
      ctx.log(s"!!! deep subtype recursion involving $tp1 <:< $tp2")
    }
    val p = (tp1, tp2)
    !pendingSubTypes(p) && {
      try {
        pendingSubTypes += p
        firstTry(tp1, tp2)
      } finally {
        pendingSubTypes -= p
      }
    }
  }

  def firstTry(tp1: Type, tp2: Type): Boolean = ctx.debugTraceIndented(s"$tp1 <:< $tp2") {
    tp2 match {
      case tp2: NamedType =>
        tp1 match {
          case tp1: NamedType =>
            val sym1 = tp1.symbol
            val sym2 = tp2.symbol
            val pre1 = tp1.prefix
            val pre2 = tp2.prefix

            ( if (sym1 == sym2) (
                ctx.erasedTypes
                || sym1.isStaticOwner
                || isSubType(pre1, pre2)
                )
              else (
                tp1.name == tp2.name && isSubType(pre1, pre2)
                || sym2.isClass && {
                     val base = tp1.baseType(sym2)
                     base.exists && (base ne tp1) && isSubType(base, tp2)
                   }
                )
            ) || thirdTryNamed(tp1, tp2)
          case _ =>
            secondTry(tp1, tp2)
        }
      case tp2 @ ThisType(cls) =>
        if (cls is ModuleClass)
          tp1 match {
            case tp1: TermRef =>
              return tp1.symbol.moduleClass == cls && tp1.prefix <:< cls.owner.thisType
            case _ =>
          }
        secondTry(tp1, tp2)
      case tp2: PolyParam =>
        tp2 == tp1 || {
          isSubTypeWhenFrozen(tp1, bounds(tp2).lo) || {
            constraint at tp2 match {
              case TypeBounds(lo, _) => addConstraint(tp2, tp1.widen.dealias, fromBelow = true)
              case _ => secondTry(tp1, tp2)
            }
          }
        }
      case tp2: BoundType =>
        tp2 == tp1 || secondTry(tp1, tp2)
      case tp2: TypeVar =>
        (tp1 eq tp2) || isSubType(tp1, tp2.underlying)
      case tp2: ProtoType =>
        isMatchedByProto(tp2, tp1)
      case tp2: WildcardType =>
        tp2.optBounds match {
          case TypeBounds(_, hi) => isSubType(tp1, hi)
          case NoType => true
        }
      case tp2: AnnotatedType =>
        isSubType(tp1, tp2.tpe) // todo: refine?
      case ErrorType =>
        true
      case _ =>
        secondTry(tp1, tp2)
    }
  }

  def secondTry(tp1: Type, tp2: Type): Boolean = tp1 match {
    case tp1 @ ThisType(cls) =>
      if (cls is ModuleClass)
        tp2 match {
          case tp2: TermRef =>
            return tp2.symbol.moduleClass == cls && cls.owner.thisType <:< tp2.prefix
          case _ =>
        }
      thirdTry(tp1, tp2)
    case tp1: PolyParam =>
      (tp1 == tp2) || {
        isSubTypeWhenFrozen(bounds(tp1).hi, tp2) || {
          assert(frozenConstraint || !(tp2 isRef defn.NothingClass)) // !!!DEBUG
          constraint at tp1 match {
            case TypeBounds(_, hi) => addConstraint(tp1, tp2.dealias, fromBelow = false)
            case _ => thirdTry(tp1, tp2)
          }
        }
      }
    case tp1: BoundType =>
      tp1 == tp2 || secondTry(tp1, tp2)
    case tp1: TypeVar =>
      (tp1 eq tp2) || isSubType(tp1.underlying, tp2)
    case tp1: WildcardType =>
      tp1.optBounds match {
        case TypeBounds(lo, _) => isSubType(lo, tp2)
        case _ => true
      }
    case tp1: AnnotatedType =>
      isSubType(tp1.tpe, tp2)
    case ErrorType =>
      true
    case _ =>
      thirdTry(tp1, tp2)
  }

  def thirdTryNamed(tp1: Type, tp2: NamedType): Boolean = tp2.info match {
    case TypeBounds(lo2, hi2) =>
      (isSubType(tp1, lo2)
        || (tp2.symbol is GADTFlexType) && trySetType(tp2, TypeBounds(lo2 | tp1, hi2))
        || fourthTry(tp1, tp2))
    case _ =>
      val cls2 = tp2.symbol
      (cls2 == defn.SingletonClass && tp1.isStable
        || cls2 == defn.NotNullClass && tp1.isNotNull
        || (defn.hkTraits contains cls2) && isSubTypeHK(tp1, tp2)
        || fourthTry(tp1, tp2))
  }

  def thirdTry(tp1: Type, tp2: Type): Boolean = tp2 match {
    case tp2: NamedType =>
      thirdTryNamed(tp1, tp2)
    case tp2 @ RefinedType(parent2, name2) =>
      tp1 match {
        case tp1 @ RefinedType(parent1, name1) if (name1 == name2) && name1.isTypeName =>
          // optimized case; all info on t1.name2 is in refinement tp1.refinedInfo.
          isSubType(tp1, parent2) && isSubType(tp1.refinedInfo, tp2.refinedInfo)
        case _ =>
          def hasMatchingMember(name: Name): Boolean = traceIndented(s"hasMatchingMember($name)") {
            tp1.member(name).hasAltWith(alt => isSubType(alt.info, tp2.refinedInfo)) ||
            name.isHkParamName && {
              val idx = name.hkParamIndex
              val tparams = tp1.typeParams
              idx < tparams.length && hasMatchingMember(tparams(idx).name)
            }
          }
          isSubType(tp1, parent2) && (
               name2 == nme.WILDCARD
            || hasMatchingMember(name2)
            || fourthTry(tp1, tp2))
      }
    case AndType(tp21, tp22) =>
      isSubType(tp1, tp21) && isSubType(tp1, tp22)
    case OrType(tp21, tp22) =>
      isSubType(tp1, tp21) || isSubType(tp1, tp22)
    case tp2 @ MethodType(_, formals1) =>
      tp1 match {
        case tp1 @ MethodType(_, formals2) =>
          tp1.signature == tp2.signature &&
            (if (Config.newMatch) subsumeParams(formals1, formals2, tp1.isJava, tp2.isJava)
             else matchingParams(formals1, formals2, tp1.isJava, tp2.isJava)) &&
            tp1.isImplicit == tp2.isImplicit && // needed?
            isSubType(tp1.resultType, tp2.resultType.subst(tp2, tp1))
        case _ =>
          false
      }
    case tp2: PolyType =>
      tp1 match {
        case tp1: PolyType =>
          (tp1.signature sameParams tp2.signature) &&
          matchingTypeParams(tp1, tp2) &&
          isSubType(tp1.resultType, tp2.resultType.subst(tp2, tp1))
        case _ =>
          false
      }
    case tp2 @ ExprType(restpe2) =>
      tp1 match {
        case tp1 @ ExprType(restpe1) =>
          isSubType(restpe1, restpe2)
        case _ =>
          isSubType(tp1, restpe2)
      }
    case tp2 @ TypeBounds(lo2, hi2) =>
      tp1 match {
        case tp1 @ TypeBounds(lo1, hi1) =>
          val v = tp1.variance + tp2.variance
          ((v > 0) || (lo2 isRef NothingClass) || isSubType(lo2, lo1)) &&
          ((v < 0) || (hi2 isRef AnyClass) || isSubType(hi1, hi2))
        case tp1: ClassInfo =>
          val tt = tp1.typeRef
          isSubType(lo2, tt) && isSubType(tt, hi2)
        case _ =>
          false
      }
    case ClassInfo(pre2, cls2, _, _, _) =>
      tp1 match {
        case ClassInfo(pre1, cls1, _, _, _) =>
          (cls1 eq cls2) && isSubType(pre2, pre1)
        case _ =>
          false
      }
    case _ =>
      fourthTry(tp1, tp2)
  }

  def fourthTry(tp1: Type, tp2: Type): Boolean = tp1 match {
    case tp1: TypeRef =>
      ((tp1.symbol eq NothingClass)
        || (tp1.symbol eq NullClass) && tp2.dealias.typeSymbol.isNonValueClass
        || (tp1.info match {
              case TypeBounds(lo1, hi1) =>
                isSubType(hi1, tp2) ||
                (tp1.symbol is GADTFlexType) && trySetType(tp1, TypeBounds(lo1, hi1 & tp2))
              case _ => false
           }))
    case tp1: SingletonType =>
      val underlying = tp1.underlying match {
        case underlying: ExprType => underlying.resultType
        case underlying => underlying
      }
      isSubType(underlying, tp2)
    case tp1: RefinedType =>
      isSubType(tp1.parent, tp2)
    case AndType(tp11, tp12) =>
      isSubType(tp11, tp2) || isSubType(tp12, tp2)
    case OrType(tp11, tp12) =>
      isSubType(tp11, tp2) && isSubType(tp12, tp2)
    case _ =>
      false
  }

  /** The current bounds of type parameter `param` */
  def bounds(param: PolyParam): TypeBounds = constraint at param match {
    case bounds: TypeBounds => bounds
    case _ => param.binder.paramBounds(param.paramNum)
  }

  /** Defer constraining type variables when compared against prototypes */
  def isMatchedByProto(proto: ProtoType, tp: Type) = tp.stripTypeVar match {
    case tp: PolyParam if constraint contains tp => true
    case _ => proto.isMatchedBy(tp)
  }

  /* not needed
    def isSubArgs(tps1: List[Type], tps2: List[Type], tparams: List[TypeSymbol]): Boolean = tparams match {
      case tparam :: tparams1 =>
        val variance = tparam.variance
        val t1 = tps1.head
        val t2 = tps2.head
        (variance > 0 || isSubType(t2, t1)) &&
        (variance < 0 || isSubType(t1, t2)) &&
        isSubArgs(tps1.tail, tps2.tail, tparams1)
      case _ =>
        assert(tps1.isEmpty && tps2.isEmpty)
        true
    }
*/
  /** Is `tp1` a subtype of a type `tp2` of the form
   *  `scala.HigerKindedXYZ { ... }?
   *  This is the case if `tp1` and `tp2` have the same number
   *  of type parameters, the bounds of tp1's paremeters
   *  are contained in the corresponding bounds of tp2's parameters
   *  and the variances of correesponding parameters agree.
   */
  def isSubTypeHK(tp1: Type, tp2: Type): Boolean = {
    val tparams = tp1.typeParams
    val hkArgs = tp2.typeArgs
    (hkArgs.length == tparams.length) && {
      val base = ctx.newSkolemSingleton(tp1)
      (tparams, hkArgs).zipped.forall { (tparam, hkArg) =>
        base.memberInfo(tparam) <:< hkArg.bounds // TODO: base.memberInfo needed?
      } &&
        (tparams, tp2.typeSymbol.typeParams).zipped.forall { (tparam, tparam2) =>
          tparam.variance == tparam2.variance
        }
    }
  }

  def trySetType(tr: NamedType, bounds: TypeBounds): Boolean =
    (bounds.lo <:< bounds.hi) &&
    { tr.symbol.changeGADTInfo(bounds); true }

  /** A function implementing `tp1` matches `tp2`. */
  final def matchesType(tp1: Type, tp2: Type, alwaysMatchSimple: Boolean): Boolean = tp1 match {
    case tp1: MethodType =>
      tp2 match {
        case tp2: MethodType =>
          tp1.isImplicit == tp2.isImplicit &&
            matchingParams(tp1.paramTypes, tp2.paramTypes, tp1.isJava, tp2.isJava) &&
            matchesType(tp1.resultType, tp2.resultType.subst(tp2, tp1), alwaysMatchSimple)
        case tp2: ExprType =>
          tp1.paramNames.isEmpty &&
            matchesType(tp1.resultType, tp2.resultType, alwaysMatchSimple)
        case _ =>
          false
      }
    case tp1: ExprType =>
      tp2 match {
        case tp2: MethodType =>
          tp2.paramNames.isEmpty &&
            matchesType(tp1.resultType, tp2.resultType, alwaysMatchSimple)
        case tp2: ExprType =>
          matchesType(tp1.resultType, tp2.resultType, alwaysMatchSimple)
        case _ =>
          false // was: matchesType(tp1.resultType, tp2, alwaysMatchSimple)
      }
    case tp1: PolyType =>
      tp2 match {
        case tp2: PolyType =>
          sameLength(tp1.paramNames, tp2.paramNames) &&
            matchesType(tp1.resultType, tp2.resultType.subst(tp2, tp1), alwaysMatchSimple)
        case _ =>
          false
      }
    case _ =>
      tp2 match {
        case _: MethodType | _: PolyType =>
          false
        case tp2: ExprType =>
          false // was: matchesType(tp1, tp2.resultType, alwaysMatchSimple)
        case _ =>
          alwaysMatchSimple || isSameType(tp1, tp2)
      }
  }

  /** Are `syms1` and `syms2` parameter lists with pairwise equivalent types? */
  private def matchingParams(formals1: List[Type], formals2: List[Type], isJava1: Boolean, isJava2: Boolean): Boolean = formals1 match {
    case formal1 :: rest1 =>
      formals2 match {
        case formal2 :: rest2 =>
          (isSameType(formal1, formal2)
            || isJava1 && (formal2 isRef ObjectClass) && (formal1 isRef AnyClass)
            || isJava2 && (formal1 isRef ObjectClass) && (formal2 isRef AnyClass)) &&
          matchingParams(rest1, rest2, isJava1, isJava2)
        case nil =>
          false
      }
    case nil =>
      formals2.isEmpty
  }

  private def subsumeParams(formals1: List[Type], formals2: List[Type], isJava1: Boolean, isJava2: Boolean): Boolean = formals1 match {
    case formal1 :: rest1 =>
      formals2 match {
        case formal2 :: rest2 =>
          (isSubType(formal2, formal1)
            || isJava1 && (formal2 isRef ObjectClass) && (formal1 isRef AnyClass)
            || isJava2 && (formal1 isRef ObjectClass) && (formal2 isRef AnyClass)) &&
          subsumeParams(rest1, rest2, isJava1, isJava2)
        case nil =>
          false
      }
    case nil =>
      formals2.isEmpty
  }

  /** Do poly types `poly1` and `poly2` have type parameters that
   *  have the same bounds (after renaming one set to the other)?
   */
  private def matchingTypeParams(poly1: PolyType, poly2: PolyType): Boolean =
    (poly1.paramBounds corresponds poly2.paramBounds)((b1, b2) =>
      isSameType(b1, b2.subst(poly2, poly1)))

  /** Two types are the same if are mutual subtypes of each other */
  def isSameType(tp1: Type, tp2: Type): Boolean =
    if (tp1 == NoType || tp2 == NoType) false
    else if (tp1 eq tp2) true
    else isSubType(tp1, tp2) && isSubType(tp2, tp1)

  /** The greatest lower bound of two types */
  def glb(tp1: Type, tp2: Type): Type =
    if (tp1 eq tp2) tp1
    else if (!tp1.exists || (tp1 isRef AnyClass) || (tp2 isRef NothingClass)) tp2
    else if (!tp2.exists || (tp2 isRef AnyClass) || (tp1 isRef NothingClass)) tp1
    else tp2 match {  // normalize to disjunctive normal form if possible.
      case OrType(tp21, tp22) =>
        tp1 & tp21 | tp1 & tp22
      case _ =>
        tp1 match {
          case OrType(tp11, tp12) =>
            tp11 & tp2 | tp12 & tp2
          case _ =>
            val t1 = mergeIfSub(tp1, tp2)
            if (t1.exists) t1
            else {
              val t2 = mergeIfSub(tp2, tp1)
              if (t2.exists) t2
              else andType(tp1, tp2)
            }
        }
    }

  /** The greatest lower bound of a list types */
  final def glb(tps: List[Type]): Type =
    (defn.AnyType /: tps)(glb)

  /** The least upper bound of two types */
  def lub(tp1: Type, tp2: Type): Type =
    if (tp1 eq tp2) tp1
    else if (!tp1.exists || (tp1 isRef AnyClass) || (tp2 isRef NothingClass)) tp1
    else if (!tp2.exists || (tp2 isRef AnyClass) || (tp1 isRef NothingClass)) tp2
    else {
      val t1 = mergeIfSuper(tp1, tp2)
      if (t1.exists) t1
      else {
        val t2 = mergeIfSuper(tp2, tp1)
        if (t2.exists) t2
        else {
          val tp1w = tp1.widen
          val tp2w = tp2.widen
          if ((tp1 ne tp1w) && (tp2 ne tp2w)) lub(tp1w, tp2w)
          else orType(tp1w, tp2w) // no need to check subtypes again
        }
      }
    }

  /** The least upper bound of a list of types */
  final def lub(tps: List[Type]): Type =
    (defn.NothingType /: tps)(lub)

  /** Merge `t1` into `tp2` if t1 is a subtype of some &-summand of tp2.
   */
  private def mergeIfSub(tp1: Type, tp2: Type): Type =
    if (isSubTypeWhenFrozen(tp1, tp2))
      if (isSubTypeWhenFrozen(tp2, tp1)) tp2 else tp1 // keep existing type if possible
    else tp2 match {
      case tp2 @ AndType(tp21, tp22) =>
        val lower1 = mergeIfSub(tp1, tp21)
        if (lower1 eq tp21) tp2
        else if (lower1.exists) lower1 & tp22
        else {
          val lower2 = mergeIfSub(tp1, tp22)
          if (lower2 eq tp22) tp2
          else if (lower2.exists) tp21 & lower2
          else NoType
        }
      case _ =>
        NoType
    }

  /** Merge `tp1` into `tp2` if tp1 is a supertype of some |-summand of tp2.
   */
  private def mergeIfSuper(tp1: Type, tp2: Type): Type =
    if (isSubTypeWhenFrozen(tp2, tp1))
      if (isSubTypeWhenFrozen(tp1, tp2)) tp2 else tp1 // keep existing type if possible
    else tp2 match {
      case tp2 @ OrType(tp21, tp22) =>
        val higher1 = mergeIfSuper(tp1, tp21)
        if (higher1 eq tp21) tp2
        else if (higher1.exists) higher1 | tp22
        else {
          val higher2 = mergeIfSuper(tp1, tp22)
          if (higher2 eq tp22) tp2
          else if (higher2.exists) tp21 | higher2
          else NoType
        }
      case _ =>
        NoType
    }

  /** Form a normalized conjunction of two types.
   *  Note: For certain types, `&` is distributed inside the type. This holds for
   *  all types which are not value types (e.g. TypeBounds, ClassInfo,
   *  ExprType, MethodType, PolyType). Also, when forming an `&`,
   *  instantiated TypeVars are dereferenced and annotations are stripped.
   *  Finally, refined types with the same refined name are
   *  opportunistically merged.
   *
   *  Sometimes, the conjunction of two types cannot be formed because
   *  the types are in conflict of each other. In particular:
   *
   *    1. Two different class types are conflicting.
   *    2. A class type conflicts with a type bounds that does not include the class reference.
   *    3. Two method or poly types with different (type) parameters but the same
   *       signature are conflicting
   *
   *  In these cases, one of the types is picked (@see andConflict).
   *  This is arbitrary, but I believe it is analogous to forming
   *  unfeasible TypeBounds (where low bound is not a subtype of high bound).
   *  Such TypeBounds can also be arbitrarily instantiated. In both cases we need to
   *  make sure that such types do not actually arise in source programs.
   */
  final def andType(tp1: Type, tp2: Type) = ctx.traceIndented(s"glb(${tp1.show}, ${tp2.show})", show = true) {
    val t1 = distributeAnd(tp1, tp2)
    if (t1.exists) t1
    else {
      val t2 = distributeAnd(tp2, tp1)
      if (t2.exists) t2
      else AndType(tp1, tp2)
    }
  }

  /** Form a normalized conjunction of two types.
   *  Note: For certain types, `|` is distributed inside the type. This holds for
   *  all types which are not value types (e.g. TypeBounds, ClassInfo,
   *  ExprType, MethodType, PolyType). Also, when forming an `|`,
   *  instantiated TypeVars are dereferenced and annotations are stripped.
   *
   *  Sometimes, the disjunction of two types cannot be formed because
   *  the types are in conflict of each other. (@see `andType` for an enumeration
   *  of these cases). In cases of conflict a `MergeError` is raised.
   */
  final def orType(tp1: Type, tp2: Type) = {
    val t1 = distributeOr(tp1, tp2)
    if (t1.exists) t1
    else {
      val t2 = distributeOr(tp2, tp1)
      if (t2.exists) t2
      else OrType(tp1, tp2)
    }
  }

  /** Try to distribute `&` inside type, detect and handle conflicts */
  private def distributeAnd(tp1: Type, tp2: Type): Type = tp1 match {
    case tp1 @ TypeBounds(lo1, hi1) =>
      tp2 match {
        case tp2 @ TypeBounds(lo2, hi2) =>
          if ((lo1 eq hi1) && (lo2 eq hi2)) {
            val v = (tp1.variance + tp2.variance) / 2
            if (v > 0) return TypeAlias(hi1 & hi2, v)
            if (v < 0) return TypeAlias(lo1 | lo2, v)
          }
          TypeBounds(lo1 | lo2, hi1 & hi2)
        case _ =>
          andConflict(tp1, tp2)
      }
    case tp1: ClassInfo =>
      tp2 match {
        case tp2: ClassInfo if tp1.cls eq tp2.cls =>
          tp1.derivedClassInfo(tp1.prefix & tp2.prefix)
        case _ =>
          andConflict(tp1, tp2)
      }
    case tp1 @ MethodType(names1, formals1) =>
      tp2 match {
        case tp2 @ MethodType(names2, formals2)
        if Config.newMatch && (tp1.isImplicit == tp2.isImplicit) && formals1.hasSameLengthAs(formals2) =>
          tp1.derivedMethodType(
              mergeNames(names1, names2, nme.syntheticParamName),
              (formals1 zipWithConserve formals2)(_ | _),
              tp1.resultType & tp2.resultType.subst(tp2, tp1))
        case tp2 @ MethodType(names2, formals2)
        if matchingParams(formals1, formals2, tp1.isJava, tp2.isJava) &&
           tp1.isImplicit == tp2.isImplicit =>
          tp1.derivedMethodType(
              mergeNames(names1, names2, nme.syntheticParamName),
              formals1, tp1.resultType & tp2.resultType.subst(tp2, tp1))
        case _ =>
          andConflict(tp1, tp2)
      }
    case tp1: PolyType =>
      tp2 match {
        case tp2: PolyType if matchingTypeParams(tp1, tp2) =>
          tp1.derivedPolyType(
              mergeNames(tp1.paramNames, tp2.paramNames, tpnme.syntheticTypeParamName),
              tp1.paramBounds, tp1.resultType & tp2.resultType.subst(tp2, tp1))
        case _ =>
          andConflict(tp1, tp2)
      }
    case ExprType(rt1) =>
      tp2 match {
        case ExprType(rt2) =>
          ExprType(rt1 & rt2)
        case _ =>
          rt1 & tp2
      }
    case tp1: RefinedType =>
      // opportunistically merge same-named refinements
      // this does not change anything semantically (i.e. merging or not merging
      // gives =:= types), but it keeps the type smaller.
      tp2 match {
        case tp2: RefinedType if tp1.refinedName == tp2.refinedName =>
          tp1.derivedRefinedType(
              tp1.parent & tp2.parent, tp1.refinedName,
              tp1.refinedInfo & tp2.refinedInfo)
        case _ =>
          NoType
      }
    case tp1: TypeVar if tp1.isInstantiated =>
      tp1.underlying & tp2
    case tp1: AnnotatedType =>
      tp1.underlying & tp2
    case _ =>
      NoType
  }

  /** Try to distribute `|` inside type, detect and handle conflicts */
  private def distributeOr(tp1: Type, tp2: Type): Type = tp1 match {
    case tp1 @ TypeBounds(lo1, hi1) =>
      tp2 match {
        case tp2 @ TypeBounds(lo2, hi2) =>
          if ((lo1 eq hi1) && (lo2 eq hi2)) {
            val v = (tp1.variance + tp2.variance) / 2
            if (v > 0) return TypeAlias(hi1 | hi2, v)
            if (v < 0) return TypeAlias(lo1 & lo2, v)
          }
          TypeBounds(lo1 & lo2, hi1 | hi2)
        case _ =>
          orConflict(tp1, tp2)
      }
    case tp1: ClassInfo =>
      tp2 match {
        case tp2: ClassInfo if tp1.cls eq tp2.cls =>
          tp1.derivedClassInfo(tp1.prefix | tp2.prefix)
        case _ =>
          orConflict(tp1, tp2)
      }
    case tp1 @ MethodType(names1, formals1) =>
      tp2 match {
        case tp2 @ MethodType(names2, formals2)
        if Config.newMatch && (tp1.isImplicit == tp2.isImplicit) && formals1.hasSameLengthAs(formals2) =>
          tp1.derivedMethodType(
              mergeNames(names1, names2, nme.syntheticParamName),
              (formals1 zipWithConserve formals2)(_ & _),
              tp1.resultType | tp2.resultType.subst(tp2, tp1))
        case tp2 @ MethodType(names2, formals2)
        if matchingParams(formals1, formals2, tp1.isJava, tp2.isJava) &&
           tp1.isImplicit == tp2.isImplicit =>
          tp1.derivedMethodType(
              mergeNames(names1, names2, nme.syntheticParamName),
              formals1, tp1.resultType | tp2.resultType.subst(tp2, tp1))
        case _ =>
          orConflict(tp1, tp2)
      }
    case tp1: PolyType =>
      tp2 match {
        case tp2: PolyType if matchingTypeParams(tp1, tp2) =>
          tp1.derivedPolyType(
              mergeNames(tp1.paramNames, tp2.paramNames, tpnme.syntheticTypeParamName),
              tp1.paramBounds, tp1.resultType | tp2.resultType.subst(tp2, tp1))
        case _ =>
          orConflict(tp1, tp2)
      }
    case ExprType(rt1) =>
      tp2 match {
        case ExprType(rt2) =>
          ExprType(rt1 | rt2)
        case _ =>
          ExprType(rt1 | tp2)
      }
    case tp1: TypeVar if tp1.isInstantiated =>
      tp1.underlying | tp2
    case tp1: AnnotatedType =>
      tp1.underlying | tp2
    case _ =>
      NoType
  }

  /** Handle `&`-conflict. If `tp2` is strictly better than `tp1` as determined
   *  by @see `isAsGood`, pick `tp2` as the winner otherwise pick `tp1`.
   *  Issue a warning and return the winner.
   */
  private def andConflict(tp1: Type, tp2: Type): Type = {
    // println(disambiguated(implicit ctx => TypeComparer.explained(_.typeComparer.isSubType(tp1, tp2)))) !!!DEBUG
    val winner = if (isAsGood(tp2, tp1) && !isAsGood(tp1, tp2)) tp2 else tp1
    def msg = disambiguated { implicit ctx =>
      s"${mergeErrorMsg(tp1, tp2)} as members of one type; keeping only ${showType(winner)}"
    }
    /* !!! DEBUG
    println("right not a subtype of left because:")
    println(TypeComparer.explained { implicit ctx => tp2 <:< tp1})
    println("left not a subtype of right because:")
    println(TypeComparer.explained { implicit ctx => tp1 <:< tp2})
    assert(false, s"andConflict ${tp1.show} and ${tp2.show}")
    */
    ctx.warning(msg, ctx.tree.pos)
    winner
  }

  /** Handle `|`-conflict by raising a `MergeError` exception */
  private def orConflict(tp1: Type, tp2: Type): Type =
    throw new MergeError(mergeErrorMsg(tp1, tp2))

  /** Merge two lists of names. If names in corresponding positions match, keep them,
   *  otherwise generate new synthetic names.
   */
  private def mergeNames[N <: Name](names1: List[N], names2: List[N], syntheticName: Int => N): List[N] = {
    for ((name1, name2, idx) <- (names1, names2, 0 until names1.length).zipped)
    yield if (name1 == name2) name1 else syntheticName(idx)
  }.toList

  /** Show type, handling type types better than the default */
  private def showType(tp: Type)(implicit ctx: Context) = tp match {
    case ClassInfo(_, cls, _, _, _) => cls.showLocated
    case bounds: TypeBounds => "type bounds" + bounds.show
    case _ => tp.show
  }

  /** The error message kernel for a merge conflict */
  private def mergeErrorMsg(tp1: Type, tp2: Type)(implicit ctx: Context) =
    s"cannot merge ${showType(tp1)} with ${showType(tp2)}"

  /** A comparison function to pick a winner in case of a merge conflict */
  private def isAsGood(tp1: Type, tp2: Type): Boolean = tp1 match {
    case tp1: ClassInfo =>
      tp2 match {
        case tp2: ClassInfo =>
          (tp1.prefix <:< tp2.prefix) || (tp1.cls.owner derivesFrom tp2.cls.owner)
        case _ =>
          false
      }
    case tp1: PolyType =>
      tp2 match {
        case tp2: PolyType =>
          tp1.typeParams.length == tp2.typeParams.length &&
          isAsGood(tp1.resultType, tp2.resultType.subst(tp2, tp1))
        case _ =>
          false
      }
    case tp1: MethodType =>
      tp2 match {
        case tp2: MethodType =>
          def asGoodParams(formals1: List[Type], formals2: List[Type]) =
            (formals2 corresponds formals1)(_ <:< _)
          asGoodParams(tp1.paramTypes, tp2.paramTypes) &&
          (!asGoodParams(tp2.paramTypes, tp1.paramTypes) ||
           isAsGood(tp1.resultType, tp2.resultType))
        case _ =>
          false
      }
    case _ =>
      false
  }
/*
  def widenInferred(tp: Type) = tp match {
    case tp: OrType =>
      val alts = tp.mapReduceOr(_ :: Nil)(_ ::: _)

  }
*/
  def copyIn(ctx: Context) = new TypeComparer(ctx)

  def traceIndented[T](str: String)(op: => T): T = op
}

object TypeComparer {
  def explained[T](op: Context => T)(implicit ctx: Context): String = {
    val nestedCtx = ctx.fresh.withTypeComparerFn(new ExplainingTypeComparer(_))
    op(nestedCtx)
    nestedCtx.typeComparer.toString
  }
}

class ExplainingTypeComparer(initctx: Context) extends TypeComparer(initctx) {
  private var indent = 0
  private val b = new StringBuilder

  private var skipped = false

  override def traceIndented[T](str: String)(op: => T): T =
    if (skipped)
      op
/*
    else if (str startsWith " =+ scala.collection.immutable.List <:<  =+ scala.collection.immutable.List") {
      skipped = true
      try op
      finally skipped = false
    }*/ else {
    indent += 2
    b append "\n" append (" " * indent) append "==> " append str
    val res = op
    b append "\n" append (" " * indent) append "<== " append str append " = " append show(res)
    indent -= 2
    res
  }

  private def show(res: Any) = res match {
    case res: printing.Showable if !ctx.settings.Yexplainlowlevel.value => res.show
    case _ => String.valueOf(res)
  }

  override def isSubType(tp1: Type, tp2: Type) =
    traceIndented(s"${show(tp1)} <:< ${show(tp2)} ${tp1.getClass} ${tp2.getClass}") {
      super.isSubType(tp1, tp2)
    }

  override def lub(tp1: Type, tp2: Type) =
    traceIndented(s"lub(${show(tp1)}, ${show(tp2)})") {
      super.lub(tp1, tp2)
    }

  override def glb(tp1: Type, tp2: Type) =
    traceIndented(s"glb(${show(tp1)}, ${show(tp2)})") {
      super.glb(tp1, tp2)
    }

  override def addConstraint(param: PolyParam, bound: Type, fromBelow: Boolean): Boolean =
    traceIndented(s"add constraint $param ${if (fromBelow) ">:" else "<:"} $bound $frozenConstraint") {
      assert(bound ne param)
      (bound.stripTypeVar eq param) ||
        super.addConstraint(param, bound, fromBelow)
    }

  override def copyIn(ctx: Context) = new ExplainingTypeComparer(ctx)

  override def toString =
    "Subtype trace:" + {
      try b.toString
      finally b.clear()
  }
}