aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/dotc/typer/Inferencing.scala
blob: 570eabc8d2c95965350bb1d2add6cf67f813926e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
package dotty.tools
package dotc
package typer

import core._
import ast._
import Contexts._, Types._, Flags._, Denotations._, Names._, StdNames._, NameOps._, Symbols._
import Trees._
import Constants._
import annotation.unchecked
import util.Positions._
import util.{Stats, SimpleMap}
import util.common._
import Decorators._
import ErrorReporting.{errorType, InfoString}
import config.Printers._
import collection.mutable

object Inferencing {

  import tpd._

  /** A trait defining an `isCompatible` method. */
  trait Compatibility {

    /** Is there an implicit conversion from `tp` to `pt`? */
    def viewExists(tp: Type, pt: Type)(implicit ctx: Context): Boolean

    /** A type `tp` is compatible with a type `pt` if one of the following holds:
     *    1. `tp` is a subtype of `pt`
     *    2. `pt` is by name parameter type, and `tp` is compatible with its underlying type
     *    3. there is an implicit conversion from `tp` to `pt`.
     */
    def isCompatible(tp: Type, pt: Type)(implicit ctx: Context): Boolean =
      tp.widenExpr <:< pt.widenExpr || viewExists(tp, pt)

    /** Test compatibility after normalization in a fresh typerstate. */
    def normalizedCompatible(tp: Type, pt: Type)(implicit ctx: Context) = {
      val nestedCtx = ctx.fresh.withExploreTyperState
      isCompatible(normalize(tp, pt)(nestedCtx), pt)(nestedCtx)
    }

    /** Check that the result type of the current method
     *  fits the given expected result type.
     */
    def constrainResult(mt: Type, pt: Type)(implicit ctx: Context): Boolean = pt match {
      case FunProto(_, result, _) =>
        mt match {
          case mt: MethodType =>
            mt.isDependent || constrainResult(mt.resultType, pt.resultType)
          case _ =>
            true
        }
      case pt: ValueType if !(pt isRef defn.UnitClass) =>
        mt match {
          case mt: MethodType =>
            mt.isDependent || isCompatible(normalize(mt, pt), pt)
          case _ =>
            isCompatible(mt, pt)
        }
      case _ =>
        true
    }
  }

  /** A prototype for expressions [] that are part of a selection operation:
   *
   *       [ ].name: proto
   */
  class SelectionProto(val name: Name, proto: Type)
  extends RefinedType(WildcardType, name)(_ => proto) with ProtoType with Compatibility {
    override def viewExists(tp: Type, pt: Type)(implicit ctx: Context): Boolean = false
    override def isMatchedBy(tp1: Type)(implicit ctx: Context) =
      name == nme.WILDCARD || {
        val mbr = tp1.member(name)
        mbr.exists && mbr.hasAltWith(m => normalizedCompatible(m.info, proto))
      }
    override def toString = "Proto" + super.toString
    override def derivedRefinedType(parent: Type, refinedName: Name, refinedInfo: Type)(implicit ctx: Context): RefinedType = {
      val tp1 @ RefinedType(parent1, refinedName1) = super.derivedRefinedType(parent, refinedName, refinedInfo)
      if (tp1 eq this) this
      else {
        assert(parent == WildcardType)
        new SelectionProto(refinedName1, tp1.refinedInfo)
      }
    }
  }

  /** Create a selection proto-type, but only one level deep;
   *  treat constructors specially
   */
  def selectionProto(name: Name, tp: Type) =
    if (name.isConstructorName) WildcardType
    else tp match {
      case tp: UnapplyFunProto => new UnapplySelectionProto(name)
      case tp: ProtoType => new SelectionProto(name, WildcardType)
      case _ => new SelectionProto(name, tp)
    }

  /** A prototype for expressions [] that are in some unspecified selection operation
   *
   *    [].?: ?
   *
   *  Used to indicate that expression is in a context where the only valid
   *  operation is further selection. In this case, the expression need not be a value.
   *  @see checkValue
   */
  object AnySelectionProto extends SelectionProto(nme.WILDCARD, WildcardType)

  /** A prototype for selections in pattern constructors */
  class UnapplySelectionProto(name: Name) extends SelectionProto(name, WildcardType)

  trait ApplyingProto extends ProtoType

  /** A prototype for expressions that appear in function position
   *
   *  [](args): resultType
   */
  case class FunProto(args: List[untpd.Tree], override val resultType: Type, typer: Typer)(implicit ctx: Context)
  extends UncachedGroundType with ApplyingProto {
    private var myTypedArgs: List[Tree] = Nil

    /** A map in which typed arguments can be stored to be later integrated in `typedArgs`. */
    private var myTypedArg: SimpleMap[untpd.Tree, Tree] = SimpleMap.Empty

    def isMatchedBy(tp: Type)(implicit ctx: Context) =
      typer.isApplicable(tp, Nil, typedArgs, resultType)

    def argsAreTyped: Boolean = myTypedArgs.nonEmpty || args.isEmpty

    /** The typed arguments. This takes any arguments already typed using
     *  `typedArg` into account.
     */
    def typedArgs: List[Tree] = {
      if (!argsAreTyped)
        myTypedArgs = args mapconserve { arg =>
          val targ = myTypedArg(arg)
          if (targ != null) targ else typer.typed(arg)
        }
      myTypedArgs
    }

    /** Type single argument and remember the unadapted result in `myTypedArg`.
     *  used to avoid repeated typings of trees when backtracking.
     */
    def typedArg(arg: untpd.Tree, formal: Type)(implicit ctx: Context): Tree = {
      var targ = myTypedArg(arg)
      if (targ == null) {
        val counts = ctx.reporter.errorCounts
        targ = typer.typedUnadapted(arg, formal)
        if (ctx.reporter.wasSilent(counts))
          myTypedArg = myTypedArg.updated(arg, targ)
      }
      typer.adapt(targ, formal)
    }

    override def toString = s"FunProto(${args mkString ","} => $resultType)"
  }

  /** A prototype for implicitly inferred views:
   *
   *    []: argType => resultType
   */
  case class ViewProto(argType: Type, override val resultType: Type)(implicit ctx: Context)
  extends CachedGroundType with ApplyingProto {
 //   def lookingForInfo = resultType match {
 //     case rt: SelectionProto => rt.name.toString == "info"
 //     case _ => false
 //   }
    def isMatchedBy(tp: Type)(implicit ctx: Context) = /*ctx.conditionalTraceIndented(lookingForInfo, i"?.info isMatchedBy $tp ${tp.getClass}")*/ {
      ctx.typer.isApplicable(tp, argType :: Nil, resultType)
    }
    override def namedPartsWith(p: NamedType => Boolean)(implicit ctx: Context): collection.Set[NamedType] =
      AndType.unchecked(argType, resultType).namedPartsWith(p) // this is more efficient than oring two namedParts sets
    override def computeHash = doHash(argType, resultType)
  }

  class UnapplyFunProto(typer: Typer)(implicit ctx: Context) extends FunProto(
      untpd.TypedSplice(dummyTreeOfType(WildcardType)) :: Nil, WildcardType, typer)

  /** A prototype for expressions [] that are type-parameterized:
   *
   *    [] [targs] resultType
   */
  case class PolyProto(targs: List[Type], override val resultType: Type) extends UncachedGroundType with ProtoType {
    override def isMatchedBy(tp: Type)(implicit ctx: Context) = {
      def isInstantiatable(tp: Type) = tp.widen match {
        case PolyType(paramNames) => paramNames.length == targs.length
        case _ => false
      }
      isInstantiatable(tp) || tp.member(nme.apply).hasAltWith(d => isInstantiatable(d.info))
    }
  }

  /** A prototype for expressions [] that are known to be functions:
   *
   *    [] _
   */
  object AnyFunctionProto extends UncachedGroundType with ProtoType {
    def isMatchedBy(tp: Type)(implicit ctx: Context) = true
  }

  /** The normalized form of a type
   *   - unwraps polymorphic types, tracking their parameters in the current constraint
   *   - skips implicit parameters
   *   - converts non-dependent method types to the corresponding function types
   *   - dereferences parameterless method types
   *   - dereferences nullary method types provided the corresponding function type
   *     is not a subtype of the expected type.
   * Note: We need to take account of the possibility of inserting a () argument list in normalization. Otherwise, a type with a
   *     def toString(): String
   * member would not count as a valid solution for ?{toString: String}. This would then lead to an implicit
   * insertion, with a nice explosion of inference search because of course every implicit result has some sort
   * of toString method. The problem is solved by dereferencing nullary method types if the corresponding
   * function type is not compatible with the prototype.
   */
  def normalize(tp: Type, pt: Type)(implicit ctx: Context): Type = Stats.track("normalize") {
    tp.widenSingleton match {
      case pt: PolyType => normalize(constrained(pt).resultType, pt)
      case mt: MethodType if !mt.isDependent /*&& !pt.isInstanceOf[ApplyingProto]*/ =>
        if (mt.isImplicit) mt.resultType
        else {
          val rt = normalize(mt.resultType, pt)
          val ft = defn.FunctionType(mt.paramTypes, rt)
          if (mt.paramTypes.nonEmpty || ft <:< pt) ft else rt
        }
      case et: ExprType => et.resultType
      case _ => tp
    }
  }

  /** An enumeration controlling the degree of forcing in "is-dully-defined" checks. */
  object ForceDegree extends Enumeration {
    val none,           // don't force type variables
        noBottom,       // force type variables, fail if forced to Nothing or Null
        all = Value     // force type variables, don't fail
  }

  /** Is type fully defined, meaning the type does not contain wildcard types
   *  or uninstantiated type variables. As a side effect, this will minimize
   *  any uninstantiated type variables, according to the given force degree,
   *  but only if the overall result of `isFullyDefined` is `true`.
   *  Variables that are successfully minimized do not count as uninstantiated.
   */
  def isFullyDefined(tp: Type, force: ForceDegree.Value)(implicit ctx: Context): Boolean = {
    val nestedCtx = ctx.fresh.withNewTyperState
    val result = new IsFullyDefinedAccumulator(force)(nestedCtx).traverse(tp)
    if (result) nestedCtx.typerState.commit()
    result
  }

  /** The fully defined type, where all type variables are forced.
   *  Throws an error if type contains wildcards.
   */
  def fullyDefinedType(tp: Type, what: String, pos: Position)(implicit ctx: Context) =
    if (isFullyDefined(tp, ForceDegree.all)) tp
    else throw new Error(i"internal error: type of $what $tp is not fully defined, pos = $pos") // !!! DEBUG

  private class IsFullyDefinedAccumulator(force: ForceDegree.Value)(implicit ctx: Context) extends TypeAccumulator[Boolean] {
    private var vs: SimpleMap[TypeVar, Integer] = null
    private var rootTp: Type = null
    def isContravariant(tvar: TypeVar) = {
      (variance < 0) && { // otherwise no need to compute, it can't be contravariant
        if (vs == null) vs = rootTp.variances(alwaysTrue)
        vs(tvar) < 0
      }
    }
    def traverse(tp: Type): Boolean = {
      rootTp = tp
      apply(true, tp)
    }
    def apply(x: Boolean, tp: Type) = !x || isOK(tp) && foldOver(x, tp)
    def isOK(tp: Type): Boolean = tp match {
      case _: WildcardType =>
        false
      case tvar: TypeVar if !tvar.isInstantiated =>
        def isBottomType(tp: Type) = tp == defn.NothingType || tp == defn.NullType
        force != ForceDegree.none && {
          val forceUp =
            isContravariant(tvar) ||
              force == ForceDegree.noBottom &&
              isBottomType(ctx.typeComparer.approximation(tvar.origin, fromBelow = true))
          val inst = tvar.instantiate(fromBelow = !forceUp)
          typr.println(i"forced instantiation of ${tvar.origin} = $inst")
          traverse(inst)
        }
      case _ =>
        true
    }
  }

  /** Recursively widen and also follow type declarations and type aliases. */
  def widenForMatchSelector(tp: Type)(implicit ctx: Context): Type = tp.widen match {
    case tp: TypeRef if !tp.symbol.isClass => widenForMatchSelector(tp.info.bounds.hi)
    case tp => tp
  }

  /** Following type aliases and stripping refinements and annotations, if one arrives at a
   *  class type reference where the class has a companion module, a reference to
   *  that companion module. Otherwise NoType
   */
  def companionRef(tp: Type)(implicit ctx: Context): Type = tp.underlyingClassRef match {
    case tp: TypeRef =>
      val companion = tp.classSymbol.companionModule
      if (companion.exists)
        companion.valRef.asSeenFrom(tp.prefix, companion.symbol.owner)
      else NoType
    case _ => NoType
  }

  /** Check that type arguments `args` conform to corresponding bounds in `poly` */
  def checkBounds(args: List[tpd.Tree], poly: PolyType, pos: Position)(implicit ctx: Context): Unit =
    for ((arg, bounds) <- args zip poly.paramBounds) {
      def notConforms(which: String, bound: Type) =
        ctx.error(i"Type argument ${arg.tpe} does not conform to $which bound $bound", arg.pos)
      if (!(arg.tpe <:< bounds.hi)) notConforms("upper", bounds.hi)
      if (!(bounds.lo <:< arg.tpe)) notConforms("lower", bounds.lo)
    }

  /** Check that type `tp` is stable.
   *  @return The type itself
   */
  def checkStable(tp: Type, pos: Position)(implicit ctx: Context): Unit =
    if (!tp.isStable) ctx.error(i"Prefix of type ${tp.widenIfUnstable} is not stable", pos)

  /** Check that `tp` is a class type with a stable prefix.
   *  @return  Underlying class type if type checks out OK, ObjectClass.typeRef if not.
   */
  def checkClassTypeWithStablePrefix(tp: Type, pos: Position)(implicit ctx: Context): TypeRef =
    tp.underlyingClassRef match {
      case tp: TypeRef =>
        checkStable(tp.prefix, pos)
        tp
    case _ =>
      ctx.error(s"$tp is not a class type", pos)
      defn.ObjectClass.typeRef
  }

  /** Check that class does not define */
  def checkNoDoubleDefs(cls: Symbol)(implicit ctx: Context): Unit = {
    val seen = new mutable.HashMap[Name, List[Symbol]] {
      override def default(key: Name) = Nil
    }
    typr.println(i"check no double defs $cls")
    for (decl <- cls.info.decls) {
      for (other <- seen(decl.name)) {
        typr.println(i"conflict? $decl $other")
        if (decl.signature matches other.signature) {
          val ofType = if (decl.isType) "" else i": ${other.info}"
          val explanation =
            if (!decl.isSourceMethod) ""
            else "\n (both definitions have the same erased type signature)"
          ctx.error(i"$decl is already defined as $other$ofType$explanation", decl.pos)
        }
      }
      seen(decl.name) = decl :: seen(decl.name)
    }
  }

  def checkInstantiatable(cls: ClassSymbol, pos: Position): Unit = {
    ??? // to be done in later phase: check that class `cls` is legal in a new.
  }

  /** Add all parameters in given polytype `pt` to the constraint's domain.
   *  If the constraint contains already some of these parameters in its domain,
   *  make a copy of the polytype and add the copy's type parameters instead.
   *  Return either the original polytype, or the copy, if one was made.
   *  Also, if `owningTree` is non-empty, add a type variable for each parameter.
   *  @return  The added polytype, and the list of created type variables.
   */
  def constrained(pt: PolyType, owningTree: untpd.Tree)(implicit ctx: Context): (PolyType, List[TypeVar]) = {
    val state = ctx.typerState
    def howmany = if (owningTree.isEmpty) "no" else "some"
    def committable = if (ctx.typerState.isCommittable) "committable" else "uncommittable"
    assert(owningTree.isEmpty != ctx.typerState.isCommittable,
      s"inconsistent: $howmany typevars were added to $committable constraint ${state.constraint}")

    def newTypeVars(pt: PolyType): List[TypeVar] =
      for (n <- (0 until pt.paramNames.length).toList)
      yield new TypeVar(PolyParam(pt, n), state, owningTree)

    val added =
      if (state.constraint contains pt) pt.copy(pt.paramNames, pt.paramBounds, pt.resultType)
      else pt
    val tvars = if (owningTree.isEmpty) Nil else newTypeVars(added)
    state.constraint = state.constraint.add(added, tvars)
    (added, tvars)
  }

  /**  Same as `constrained(pt, EmptyTree)`, but returns just the created polytype */
  def constrained(pt: PolyType)(implicit ctx: Context): PolyType = constrained(pt, EmptyTree)._1

  /** Interpolate those undetermined type variables in the widened type of this tree
   *  which are introduced by type application contained in the tree.
   *  If such a variable appears covariantly in type `tp` or does not appear at all,
   *  approximate it by its lower bound. Otherwise, if it appears contravariantly
   *  in type `tp` approximate it by its upper bound.
   */
  def interpolateUndetVars(tree: Tree)(implicit ctx: Context): Unit = Stats.track("interpolateUndetVars") {
    val tp = tree.tpe.widen
    val constraint = ctx.typerState.constraint

    /* !!! DEBUG
    println(s"interpolate undet vars in ${tp.show}, pos = ${tree.pos}, mode = ${ctx.mode}, undets = ${constraint.uninstVars map (tvar => s"${tvar.show}@${tvar.owningTree.pos}")}")
    println(s"qualifying undet vars: ${constraint.uninstVars filter qualifies map (_.show)}")
    println(s"fulltype: $tp") // !!! DEBUG
    println(s"constraint: ${constraint.show}")
    */

    def qualifies(tvar: TypeVar) = tree contains tvar.owningTree
    val vs = tp.variances(tvar => (constraint contains tvar) && qualifies(tvar))
    var changed = false
    vs foreachBinding { (tvar, v) =>
      if (v != 0) {
        typr.println(s"interpolate ${if (v == 1) "co" else "contra"}variant ${tvar.show} in ${tp.show}")
        tvar.instantiate(fromBelow = v == 1)
        changed = true
      }
    }
    if (changed) // instantiations might have uncovered new typevars to interpolate
      interpolateUndetVars(tree)
    else
      constraint.foreachUninstVar { tvar =>
        if (!(vs contains tvar) && qualifies(tvar)) {
          typr.println(s"instantiating non-occurring $tvar in $tp")
          tvar.instantiate(fromBelow = true)
        }
      }
  }

  /** Instantiate undetermined type variables to that type `tp` is
   *  maximized and return None. If this is not possible, because a non-variant
   *  typevar is not uniquely determined, return that typevar in a Some.
   */
  def maximizeType(tp: Type)(implicit ctx: Context): Option[TypeVar] = Stats.track("maximizeType") {
    val constraint = ctx.typerState.constraint
    val vs = tp.variances(constraint contains _)
    var result: Option[TypeVar] = None
    vs foreachBinding { (tvar, v) =>
      if (v == 1) tvar.instantiate(fromBelow = false)
      else if (v == -1) tvar.instantiate(fromBelow = true)
      else {
        val bounds = ctx.typerState.constraint.bounds(tvar.origin)
        if (!(bounds.hi <:< bounds.lo)) result = Some(tvar)
        tvar.instantiate(fromBelow = false)
      }
    }
    result
  }

  private lazy val dummyTree = untpd.Literal(Constant(null))

  /** Dummy tree to be used as an argument of a FunProto or ViewProto type */
  def dummyTreeOfType(tp: Type): Tree = dummyTree withTypeUnchecked tp
}

/* not needed right now

  def isSubTypes(actuals: List[Type], formals: List[Type])(implicit ctx: Context): Boolean = formals match {
    case formal :: formals1 =>
      actuals match {
        case actual :: actuals1 => actual <:< formal && isSubTypes(actuals1, formals1)
        case _ => false
      }
    case nil =>
      actuals.isEmpty
  }

    def formalParameters[T](mtp: MethodType, actuals: List[T])(isRepeated: T => Boolean)(implicit ctx: Context) =
      if (mtp.isVarArgs && !(actuals.nonEmpty && isRepeated(actuals.last))) {
        val leading = mtp.paramTypes.init
        val repeated = mtp.paramTypes.last.typeArgs.head
        val trailing = List.fill(actuals.length - leading.length)(repeated)
        leading ++ trailing
      }
      else mtp.paramTypes
  */