aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/core/Types.scala
blob: c9b8afb90fb1aacdc723cdc0c26b07c0f9cad6c0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
package dotty.tools.dotc
package core

import util.HashSet
import Symbols._
import TypeComparers._
import Flags._
import Names._
import Scopes._
import Constants._
import Contexts._
import Annotations._
import SymDenotations._
import Denotations._
import Periods._, Trees._
import scala.util.hashing.{ MurmurHash3 => hashing }
import collection.mutable

object Types {

  /** A hash value indicating that the underlying type is not
   *  cached in uniques.
   */
  final val NotCached = 0

  /** An alternative value returned from `hash` if the
   *  computed hashCode would be `NotCached`.
   */
  private final val NotCachedAlt = Int.MinValue

  /** The class of types.
   *  The principal subclasses and sub-objects are as follows:
   *
   *  Type -+- ProxyType --+- NamedType ----+--- TypeRef
   *        |              |                 \
   *        |              +- SingletonType-+-+- TermRef
   *        |              |                |
   *        |              |                +--- ThisType
   *        |              |                +--- SuperType
   *        |              |                +--- ConstantType
   *        |              |                +--- MethodParam
   *        |              |                +--- RefinedThis
   *        |              |                +--- NoPrefix
   *        |              +- TypeBounds
   *        |              +- ExprType
   *        |              +- AnnotatedType
   *        |
   *        +- GroundType -+- PolyParam
   *                       +- RefinedType
   *                       +- AndType
   *                       +- OrType
   *                       +- MethodType -----+- ImplicitMethodType
   *                       |                  +- JavaMethodType
   *                       +- PolyType
   *                       +- ClassInfo
   *                       |
   *                       +- NoType
   *                       +- ErrorType
   *                       +- WildcardType
   */
  abstract class Type extends DotClass {

    /** The type symbol associated with the type */
    final def typeSymbol(implicit ctx: Context): Symbol = this match {
      case tp: TypeRef => tp.symbol
      case tp: ClassInfo => tp.classd.symbol
      case _ => NoSymbol
    }

    /** The term symbol associated with the type */
    final def termSymbol(implicit ctx: Context): Symbol = this match {
      case tp: TermRef => tp.symbol
      case _ => NoSymbol
    }

    /** Does this type denote a stable reference (i.e. singleton type)? */
    final def isStable(implicit ctx: Context): Boolean = this match {
      case tp: TermRef => tp.prefix.isStable && tp.termSymbol.isStable
      case _: SingletonType => true
      case _ => false
    }

    /** A type T is a legal prefix in a type selection T#A if
     *  T is stable or T contains no uninstantiated type variables.
     */
    final def isLegalPrefix(implicit ctx: Context): Boolean =
      isStable || abstractTypeNames(this).isEmpty

    /** The set of names that denote an abstract type member of this type
     *  which is also an abstract type member of `pre`
     */
    final def abstractTypeNames(pre: Type)(implicit ctx: Context): Set[Name] =
      memberNames(pre, abstractTypeNameFilter)

    /** The set of names that denote an abstract term member of this type
     *  which is also an abstract term member of `pre`
     */
    final def abstractTermNames(pre: Type)(implicit ctx: Context): Set[Name] =
      memberNames(pre, abstractTermNameFilter)

    /** The set of names that denote an abstract member of this type
     *  which is also an abstract member of `pre`
     */
    final def abstractMemberNames(pre: Type)(implicit ctx: Context): Set[Name] =
      abstractTypeNames(pre) | abstractTermNames(pre)

    /** The set of names of members of this type that pass the given name filter
     *  when seen as members of `pre`. More precisely, these are all
     *  of members `name` such that `keepOnly(pre, name)` is `true`.
     */
    final def memberNames(pre: Type, keepOnly: NameFilter)(implicit ctx: Context): Set[Name] = this match {
      case tp: ClassInfo =>
        tp.classd.memberNames(keepOnly) filter (keepOnly(pre, _))
      case tp: RefinedType =>
        var ns = tp.parent.memberNames(pre, keepOnly)
        if (keepOnly(pre, tp.name)) ns += tp.name
        ns
      case tp: AndType =>
        tp.tp1.memberNames(pre, keepOnly) | tp.tp2.memberNames(pre, keepOnly)
      case tp: OrType =>
        tp.tp1.memberNames(pre, keepOnly) & tp.tp2.memberNames(pre, keepOnly)
      case tp: TypeProxy =>
        tp.underlying.memberNames(pre, keepOnly)
      case _ =>
        Set()
    }

    /** Is this type a TypeBounds instance, with lower and upper bounds
     *  that are not identical?
     */
    final def isRealTypeBounds: Boolean = this match {
      case tp: TypeBounds => tp.lo ne tp.hi
      case _ => false
    }

    /** Is this type a TypeBounds instance, with lower and upper bounds
     *  that are identical?
     */
    final def isAliasTypeBounds: Boolean = this match {
      case tp: TypeBounds => tp.lo eq tp.hi
      case _ => false
    }

    /** This type seen as a TypeBounds */
    final def bounds(implicit ctx: Context): TypeBounds = this match {
      case tp: TypeBounds => tp
      case _ => TypeBounds(this, this)
    }

    /** A type is volatile if it has an underlying type of the
     *  form P1 with ... with Pn { decls } (where n may be 1 or decls may
     *  be empty), one of the parent types Pi is an abstract type, and
     *  either decls or a different parent Pj, j != i, contributes
     *  an abstract member.
     *
     *  A type contributes an abstract member if it has an abstract member which
     *  is also a member of the whole refined type. A scope `decls` contributes
     *  an abstract member if it has an abstract definition which is also
     *  a member of the whole type.
     *
     *  Lazy values are not allowed to have volatile type, as otherwise
     *  unsoundness can result.
     */
    final def isVolatile(implicit ctx: Context): Boolean =
      ctx.isVolatile(this)

    /** Is this type guaranteed not to have `null` as a value? */
    final def isNotNull: Boolean = false

    /** Is this type produced as a repair for an error? */
    final def isError(implicit ctx: Context): Boolean =
      (typeSymbol is Erroneous) || (termSymbol is Erroneous)

    /** Is some part of this type produced as a repair for an error? */
    final def isErroneous(implicit ctx: Context): Boolean = exists(_.isError)

    /** Returns true if there is a part of this type that satisfies predicate `p`.
     */
    final def exists(p: Type => Boolean): Boolean =
      new ExistsAccumulator(p)(false, this)

    /** Substitute all types that refer in their symbol attribute to
     *  one of the symbols in `from` by the corresponding types in `to`
     */
    final def subst(from: List[Symbol], to: List[Type])(implicit ctx: Context): Type =
      if (from.isEmpty) this
      else {
        val from1 = from.tail
        if (from1.isEmpty) ctx.subst1(this, from.head, to.head, null)
        else {
          val from2 = from1.tail
          if (from2.isEmpty) ctx.subst2(this, from.head, to.head, from.tail.head, to.tail.head, null)
          else ctx.subst(this, from, to, null)
        }
      }

    /** Substitute all types of the form `PolyParam(from, N)` by
     *  `PolyParam(to, N)`.
     */
    final def subst(from: BindingType, to: BindingType)(implicit ctx: Context): Type =
      ctx.subst(this, from, to, null)

    /** Substitute all occurrences of `This(cls)` by `tp` */
    final def substThis(cls: ClassSymbol, tp: Type)(implicit ctx: Context): Type =
      ctx.substThis(this, cls, tp, null)

    /** Substitute all occurrences of `RefinedThis(rt)` by `tp` */
    final def substThis(rt: RefinedType, tp: Type)(implicit ctx: Context): Type =
      ctx.substThis(this, rt, tp, null)

    /** For a ClassInfo type, its parents,
     *  Inherited by all type proxies. Empty for all other types.
     *  Overwritten in ClassInfo, where parents is cached.
     */
    def parents(implicit ctx: Context): List[TypeRef] = this match {
      case tp: TypeProxy =>
        tp.underlying.parents
      case _ => List()
    }

    /** The elements of an AndType or OrType */
    def factors(implicit ctx: Context): List[Type] = this match {
      case tp: AndType =>
        def components(tp: Type): List[Type] = tp match {
          case AndType(tp1, tp2) => components(tp1) ++ components(tp2)
          case _ => List(tp)
        }
        components(tp)
      case tp: OrType =>
        def components(tp: Type): List[Type] = tp match {
          case OrType(tp1, tp2) => components(tp1) ++ components(tp2)
          case _ => List(tp)
        }
        components(tp)
      case _ => List()
    }

    /** The parameter types of a PolyType or MethodType, Empty list for others */
    def paramTypess(implicit ctx: Context): List[List[Type]] = this match {
      case mt: MethodType => mt.paramTypes :: mt.resultType.paramTypess
      case pt: PolyType => pt.paramTypess
      case _ => Nil
    }

    /** Map function over elements of an AndType, rebuilding with & */
    def mapAnd(f: Type => Type)(implicit ctx: Context): Type = this match {
      case AndType(tp1, tp2) => tp1.mapAnd(f) & tp2.mapAnd(f)
      case _ => f(this)
    }

    /** Map function over elements of an OrType, rebuilding with | */
    def mapOr(f: Type => Type)(implicit ctx: Context): Type = this match {
      case OrType(tp1, tp2) => tp1.mapOr(f) | tp2.mapOr(f)
      case _ => f(this)
    }

    /** The normalized prefix of this type is:
     *  For an alias type, the normalized prefix of its alias
     *  For all other named type and class infos: the prefix.
     *  Inherited by all other type proxies.
     *  `NoType` for all other types.
     */
    final def normalizedPrefix(implicit ctx: Context): Type = this match {
      case tp: NamedType =>
        if (tp.isAbstractType) tp.info.normalizedPrefix else tp.prefix
      case tp: ClassInfo =>
        tp.prefix
      case tp: TypeProxy =>
        tp.underlying.normalizedPrefix
      case _ =>
        NoType
    }

    /** The scope of all declarations of this type.
     *  Defined by ClassInfo, inherited by type proxies.
     *  Empty scope for all other types.
     */
    final def decls(implicit ctx: Context): Scope = this match {
      case tp: ClassInfo =>
        tp.classd.decls
      case tp: TypeProxy =>
        tp.underlying.decls
      case _ =>
        EmptyScope
    }

    /** The declaration of this type with given name */
    final def decl(name: Name)(implicit ctx: Context): Denotation =
      findDecl(name, this, EmptyFlags)

    /** The non-private declaration of this type with given name */
    final def nonPrivateDecl(name: Name)(implicit ctx: Context): Denotation =
      findDecl(name, this, Flags.Private)

    /** The non-private class member declaration of this type with given name */
    final def findDecl(name: Name, pre: Type, excluded: FlagSet)(implicit ctx: Context): Denotation = this match {
      case tp: ClassInfo =>
        tp.classd.decls
          .denotsNamed(name)
          .filterAccessibleFrom(pre)
          .filterExcluded(excluded)
          .asSeenFrom(pre, tp.classd.symbol)
          .toDenot
      case tp: TypeProxy =>
        tp.underlying.findDecl(name, pre, excluded)
    }

    /** The member of this type with given name  */
    final def member(name: Name)(implicit ctx: Context): Denotation =
      findMember(name, this, EmptyFlags)

    /** The non-private member of this type with given name */
    final def nonPrivateMember(name: Name)(implicit ctx: Context): Denotation =
      findMember(name, this, Flags.Private)

    /** Find member of this type with given name and
     *  produce a denotation that contains the type of the member
     *  as seen from given prefix `pre`. Exclude all members with one
     *  of the flags in `excluded` from consideration.
     */
    final def findMember(name: Name, pre: Type, excluded: FlagSet)(implicit ctx: Context): Denotation = this match {
      case tp: RefinedType =>
        val pdenot = tp.parent.findMember(name, pre, excluded)
        if (name eq tp.name)
          pdenot & new JointRefDenotation(NoSymbol, tp.info.substThis(tp, pre), Period.allInRun(ctx.runId))
        else
          pdenot
      case tp: TypeProxy =>
        tp.underlying.findMember(name, pre, excluded)
      case tp: ClassInfo =>
        val classd = tp.classd
        val candidates = classd.membersNamed(name)
        val results = candidates
          .filterAccessibleFrom(pre)
          .filterExcluded(excluded)
          .asSeenFrom(pre, classd.symbol)
        if (results.exists) results.toDenot
        else new ErrorDenotation // todo: refine
      case tp: AndType =>
        tp.tp1.findMember(name, pre, excluded) & tp.tp2.findMember(name, pre, excluded)
      case tp: OrType =>
        (tp.tp1.findMember(name, pre, excluded) | tp.tp2.findMember(name, pre, excluded))(pre)
    }

    /** Is this type a subtype of that type? */
    final def <:<(that: Type)(implicit ctx: Context): Boolean =
      ctx.typeComparer.isSubType(this, that)

    /** Is this type the same as that type?
     *  This is the case iff `this <:< that` and `that <:< this`.
     */
    final def =:=(that: Type)(implicit ctx: Context): Boolean =
      ctx.typeComparer.isSameType(this, that)

    /** Is this type close enough to that type so that members
     *  with the two type would override each other?
     *  This means:
     *    - Either both types are polytypes with the same number of
     *      type parameters and their result types match after renaming
     *      corresponding type parameters
     *    - Or both types are (possibly nullary) method types with equivalent type parameter types
     *      and matching result types
     *    - Or both types are equivalent
     *    - Or phase.erasedTypes is false and both types are neither method nor
     *      poly types.
     */
    def matches(that: Type)(implicit ctx: Context): Boolean =
      ctx.typeComparer.matchesType(this, that, !ctx.phase.erasedTypes)

    /** Does this type match that type
     *
     */

    /** The info of `denot`, seen as a member of this type. */
//    final def memberInfo(denot: SymDenotation)(implicit ctx: Context): Type = {
//      denot.info.asSeenFrom(this, denot.owner)
//    }

    /** The info of `sym`, seen as a member of this type. */
    final def memberInfo(sym: Symbol)(implicit ctx: Context): Type = {
      sym.info.asSeenFrom(this, sym.owner)
    }

    /** Widen from singleton type to its underlying non-singleton
     *  base type by applying one or more `underlying` dereferences,
     *  identity for all other types. Example:
     *
     *  class Outer { class C ; val x: C }
     *  val o: Outer
     *  <o.x.type>.widen = o.C
     */
    final def widen(implicit ctx: Context): Type = this match {
      case tp: SingletonType => tp.underlying.widen
      case _ => this
    }

    /** Widen from constant type to its underlying non-constant
     *  base type.
     */
    final def deconst(implicit ctx: Context): Type = this match {
      case tp: ConstantType => tp.value.tpe
      case _ => this
    }

    //def resultType: Type = ???

    /** The base classes of this type as determined by ClassDenotation
     *  in linearization order, with the class itself as first element.
     *  Inherited by all type proxies. `Nil` for all other types.
     */
    final def baseClasses(implicit ctx: Context): List[ClassSymbol] = this match {
      case tp: TypeProxy =>
        tp.underlying.baseClasses
      case tp: ClassInfo =>
        tp.classd.baseClasses
      case _ => Nil
    }

    final def asSeenFrom(pre: Type, cls: Symbol)(implicit ctx: Context): Type =
      if ((cls is PackageClass) ||
        ctx.erasedTypes && cls != defn.ArrayClass ||
        (pre eq cls.thisType)) this
      else ctx.asSeenFrom(this, pre, cls, null)

    /** The signature of this type. This is by default NullSignature,
     *  but is overridden for PolyTypes, MethodTypes, and TermRefWithSignature types.
     *  (the reason why we deviate from the "final-method-with-pattern-match-in-base-class"
     *   pattern is that method signatures use caching, so encapsulation
     *   is improved using an OO scheme).
     */
    def signature: Signature = NullSignature

    final def baseType(base: Symbol)(implicit ctx: Context): Type = base.denot match {
      case classd: ClassDenotation => classd.baseTypeOf(this)
      case _ => NoType
    }

    /** The type parameters of this type are:
     *  For a ClassInfo type, the type parameters of its denotation.
     *  Inherited by type proxies.
     *  Empty list for all other types.
     */
    final def typeParams(implicit ctx: Context): List[TypeSymbol] = this match {
      case tp: ClassInfo =>
        tp.classd.typeParams
      case tp: TypeProxy =>
        tp.underlying.typeParams
      case _ => Nil
    }

    /** Encode the type resulting from applying this type to given arguments */
    final def appliedTo(args: List[Type])(implicit ctx: Context): Type = {
      def recur(tp: Type, tparams: List[TypeSymbol], args: List[Type]): Type = args match {
        case arg :: args1 =>
          val tparam = tparams.head
          val tp1 = RefinedType(tp, tparam.name, arg.toRHS(tparam))
          recur(tp1, tparams.tail, args1)
        case nil => tp
      }
      if (args.isEmpty) this else recur(this, typeParams, args)
    }

    final def appliedTo(arg: Type)(implicit ctx: Context): Type = appliedTo(arg :: Nil)
    final def appliedTo(arg1: Type, arg2: Type)(implicit ctx: Context): Type = appliedTo(arg1 :: arg2 :: Nil)

    final def objToAny(implicit ctx: Context) =
      if (typeSymbol == defn.ObjectClass && !ctx.phase.erasedTypes) defn.AnyType else this

    /** If this type equals `tycon applyToArgs args`, for some
     *  non-refinement type `tycon` and (possibly partial) type arguments
     *  `args`, return a pair consisting of `tycon` and `args`.
     *  Otherwise return the type itself and `Nil`.
     */
    final def splitArgs(implicit ctx: Context): (Type, List[Type]) = {
      def recur(tp: Type, nparams: Int): (Type, List[Type]) = tp match {
        case tp @ RefinedType(parent, name) =>
          def fail = (NoType, Nil)
          if (nparams >= 0) {
            val result @ (tycon, args) = recur(parent, nparams - 1)
            if (tycon != NoType) {
              val tparam = tycon.typeParams.apply(nparams)
              if (tparam.name == name) {
                (tycon, args :+ tp.info.argType(tparam))
              } else fail
            } else fail
          } else fail
        case tp =>
          (tp, Nil)
      }
      val result @ (tycon, args) = recur(this, typeParams.length)
      if (tycon != NoType) result else (this, Nil)
    }

    final def splitArgsCompletely(implicit ctx: Context): (Type, List[Type]) = {
      val result @ (tycon, args) = splitArgs
      if (args.length == tycon.typeParams.length) result else (NoType, Nil)
    }

    /** Turn this type into a TypeBounds RHS */
    final def toRHS(tparam: Symbol)(implicit ctx: Context): TypeBounds = {
      val v = tparam.variance
      if (v > 0) TypeBounds.upper(this)
      else if (v < 0) TypeBounds.lower(this)
      else TypeAlias(this)
    }

    /** If this is the image of a type argument, recover the type argument,
     *  otherwise NoType.
     */
    final def argType(tparam: Symbol)(implicit ctx: Context): Type = this match {
      case TypeBounds(lo, hi) =>
        val v = tparam.variance
        if (v > 0 && lo.typeSymbol == defn.NothingClass) hi
        else if (v < 0 && hi.typeSymbol == defn.AnyClass) lo
        else if (v == 0 && (lo eq hi)) lo
        else NoType
      case _ =>
        NoType
    }

    final def isWrong: Boolean = !exists // !!! needed?
    final def exists: Boolean = true

    final def &(that: Type)(implicit ctx: Context): Type =
      ctx.glb(this, that)

    def |(that: Type)(implicit ctx: Context): Type =
      ctx.lub(this, that)

    def show(implicit ctx: Context): String = ctx.show(this, Printers.GlobalPrec)

// ----- hashing ------------------------------------------------------

    /** customized hash code of this type.
     *  NotCached for uncached types. Cached types
     *  compute hash and use it as the type's hashCode.
     */
    def hash: Int

    protected def hashSeed = getClass.hashCode

    private def finishHash(hashCode: Int, arity: Int): Int = {
      val h = hashing.finalizeHash(hashCode, arity)
      if (h == NotCached) NotCachedAlt else h
    }

    private def finishHash(seed: Int, arity: Int, tp: Type): Int = {
      val elemHash = tp.hash
      if (elemHash == NotCached) return NotCached
      finishHash(hashing.mix(seed, elemHash), arity + 1)
    }

    private def finishHash(seed: Int, arity: Int, tp1: Type, tp2: Type): Int = {
      val elemHash = tp1.hash
      if (elemHash == NotCached) return NotCached
      finishHash(hashing.mix(seed, elemHash), arity + 1, tp2)
    }

    private def finishHash(seed: Int, arity: Int, tps: List[Type]): Int = {
      var h = seed
      var xs = tps
      var len = arity
      while (xs.nonEmpty) {
        val elemHash = xs.head.hash
        if (elemHash == NotCached) return NotCached
        h = hashing.mix(h, elemHash)
        xs = xs.tail
        len += 1
      }
      finishHash(h, len)
    }

    private def finishHash(seed: Int, arity: Int, tp: Type, tps: List[Type]): Int = {
      val elemHash = tp.hash
      if (elemHash == NotCached) return NotCached
      finishHash(hashing.mix(seed, elemHash), arity + 1, tps)
    }

    protected def doHash(x: Any): Int =
      finishHash(hashing.mix(hashSeed, x.hashCode), 1)

    protected def doHash(tp: Type): Int =
      finishHash(hashSeed, 0, tp)

    protected def doHash(x1: Any, tp2: Type): Int =
      finishHash(hashing.mix(hashSeed, x1.hashCode), 1, tp2)

    protected def doHash(tp1: Type, tp2: Type): Int =
      finishHash(hashSeed, 0, tp1, tp2)

    protected def doHash(x1: Any, tp2: Type, tp3: Type): Int =
      finishHash(hashing.mix(hashSeed, x1.hashCode), 1, tp2, tp3)

    protected def doHash(tp1: Type, tps2: List[Type]): Int =
      finishHash(hashSeed, 0, tp1, tps2)

    protected def doHash(x1: Any, tp2: Type, tps3: List[Type]): Int =
      finishHash(hashing.mix(hashSeed, x1.hashCode), 1, tp2, tps3)

  } // end Type

  /** A marker trait for cached types */
  trait CachedType extends Type

  def unique[T <: Type](tp: T)(implicit ctx: Context): T = {
    if (tp.hash == NotCached) tp
    else ctx.uniques.findEntryOrUpdate(tp).asInstanceOf[T]
  }

  /** A marker trait for type proxies.
   *  Each implementation is expected to redefine the `underlying` method.
   */
  abstract class TypeProxy extends Type {
    /** The type to which this proxy forwards operations. */
    def underlying(implicit ctx: Context): Type
  }

  // Every type has to inherit one of the following four abstract type classes.,
  // which determine whether the type is cached, and whether
  // it is a proxy of some other type. The duplication in their methods
  // is for efficiency.

  /**  Instances of this class are cached and are not proxies. */
  abstract class CachedGroundType extends Type with CachedType {
    final val hash = computeHash
    override final def hashCode = hash
    def computeHash: Int
  }

  /**  Instances of this class are cached and are proxies. */
  abstract class CachedProxyType extends TypeProxy with CachedType {
    final val hash = computeHash
    override final def hashCode = hash
    def computeHash: Int
  }

  /**  Instances of this class are uncached and are not proxies. */
  abstract class UncachedGroundType extends Type {
    final def hash = NotCached
  }

  /**  Instances of this class are uncached and are proxies. */
  abstract class UncachedProxyType extends TypeProxy {
    final def hash = NotCached
  }

  /** A marker trait for types that are guaranteed to contain only a
   *  single non-null value (they might contain null in addition).
   */
  trait SingletonType extends TypeProxy

  /** A marker trait for types that apply only to type symbols */
  trait TypeType extends Type

  // --- NamedTypes ------------------------------------------------------------------

  /** A NamedType of the form Prefix # name
   */
  abstract class NamedType extends CachedProxyType {

    val prefix: Type
    val name: Name

    private[this] var lastDenotation: Denotation = null

    /** The denotation currently denoted by this type */
    def denot(implicit ctx: Context): Denotation = {
      val validPeriods =
        if (lastDenotation != null) lastDenotation.validFor else Nowhere
      if (!(validPeriods contains ctx.period)) {
        val thisPeriod = ctx.period
        lastDenotation =
          if (validPeriods.runId == thisPeriod.runId) {
            lastDenotation.current
          } else {
            val d = loadDenot
            if (d.exists || ctx.phaseId == FirstPhaseId) {
              val checkPrefix =
                d.info.isRealTypeBounds || d.symbol.isClass
              if (checkPrefix && !prefix.isLegalPrefix)
                throw new MalformedType(prefix, d.symbol)
              d
            } else {// name has changed; try load in earlier phase and make current
              denot(ctx.fresh.withPhase(ctx.phaseId - 1)).current
            }
          }
      }
      lastDenotation
    }

    protected def loadDenot(implicit ctx: Context) = prefix.member(name)

    def isType = name.isTypeName
    def isTerm = name.isTermName

    def symbol(implicit ctx: Context): Symbol = denot.symbol
    def info(implicit ctx: Context): Type = denot.info

    override def underlying(implicit ctx: Context): Type = info

    def isAbstractType(implicit ctx: Context) = info.isRealTypeBounds

    def derivedNamedType(prefix: Type, name: Name)(implicit ctx: Context): Type =
      if (prefix eq this.prefix) this
      else NamedType(prefix, name)

    override def computeHash = doHash(name, prefix)
  }

  abstract case class TermRef(override val prefix: Type, name: TermName) extends NamedType with SingletonType

  abstract case class TypeRef(override val prefix: Type, name: TypeName) extends NamedType

  trait HasFixedSym extends NamedType {
    protected val fixedSym: Symbol
    override def symbol(implicit ctx: Context): Symbol = fixedSym
    override def loadDenot(implicit ctx: Context) = {
      val denot = fixedSym.denot
      val owner = denot.owner
      if (owner.isTerm) denot else denot.asSeenFrom(prefix, owner).toDenot
    }
  }

  final class TermRefBySym(prefix: Type, val fixedSym: TermSymbol)(initctx: Context)
    extends TermRef(prefix, fixedSym.name(initctx).asTermName) with HasFixedSym {
  }

  final class TermRefWithSignature(prefix: Type, name: TermName, override val signature: Signature) extends TermRef(prefix, name) {
    override def computeHash = doHash((name, signature), prefix)
    override def loadDenot(implicit ctx: Context): Denotation =
      super.loadDenot.atSignature(signature)
  }

  final class TypeRefBySym(prefix: Type, val fixedSym: TypeSymbol)(initctx: Context)
    extends TypeRef(prefix, fixedSym.name(initctx).asTypeName) with HasFixedSym {
  }

  final class CachedTermRef(prefix: Type, name: TermName) extends TermRef(prefix, name)
  final class CachedTypeRef(prefix: Type, name: TypeName) extends TypeRef(prefix, name)

  object NamedType {
    def apply(prefix: Type, name: Name)(implicit ctx: Context) =
      if (name.isTermName) TermRef(prefix, name.asTermName)
      else TypeRef(prefix, name.asTypeName)
   def apply(prefix: Type, sym: Symbol)(implicit ctx: Context) =
      if (sym.isTerm) TermRef(prefix, sym.asTerm)
      else TypeRef(prefix, sym.asType)
  }

  object TermRef {
    def apply(prefix: Type, name: TermName)(implicit ctx: Context) =
      unique(new CachedTermRef(prefix, name))
    def apply(prefix: Type, sym: TermSymbol)(implicit ctx: Context) =
      unique(new TermRefBySym(prefix, sym)(ctx))
    def apply(prefix: Type, name: TermName, signature: Signature)(implicit ctx: Context) =
      unique(new TermRefWithSignature(prefix, name, signature))
  }

  object TypeRef {
    def apply(prefix: Type, name: TypeName)(implicit ctx: Context) =
      unique(new CachedTypeRef(prefix, name))
    def apply(prefix: Type, sym: TypeSymbol)(implicit ctx: Context) =
      unique(new TypeRefBySym(prefix, sym)(ctx))
  }

  // --- Other SingletonTypes: ThisType/SuperType/ConstantType ---------------------------

  abstract case class ThisType(cls: ClassSymbol) extends CachedProxyType with SingletonType {
    override def underlying(implicit ctx: Context) = cls.selfType
    override def computeHash = doHash(cls)
  }

  final class CachedThisType(cls: ClassSymbol) extends ThisType(cls)

  object ThisType {
    def apply(cls: ClassSymbol)(implicit ctx: Context) = {
      assert(!(cls is PackageClass) || cls.isRoot)
      unique(new CachedThisType(cls))
    }
  }

  abstract case class SuperType(thistpe: Type, supertpe: Type) extends CachedProxyType with SingletonType {
    override def underlying(implicit ctx: Context) = supertpe
    def derivedSuperType(thistp: Type, supertp: Type)(implicit ctx: Context) =
      if ((thistp eq thistpe) && (supertp eq supertpe)) this
      else SuperType(thistp, supertp)
    override def computeHash = doHash(thistpe, supertpe)
  }

  final class CachedSuperType(thistpe: Type, supertpe: Type) extends SuperType(thistpe, supertpe)

  object SuperType {
    def apply(thistpe: Type, supertpe: Type)(implicit ctx: Context) =
      unique(new CachedSuperType(thistpe, supertpe))
  }

  abstract case class ConstantType(value: Constant) extends CachedProxyType with SingletonType {
    override def underlying(implicit ctx: Context) = value.tpe
    override def computeHash = doHash(value)
  }

  final class CachedConstantType(value: Constant) extends ConstantType(value)

  object ConstantType {
    def apply(value: Constant)(implicit ctx: Context) =
      unique(new CachedConstantType(value))
  }

  // --- Refined Type ---------------------------------------------------------

  abstract case class RefinedType(parent: Type, name: Name)(infof: RefinedType => Type) extends CachedProxyType with BindingType {

    val info: Type = infof(this)

    override def underlying(implicit ctx: Context) = parent

    def derivedRefinedType(parent: Type, name: Name, info: Type)(implicit ctx: Context): RefinedType =
      if ((parent eq this.parent) && (name eq this.name) && (info eq this.info)) this
      else RefinedType(parent, name, rt => info.substThis(this, RefinedThis(rt)))

    override def computeHash = doHash(name, info, parent)
  }

  class CachedRefinedType(parent: Type, name: Name, infof: RefinedType => Type) extends RefinedType(parent, name)(infof)

  object RefinedType {
    def make(parent: Type, names: List[Name], infofs: List[RefinedType => Type])(implicit ctx: Context): Type =
      if (names.isEmpty) parent
      else make(RefinedType(parent, names.head, infofs.head), names.tail, infofs.tail)

    def apply(parent: Type, name: Name, infof: RefinedType => Type)(implicit ctx: Context): RefinedType =
      unique(new CachedRefinedType(parent, name, infof))

    def apply(parent: Type, name: Name, info: Type)(implicit ctx: Context): RefinedType =
      apply(parent, name, scala.Function const info: (RefinedType => Type))
  }

  // --- AndType/OrType ---------------------------------------------------------------

  abstract case class AndType(tp1: Type, tp2: Type) extends CachedGroundType {

    type This <: AndType

    def derivedAndType(t1: Type, t2: Type)(implicit ctx: Context) =
      if ((t1 eq tp1) && (t2 eq tp2)) this
      else AndType(t1, t2)

    override def computeHash = doHash(tp1, tp2)
  }

  final class CachedAndType(tp1: Type, tp2: Type) extends AndType(tp1, tp2)

  object AndType {
    def apply(tp1: Type, tp2: Type)(implicit ctx: Context) =
      unique(new CachedAndType(tp1, tp2))
  }

  abstract case class OrType(tp1: Type, tp2: Type) extends CachedGroundType {
    def derivedOrType(t1: Type, t2: Type)(implicit ctx: Context) =
      if ((t1 eq tp1) && (t2 eq tp2)) this
      else OrType(t1, t2)

    override def computeHash = doHash(tp1, tp2)
  }

  final class CachedOrType(tp1: Type, tp2: Type) extends OrType(tp1, tp2)

  object OrType {
    def apply(tp1: Type, tp2: Type)(implicit ctx: Context) =
      unique(new CachedOrType(tp1, tp2))
  }

  // ----- Method types: MethodType/ExprType/PolyType/MethodParam/PolyParam ---------------

  trait BindingType extends Type

  // Note: method types are cached whereas poly types are not.
  // The reason is that most poly types are cyclic via poly params,
  // and therefore two different poly types would never be equal.

  abstract case class MethodType(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type) extends CachedGroundType with BindingType {
    lazy val resultType = resultTypeExp(this)
    def isJava = false
    def isImplicit = false

    lazy val isDependent = resultType exists {
      case MethodParam(mt, _) => mt eq this
      case _ => false
    }

    override lazy val signature: List[TypeName] = {
      def paramSig(tp: Type): TypeName = ???
      val followSig = resultType match {
        case rtp: MethodType => rtp.signature
        case _ => Nil
      }
      (paramTypes map paramSig) ++ followSig
    }

    def derivedMethodType(paramNames: List[TermName], paramTypes: List[Type], restpe: Type)(implicit ctx: Context) =
      if ((paramNames eq this.paramNames) && (paramTypes eq this.paramTypes) && (restpe eq this.resultType)) this
      else {
        val restpeExpr = (x: MethodType) => restpe.subst(this, x)
        if (isJava) JavaMethodType(paramNames, paramTypes)(restpeExpr)
        else if (isImplicit) ImplicitMethodType(paramNames, paramTypes)(restpeExpr)
        else MethodType(paramNames, paramTypes)(restpeExpr)
      }

    def instantiate(argTypes: List[Type])(implicit ctx: Context): Type =
      if (isDependent) new InstMethodMap(this, argTypes) apply resultType
      else resultType

    override def computeHash = doHash(paramNames, resultType, paramTypes)
  }

  final class CachedMethodType(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)
    extends MethodType(paramNames, paramTypes)(resultTypeExp)

  final class JavaMethodType(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)
    extends MethodType(paramNames, paramTypes)(resultTypeExp) {
    override def isJava = true
  }

  final class ImplicitMethodType(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)
    extends MethodType(paramNames, paramTypes)(resultTypeExp) {
    override def isImplicit = true
  }

  abstract class GenericMethodType {
    def apply(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)(implicit ctx: Context): MethodType
    def fromSymbols(params: List[Symbol], resultType: Type)(implicit ctx: Context) = {
      def transResult(mt: MethodType) =
        resultType.subst(params, (0 until params.length).toList map (MethodParam(mt, _)))
      apply(params map (_.name.asTermName), params map (_.info))(transResult _)
    }
  }

  object MethodType extends GenericMethodType {
    def apply(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)(implicit ctx: Context) =
      unique(new CachedMethodType(paramNames, paramTypes)(resultTypeExp))
  }

  object JavaMethodType extends GenericMethodType {
    def apply(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)(implicit ctx: Context) =
      unique(new JavaMethodType(paramNames, paramTypes)(resultTypeExp))
  }

  object ImplicitMethodType extends GenericMethodType {
    def apply(paramNames: List[TermName], paramTypes: List[Type])(resultTypeExp: MethodType => Type)(implicit ctx: Context) =
      unique(new ImplicitMethodType(paramNames, paramTypes)(resultTypeExp))
  }

  abstract case class ExprType(resultType: Type) extends CachedProxyType {
    override def underlying(implicit ctx: Context): Type = resultType
    override def signature: Signature = Nil
    def derivedExprType(rt: Type)(implicit ctx: Context) =
      if (rt eq resultType) this else ExprType(rt)
    override def computeHash = doHash(resultType)
  }

  final class CachedExprType(resultType: Type) extends ExprType(resultType)

  object ExprType {
    def apply(resultType: Type)(implicit ctx: Context) =
      unique(new CachedExprType(resultType))
  }

  case class PolyType(paramNames: List[TypeName])(paramBoundsExp: PolyType => List[TypeBounds], resultTypeExp: PolyType => Type)
      extends UncachedGroundType with BindingType {
    lazy val paramBounds = paramBoundsExp(this)
    lazy val resultType = resultTypeExp(this)

    override def signature = resultType.signature

    def instantiate(argTypes: List[Type])(implicit ctx: Context): Type =
      new InstPolyMap(this, argTypes) apply resultType

    def derivedPolyType(paramNames: List[TypeName], paramBounds: List[TypeBounds], restpe: Type)(implicit ctx: Context) =
      if ((paramNames eq this.paramNames) && (paramBounds eq this.paramBounds) && (restpe eq this.resultType)) this
      else
        PolyType(paramNames)(
          x => paramBounds mapConserve (_.substBounds(this, x)),
          x => restpe.subst(this, x))

    // need to override hashCode and equals to be object identity
    // because paramNames by itself is not discriminatory enough
    override def hashCode = System.identityHashCode(this)
    override def equals(other: Any) = other match {
      case that: PolyType => this eq that
      case _ => false
    }
  }

  object PolyType {
    def fromSymbols(tparams: List[Symbol], resultType: Type)(implicit ctx: Context) = {
      def transform(pt: PolyType, tp: Type) =
        tp.subst(tparams, (0 until tparams.length).toList map (PolyParam(pt, _)))
      apply(tparams map (_.name.asTypeName))(
          pt => tparams map (tparam => transform(pt, tparam.info).bounds),
          pt => transform(pt, resultType))
    }
  }

  abstract class BoundType extends UncachedProxyType {
    type BT <: BindingType
    def binder: BT
    def copy(bt: BT): Type
  }

  case class MethodParam(binder: MethodType, paramNum: Int) extends BoundType with SingletonType {
    type BT = MethodType
    override def underlying(implicit ctx: Context) = binder.paramTypes(paramNum)
    override def hashCode = doHash(System.identityHashCode(binder) + paramNum)
    def copy(bt: BT) = MethodParam(bt, paramNum)
  }

  case class PolyParam(binder: PolyType, paramNum: Int) extends BoundType {
    type BT = PolyType
    override def underlying(implicit ctx: Context) = binder.paramBounds(paramNum).hi
    def copy(bt: BT) = PolyParam(bt, paramNum)
    // no hashCode needed because cycle is broken in PolyType
  }

  case class RefinedThis(binder: RefinedType) extends BoundType with SingletonType {
    type BT = RefinedType
    override def underlying(implicit ctx: Context) = binder.parent
    def copy(bt: BT) = RefinedThis(bt)
    override def hashCode = doHash(System.identityHashCode(binder))
  }

  // ------ ClassInfo, Type Bounds ------------------------------------------------------------

  abstract case class ClassInfo(prefix: Type, classd: ClassDenotation) extends CachedGroundType with TypeType {

/*    def typeTemplate(implicit ctx: Context): Type =
      classd.typeTemplate asSeenFrom (prefix, classd.symbol)
*/
    def typeConstructor(implicit ctx: Context): Type =
      NamedType(prefix, classd.symbol.name)

    // cached because baseType needs parents
    private var parentsCache: List[TypeRef] = null

    override def parents(implicit ctx: Context): List[TypeRef] = {
      if (parentsCache == null)
        parentsCache = classd.parents.mapConserve(_.substThis(classd.symbol, prefix).asInstanceOf[TypeRef])
      parentsCache
    }

    override def computeHash = doHash(classd.symbol, prefix)
  }

  final class CachedClassInfo(prefix: Type, classd: ClassDenotation) extends ClassInfo(prefix, classd)

  object ClassInfo {
    def apply(prefix: Type, classd: ClassDenotation)(implicit ctx: Context) =
      unique(new CachedClassInfo(prefix, classd))
  }

  abstract case class TypeBounds(lo: Type, hi: Type) extends CachedProxyType with TypeType {
    override def underlying(implicit ctx: Context): Type = hi
    def derivedTypeBounds(lo1: Type, hi1: Type)(implicit ctx: Context) =
      if ((lo1 eq lo) && (hi1 eq hi)) this
      else TypeBounds(lo, hi)

    def &(that: TypeBounds)(implicit ctx: Context): TypeBounds =
      TypeBounds(this.lo | that.lo, this.hi & that.hi)
    def |(that: TypeBounds)(implicit ctx: Context): TypeBounds =
      TypeBounds(this.lo & that.lo, this.hi | that.hi)

    def substBounds(from: PolyType, to: PolyType)(implicit ctx: Context) =
      subst(from, to).asInstanceOf[TypeBounds]

    def map(f: Type => Type)(implicit ctx: Context): TypeBounds =
      TypeBounds(f(lo), f(hi))

    override def computeHash = doHash(lo, hi)
  }

  final class CachedTypeBounds(lo: Type, hi: Type) extends TypeBounds(lo, hi)

  object TypeBounds {
    def empty(implicit ctx: Context) = apply(defn.NothingType, defn.AnyType)
    def upper(hi: Type)(implicit ctx: Context) = apply(defn.NothingType, hi)
    def lower(lo: Type)(implicit ctx: Context) = apply(lo, defn.AnyType)
    def apply(lo: Type, hi: Type)(implicit ctx: Context) =
      unique(new CachedTypeBounds(lo, hi))
  }

  object TypeAlias {
    def apply(tp: Type)(implicit ctx: Context) = TypeBounds(tp, tp)
    def unapply(tp: Type): Option[Type] = tp match {
      case TypeBounds(lo, hi) if lo eq hi => Some(lo)
      case _ => None
    }
  }

  // ----- Annotated and Import types -----------------------------------------------

  case class AnnotatedType(annots: List[Annotation], tpe: Type) extends UncachedProxyType {
    override def underlying(implicit ctx: Context): Type = tpe
    def derivedAnnotatedType(annots1: List[Annotation], tpe1: Type) =
      if ((annots1 eq annots) && (tpe1 eq tpe)) this
      else AnnotatedType.make(annots1, tpe1)
  }

  object AnnotatedType {
    def make(annots: List[Annotation], underlying: Type) =
      if (annots.isEmpty) underlying
      else AnnotatedType(annots, underlying)
  }

  case class ImportType(expr: TypedTree) extends UncachedGroundType

  // Special type objects ------------------------------------------------------------

  case object NoType extends UncachedGroundType {
    def symbol = NoSymbol
    def info = NoType
  }

  /** Cached for efficiency because hashing is faster */
  case object NoPrefix extends CachedGroundType {
    override def computeHash = hashSeed
  }

  abstract class ErrorType extends UncachedGroundType

  object ErrorType extends ErrorType

  case object WildcardType extends UncachedGroundType

  // ----- TypeMaps --------------------------------------------------------------------

  abstract class TypeMap(implicit ctx: Context) extends (Type => Type) {
    def apply(tp: Type): Type

    def applyToBounds(tp: TypeBounds): TypeBounds =
      apply(tp: Type).asInstanceOf[TypeBounds]

    /** Map this function over given type */
    def mapOver(tp: Type): Type = tp match {
      case tp: NamedType =>
        tp.derivedNamedType(this(tp.prefix), tp.name)

      case _: ThisType
         | _: BoundType => tp

      case tp: RefinedType =>
        tp.derivedRefinedType(this(tp.parent), tp.name, this(tp.info))

      case tp @ PolyType(pnames) =>
        tp.derivedPolyType(
          pnames, tp.paramBounds mapConserve applyToBounds, this(tp.resultType))

      case tp @ MethodType(pnames, ptypes) =>
        tp.derivedMethodType(pnames, ptypes mapConserve this, this(tp.resultType))

      case tp @ ExprType(restpe) =>
        tp.derivedExprType(this(restpe))

      case tp @ SuperType(thistp, supertp) =>
        tp.derivedSuperType(this(thistp), this(supertp))

      case tp @ TypeBounds(lo, hi) =>
        if (lo eq hi) {
          val lo1 = this(lo)
          tp.derivedTypeBounds(lo1, lo1)
        } else {
          tp.derivedTypeBounds(this(lo), this(hi))
        }

      case tp @ AnnotatedType(annots, underlying) =>
        tp.derivedAnnotatedType(mapOverAnnotations(annots), this(underlying))

      case _ =>
        tp
    }

    def mapOverAnnotations(annots: List[Annotation]): List[Annotation] = ???

  }

  class InstMethodMap(mt: MethodType, argtypes: List[Type])(implicit ctx: Context) extends TypeMap {
    def apply(tp: Type) = tp match {
      case MethodParam(`mt`, n) => argtypes(n)
      case _ => mapOver(tp)
    }
  }

  class InstPolyMap(pt: PolyType, argtypes: List[Type])(implicit ctx: Context) extends TypeMap {
    def apply(tp: Type) = tp match {
      case PolyParam(`pt`, n) => argtypes(n)
      case _ => mapOver(tp)
    }
  }


  // ----- TypeAccumulators ----------------------------------------------------

  abstract class TypeAccumulator[T] extends ((T, Type) => T) {
    def apply(x: T, tp: Type): T

    def apply(x: T, annot: Annotation): T = ???

    def foldOver(x: T, tp: Type): T = tp match {
      case tp: NamedType =>
        this(x, tp.prefix)

      case _: ThisType
         | _: BoundType => x

      case tp: RefinedType =>
        this(this(x, tp.parent), tp.info)

      case tp @ PolyType(pnames) =>
        this((x /: tp.paramBounds)(this), tp.resultType)

      case tp @ MethodType(pnames, ptypes) =>
        this((x /: ptypes)(this), tp.resultType)

      case ExprType(restpe) =>
        this(x, restpe)

      case SuperType(thistp, supertp) =>
        this(this(x, thistp), supertp)

      case TypeBounds(lo, hi) =>
        this(this(x, lo), hi)

      case AnnotatedType(annots, underlying) =>
        this((x /: annots)(apply), underlying)

      case _ => x
    }
  }

  class ExistsAccumulator(p: Type => Boolean) extends TypeAccumulator[Boolean] {
    def apply(x: Boolean, tp: Type) = x || p(tp) || foldOver(x, tp)
  }

  // ----- Name Filters --------------------------------------------------

  /** A name filter selects or discards a member name of a type `pre`.
   *  To enable efficient caching, name filters have to satisfy the
   *  following invariant: If `keep` is a name filter, and `pre` has
   *  class `C` as a base class, then
   *
   *    keep(pre, name) => keep(C.this, name)
   */
  abstract class NameFilter {
    def apply(pre: Type, name: Name)(implicit ctx: Context): Boolean
  }

  /** A filter for names of abstract types of a given type */
  object abstractTypeNameFilter extends NameFilter {
    def apply(pre: Type, name: Name)(implicit ctx: Context): Boolean =
      name.isTypeName && (pre member name).info.isRealTypeBounds
  }

  /** A filter for names of deferred term definitions of a given type */
  object abstractTermNameFilter extends NameFilter {
    def apply(pre: Type, name: Name)(implicit ctx: Context): Boolean =
      name.isTermName && ((pre member name).symbol is Deferred)
  }

  // ----- Exceptions -------------------------------------------------------------

  class TypeError(msg: String) extends Exception(msg)
  class FatalTypeError(msg: String) extends TypeError(msg)
  class MalformedType(pre: Type, sym: Symbol) extends FatalTypeError(s"malformed type: $pre.$sym")
  class CyclicReference(sym: Symbol) extends FatalTypeError("cyclic reference involving $sym")

  // ----- Misc utilities ---------------------------------------------------------

  /** like map2, but returns list `xs` itself - instead of a copy - if function
   *  `f` maps all elements to themselves.
   */
  def map2Conserve[A <: AnyRef, B](xs: List[A], ys: List[B])(f: (A, B) => A): List[A] =
    if (xs.isEmpty) xs
    else {
      val x1 = f(xs.head, ys.head)
      val xs1 = map2Conserve(xs.tail, ys.tail)(f)
      if ((x1 eq xs.head) && (xs1 eq xs.tail)) xs
      else x1 :: xs1
    }

  /** True if two lists have the same length.  Since calling length on linear sequences
   *  is O(n), it is an inadvisable way to test length equality.
   */
  final def sameLength[T](xs: List[T], ys: List[T]): Boolean = xs match {
    case _ :: xs1 =>
      ys match {
        case _ :: ys1 => sameLength(xs1, ys1)
        case _ => false
      }
    case _ => ys.isEmpty
  }
}