aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/core/Types.scala
blob: 508bf53b0581283775584ce76b7dc4dc1b0c6987 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
package dotty.tools.dotc
package core

import util.HashSet
import Symbols._
import Flags._
import Names._
import StdNames._, NameOps._
import Scopes._
import Constants._
import Contexts._
import Annotations._
import SymDenotations._
import Decorators._
import Denotations._
import Periods._
import util.Positions.Position
import ast.tpd._, printing.Texts._
import transform.Erasure
import printing.Printer
import scala.util.hashing.{ MurmurHash3 => hashing }
import collection.mutable

object Types {

  /** A hash value indicating that the underlying type is not
   *  cached in uniques.
   */
  final val NotCached = 0

  /** An alternative value returned from `hash` if the
   *  computed hashCode would be `NotCached`.
   */
  private final val NotCachedAlt = Int.MinValue

  /** A value that indicates that the hash code is unknown
   */
  private final val HashUnknown = 1234

  /** An alternative value if computeHash would otherwise yield HashUnknown
   */
  private final val HashUnknownAlt = 4321

  /** The class of types.
   *  The principal subclasses and sub-objects are as follows:
   *
   *  Type -+- ProxyType --+- NamedType ----+--- TypeRef
   *        |              |                 \
   *        |              +- SingletonType-+-+- TermRef
   *        |              |                |
   *        |              |                +--- ThisType
   *        |              |                +--- SuperType
   *        |              |                +--- ConstantType
   *        |              |                +--- MethodParam
   *        |              |                +--- RefinedThis
   *        |              |                +--- NoPrefix
   *        |              +- PolyParam
   *        |              +- RefinedType
   *        |              +- TypeBounds
   *        |              +- ExprType
   *        |              +- AnnotatedType
   *        |
   *        +- GroundType -+- AndType
   *                       +- OrType
   *                       +- MethodType -----+- ImplicitMethodType
   *                       |                  +- JavaMethodType
   *                       +- PolyType
   *                       +- ClassInfo
   *                       |
   *                       +- NoType
   *                       +- ErrorType
   *                       +- WildcardType
   */
  abstract class Type extends DotClass with printing.Showable {

// ----- Tests -----------------------------------------------------

    /** Is this type different from NoType? */
    def exists: Boolean = true

    /** This type, if it exists, otherwise `that` type */
    def orElse(that: => Type) = if (exists) this else that

    /** Is this type a value type? */
    final def isValueType: Boolean = this.isInstanceOf[ValueType]

    /** Does this type denote a stable reference (i.e. singleton type)? */
    final def isStable(implicit ctx: Context): Boolean = this match {
      case tp: TermRef => tp.termSymbol.isStable
      case _: SingletonType => true
      case _ => false
    }

    /** Is this type an instance of the given class `cls`? */
    final def isClassType(cls: Symbol)(implicit ctx: Context): Boolean =
      dealias.typeSymbol == cls

    /** Is this type an instance of a non-bottom subclass of the given class `cls`? */
    final def derivesFrom(cls: Symbol)(implicit ctx: Context): Boolean =
      classSymbol.derivesFrom(cls)

    /** Is this an array type? */
    final def isArray(implicit ctx: Context): Boolean = isClassType(defn.ArrayClass)

   /** A type T is a legal prefix in a type selection T#A if
     *  T is stable or T contains no uninstantiated type variables.
     */
    final def isLegalPrefix(implicit ctx: Context): Boolean =
      isStable || memberNames(abstractTypeNameFilter).isEmpty

    /** Is this type guaranteed not to have `null` as a value?
     *  For the moment this is only true for modules, but it could
     *  be refined later.
     */
    final def isNotNull(implicit ctx: Context): Boolean =
      classSymbol is ModuleClass

    /** Is this type produced as a repair for an error? */
    final def isError(implicit ctx: Context): Boolean = thisInstance match {
      case ErrorType => true
      case tp => (tp.typeSymbol is Erroneous) || (tp.termSymbol is Erroneous)
    }

    /** Is some part of this type produced as a repair for an error? */
    final def isErroneous(implicit ctx: Context): Boolean = existsPart(_.isError)

    /** A type is volatile if its DNF contains an alternative of the form
     *  {P1, ..., Pn}, {N1, ..., Nk}, where the Pi are parent typerefs and the
     *  Nj are refinement names, and one the 4 following conditions is met:
     *
     *  1. At least two of the parents Pi are abstract types.
     *  2. One of the parents Pi is an abstract type, and one other type Pj,
     *     j != i has an abstract member which has the same name as an
     *     abstract member of the whole type.
     *  3. One of the parents Pi is an abstract type, and one of the refinement
     *     names Nj refers to an abstract member of the whole type.
     *  4. One of the parents Pi is an abstract type with a volatile upper bound.
     *
     *  Lazy values are not allowed to have volatile type, as otherwise
     *  unsoundness can result.
     */
    final def isVolatile(implicit ctx: Context): Boolean =
      ctx.isVolatile(this)

    /** Does the type carry an annotation that is an instance of `cls`? */
    final def hasAnnotation(cls: ClassSymbol)(implicit ctx: Context): Boolean = thisInstance match {
      case AnnotatedType(annot, tp) => annot.symbol == cls || tp.hasAnnotation(cls)
      case _ => false
    }

    /** Does this type occur as a part of type `that`? */
    final def occursIn(that: Type): Boolean = that.existsPart(this == _)

    def isRepeatedParam(implicit ctx: Context): Boolean =
      defn.RepeatedParamClasses contains typeSymbol

// ----- Higher-order combinators -----------------------------------

    /** Returns true if there is a part of this type that satisfies predicate `p`.
     */
    final def existsPart(p: Type => Boolean): Boolean =
      new ExistsAccumulator(p)(false, this)

    /** Returns true if all parts of this type satisfy predicate `p`.
     */
    final def forallParts(p: Type => Boolean): Boolean = !existsPart(!p(_))

    /** Map function over elements of an AndType, rebuilding with & */
    def mapAnd(f: Type => Type)(implicit ctx: Context): Type = thisInstance match {
      case AndType(tp1, tp2) => tp1.mapAnd(f) & tp2.mapAnd(f)
      case tp => f(tp)
    }

    /** Map function over elements of an OrType, rebuilding with | */
    final def mapOr(f: Type => Type)(implicit ctx: Context): Type = thisInstance match {
      case OrType(tp1, tp2) => tp1.mapOr(f) | tp2.mapOr(f)
      case tp => f(tp)
    }

// ----- Associated symbols ----------------------------------------------

    /** The type symbol associated with the type */
    final def typeSymbol(implicit ctx: Context): Symbol = this match {
      case tp: TypeRef => tp.symbol
      case tp: ClassInfo => tp.cls
      case ThisType(cls) => cls
      case tp: TypeProxy => tp.underlying.typeSymbol
      case _ => NoSymbol
    }

    /** The least class or trait of which this type is a subtype, or
     *  NoSymbol if none exists (either because this type is not a
     *  value type, or because superclasses are ambiguous).
     */
    final def classSymbol(implicit ctx: Context): Symbol = this match {
      case tp: ClassInfo =>
        tp.cls
      case tp: TypeProxy =>
        tp.underlying.classSymbol
      case AndType(l, r) =>
        val lsym = l.classSymbol
        val rsym = r.classSymbol
        if (lsym.isSubClass(rsym)) lsym
        else if (rsym.isSubClass(lsym)) rsym
        else NoSymbol
      case OrType(l, r) =>
        val lsym = l.classSymbol
        val rsym = r.classSymbol
        if (lsym.isSubClass(rsym)) rsym
        else if (rsym.isSubClass(lsym)) lsym
        else NoSymbol
      case _ =>
        NoSymbol
    }

    /** The term symbol associated with the type */
    final def termSymbol(implicit ctx: Context): Symbol = this match {
      case tp: TermRef => tp.symbol
      case tp: TypeProxy => tp.underlying.termSymbol
      case _ => NoSymbol
    }

    /** The base classes of this type as determined by ClassDenotation
     *  in linearization order, with the class itself as first element.
     *  Inherited by all type proxies. `Nil` for all other types.
     */
    final def baseClasses(implicit ctx: Context): List[ClassSymbol] = this match {
      case tp: TypeProxy =>
        tp.underlying.baseClasses
      case tp: ClassInfo =>
        tp.cls.baseClasses
      case _ => Nil
    }

    /** The type parameters of this type are:
     *  For a ClassInfo type, the type parameters of its class.
     *  For a typeref referring to a class, the type parameters of the class.
     *  For a typeref referring to an alias type, the type parameters of the aliased type.
     *  For a typeref referring to an abstract type with a HigherKindedXYZ bound, the
     *  type parameters of the HigherKinded class.
     *  For a refinement type, the type parameters of its parent, unless there's a
     *  refinement with the same name. Inherited by all other type proxies.
     *  For an intersection type A & B, the type parameters of its left operand, A.
     *  Empty list for all other types.
     */
    final def typeParams(implicit ctx: Context): List[TypeSymbol] = this match {
      case tp: ClassInfo =>
        tp.cls.typeParams
      case tp: TypeRef =>
        val tsym = tp.typeSymbol
        if (tsym.isClass) tsym.typeParams
        else if (tsym.isAliasType) tp.underlying.typeParams
        else tp.info.bounds.hi match {
          case AndType(hkBound, other) if defn.hkTraits contains hkBound.typeSymbol =>
            hkBound.typeSymbol.typeParams
          case _ =>
            Nil
        }
      case tp: RefinedType =>
        tp.parent.typeParams filterNot (_.name == tp.refinedName)
      case tp: TypeProxy =>
        tp.underlying.typeParams
      case tp: AndType =>
        tp.tp1.typeParams
      case _ =>
        Nil
    }

    def uninstantiatedTypeParams(implicit ctx: Context): List[TypeSymbol] =
      typeParams filter (tparam => member(tparam.name) == tparam)

// ----- Member access -------------------------------------------------

    /** The scope of all declarations of this type.
     *  Defined by ClassInfo, inherited by type proxies.
     *  Empty scope for all other types.
     */
    final def decls(implicit ctx: Context): Scope = this match {
      case tp: ClassInfo =>
        tp.decls
      case tp: TypeProxy =>
        tp.underlying.decls
      case _ =>
        EmptyScope
    }

    /** A denotation containing the declaration(s) in this type with the given name.
     *  The result is either a SymDenotation or a MultiDenotation of SymDenotations.
     *  The info(s) are the original symbol infos, no translation takes place.
     */
    final def decl(name: Name)(implicit ctx: Context): Denotation =
      findDecl(name, EmptyFlags)

    /** A denotation containing the non-private declaration(s) in this type with the given name */
    final def nonPrivateDecl(name: Name)(implicit ctx: Context): Denotation =
      findDecl(name, Private)

    /** A denotation containing the declaration(s) in this type with the given
     *  name, as seen from prefix type `pre`. Declarations that have a flag
     *  in `excluded` are omitted.
     */
    final def findDecl(name: Name, excluded: FlagSet)(implicit ctx: Context): Denotation = this match {
      case tp: ClassInfo =>
        tp.decls.denotsNamed(name).filterExcluded(excluded).toDenot(NoPrefix)
      case tp: TypeProxy =>
        tp.underlying.findDecl(name, excluded)
    }

    /** The member of this type with the given name  */
    final def member(name: Name)(implicit ctx: Context): Denotation =
      findMember(name, this, EmptyFlags)

    /** The non-private member of this type with the given name. */
    final def nonPrivateMember(name: Name)(implicit ctx: Context): Denotation =
      findMember(name, this, Flags.Private)

    /** Find member of this type with given name and
     *  produce a denotation that contains the type of the member
     *  as seen from given prefix `pre`. Exclude all members that have
     *  flags in `excluded` from consideration.
     */
    final def findMember(name: Name, pre: Type, excluded: FlagSet)(implicit ctx: Context): Denotation = this match {
      case tp: RefinedType =>
        val pdenot = tp.parent.findMember(name, pre, excluded)
        if (name eq tp.refinedName)
          pdenot & (new JointRefDenotation(NoSymbol, tp.refinedInfo.substThis(tp, pre), Period.allInRun(ctx.runId)), pre)
        else
          pdenot
      case tp: ThisType =>
        val d = tp.underlying.findMember(name, pre, excluded)
        if (d.exists) d
        else
          // There is a special case to handle:
          //   trait Super { this: Sub => private class Inner {} println(this.Inner) }
          //   class Sub extends Super
          // When resolving Super.this.Inner, the normal logic goes to the self type and
          // looks for Inner from there. But this fails because Inner is private.
          // We fix the problem by having the following fallback case, which links up the
          // member in Super instead of Sub.
          // As an example of this in the wild, see
          // loadClassWithPrivateInnerAndSubSelf in ShowClassTests
          tp.cls.symTypeRef.findMember(name, pre, excluded) orElse d
      case tp: TypeRef =>
        tp.denot.findMember(name, pre, excluded)
      case tp: TypeProxy =>
        tp.underlying.findMember(name, pre, excluded)
      case tp: ClassInfo =>
        tp.cls.findMember(name, pre, excluded)
      case AndType(l, r) =>
        l.findMember(name, pre, excluded) & (r.findMember(name, pre, excluded), pre)
      case OrType(l, r) =>
        l.findMember(name, pre, excluded) | (r.findMember(name, pre, excluded), pre)
      case NoType =>
        NoDenotation
    } /* !!! DEBUG ensuring { denot =>
      denot.alternatives forall (_.symbol.name == name)
    }*/

    /** The set of names of members of this type that pass the given name filter
     *  when seen as members of `pre`. More precisely, these are all
     *  of members `name` such that `keepOnly(pre, name)` is `true`.
     */
    final def memberNames(keepOnly: NameFilter, pre: Type = this)(implicit ctx: Context): Set[Name] = this match {
      case tp: ClassInfo =>
        tp.cls.memberNames(keepOnly) filter (keepOnly(pre, _))
      case tp: RefinedType =>
        val ns = tp.parent.memberNames(keepOnly, pre)
        if (keepOnly(pre, tp.refinedName)) ns + tp.refinedName else ns
      case tp: AndType =>
        tp.tp1.memberNames(keepOnly, pre) | tp.tp2.memberNames(keepOnly, pre)
      case tp: OrType =>
        tp.tp1.memberNames(keepOnly, pre) & tp.tp2.memberNames(keepOnly, pre)
      case tp: TypeProxy =>
        tp.underlying.memberNames(keepOnly, pre)
      case _ =>
        Set()
    }

    /** The set of names that denote an abstract member of this type
     *  which is also an abstract member of `pre`.
     */
    final def abstractMemberNames(pre: Type = this)(implicit ctx: Context): Set[Name] =
      memberNames(abstractTypeNameFilter, pre) |
      memberNames(abstractTermNameFilter, pre)

    /** The set of abstract term members of this type. */
    final def abstractTermMembers(implicit ctx: Context): Set[SingleDenotation] =
      memberNames(abstractTermNameFilter).flatMap(member(_).altsWith(_ is Deferred))

    /** The set of abstract type members of this type. */
    final def abstractTypeMembers(implicit ctx: Context): Set[SingleDenotation] =
      memberNames(abstractTypeNameFilter).map(member(_).asInstanceOf[SingleDenotation])

    /** The set of abstract members of this type. */
    final def abstractMembers(implicit ctx: Context): Set[SingleDenotation] =
      abstractTermMembers | abstractTypeMembers

    /** The set of type members of this type */
    final def typeMembers(implicit ctx: Context): Set[SingleDenotation] =
      memberNames(typeNameFilter).map(member(_).asInstanceOf[SingleDenotation])

    /** The info of `sym`, seen as a member of this type. */
    final def memberInfo(sym: Symbol)(implicit ctx: Context): Type =
      sym.info.asSeenFrom(this, sym.owner)

    /** This type seen as if it were the type of a member of prefix type `pre`
     *  declared in class `cls`.
     */
    final def asSeenFrom(pre: Type, cls: Symbol)(implicit ctx: Context): Type =
      if (!cls.membersNeedAsSeenFrom(pre)) this
      else ctx.asSeenFrom(this, pre, cls, null)

// ----- Subtype-related --------------------------------------------

    /** Is this type a subtype of that type? */
    final def <:<(that: Type)(implicit ctx: Context): Boolean =
      ctx.typeComparer.isSubType(this, that)

    /** Is this type the same as that type?
     *  This is the case iff `this <:< that` and `that <:< this`.
     */
    final def =:=(that: Type)(implicit ctx: Context): Boolean =
      ctx.typeComparer.isSameType(this, that)

    /** Is this type close enough to that type so that members
     *  with the two type would override each other?
     *  This means:
     *    - Either both types are polytypes with the same number of
     *      type parameters and their result types match after renaming
     *      corresponding type parameters
     *    - Or both types are (possibly nullary) method types with equivalent parameter types
     *      and matching result types
     *    - Or both types are equivalent
     *    - Or phase.erasedTypes is false and both types are neither method nor
     *      poly types.
     */
    def matches(that: Type)(implicit ctx: Context): Boolean =
      ctx.typeComparer.matchesType(
        this, that, alwaysMatchSimple = !ctx.phase.erasedTypes)

    /** The non-private symbol with given name in the given class that matches this type.
     *  @param inClass   The class containing the symbol's definition
     *  @param name      The name of the symbol we are looking for
     *  @param site      The base type from which member types are computed
     */
    def matchingTermSymbol(inClass: Symbol, name: Name, site: Type)(implicit ctx: Context): Symbol = {
      var denot = inClass.info.nonPrivateDecl(name)
      if (denot.isTerm) { // types of the same name always match
        if (denot.isOverloaded)
          denot = denot.atSignature(this.signature) // seems we need two kinds of signatures here
        if (!(site.memberInfo(denot.symbol) matches this))
          denot = NoDenotation
      }
      denot.symbol
    }

    /** The basetype of this type with given class symbol */
    final def baseType(base: Symbol)(implicit ctx: Context): Type = base.denot match {
      case classd: ClassDenotation => classd.baseTypeOf(this)
      case _ => NoType
    }

    def & (that: Type)(implicit ctx: Context): Type =
      ctx.glb(this, that)

    def | (that: Type)(implicit ctx: Context): Type =
      ctx.lub(this, that)

// ----- Unwrapping types -----------------------------------------------

    /** Map a TypeVar to either its instance if it is instantiated, or its origin,
     *  if not. Identity on all other types.
     */
    def thisInstance: Type = this

    /** Widen from singleton type to its underlying non-singleton
     *  base type by applying one or more `underlying` dereferences,
     *  Also go from => T to T.
     *  Identity for all other types. Example:
     *
     *  class Outer { class C ; val x: C }
     *  def o: Outer
     *  <o.x.type>.widen = o.C
     */
    final def widen(implicit ctx: Context): Type = this match {
      case tp: SingletonType => tp.underlying.widen
      case tp: TypeBounds => tp.hi.widen // needed?
      case tp: ExprType => tp.resultType.widen
      case _ => this
    }

    /** If this is an alias type, its alias, otherwise the type itself */
    final def dealias(implicit ctx: Context): Type = thisInstance match {
      case tp: TypeRef if (tp.symbol.isAliasType) => tp.info.bounds.hi
      case tp => tp
    }

    /** Widen from constant type to its underlying non-constant
     *  base type.
     */
    final def deconst(implicit ctx: Context): Type = this match {
      case tp: ConstantType => tp.value.tpe
      case _ => this
    }

    /** If this is a refinement type, the unrefined parent,
     *  else the type itself.
     */
    final def unrefine: Type = thisInstance match {
      case tp @ RefinedType(tycon, _) => tycon.unrefine
      case tp => tp
    }

    /** Map references to Object to references to Any; needed for Java interop */
    final def objToAny(implicit ctx: Context) =
      if (isClassType(defn.ObjectClass) && !ctx.phase.erasedTypes) defn.AnyType else this

// ----- Access to parts --------------------------------------------

    /** The normalized prefix of this type is:
     *  For an alias type, the normalized prefix of its alias
     *  For all other named type and class infos: the prefix.
     *  Inherited by all other type proxies.
     *  `NoType` for all other types.
     */
    final def normalizedPrefix(implicit ctx: Context): Type = this match {
      case tp: NamedType =>
        if (tp.symbol.isAliasType) tp.info.normalizedPrefix else tp.prefix
      case tp: ClassInfo =>
        tp.prefix
      case tp: TypeProxy =>
        tp.underlying.normalizedPrefix
      case _ =>
        NoType
    }

    /** For a ClassInfo type, its parents,
     *  Inherited by all type proxies. Empty for all other types.
     *  Overwritten in ClassInfo, where parents is cached.
     */
    def parents(implicit ctx: Context): List[TypeRef] = this match {
      case tp: TypeProxy => tp.underlying.parents
      case _ => List()
    }

    /** The parameter types of a PolyType or MethodType, Empty list for others */
    final def paramTypess: List[List[Type]] = this match {
      case mt: MethodType => mt.paramTypes :: mt.resultType.paramTypess
      case pt: PolyType => pt.resultType.paramTypess
      case _ => Nil
    }
/* Not sure whether we'll need this
    final def firstParamTypes: List[Type] = this match {
      case mt: MethodType => mt.paramTypes
      case pt: PolyType => pt.firstParamTypes
      case _ => Nil
    }
*/
    /** The resultType of a PolyType, MethodType, or ExprType, the type itself for others */
    def resultType: Type = this

    /** The final result type of a PolyType, MethodType, or ExprType, after skipping
     *  all parameter sections, the type itself for all others.
     */
    def finalResultType: Type = resultType match {
      case mt: MethodType => mt.resultType.finalResultType
      case pt: PolyType => pt.resultType.finalResultType
      case _ => resultType
    }

    /** This type seen as a TypeBounds */
    final def bounds(implicit ctx: Context): TypeBounds = this match {
      case tp: TypeBounds => tp
      case ci: ClassInfo => TypeAlias(ci.typeConstructor)
      case _ => TypeAlias(this)
    }

    /** The type parameter with given `name`. This tries first `decls`
     *  in order not to provoke a cycle by forcing the info. If that yields
     *  no symbol it tries `member` as an alternative.
     */
    def typeParamNamed(name: TypeName)(implicit ctx: Context): Symbol =
      classSymbol.decls.lookup(name) orElse member(name).symbol

    /** The disjunctive normal form of this type.
     *  This collects a set of alternatives, each alternative consisting
     *  of a set of typerefs and a set of refinement names. Collected are
     *  all type refs reachable by following aliases and type proxies, and
     *  collecting the elements of conjunctions (&) and disjunctions (|).
     *  The set of refinement names in each alternative
     *  are the set of names in refinement types encountered during the collection.
     */
    final def DNF(implicit ctx: Context): Set[(Set[TypeRef], Set[Name])] = this match {
      case tp: TypeRef =>
        if (tp.symbol.isAliasType) tp.info.bounds.hi.DNF
        else Set((Set(tp), Set()))
      case RefinedType(parent, name) =>
        for ((ps, rs) <- parent.DNF) yield (ps, rs + name)
      case tp: TypeProxy =>
        tp.underlying.DNF
      case AndType(l, r) =>
        for ((lps, lrs) <- l.DNF; (rps, rrs) <- r.DNF)
        yield (lps | rps, lrs | rrs)
      case OrType(l, r) =>
        l.DNF | r.DNF
      case tp =>
        Set((Set(), Set()))
    }

// ----- Substitutions -----------------------------------------------------

    /** Substitute all types that refer in their symbol attribute to
     *  one of the symbols in `from` by the corresponding types in `to`.
     */
    final def subst(from: List[Symbol], to: List[Type])(implicit ctx: Context): Type =
      if (from.isEmpty) this
      else {
        val from1 = from.tail
        if (from1.isEmpty) ctx.subst1(this, from.head, to.head, null)
        else {
          val from2 = from1.tail
          if (from2.isEmpty) ctx.subst2(this, from.head, to.head, from.tail.head, to.tail.head, null)
          else ctx.subst(this, from, to, null)
        }
      }

    /** Substitute all types of the form `PolyParam(from, N)` by
     *  `PolyParam(to, N)`.
     */
    final def subst(from: BindingType, to: BindingType)(implicit ctx: Context): Type =
      ctx.subst(this, from, to, null)

    /** Substitute all occurrences of `This(cls)` by `tp` */
    final def substThis(cls: ClassSymbol, tp: Type)(implicit ctx: Context): Type =
      ctx.substThis(this, cls, tp, null)

    /** Substitute all occurrences of `RefinedThis(rt)` by `tp` */
    final def substThis(rt: RefinedType, tp: Type)(implicit ctx: Context): Type =
      ctx.substThis(this, rt, tp, null)

    /** Substitute a bound type by some other type */
    final def substParam(from: ParamType, to: Type)(implicit ctx: Context): Type =
      ctx.substParam(this, from, to, null)

    /** Substitute bound types by some other types */
    final def substParams(from: BindingType, to: List[Type])(implicit ctx: Context): Type =
      ctx.substParams(this, from, to, null)

    /** Substitute all occurrences of symbols in `from` by references to corresponding symbols in `to`
     */
    final def substSym(from: List[Symbol], to: List[Symbol])(implicit ctx: Context): Type =
      ctx.substSym(this, from, to, null)

// ----- Modeling type application --------------------------------

    /** Encode the type resulting from applying this type to given arguments */
    final def appliedTo(args: List[Type])(implicit ctx: Context): Type = {

      def recur(tp: Type, tparams: List[TypeSymbol], args: List[Type]): Type = args match {
        case arg :: args1 =>
          if (tparams.isEmpty) {
            println(s"applied type mismatch: $this $args, typeParams = $typeParams, tsym = ${this.typeSymbol.debugString}") // !!! DEBUG
            println(s"precomplete decls = ${typeSymbol.decls.toList.map(_.denot).mkString("\n  ")}")
          }
          val tparam = tparams.head
          val tp1 = RefinedType(tp, tparam.name, arg.toBounds(tparam))
          recur(tp1, tparams.tail, args1)
        case nil => tp
      }

      def safeTypeParams(tsym: Symbol) =
        if (tsym.isClass || !typeSymbol.isCompleting) typeParams
        else {
          ctx.warning("encountered F-bounded higher-kinded type parameters; assuming they are invariant")
          defn.hkTrait(args map Function.const(0)).typeParams
        }

      if (args.isEmpty) this
      else this match {
        case tp: TypeRef =>
          val tsym = tp.symbol
          if (tsym.isAliasType) tp.underlying.appliedTo(args)
          else recur(tp, safeTypeParams(tsym), args)
        case tp: TypeProxy =>
          tp.underlying.appliedTo(args)
        case AndType(l, r) =>
          l.appliedTo(args) & r
      }
    }

    final def appliedTo(arg: Type)(implicit ctx: Context): Type = appliedTo(arg :: Nil)
    final def appliedTo(arg1: Type, arg2: Type)(implicit ctx: Context): Type = appliedTo(arg1 :: arg2 :: Nil)

    /** Turn this type, which is used as an argument for
     *  type parameter `tparam`, into a TypeBounds RHS
     */
    final def toBounds(tparam: Symbol)(implicit ctx: Context): TypeBounds = {
      val v = tparam.variance
      if (v > 0) TypeBounds.upper(this)
      else if (v < 0) TypeBounds.lower(this)
      else TypeAlias(this)
    }

    /** If this is an encoding of a (partially) applied type, return its arguments,
     *  otherwise return Nil
     */
    final def typeArgs(implicit ctx: Context): List[Type] = {
      var tparams: List[TypeSymbol] = null
      def recur(tp: Type, refineCount: Int): mutable.ListBuffer[Type] = tp match {
        case tp @ RefinedType(tycon, name) =>
          val buf = recur(tycon, refineCount + 1)
          if (buf == null) null
          else {
            if (tparams == null) tparams = tycon.typeParams
            if (buf.size < tparams.length) {
              val tparam = tparams(buf.size)
              if (name == tparam.name) buf += tp.refinedInfo.argType(tparam)
              else null
            } else null
          }
        case _ =>
          if (refineCount == 0) null
          else new mutable.ListBuffer[Type]
      }
      val buf = recur(thisInstance, 0)
      if (buf == null) Nil else buf.toList
    }

    /** If this is the image of a type argument to type parameter `tparam`,
     *  recover the type argument, otherwise NoType.
     */
    final def argType(tparam: Symbol)(implicit ctx: Context): Type = this match {
      case TypeBounds(lo, hi) =>
        val v = tparam.variance
        if (v > 0 && lo.isClassType(defn.NothingClass)) hi
        else if (v < 0 && hi.isClassType(defn.AnyClass)) lo
        else if (v == 0 && (lo eq hi)) lo
        else NoType
      case _ =>
        NoType
    }

    /** If this type is of the normalized form Array[...[Array[T]...]
     *  return the number of Array wrappers and T.
     *  Otherwise return 0 and the type itself
     */
    final def splitArray(implicit ctx: Context): (Int, Type) = {
      def recur(n: Int, tp: Type): (Int, Type) = tp match {
        case RefinedType(tycon, _) if tycon.isArray =>
          tp.typeArgs match {
            case arg :: Nil => recur(n + 1, arg)
            case _ => (n, tp)
          }
        case _ =>
          (n, tp)
      }
      recur(0, thisInstance)
    }

    /** Given a type alias
     *
     *      type T[boundSyms] = p.C[targs]
     *
     *  produce its equivalent right hand side RHS that makes no reference to the bound
     *  symbols on the left hand side. I.e. the type alias can be replaced by
     *
     *      type T = RHS
     *
     *  It is required that `C` is a class and that every bound symbol in `boundSyms` appears
     *  as an argument in `targs`. If these requirements are not met an error is
     *  signalled by calling the parameter `error`.
     *
     *  The rewriting replaces bound symbols by references to the
     *  parameters of class C. Example:
     *
     *  Say we have:
     *
     *     class Triple[type T1, type T2, type T3]
     *     type A[X] = Triple[(X, X), X, String]
     *
     *  Then this is rewritable, as `X` appears as second type argument to `Triple`.
     *  Occurrences of `X` are rewritten to `this.T2` and the whole definition becomes:
     *
     *     type A = Triple { type T1 = (this.T2, this.T2); type T3 = String }
     *
     *  If the RHS is an intersection type A & B, we Lambda abstract on A instead and
     *  then recombine with & B.
     */
    def LambdaAbstract(boundSyms: List[Symbol])(error: (String, Position) => Unit)(implicit ctx: Context): Type = this match {
      case AndType(l, r) =>
        AndType(l.LambdaAbstract(boundSyms)(error), r)
      case _ =>
        val cls = typeSymbol
        if (!cls.isClass)
          error("right-hand side of parameterized alias type must refer to a class", cls.pos)

        val correspondingParamName: Map[Symbol, TypeName] = {
          for { (tparam, targ: TypeRef) <- cls.typeParams zip typeArgs
              if boundSyms contains targ.symbol
          } yield targ.symbol -> tparam.name
        }.toMap

        val correspondingNames = correspondingParamName.values.toSet

        def replacements(rt: RefinedType): List[Type] =
          for (sym <- boundSyms) yield {
            correspondingParamName get sym match {
              case Some(name) =>
                TypeRef(RefinedThis(rt), name)
              case None =>
                error(s"parameter $sym of type alias does not appear as type argument of the aliased $cls", sym.pos)
                defn.AnyType
            }
          }

        def rewrite(tp: Type): Type = tp match {
          case tp @ RefinedType(parent, name: TypeName) =>
            if (correspondingNames contains name) rewrite(parent)
            else RefinedType(
              rewrite(parent),
              name,
              rt => tp.refinedInfo.subst(boundSyms, replacements(rt)))
          case tp =>
            tp
        }

        rewrite(this)
    }

// ----- misc -----------------------------------------------------------

    /** The signature of this type. This is by default NotAMethod,
     *  but is overridden for PolyTypes, MethodTypes, and TermRefWithSignature types.
     *  (the reason why we deviate from the "final-method-with-pattern-match-in-base-class"
     *   pattern is that method signatures use caching, so encapsulation
     *   is improved using an OO scheme).
     */
    def signature(implicit ctx: Context): Signature = NotAMethod

    def toText(printer: Printer): Text = printer.toText(this)

    def varianceOf(tp: Type): FlagSet = ???

// ----- hashing ------------------------------------------------------

    /** customized hash code of this type.
     *  NotCached for uncached types. Cached types
     *  compute hash and use it as the type's hashCode.
     */
    def hash: Int

    protected def hashSeed = getClass.hashCode

    private def finishHash(hashCode: Int, arity: Int): Int = {
      val h = hashing.finalizeHash(hashCode, arity)
      if (h == NotCached) NotCachedAlt else h
    }

    private def finishHash(seed: Int, arity: Int, tp: Type): Int = {
      val elemHash = tp.hash
      if (elemHash == NotCached) return NotCached
      finishHash(hashing.mix(seed, elemHash), arity + 1)
    }

    private def finishHash(seed: Int, arity: Int, tp1: Type, tp2: Type): Int = {
      val elemHash = tp1.hash
      if (elemHash == NotCached) return NotCached
      finishHash(hashing.mix(seed, elemHash), arity + 1, tp2)
    }

    private def finishHash(seed: Int, arity: Int, tps: List[Type]): Int = {
      var h = seed
      var xs = tps
      var len = arity
      while (xs.nonEmpty) {
        val elemHash = xs.head.hash
        if (elemHash == NotCached) return NotCached
        h = hashing.mix(h, elemHash)
        xs = xs.tail
        len += 1
      }
      finishHash(h, len)
    }

    private def finishHash(seed: Int, arity: Int, tp: Type, tps: List[Type]): Int = {
      val elemHash = tp.hash
      if (elemHash == NotCached) return NotCached
      finishHash(hashing.mix(seed, elemHash), arity + 1, tps)
    }

    protected def doHash(x: Any): Int =
      finishHash(hashing.mix(hashSeed, x.hashCode), 1)

    protected def doHash(tp: Type): Int =
      finishHash(hashSeed, 0, tp)

    protected def doHash(x1: Any, tp2: Type): Int =
      finishHash(hashing.mix(hashSeed, x1.hashCode), 1, tp2)

    protected def doHash(tp1: Type, tp2: Type): Int =
      finishHash(hashSeed, 0, tp1, tp2)

    protected def doHash(x1: Any, tp2: Type, tp3: Type): Int =
      finishHash(hashing.mix(hashSeed, x1.hashCode), 1, tp2, tp3)

    protected def doHash(tp1: Type, tps2: List[Type]): Int =
      finishHash(hashSeed, 0, tp1, tps2)

    protected def doHash(x1: Any, tp2: Type, tps3: List[Type]): Int =
      finishHash(hashing.mix(hashSeed, x1.hashCode), 1, tp2, tps3)

  } // end Type

  /** A marker trait for cached types */
  trait CachedType extends Type

  def unique[T <: Type](tp: T)(implicit ctx: Context): T = {
    if (tp.hash == NotCached) tp
    else ctx.uniques.findEntryOrUpdate(tp).asInstanceOf[T]
  } /* !!! DEBUG
  ensuring (
    result => tp.toString == result.toString || {
      println(s"cache mismatch; tp = $tp, cached = $result")
      false
    }
  )
 */

// ----- Type categories ----------------------------------------------

  /** A marker trait for type proxies.
   *  Each implementation is expected to redefine the `underlying` method.
   */
  abstract class TypeProxy extends Type {
    /** The type to which this proxy forwards operations. */
    def underlying(implicit ctx: Context): Type
  }

  // Every type has to inherit one of the following four abstract type classes.,
  // which determine whether the type is cached, and whether
  // it is a proxy of some other type. The duplication in their methods
  // is for efficiency.

  /**  Instances of this class are cached and are not proxies. */
  abstract class CachedGroundType extends Type with CachedType {
    private[this] var _hash = HashUnknown
    final def hash = {
      if (_hash == HashUnknown) {
        _hash = computeHash
        if (_hash == HashUnknown) _hash = HashUnknownAlt
      }
      _hash
    }
    override final def hashCode =
      if (hash == NotCached) System.identityHashCode(this) else hash
    def computeHash: Int
  }

  /**  Instances of this class are cached and are proxies. */
  abstract class CachedProxyType extends TypeProxy with CachedType {
    private[this] var _hash = HashUnknown
    final def hash = {
      if (_hash == HashUnknown) {
        _hash = computeHash
        if (_hash == HashUnknown) _hash = HashUnknownAlt
      }
      _hash
    }
    override final def hashCode =
      if (hash == NotCached) System.identityHashCode(this) else hash
    def computeHash: Int
  }

  /**  Instances of this class are uncached and are not proxies. */
  abstract class UncachedGroundType extends Type {
    final def hash = NotCached
  }

  /**  Instances of this class are uncached and are proxies. */
  abstract class UncachedProxyType extends TypeProxy {
    final def hash = NotCached
  }

  /** A marker trait for types that apply only to type symbols */
  trait TypeType extends Type

  /** A marker trait for types that apply only to term symbols */
  trait TermType extends Type

  /** A marker trait for types that can be types of values */
  trait ValueType extends TermType

  /** A marker trait for types that are guaranteed to contain only a
   *  single non-null value (they might contain null in addition).
   */
  trait SingletonType extends TypeProxy with ValueType

  /** A marker trait for types that bind other types that refer to them.
   *  Instances are: PolyType, MethodType, RefinedType.
   */
  trait BindingType extends Type

// --- NamedTypes ------------------------------------------------------------------

  /** A NamedType of the form Prefix # name */
  abstract class NamedType extends CachedProxyType with ValueType {

    val prefix: Type
    val name: Name

    private[this] var lastDenotation: Denotation = null

    /** The denotation currently denoted by this type */
    def denot(implicit ctx: Context): Denotation = {
      val validPeriods =
        if (lastDenotation != null) lastDenotation.validFor else Nowhere
      val thisPeriod = ctx.period
      if (!(validPeriods contains thisPeriod)) {
        lastDenotation =
          if (validPeriods.runId == thisPeriod.runId) {
            lastDenotation.current
          } else {
            val d = loadDenot
/* need to do elsewhere as it leads to a cycle in subtyping here.
            if (d.exists && !d.symbol.isAliasType && !prefix.isLegalPrefix) {
              val ex = new MalformedType(prefix, d, prefix.memberNames(abstractTypeNameFilter))
              if (ctx.checkPrefix) {
                ctx.printCreationTrace()
                throw ex
              } else ctx.log(ex.getMessage)
            }
*/
            if (d.exists || ctx.phaseId == FirstPhaseId)
              d
            else // name has changed; try load in earlier phase and make current
              denot(ctx.fresh.withPhase(ctx.phaseId - 1)).current
          }
      }
      lastDenotation
    }

    private[dotc] final def withDenot(denot: Denotation): this.type = {
      lastDenotation = denot
      this
    }

    protected def loadDenot(implicit ctx: Context) = prefix.member(name)

    def isType = name.isTypeName
    def isTerm = name.isTermName

    def symbol(implicit ctx: Context): Symbol = denot.symbol
    def info(implicit ctx: Context): Type = denot.info

    override def underlying(implicit ctx: Context): Type = info

    /** Guard against cycles that can arise if given `op`
     *  follows info. The prblematic cases are a type alias to itself or
     *  bounded by itself or a val typed as itself:
     *
     *  type T <: T
     *  val x: x.type
     *
     *  These are errors but we have to make sure that operations do
     *  not loop before the error is detected.
     */
    final def controlled[T](op: => T)(implicit ctx: Context): T = try {
      ctx.underlyingRecursions += 1
      if (ctx.underlyingRecursions < LogPendingUnderlyingThreshold)
        op
      else if (ctx.pendingUnderlying(this))
        throw new CyclicReference(symbol)
      else
        try {
          ctx.pendingUnderlying += this
          op
        } finally {
          ctx.pendingUnderlying -= this
        }
    } finally {
      ctx.underlyingRecursions -= 1
    }

    def derivedNamedType(prefix: Type)(implicit ctx: Context): NamedType =
      if (prefix eq this.prefix) this
      else newLikeThis(prefix)

    /** Create a NamedType of the same kind as this type, if possible,
     *  but with a new prefix. For HasFixedSym instances another such
     *  instance is only created if the symbol's owner is a base class of
     *  the new prefix. If that is not the case, we fall back to a
     *  NamedType or in the case of a TermRef, NamedType with signature.
     */
    protected def newLikeThis(prefix: Type)(implicit ctx: Context): NamedType =
      NamedType(prefix, name)

    override def computeHash = doHash(name, prefix)

    override def equals(that: Any) = that match {
      case that: HasFixedSym => false
      case that: TermRefWithSignature => false
      case that: NamedType =>
        this.prefix == that.prefix &&
        this.name == that.name
      case _ =>
        false
    }
  }

  abstract case class TermRef(override val prefix: Type, name: TermName) extends NamedType with SingletonType

  abstract case class TypeRef(override val prefix: Type, name: TypeName) extends NamedType

  trait HasFixedSym extends NamedType {
    protected val fixedSym: Symbol
    override def symbol(implicit ctx: Context): Symbol = fixedSym
    override def loadDenot(implicit ctx: Context) = {
      val denot = fixedSym.denot
      val owner = denot.owner
      if (owner.isTerm) denot else denot.asSeenFrom(prefix)
    }
    override def equals(that: Any) = that match {
      case that: HasFixedSym =>
        this.prefix == that.prefix &&
        this.fixedSym == that.fixedSym
      case _ =>
        false
    }
    override def computeHash = doHash(fixedSym, prefix)
  }

  final class TermRefBySym(prefix: Type, name: TermName, val fixedSym: TermSymbol)
    extends TermRef(prefix, name) with HasFixedSym

  final class TermRefWithSignature(prefix: Type, name: TermName, val sig: Signature) extends TermRef(prefix, name) {
    override def signature(implicit ctx: Context) = sig
    override def loadDenot(implicit ctx: Context): Denotation =
      super.loadDenot.atSignature(sig)
    override def newLikeThis(prefix: Type)(implicit ctx: Context): TermRefWithSignature =
      TermRef.withSig(prefix, name, sig)
    override def equals(that: Any) = that match {
      case that: TermRefWithSignature =>
        this.prefix == that.prefix &&
        this.name == that.name &&
        this.sig == that.sig
      case _ =>
        false
    }
    override def computeHash = doHash((name, sig), prefix)
  }

  final class TypeRefBySym(prefix: Type, name: TypeName, val fixedSym: TypeSymbol)
    extends TypeRef(prefix, name) with HasFixedSym

  final class CachedTermRef(prefix: Type, name: TermName) extends TermRef(prefix, name)
  final class CachedTypeRef(prefix: Type, name: TypeName) extends TypeRef(prefix, name)

  object NamedType {
    def apply(prefix: Type, name: Name)(implicit ctx: Context) =
      if (name.isTermName) TermRef(prefix, name.asTermName)
      else TypeRef(prefix, name.asTypeName)
   def withSym(prefix: Type, sym: Symbol)(implicit ctx: Context) =
      if (sym.isTerm) TermRef.withSym(prefix, sym.asTerm)
      else TypeRef.withSym(prefix, sym.asType)
  }

  object TermRef {
    def apply(prefix: Type, name: TermName)(implicit ctx: Context): TermRef =
      unique(new CachedTermRef(prefix, name))
    def withSym(prefix: Type, name: TermName, sym: TermSymbol)(implicit ctx: Context): TermRefBySym =
      unique(new TermRefBySym(prefix, name, sym))
    def withSym(prefix: Type, sym: TermSymbol)(implicit ctx: Context): TermRefBySym =
      withSym(prefix, sym.name, sym)
    def withSig(prefix: Type, name: TermName, sig: Signature)(implicit ctx: Context): TermRefWithSignature =
      unique(new TermRefWithSignature(prefix, name, sig))
  }

  object TypeRef {
    def apply(prefix: Type, name: TypeName)(implicit ctx: Context): TypeRef =
      unique(new CachedTypeRef(prefix, name))
    def withSym(prefix: Type, name: TypeName, sym: TypeSymbol)(implicit ctx: Context): TypeRefBySym =
      unique(new TypeRefBySym(prefix, name, sym))
    def withSym(prefix: Type, sym: TypeSymbol)(implicit ctx: Context): TypeRefBySym =
      withSym(prefix, sym.name, sym)
  }

  // --- Other SingletonTypes: ThisType/SuperType/ConstantType ---------------------------

  /** The type cls.this */
  abstract case class ThisType(cls: ClassSymbol) extends CachedProxyType with SingletonType {
    override def underlying(implicit ctx: Context) = cls.classInfo.selfType
    override def computeHash = doHash(cls)
  }

  final class CachedThisType(cls: ClassSymbol) extends ThisType(cls)

  // TODO: consider hash before constructing types?
  object ThisType {
    def apply(cls: ClassSymbol)(implicit ctx: Context) =
      unique(new CachedThisType(cls))
  }

  /** The type of a super reference cls.super where
   *  `thistpe` is cls.this and `supertpe` is the type of the value referenced
   *  by `super`.
   */
  abstract case class SuperType(thistpe: Type, supertpe: Type) extends CachedProxyType with SingletonType {
    override def underlying(implicit ctx: Context) = supertpe
    def derivedSuperType(thistpe: Type, supertpe: Type)(implicit ctx: Context) =
      if ((thistpe eq this.thistpe) && (supertpe eq this.supertpe)) this
      else SuperType(thistpe, supertpe)
    override def computeHash = doHash(thistpe, supertpe)
  }

  final class CachedSuperType(thistpe: Type, supertpe: Type) extends SuperType(thistpe, supertpe)

  object SuperType {
    def apply(thistpe: Type, supertpe: Type)(implicit ctx: Context) =
      unique(new CachedSuperType(thistpe, supertpe))
  }

  /** A constant type with  single `value`. */
  abstract case class ConstantType(value: Constant) extends CachedProxyType with SingletonType {
    override def underlying(implicit ctx: Context) = value.tpe
    override def computeHash = doHash(value)
  }

  final class CachedConstantType(value: Constant) extends ConstantType(value)

  object ConstantType {
    def apply(value: Constant)(implicit ctx: Context) =
      unique(new CachedConstantType(value))
  }

  // --- Refined Type ---------------------------------------------------------

  /** A refined type parent { refinement }
   *  @param refinedName  The name of the refinement declaration
   *  @param infoFn: A function that produces the info of the refinement declaration,
   *                 given the refined type itself.
   */
  abstract case class RefinedType(parent: Type, refinedName: Name)(infoFn: RefinedType => Type)
    extends CachedProxyType with BindingType with ValueType {

    val refinedInfo: Type = infoFn(this)

    override def underlying(implicit ctx: Context) = parent

    def derivedRefinedType(parent: Type, refinedName: Name, refinedInfo: Type)(implicit ctx: Context): RefinedType = {
      def originalName = parent.typeParams.apply(refinedName.hkParamIndex).name
      if ((parent eq this.parent) && (refinedName eq this.refinedName) && (refinedInfo eq this.refinedInfo))
        this
      else if (refinedName.isHkParamName &&
               refinedName.hkParamIndex < typeParams.length &&
               originalName != refinedName)
        derivedRefinedType(parent, originalName, refinedInfo)
      else
        RefinedType(parent, refinedName, rt => refinedInfo.substThis(this, RefinedThis(rt)))
    }

    override def equals(that: Any) = that match {
      case that: RefinedType =>
        this.parent == that.parent &&
        this.refinedName == that.refinedName &&
        this.refinedInfo == that.refinedInfo
      case _ =>
        false
    }
    override def computeHash = doHash(refinedName, refinedInfo, parent)
    override def toString = s"RefinedType($parent, $refinedName, $refinedInfo | hash = $hashCode)"
  }

  class CachedRefinedType(parent: Type, refinedName: Name, infoFn: RefinedType => Type) extends RefinedType(parent, refinedName)(infoFn)

  object RefinedType {
    def make(parent: Type, names: List[Name], infoFns: List[RefinedType => Type])(implicit ctx: Context): Type =
      if (names.isEmpty) parent
      else make(RefinedType(parent, names.head, infoFns.head), names.tail, infoFns.tail)

    def apply(parent: Type, name: Name, infoFn: RefinedType => Type)(implicit ctx: Context): RefinedType =
      unique(new CachedRefinedType(parent, name, infoFn))

    def apply(parent: Type, name: Name, info: Type)(implicit ctx: Context): RefinedType =
      apply(parent, name, scala.Function.const(info): (RefinedType => Type))
  }

  // --- AndType/OrType ---------------------------------------------------------------

  abstract case class AndType(tp1: Type, tp2: Type) extends CachedGroundType with ValueType {
    assert(tp1.isInstanceOf[TermType] && tp2.isInstanceOf[TermType], s"$tp1 & $tp2")

    type This <: AndType

    def derivedAndType(tp1: Type, tp2: Type)(implicit ctx: Context) =
      if ((tp1 eq this.tp1) && (tp2 eq this.tp2)) this
      else AndType(tp1, tp2)

    override def computeHash = doHash(tp1, tp2)
  }

  final class CachedAndType(tp1: Type, tp2: Type) extends AndType(tp1, tp2)

  object AndType {
    def apply(tp1: Type, tp2: Type)(implicit ctx: Context) =
      unique(new CachedAndType(tp1, tp2))
  }

  abstract case class OrType(tp1: Type, tp2: Type) extends CachedGroundType with ValueType {
    def derivedOrType(tp1: Type, tp2: Type)(implicit ctx: Context) =
      if ((tp1 eq this.tp1) && (tp2 eq this.tp2)) this
      else OrType(tp1, tp2)

    override def computeHash = doHash(tp1, tp2)
  }

  final class CachedOrType(tp1: Type, tp2: Type) extends OrType(tp1, tp2)

  object OrType {
    def apply(tp1: Type, tp2: Type)(implicit ctx: Context) =
      unique(new CachedOrType(tp1, tp2))
  }

  // ----- Method types: MethodType/ExprType/PolyType/MethodParam/PolyParam ---------------

  // Note: method types are cached whereas poly types are not.
  // The reason is that most poly types are cyclic via poly params,
  // and therefore two different poly types would never be equal.

  abstract case class MethodType(paramNames: List[TermName], paramTypes: List[Type])
      (resultTypeExp: MethodType => Type)
    extends CachedGroundType with BindingType with TermType {

    override val resultType = resultTypeExp(this)
    def isJava = false
    def isImplicit = false

    lazy val isDependent = resultType existsPart {
      case MethodParam(mt, _) => mt eq this
      case _ => false
    }

    private[this] var _signature: Signature = _
    private[this] var signatureRunId: Int = NoRunId

    override def signature(implicit ctx: Context): Signature = {
      if (ctx.runId != signatureRunId) {
        _signature = computeSignature
        signatureRunId = ctx.runId
      }
      _signature
    }

    private def computeSignature(implicit ctx: Context): Signature = {
      val followSig = resultType match {
        case rtp: MethodType => rtp.signature
        case _ => Nil
      }
      (paramTypes map Erasure.paramSignature) ++ followSig
    }

    def derivedMethodType(paramNames: List[TermName], paramTypes: List[Type], restpe: Type)(implicit ctx: Context) =
      if ((paramNames eq this.paramNames) && (paramTypes eq this.paramTypes) && (restpe eq this.resultType)) this
      else {
        val restpeExpr = (x: MethodType) => restpe.subst(this, x)
        if (isJava) JavaMethodType(paramNames, paramTypes)(restpeExpr)
        else if (isImplicit) ImplicitMethodType(paramNames, paramTypes)(restpeExpr)
        else MethodType(paramNames, paramTypes)(restpeExpr)
      }

    def instantiate(argTypes: => List[Type])(implicit ctx: Context): Type =
      if (isDependent) new InstMethodMap(this, argTypes) apply resultType
      else resultType

 /* probably won't be needed
    private var _isVarArgs: Boolean = _
    private var knownVarArgs: Boolean = false

    def isVarArgs(implicit ctx: Context) = {
      if (!knownVarArgs) {
        _isVarArgs = paramTypes.nonEmpty && paramTypes.last.isRepeatedParam
        knownVarArgs = true
      }
      _isVarArgs
    }
*/
    override def equals(that: Any) = that match {
      case that: MethodType =>
        this.paramNames == that.paramNames &&
        this.paramTypes == that.paramTypes &&
        this.resultType == that.resultType
      case _ =>
        false
    }

    override def computeHash = doHash(paramNames, resultType, paramTypes)
    protected def prefixString = "MethodType"
    override def toString = s"$prefixString($paramNames, $paramTypes, $resultType)"
  }

  final class CachedMethodType(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)
    extends MethodType(paramNames, paramTypes)(resultTypeExp) {
    override def equals(that: Any) = super.equals(that) && that.isInstanceOf[CachedMethodType]
  }

  final class JavaMethodType(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)
    extends MethodType(paramNames, paramTypes)(resultTypeExp) {
    override def isJava = true
    override def equals(that: Any) = super.equals(that) && that.isInstanceOf[JavaMethodType]
    override def computeHash = super.computeHash + 1
    override protected def prefixString = "JavaMethodType"
  }

  final class ImplicitMethodType(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)
    extends MethodType(paramNames, paramTypes)(resultTypeExp) {
    override def isImplicit = true
    override def equals(that: Any) = super.equals(that) && that.isInstanceOf[ImplicitMethodType]
    override def computeHash = super.computeHash + 2
    override protected def prefixString = "ImplicitMethodType"
  }

  abstract class MethodTypeCompanion {
    def apply(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)(implicit ctx: Context): MethodType
    def apply(paramNames: List[TermName], paramTypes: List[Type], resultType: Type)(implicit ctx: Context): MethodType =
      apply(paramNames, paramTypes)(_ => resultType)
    def apply(paramTypes: List[Type], resultType: Type)(implicit ctx: Context): MethodType =
      apply(nme.syntheticParamNames(paramTypes.length), paramTypes, resultType)
    def fromSymbols(params: List[Symbol], resultType: Type)(implicit ctx: Context) = {
      def transformResult(mt: MethodType) =
        resultType.subst(params, (0 until params.length).toList map (MethodParam(mt, _)))
      apply(params map (_.name.asTermName), params map (_.info))(transformResult _)
    }
  }

  object MethodType extends MethodTypeCompanion {
    def apply(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)(implicit ctx: Context) =
      unique(new CachedMethodType(paramNames, paramTypes)(resultTypeExp))
  }

  object JavaMethodType extends MethodTypeCompanion {
    def apply(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)(implicit ctx: Context) =
      unique(new JavaMethodType(paramNames, paramTypes)(resultTypeExp))
  }

  object ImplicitMethodType extends MethodTypeCompanion {
    def apply(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)(implicit ctx: Context) =
      unique(new ImplicitMethodType(paramNames, paramTypes)(resultTypeExp))
  }

  abstract case class ExprType(override val resultType: Type)
      extends CachedProxyType with TermType {
    override def underlying(implicit ctx: Context): Type = resultType
    override def signature(implicit ctx: Context): Signature = Nil
    def derivedExprType(resultType: Type)(implicit ctx: Context) =
      if (resultType eq this.resultType) this else ExprType(resultType)
    override def computeHash = doHash(resultType)
  }

  final class CachedExprType(resultType: Type) extends ExprType(resultType)

  object ExprType {
    def apply(resultType: Type)(implicit ctx: Context) =
      unique(new CachedExprType(resultType))
  }

  case class PolyType(paramNames: List[TypeName])(paramBoundsExp: PolyType => List[TypeBounds], resultTypeExp: PolyType => Type)
      extends UncachedGroundType with BindingType with TermType {
    val paramBounds = paramBoundsExp(this)
    override val resultType = resultTypeExp(this)

    override def signature(implicit ctx: Context) = resultType.signature

    def instantiate(argTypes: List[Type])(implicit ctx: Context): Type =
      new InstPolyMap(this, argTypes) apply resultType

    def instantiateBounds(argTypes: List[Type])(implicit ctx: Context): List[TypeBounds] =
      paramBounds.mapConserve(new InstPolyMap(this, argTypes).apply(_).bounds)

    def derivedPolyType(paramNames: List[TypeName], paramBounds: List[TypeBounds], restpe: Type)(implicit ctx: Context) =
      if ((paramNames eq this.paramNames) && (paramBounds eq this.paramBounds) && (restpe eq this.resultType)) this
      else copy(paramNames, paramBounds, restpe)

    def copy(paramNames: List[TypeName], paramBounds: List[TypeBounds], restpe: Type)(implicit ctx: Context) =
      PolyType(paramNames)(
          x => paramBounds mapConserve (_.subst(this, x).bounds),
          x => restpe.subst(this, x))

    // need to override hashCode and equals to be object identity
    // because paramNames by itself is not discriminatory enough
    override def hashCode = System.identityHashCode(this)
    override def equals(other: Any) = this eq other.asInstanceOf[AnyRef]

    override def toString = s"PolyType($paramNames, $paramBounds, $resultType)"
  }

  object PolyType {
    def fromSymbols(tparams: List[Symbol], resultType: Type)(implicit ctx: Context) =
      if (tparams.isEmpty) resultType
      else {
        def transform(pt: PolyType, tp: Type) =
          tp.subst(tparams, (0 until tparams.length).toList map (PolyParam(pt, _)))
        apply(tparams map (_.name.asTypeName))(
          pt => tparams map (tparam => transform(pt, tparam.info).bounds),
          pt => transform(pt, resultType))
      }
  }

  abstract class BoundType extends UncachedProxyType with ValueType {
    type BT <: BindingType
    def binder: BT
    def copy(bt: BT): Type
  }

  abstract class ParamType extends BoundType {
    def paramNum: Int
  }

  case class MethodParam(binder: MethodType, paramNum: Int) extends ParamType with SingletonType {
    type BT = MethodType
    override def underlying(implicit ctx: Context): Type = binder.paramTypes(paramNum)
    def copy(bt: BT) = MethodParam(bt, paramNum)

    // need to customize hashCode and equals to prevent infinite recursion for dep meth types.
    override def hashCode = doHash(System.identityHashCode(binder) + paramNum)
    override def equals(that: Any) = that match {
      case that: MethodParam =>
        (this.binder eq that.binder) &&
        this.paramNum == that.paramNum
      case _ =>
        false
    }

    override def toString = s"MethodParam(${binder.paramNames(paramNum)})"
  }

  case class PolyParam(binder: PolyType, paramNum: Int) extends ParamType {
    type BT = PolyType
    def copy(bt: BT) = PolyParam(bt, paramNum)
    override def underlying(implicit ctx: Context): Type = binder.paramBounds(paramNum)
    // no customized hashCode/equals needed because cycle is broken in PolyType
    override def toString = s"PolyParam(${binder.paramNames(paramNum)})"
  }

  case class RefinedThis(binder: RefinedType) extends BoundType with SingletonType {
    type BT = RefinedType
    override def underlying(implicit ctx: Context) = binder.parent
    def copy(bt: BT) = RefinedThis(bt)
    // need to customize hashCode and equals to prevent infinite recursion for
    // refinements that refer to the refinement type via this
    override def hashCode = doHash(System.identityHashCode(binder))
    override def equals(that: Any) = that match {
      case that: RefinedThis => this.binder eq that.binder
      case _ => false
    }
    override def toString = s"RefinedThis(${binder.hashCode})"
  }

  final case class TypeVar(origin: PolyParam) extends UncachedProxyType with ValueType {
    private var inst: Type = NoType
    def isInstantiated = inst ne NoType
    def instantiateWith(tp: Type) = inst = tp
    override def thisInstance = if (isInstantiated) inst else origin
    override def underlying(implicit ctx: Context): Type = thisInstance
    override def equals(that: Any) = this eq that.asInstanceOf[AnyRef]
    override def toString = thisInstance.toString
  }

  // ------ ClassInfo, Type Bounds ------------------------------------------------------------

  /** The info of a class during a period, roughly
   *  @param prefix       The prefix on which parents, decls, and selfType need to be rebased.
   *  @param cls          The class symbol.
   *  @param classParents The parent types of this class.
   *                      These are all normalized to be TypeRefs by moving any refinements
   *                      to be member definitions of the class itself.
   *  @param decls        The symbols defined directly in this class.
   *  @param optSelfType  The type of `this` in this class, if explicitly given, NoType otherwise.
   */
  abstract case class ClassInfo(
      prefix: Type,
      cls: ClassSymbol,
      classParents: List[TypeRef],
      decls: Scope,
      optSelfType: Type) extends CachedGroundType with TypeType {

    def selfType(implicit ctx: Context): Type =
      if (optSelfType.exists) optSelfType else cls.typeConstructor

    def rebase(tp: Type)(implicit ctx: Context): Type =
      if ((prefix eq cls.owner.thisType) || !cls.owner.isClass) tp
      else tp.substThis(cls.owner.asClass, prefix)

    private var tyconCache: Type = null

    def typeConstructor(implicit ctx: Context): Type = {
      def clsDenot = if (prefix eq cls.owner.thisType) cls.denot else cls.denot.copySymDenotation(info = this)
      if (tyconCache == null)
        tyconCache =
          if ((cls is PackageClass) || cls.owner.isTerm) TypeRef.withSym(prefix, cls)
          else TypeRef(prefix, cls.name).withDenot(clsDenot)
      tyconCache
    }

    // cached because baseType needs parents
    private var parentsCache: List[TypeRef] = null

    override def parents(implicit ctx: Context): List[TypeRef] = {
      if (parentsCache == null)
        parentsCache = classParents.mapConserve(rebase(_).asInstanceOf[TypeRef])
      parentsCache
    }

    def derivedClassInfo(prefix: Type)(implicit ctx: Context) =
      if (prefix eq this.prefix) this
      else ClassInfo(prefix, cls, classParents, decls, optSelfType)

    def derivedClassInfo(prefix: Type, classParents: List[TypeRef], optSelfType: Type)(implicit ctx: Context) =
      if ((prefix eq this.prefix) && (classParents eq this.classParents) && (optSelfType eq this.optSelfType)) this
      else ClassInfo(prefix, cls, classParents, decls, optSelfType)

    override def computeHash = doHash(cls, prefix)
  }

  final class CachedClassInfo(prefix: Type, cls: ClassSymbol, classParents: List[TypeRef], decls: Scope, optSelfType: Type)
    extends ClassInfo(prefix, cls, classParents, decls, optSelfType)

  object ClassInfo {
    def apply(prefix: Type, cls: ClassSymbol, classParents: List[TypeRef], decls: Scope, optSelfType: Type = NoType)(implicit ctx: Context) =
      unique(new CachedClassInfo(prefix, cls, classParents, decls, optSelfType))
  }

  /** Type bounds >: lo <: hi */
  abstract case class TypeBounds(lo: Type, hi: Type) extends CachedProxyType with TypeType {

    assert(lo.isInstanceOf[TermType], lo+" "+lo.getClass)
    assert(hi.isInstanceOf[TermType], hi+" "+hi.getClass)

    override def underlying(implicit ctx: Context): Type = hi

    def derivedTypeBounds(lo: Type, hi: Type)(implicit ctx: Context) =
      if ((lo eq this.lo) && (hi eq this.hi)) this
      else TypeBounds(lo, hi)

    def contains(tp: Type)(implicit ctx: Context) = lo <:< tp && tp <:< hi

    def &(that: TypeBounds)(implicit ctx: Context): TypeBounds =
      derivedTypeBounds(this.lo | that.lo, this.hi & that.hi)

    def | (that: TypeBounds)(implicit ctx: Context): TypeBounds =
      derivedTypeBounds(this.lo & that.lo, this.hi | that.hi)

    override def & (that: Type)(implicit ctx: Context) = that match {
      case that: TypeBounds => this & that
      case that: ClassInfo => this & that.bounds
    }

    override def | (that: Type)(implicit ctx: Context) = that match {
      case that: TypeBounds => this | that
    }

    def map(f: Type => Type)(implicit ctx: Context): TypeBounds =
      TypeBounds(f(lo), f(hi))

    /** Given a higher-kinded abstract type
     *
     *    type T[boundSyms] >: L <: H
     *
     *  produce its equivalent bounds L',R that make no reference to the bound
     *  symbols on the left hand side. The idea is to rewrite the declaration to
     *
     *      type T >: L' <: HigherKindedXYZ { type _$hk$i >: bL_i <: bH_i } & H'
     *
     *  where
     *
     *  - XYZ encodes the variants of the bound symbols using `P` (positive variance)
     *    `N` (negative variance), `I` (invariant).
     *  - bL_i is the lower bound of bound symbol #i under substitution `substBoundSyms`
     *  - bH_i is the upper bound of bound symbol #i under substitution `substBoundSyms`
     *  - `substBoundSyms` is the substitution that maps every bound symbol #i to the
     *    reference `this._$hk$i`.
     *  - L' = substBoundSyms(L), H' = substBoundSyms(H)
     *
     *  Example:
     *
     *      type T[X <: F[X]] <: Traversable[X, T]
     *
     *  is rewritten to:
     *
     *      type T <: HigherKindedP { type _$hk$0 <: F[$_hk$0] } & Traversable[_$hk$0, T]
     *
     *  @see Definitions.hkTrait
     */
    def higherKinded(boundSyms: List[Symbol])(implicit ctx: Context) = {
      val parent = defn.hkTrait(boundSyms map (_.variance)).typeConstructor
      val hkParamNames = boundSyms.indices.toList map tpnme.higherKindedParamName
      def substBoundSyms(tp: Type)(rt: RefinedType): Type =
        tp.subst(boundSyms, hkParamNames map (TypeRef(RefinedThis(rt), _)))
      val hkParamInfoFns: List[RefinedType => Type] =
        for (bsym <- boundSyms) yield substBoundSyms(bsym.info)_
      val hkBound = RefinedType.make(parent, hkParamNames, hkParamInfoFns).asInstanceOf[RefinedType]
      TypeBounds(substBoundSyms(lo)(hkBound), AndType(hkBound, substBoundSyms(hi)(hkBound)))
    }

    override def computeHash = doHash(lo, hi)

    override def toString =
      if (lo eq hi) s"TypeAlias($lo)" else s"TypeBounds($lo, $hi)"
  }

  final class CachedTypeBounds(lo: Type, hi: Type) extends TypeBounds(lo, hi)

  object TypeBounds {
    def empty(implicit ctx: Context) = apply(defn.NothingType, defn.AnyType)
    def upper(hi: Type)(implicit ctx: Context) = apply(defn.NothingType, hi)
    def lower(lo: Type)(implicit ctx: Context) = apply(lo, defn.AnyType)
    def apply(lo: Type, hi: Type)(implicit ctx: Context) =
      unique(new CachedTypeBounds(lo, hi))
  }

  object TypeAlias {
    def apply(tp: Type)(implicit ctx: Context) = TypeBounds(tp, tp)
    def unapply(tp: Type): Option[Type] = tp match {
      case TypeBounds(lo, hi) if lo eq hi => Some(lo)
      case _ => None
    }
  }

  // ----- Annotated and Import types -----------------------------------------------

  /** An annotated type tpe @ annot */
  case class AnnotatedType(annot: Annotation, tpe: Type)
      extends UncachedProxyType with ValueType { // todo: cache them?
    override def underlying(implicit ctx: Context): Type = tpe
    def derivedAnnotatedType(annot: Annotation, tpe: Type) =
      if ((annot eq this.annot) && (tpe eq this.tpe)) this
      else AnnotatedType(annot, tpe)
  }

  object AnnotatedType {
    def make(annots: List[Annotation], underlying: Type) =
      if (annots.isEmpty) underlying
      else (underlying /: annots)((tp, ann) => AnnotatedType(ann, tp))
  }
  // Special type objects and classes -----------------------------------------------------


  /** The type of an import clause tree */
  case class ImportType(expr: Tree) extends UncachedGroundType

  /** Sentinal for "missing type" */
  case object NoType extends CachedGroundType {
    override def exists = false
    override def computeHash = hashSeed
  }

  /** Missing prefix */
  case object NoPrefix extends CachedGroundType {
    override def computeHash = hashSeed
  }

  abstract class ErrorType extends UncachedGroundType with ValueType

  object ErrorType extends ErrorType

  case object WildcardType extends UncachedGroundType

  /** An extractor for single abstract method types.
   *  A type is a SAM type if it is a reference to a class or trait, which
   *
   *   - has a single abstract method
   *   - can be instantiated without arguments or with just () as argument.
   */
  object SAMType {
    def isInstantiatable(tp: Type)(implicit ctx: Context): Boolean = tp match {
      case tp: TypeRef =>
        isInstantiatable(tp.info)
      case tp: ClassInfo =>
        def zeroParams(tp: Type): Boolean = tp match {
          case pt: PolyType => zeroParams(pt)
          case mt: MethodType => mt.paramTypess.isEmpty && !mt.resultType.isInstanceOf[MethodType]
          case et: ExprType => true
          case _ => false
        }
        val noParamsNeeded = (tp.cls is Trait) || zeroParams(tp.cls.primaryConstructor.info)
        val selfTypeFeasible = tp.typeConstructor <:< tp.selfType
        noParamsNeeded && selfTypeFeasible
      case tp: RefinedType =>
        isInstantiatable(tp.underlying)
      case tp: TypeVar =>
        isInstantiatable(tp.thisInstance)
      case _ =>
        false
    }
    def unapply(tp: Type)(implicit ctx: Context): Option[(SingleDenotation, List[Type], Type)] =
      if (isInstantiatable(tp)) {
        val absMems = tp.abstractTermMembers
        if (absMems.size == 1)
          absMems.head.info match {
            case mt: MethodType if !mt.isDependent => Some((absMems.head, mt.paramTypes, mt.resultType))
            case _=> None
          }
        else None
      }
      else None
  }

  // ----- TypeMaps --------------------------------------------------------------------

  abstract class TypeMap(implicit ctx: Context) extends (Type => Type) { thisMap =>
    def apply(tp: Type): Type

    /** Map this function over given type */
    def mapOver(tp: Type): Type = tp match {
      case tp: NamedType =>
        tp.derivedNamedType(this(tp.prefix))

      case _: ThisType
         | _: BoundType => tp

      case tp: RefinedType =>
        tp.derivedRefinedType(this(tp.parent), tp.refinedName, this(tp.refinedInfo))

      case tp @ MethodType(pnames, ptypes) =>
        tp.derivedMethodType(pnames, ptypes mapConserve this, this(tp.resultType))

      case tp @ ExprType(restpe) =>
        tp.derivedExprType(this(restpe))

      case tp @ PolyType(pnames) =>
        tp.derivedPolyType(
          pnames, tp.paramBounds.mapConserve(apply(_).bounds), this(tp.resultType))

      case tp @ SuperType(thistp, supertp) =>
        tp.derivedSuperType(this(thistp), this(supertp))

      case tp @ TypeBounds(lo, hi) =>
        if (lo eq hi) {
          val lo1 = this(lo)
          tp.derivedTypeBounds(lo1, lo1)
        } else {
          tp.derivedTypeBounds(this(lo), this(hi))
        }

      case tp @ ClassInfo(prefix, _, _, _, _) =>
        tp.derivedClassInfo(this(prefix))

      case tp @ AnnotatedType(annot, underlying) =>
        tp.derivedAnnotatedType(mapOver(annot), this(underlying))

      case tp @ TypeVar(_) =>
        apply(tp.thisInstance)

      case _ =>
        tp
    }

    def mapOver(syms: List[Symbol]): List[Symbol] =
      ctx.mapSymbols(syms, this)

    def mapOver(scope: Scope): Scope = {
      val elems = scope.toList
      val elems1 = mapOver(elems)
      if (elems1 eq elems) scope
      else newScopeWith(elems1: _*)
    }

    def mapOver(annot: Annotation): Annotation =
      annot.derivedAnnotation(mapOver(annot.tree))

    def mapOver(tree: Tree): Tree =
      new TreeMapper(this).apply(tree)

    def andThen(f: Type => Type): TypeMap = new TypeMap {
      def apply(tp: Type) = f(thisMap(tp))
    }
  }

  object IdentityTypeMap extends TypeMap()(NoContext) {
    def apply(tp: Type) = tp
  }

  class InstMethodMap(mt: MethodType, argtypes: List[Type])(implicit ctx: Context) extends TypeMap {
    def apply(tp: Type) = tp match {
      case MethodParam(`mt`, n) => argtypes(n)
      case _ => mapOver(tp)
    }
  }

  class InstPolyMap(pt: PolyType, argtypes: List[Type])(implicit ctx: Context) extends TypeMap {
    def apply(tp: Type) = tp match {
      case PolyParam(`pt`, n) => argtypes(n)
      case _ => mapOver(tp)
    }
  }

  // ----- TypeAccumulators ----------------------------------------------------

  abstract class TypeAccumulator[T] extends ((T, Type) => T) {
    def apply(x: T, tp: Type): T

    protected def apply(x: T, annot: Annotation): T = x // don't go into annotations

    def foldOver(x: T, tp: Type): T = tp match {
      case tp: NamedType =>
        this(x, tp.prefix)

      case _: ThisType
         | _: BoundType => x

      case tp: RefinedType =>
        this(this(x, tp.parent), tp.refinedInfo)

      case tp @ MethodType(pnames, ptypes) =>
        this((x /: ptypes)(this), tp.resultType)

      case ExprType(restpe) =>
        this(x, restpe)

      case tp @ PolyType(pnames) =>
        this((x /: tp.paramBounds)(this), tp.resultType)

      case SuperType(thistp, supertp) =>
        this(this(x, thistp), supertp)

      case TypeBounds(lo, hi) =>
        if (lo eq hi) this(x, lo)
        else this(this(x, lo), hi)

      case AnnotatedType(annot, underlying) =>
        this(this(x, annot), underlying)

      case tp: TypeVar =>
        foldOver(x, tp.thisInstance)

      case _ => x
    }
  }

  class ExistsAccumulator(p: Type => Boolean) extends TypeAccumulator[Boolean] {
    def apply(x: Boolean, tp: Type) = x || p(tp) || foldOver(x, tp)
  }

  //   ----- Name Filters --------------------------------------------------

  /** A name filter selects or discards a member name of a type `pre`.
   *  To enable efficient caching, name filters have to satisfy the
   *  following invariant: If `keep` is a name filter, and `pre` has
   *  class `C` as a base class, then
   *
   *    keep(pre, name) => keep(C.this, name)
   */
  abstract class NameFilter {
    def apply(pre: Type, name: Name)(implicit ctx: Context): Boolean
  }

  /** A filter for names of abstract types of a given type */
  object abstractTypeNameFilter extends NameFilter {
    def apply(pre: Type, name: Name)(implicit ctx: Context): Boolean =
      name.isTypeName && ((pre member name).symbol is Deferred)
  }

  /** A filter for names of deferred term definitions of a given type */
  object abstractTermNameFilter extends NameFilter {
    def apply(pre: Type, name: Name)(implicit ctx: Context): Boolean =
      name.isTermName && (pre member name).hasAltWith(_ is Deferred)
  }

  object typeNameFilter extends NameFilter {
    def apply(pre: Type, name: Name)(implicit ctx: Context): Boolean = name.isTypeName
  }

  object takeAllFilter extends NameFilter {
    def apply(pre: Type, name: Name)(implicit ctx: Context): Boolean = true
  }

  // ----- Exceptions -------------------------------------------------------------

  class TypeError(msg: String) extends Exception(msg)
  class FatalTypeError(msg: String) extends TypeError(msg)

  class MalformedType(pre: Type, denot: Denotation, absMembers: Set[Name])
    extends FatalTypeError(
      s"""malformed type: $pre is not a legal prefix for $denot because it contains abstract type member${if (absMembers.size == 1) "" else "s"} ${absMembers.mkString(", ")}"""
         .stripMargin)

  class CyclicReference(val denot: SymDenotation)
    extends FatalTypeError(s"cyclic reference involving $denot")

  // ----- Debug ---------------------------------------------------------

  var debugTrace = false
}