summaryrefslogtreecommitdiff
path: root/examples/scala-js/compiler/src/main/scala/scala/scalajs/compiler/GenJSCode.scala
blob: f9885a0e6266a204a8eafe406f9ff4a6b17ccecb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
/* Scala.js compiler
 * Copyright 2013 LAMP/EPFL
 * @author  Sébastien Doeraene
 */

package scala.scalajs.compiler

import scala.language.implicitConversions

import scala.annotation.switch

import scala.collection.mutable
import scala.collection.mutable.ListBuffer

import scala.tools.nsc._

import scala.annotation.tailrec

import scala.scalajs.ir
import ir.{Trees => js, Types => jstpe, ClassKind, Hashers}

import util.ScopedVar
import ScopedVar.withScopedVars

/** Generate JavaScript code and output it to disk
 *
 *  @author Sébastien Doeraene
 */
abstract class GenJSCode extends plugins.PluginComponent
                            with TypeKinds
                            with JSEncoding
                            with GenJSExports
                            with ClassInfos
                            with GenJSFiles
                            with Compat210Component {

  val jsAddons: JSGlobalAddons {
    val global: GenJSCode.this.global.type
  }

  val scalaJSOpts: ScalaJSOptions

  import global._
  import jsAddons._
  import rootMirror._
  import definitions._
  import jsDefinitions._
  import JSTreeExtractors._

  import treeInfo.hasSynthCaseSymbol

  import platform.isMaybeBoxed

  val phaseName = "jscode"

  /** testing: this will be called when ASTs are generated */
  def generatedJSAST(clDefs: List[js.Tree]): Unit

  /** Implicit conversion from nsc Position to ir.Position. */
  implicit def pos2irPos(pos: Position): ir.Position = {
    if (pos == NoPosition) ir.Position.NoPosition
    else {
      val source = pos2irPosCache.toIRSource(pos.source)
      // nsc positions are 1-based but IR positions are 0-based
      ir.Position(source, pos.line-1, pos.column-1)
    }
  }

  private[this] object pos2irPosCache {
    import scala.reflect.internal.util._

    private[this] var lastNscSource: SourceFile = null
    private[this] var lastIRSource: ir.Position.SourceFile = null

    def toIRSource(nscSource: SourceFile): ir.Position.SourceFile = {
      if (nscSource != lastNscSource) {
        lastIRSource = convert(nscSource)
        lastNscSource = nscSource
      }
      lastIRSource
    }

    private[this] def convert(nscSource: SourceFile): ir.Position.SourceFile = {
      nscSource.file.file match {
        case null =>
          new java.net.URI(
              "virtualfile",       // Pseudo-Scheme
              nscSource.file.path, // Scheme specific part
              null                 // Fragment
          )
        case file =>
          val srcURI = file.toURI
          def matches(pat: java.net.URI) = pat.relativize(srcURI) != srcURI

          scalaJSOpts.sourceURIMaps.collectFirst {
            case ScalaJSOptions.URIMap(from, to) if matches(from) =>
              val relURI = from.relativize(srcURI)
              to.fold(relURI)(_.resolve(relURI))
          } getOrElse srcURI
      }
    }

    def clear(): Unit = {
      lastNscSource = null
      lastIRSource = null
    }
  }

  /** Materialize implicitly an ir.Position from an implicit nsc Position. */
  implicit def implicitPos2irPos(implicit pos: Position): ir.Position = pos

  override def newPhase(p: Phase) = new JSCodePhase(p)

  private object jsnme {
    val arg_outer = newTermName("arg$outer")
    val newString = newTermName("newString")
  }

  class JSCodePhase(prev: Phase) extends StdPhase(prev) with JSExportsPhase {

    override def name = phaseName
    override def description = "Generate JavaScript code from ASTs"
    override def erasedTypes = true

    // Some state --------------------------------------------------------------

    val currentClassSym          = new ScopedVar[Symbol]
    val currentClassInfoBuilder  = new ScopedVar[ClassInfoBuilder]
    val currentMethodSym         = new ScopedVar[Symbol]
    val currentMethodInfoBuilder = new ScopedVar[MethodInfoBuilder]
    val methodTailJumpThisSym    = new ScopedVar[Symbol](NoSymbol)
    val fakeTailJumpParamRepl    = new ScopedVar[(Symbol, Symbol)]((NoSymbol, NoSymbol))
    val enclosingLabelDefParams  = new ScopedVar(Map.empty[Symbol, List[Symbol]])
    val mutableLocalVars         = new ScopedVar[mutable.Set[Symbol]]
    val mutatedLocalVars         = new ScopedVar[mutable.Set[Symbol]]
    val paramAccessorLocals      = new ScopedVar(Map.empty[Symbol, js.ParamDef])

    var isModuleInitialized: Boolean = false // see genApply for super calls

    def currentClassType = encodeClassType(currentClassSym)

    val tryingToGenMethodAsJSFunction = new ScopedVar[Boolean](false)
    class CancelGenMethodAsJSFunction(message: String)
        extends Throwable(message) with scala.util.control.ControlThrowable

    // Rewriting of anonymous function classes ---------------------------------

    private val translatedAnonFunctions =
      mutable.Map.empty[Symbol,
        (/*ctor args:*/ List[js.Tree] => /*instance:*/ js.Tree, ClassInfoBuilder)]
    private val instantiatedAnonFunctions =
      mutable.Set.empty[Symbol]
    private val undefinedDefaultParams =
      mutable.Set.empty[Symbol]

    // Top-level apply ---------------------------------------------------------

    override def run() {
      scalaPrimitives.init()
      jsPrimitives.init()
      super.run()
    }

    /** Generates the Scala.js IR for a compilation unit
     *  This method iterates over all the class and interface definitions
     *  found in the compilation unit and emits their IR (.sjsir).
     *
     *  Some classes are never actually emitted:
     *  - Classes representing primitive types
     *  - The scala.Array class
     *  - Implementation classes for raw JS traits
     *
     *  Some classes representing anonymous functions are not actually emitted.
     *  Instead, a temporary representation of their `apply` method is built
     *  and recorded, so that it can be inlined as a JavaScript anonymous
     *  function in the method that instantiates it.
     *
     *  Other ClassDefs are emitted according to their nature:
     *  * Raw JS type (<: js.Any) -> `genRawJSClassData()`
     *  * Interface               -> `genInterface()`
     *  * Implementation class    -> `genImplClass()`
     *  * Normal class            -> `genClass()`
     */
    override def apply(cunit: CompilationUnit) {
      try {
        val generatedClasses = ListBuffer.empty[(Symbol, js.ClassDef, ClassInfoBuilder)]

        def collectClassDefs(tree: Tree): List[ClassDef] = {
          tree match {
            case EmptyTree => Nil
            case PackageDef(_, stats) => stats flatMap collectClassDefs
            case cd: ClassDef => cd :: Nil
          }
        }
        val allClassDefs = collectClassDefs(cunit.body)

        /* First gen and record lambdas for js.FunctionN and js.ThisFunctionN.
         * Since they are SAMs, there cannot be dependencies within this set,
         * and hence we are sure we can record them before they are used,
         * which is critical for these.
         */
        val nonRawJSFunctionDefs = allClassDefs filterNot { cd =>
          if (isRawJSFunctionDef(cd.symbol)) {
            genAndRecordRawJSFunctionClass(cd)
            true
          } else {
            false
          }
        }

        /* Then try to gen and record lambdas for scala.FunctionN.
         * These may fail, and sometimes because of dependencies. Since there
         * appears to be more forward dependencies than backward dependencies
         * (at least for non-nested lambdas, which we cannot translate anyway),
         * we process class defs in reverse order here.
         */
        val fullClassDefs = (nonRawJSFunctionDefs.reverse filterNot { cd =>
          cd.symbol.isAnonymousFunction && tryGenAndRecordAnonFunctionClass(cd)
        }).reverse

        /* Finally, we emit true code for the remaining class defs. */
        for (cd <- fullClassDefs) {
          val sym = cd.symbol
          implicit val pos = sym.pos

          /* Do not actually emit code for primitive types nor scala.Array. */
          val isPrimitive =
            isPrimitiveValueClass(sym) || (sym == ArrayClass)

          /* Similarly, do not emit code for impl classes of raw JS traits. */
          val isRawJSImplClass =
            sym.isImplClass && isRawJSType(
                sym.owner.info.decl(sym.name.dropRight(nme.IMPL_CLASS_SUFFIX.length)).tpe)

          if (!isPrimitive && !isRawJSImplClass) {
            withScopedVars(
                currentClassInfoBuilder := new ClassInfoBuilder(sym.asClass),
                currentClassSym         := sym
            ) {
              val tree = if (isRawJSType(sym.tpe)) {
                assert(!isRawJSFunctionDef(sym),
                    s"Raw JS function def should have been recorded: $cd")
                genRawJSClassData(cd)
              } else if (sym.isInterface) {
                genInterface(cd)
              } else if (sym.isImplClass) {
                genImplClass(cd)
              } else {
                genClass(cd)
              }
              generatedClasses += ((sym, tree, currentClassInfoBuilder.get))
            }
          }
        }

        val clDefs = generatedClasses.map(_._2).toList
        generatedJSAST(clDefs)

        for ((sym, tree, infoBuilder) <- generatedClasses) {
          genIRFile(cunit, sym, tree, infoBuilder.result())
        }
      } finally {
        translatedAnonFunctions.clear()
        instantiatedAnonFunctions.clear()
        undefinedDefaultParams.clear()
        pos2irPosCache.clear()
      }
    }

    // Generate a class --------------------------------------------------------

    /** Gen the IR ClassDef for a class definition (maybe a module class).
     */
    def genClass(cd: ClassDef): js.ClassDef = {
      val ClassDef(mods, name, _, impl) = cd
      val sym = cd.symbol
      implicit val pos = sym.pos

      assert(!sym.isInterface && !sym.isImplClass,
          "genClass() must be called only for normal classes: "+sym)
      assert(sym.superClass != NoSymbol, sym)

      val classIdent = encodeClassFullNameIdent(sym)
      val isHijacked = isHijackedBoxedClass(sym)

      // Optimizer hints

      def isStdLibClassWithAdHocInlineAnnot(sym: Symbol): Boolean = {
        val fullName = sym.fullName
        (fullName.startsWith("scala.Tuple") && !fullName.endsWith("$")) ||
        (fullName.startsWith("scala.collection.mutable.ArrayOps$of"))
      }

      if (sym.hasAnnotation(InlineAnnotationClass) ||
          (sym.isAnonymousFunction && !sym.isSubClass(PartialFunctionClass)) ||
          isStdLibClassWithAdHocInlineAnnot(sym))
        currentClassInfoBuilder.optimizerHints =
          currentClassInfoBuilder.optimizerHints.copy(hasInlineAnnot = true)

      // Generate members (constructor + methods)

      val generatedMembers = new ListBuffer[js.Tree]
      val exportedSymbols = new ListBuffer[Symbol]

      if (!isHijacked)
        generatedMembers ++= genClassFields(cd)

      def gen(tree: Tree): Unit = {
        tree match {
          case EmptyTree => ()
          case Template(_, _, body) => body foreach gen

          case ValDef(mods, name, tpt, rhs) =>
            () // fields are added via genClassFields()

          case dd: DefDef =>
            val sym = dd.symbol

            val isExport = jsInterop.isExport(sym)
            val isNamedExport = isExport && sym.annotations.exists(
                _.symbol == JSExportNamedAnnotation)

            if (isNamedExport)
              generatedMembers += genNamedExporterDef(dd)
            else
              generatedMembers ++= genMethod(dd)

            if (isExport) {
              // We add symbols that we have to export here. This way we also
              // get inherited stuff that is implemented in this class.
              exportedSymbols += sym
            }

          case _ => abort("Illegal tree in gen of genClass(): " + tree)
        }
      }

      gen(impl)

      // Create method info builder for exported stuff
      val exports = withScopedVars(
        currentMethodInfoBuilder := currentClassInfoBuilder.addMethod(
            dceExportName + classIdent.name, isExported = true)
      ) {
        // Generate the exported members
        val memberExports = genMemberExports(sym, exportedSymbols.toList)

        // Generate exported constructors or accessors
        val exportedConstructorsOrAccessors =
          if (isStaticModule(sym)) genModuleAccessorExports(sym)
          else genConstructorExports(sym)
        if (exportedConstructorsOrAccessors.nonEmpty)
          currentClassInfoBuilder.isExported = true

        memberExports ++ exportedConstructorsOrAccessors
      }

      // Generate the reflective call proxies (where required)
      val reflProxies =
        if (isHijacked) Nil
        else genReflCallProxies(sym)

      // Hashed definitions of the class
      val hashedDefs =
        Hashers.hashDefs(generatedMembers.toList ++ exports ++ reflProxies)

      // The complete class definition
      val kind =
        if (sym.isModuleClass) ClassKind.ModuleClass
        else if (isHijacked) ClassKind.HijackedClass
        else ClassKind.Class

      val classDefinition = js.ClassDef(
          classIdent,
          kind,
          Some(encodeClassFullNameIdent(sym.superClass)),
          sym.ancestors.map(encodeClassFullNameIdent),
          hashedDefs)

      classDefinition
    }

    // Generate the class data of a raw JS class -------------------------------

    /** Gen the IR ClassDef for a raw JS class or trait.
     */
    def genRawJSClassData(cd: ClassDef): js.ClassDef = {
      val sym = cd.symbol
      implicit val pos = sym.pos

      // Check that RawJS type is not exported
      for (exp <- jsInterop.exportsOf(sym))
        reporter.error(exp.pos, "You may not export a class extending js.Any")

      val classIdent = encodeClassFullNameIdent(sym)
      js.ClassDef(classIdent, ClassKind.RawJSType, None, Nil, Nil)
    }

    // Generate an interface ---------------------------------------------------

    /** Gen the IR ClassDef for an interface definition.
     */
    def genInterface(cd: ClassDef): js.ClassDef = {
      val sym = cd.symbol
      implicit val pos = sym.pos

      val classIdent = encodeClassFullNameIdent(sym)

      // fill in class info builder
      def gen(tree: Tree) {
        tree match {
          case EmptyTree => ()
          case Template(_, _, body) => body foreach gen
          case dd: DefDef =>
            currentClassInfoBuilder.addMethod(
                encodeMethodName(dd.symbol), isAbstract = true)
          case _ => abort("Illegal tree in gen of genInterface(): " + tree)
        }
      }
      gen(cd.impl)

      // Check that interface/trait is not exported
      for (exp <- jsInterop.exportsOf(sym))
        reporter.error(exp.pos, "You may not export a trait")

      js.ClassDef(classIdent, ClassKind.Interface, None,
          sym.ancestors.map(encodeClassFullNameIdent), Nil)
    }

    // Generate an implementation class of a trait -----------------------------

    /** Gen the IR ClassDef for an implementation class (of a trait).
     */
    def genImplClass(cd: ClassDef): js.ClassDef = {
      val ClassDef(mods, name, _, impl) = cd
      val sym = cd.symbol
      implicit val pos = sym.pos

      def gen(tree: Tree): List[js.MethodDef] = {
        tree match {
          case EmptyTree => Nil
          case Template(_, _, body) => body.flatMap(gen)

          case dd: DefDef =>
            val m = genMethod(dd)
            m.toList

          case _ => abort("Illegal tree in gen of genImplClass(): " + tree)
        }
      }
      val generatedMethods = gen(impl)

      js.ClassDef(encodeClassFullNameIdent(sym), ClassKind.TraitImpl,
          None, Nil, generatedMethods)
    }

    // Generate the fields of a class ------------------------------------------

    /** Gen definitions for the fields of a class.
     *  The fields are initialized with the zero of their types.
     */
    def genClassFields(cd: ClassDef): List[js.VarDef] = withScopedVars(
        currentMethodInfoBuilder :=
          currentClassInfoBuilder.addMethod("__init__")
    ) {
      // Non-method term members are fields, except for module members.
      (for {
        f <- currentClassSym.info.decls
        if !f.isMethod && f.isTerm && !f.isModule
      } yield {
        implicit val pos = f.pos
        js.VarDef(encodeFieldSym(f), toIRType(f.tpe),
            mutable = f.isMutable, genZeroOf(f.tpe))
      }).toList
    }

    // Generate a method -------------------------------------------------------

    def genMethod(dd: DefDef): Option[js.MethodDef] = withNewLocalNameScope {
      genMethodWithInfoBuilder(dd).map(_._1)
    }

    /** Gen JS code for a method definition in a class or in an impl class.
     *  On the JS side, method names are mangled to encode the full signature
     *  of the Scala method, as described in `JSEncoding`, to support
     *  overloading.
     *
     *  Some methods are not emitted at all:
     *  * Primitives, since they are never actually called
     *  * Abstract methods
     *  * Constructors of hijacked classes
     *  * Trivial constructors, which only call their super constructor, with
     *    the same signature, and the same arguments. The JVM needs these
     *    constructors, but not JavaScript. Since there are lots of them, we
     *    take the trouble of recognizing and removing them.
     *
     *  Constructors are emitted by generating their body as a statement, then
     *  return `this`.
     *
     *  Other (normal) methods are emitted with `genMethodBody()`.
     */
    def genMethodWithInfoBuilder(
        dd: DefDef): Option[(js.MethodDef, MethodInfoBuilder)] = {

      implicit val pos = dd.pos
      val DefDef(mods, name, _, vparamss, _, rhs) = dd
      val sym = dd.symbol

      isModuleInitialized = false

      val result = withScopedVars(
          currentMethodSym        := sym,
          methodTailJumpThisSym   := NoSymbol,
          fakeTailJumpParamRepl   := (NoSymbol, NoSymbol),
          enclosingLabelDefParams := Map.empty
      ) {
        assert(vparamss.isEmpty || vparamss.tail.isEmpty,
            "Malformed parameter list: " + vparamss)
        val params = if (vparamss.isEmpty) Nil else vparamss.head map (_.symbol)

        assert(!sym.owner.isInterface,
            "genMethod() must not be called for methods in interfaces: "+sym)

        val methodIdent = encodeMethodSym(sym)

        def createInfoBuilder(isAbstract: Boolean = false) = {
          currentClassInfoBuilder.addMethod(methodIdent.name,
              isAbstract = isAbstract,
              isExported = sym.isClassConstructor &&
                jsInterop.exportsOf(sym).nonEmpty)
        }

        if (scalaPrimitives.isPrimitive(sym)) {
          None
        } else if (sym.isDeferred) {
          createInfoBuilder(isAbstract = true)
          None
        } else if (isRawJSCtorDefaultParam(sym)) {
          None
        } else if (isTrivialConstructor(sym, params, rhs)) {
          createInfoBuilder().callsMethod(sym.owner.superClass, methodIdent)
          None
        } else if (sym.isClassConstructor && isHijackedBoxedClass(sym.owner)) {
          None
        } else {
          withScopedVars(
              currentMethodInfoBuilder := createInfoBuilder(),
              mutableLocalVars := mutable.Set.empty,
              mutatedLocalVars := mutable.Set.empty
          ) {
            def shouldMarkInline = {
              sym.hasAnnotation(InlineAnnotationClass) ||
              sym.name.startsWith(nme.ANON_FUN_NAME)
            }
            currentMethodInfoBuilder.optimizerHints =
              currentMethodInfoBuilder.optimizerHints.copy(
                  isAccessor = sym.isAccessor,
                  hasInlineAnnot = shouldMarkInline)

            val methodDef = {
              if (sym.isClassConstructor) {
                val jsParams = for (param <- params) yield {
                  implicit val pos = param.pos
                  js.ParamDef(encodeLocalSym(param), toIRType(param.tpe),
                      mutable = false)
                }
                js.MethodDef(methodIdent, jsParams, currentClassType,
                    js.Block(genStat(rhs), genThis()))(None)
              } else {
                val resultIRType = toIRType(sym.tpe.resultType)
                genMethodDef(methodIdent, params, resultIRType, rhs)
              }
            }

            val methodDefWithoutUselessVars = {
              val unmutatedMutableLocalVars =
                (mutableLocalVars -- mutatedLocalVars).toList
              val mutatedImmutableLocalVals =
                (mutatedLocalVars -- mutableLocalVars).toList
              if (unmutatedMutableLocalVars.isEmpty &&
                  mutatedImmutableLocalVals.isEmpty) {
                // OK, we're good (common case)
                methodDef
              } else {
                val patches = (
                    unmutatedMutableLocalVars.map(encodeLocalSym(_).name -> false) :::
                    mutatedImmutableLocalVals.map(encodeLocalSym(_).name -> true)
                ).toMap
                patchMutableFlagOfLocals(methodDef, patches)
              }
            }

            Some((methodDefWithoutUselessVars, currentMethodInfoBuilder.get))
          }
        }
      }

      result
    }

    private def isTrivialConstructor(sym: Symbol, params: List[Symbol],
        rhs: Tree): Boolean = {
      if (!sym.isClassConstructor) {
        false
      } else {
        rhs match {
          // Shape of a constructor that only calls super
          case Block(List(Apply(fun @ Select(_:Super, _), args)), Literal(_)) =>
            val callee = fun.symbol
            implicit val dummyPos = NoPosition

            // Does the callee have the same signature as sym
            if (encodeMethodSym(sym) == encodeMethodSym(callee)) {
              // Test whether args are trivial forwarders
              assert(args.size == params.size, "Argument count mismatch")
              params.zip(args) forall { case (param, arg) =>
                arg.symbol == param
              }
            } else {
              false
            }

          case _ => false
        }
      }
    }

    /** Patches the mutable flags of selected locals in a [[js.MethodDef]].
     *
     *  @param patches  Map from local name to new value of the mutable flags.
     *                  For locals not in the map, the flag is untouched.
     */
    private def patchMutableFlagOfLocals(methodDef: js.MethodDef,
        patches: Map[String, Boolean]): js.MethodDef = {

      def newMutable(name: String, oldMutable: Boolean): Boolean =
        patches.getOrElse(name, oldMutable)

      val js.MethodDef(methodName, params, resultType, body) = methodDef
      val newParams = for {
        p @ js.ParamDef(name, ptpe, mutable) <- params
      } yield {
        js.ParamDef(name, ptpe, newMutable(name.name, mutable))(p.pos)
      }
      val transformer = new ir.Transformers.Transformer {
        override def transform(tree: js.Tree, isStat: Boolean): js.Tree = tree match {
          case js.VarDef(name, vtpe, mutable, rhs) =>
            assert(isStat)
            super.transform(js.VarDef(
                name, vtpe, newMutable(name.name, mutable), rhs)(tree.pos), isStat)
          case js.VarRef(name, mutable) =>
            js.VarRef(name, newMutable(name.name, mutable))(tree.tpe)(tree.pos)
          case js.Closure(captureParams, params, body, captureValues) =>
            js.Closure(captureParams, params, body,
                captureValues.map(transformExpr))(tree.pos)
          case _ =>
            super.transform(tree, isStat)
        }
      }
      val newBody =
        transformer.transform(body, isStat = resultType == jstpe.NoType)
      js.MethodDef(methodName, newParams, resultType, newBody)(None)(methodDef.pos)
    }

    /**
     * Generates reflective proxy methods for methods in sym
     *
     * Reflective calls don't depend on the return type, so it's hard to
     * generate calls without using runtime reflection to list the methods. We
     * generate a method to be used for reflective calls (without return
     * type in the name).
     *
     * There are cases where non-trivial overloads cause ambiguous situations:
     *
     * {{{
     * object A {
     *   def foo(x: Option[Int]): String
     *   def foo(x: Option[String]): Int
     * }
     * }}}
     *
     * This is completely legal code, but due to the same erased parameter
     * type of the {{{foo}}} overloads, they cannot be disambiguated in a
     * reflective call, as the exact return type is unknown at the call site.
     *
     * Cases like the upper currently fail on the JVM backend at runtime. The
     * Scala.js backend uses the following rules for selection (which will
     * also cause runtime failures):
     *
     * - If a proxy with the same signature (method name and parameters)
     *   exists in the superclass, no proxy is generated (proxy is inherited)
     * - If no proxy exists in the superclass, a proxy is generated for the
     *   first method with matching signatures.
     */
    def genReflCallProxies(sym: Symbol): List[js.MethodDef] = {
      import scala.reflect.internal.Flags

      // Flags of members we do not want to consider for reflective call proxys
      val excludedFlags = (
          Flags.BRIDGE  |
          Flags.PRIVATE |
          Flags.MACRO
      )

      /** Check if two method symbols conform in name and parameter types */
      def weakMatch(s1: Symbol)(s2: Symbol) = {
        val p1 = s1.tpe.params
        val p2 = s2.tpe.params
        s1 == s2 || // Shortcut
        s1.name == s2.name &&
        p1.size == p2.size &&
        (p1 zip p2).forall { case (s1,s2) =>
          s1.tpe =:= s2.tpe
        }
      }

      /** Check if the symbol's owner's superclass has a matching member (and
       *  therefore an existing proxy).
       */
      def superHasProxy(s: Symbol) = {
        val alts = sym.superClass.tpe.findMember(
            name = s.name,
            excludedFlags = excludedFlags,
            requiredFlags = Flags.METHOD,
            stableOnly    = false).alternatives
        alts.exists(weakMatch(s) _)
      }

      // Query candidate methods
      val methods = sym.tpe.findMembers(
          excludedFlags = excludedFlags,
          requiredFlags = Flags.METHOD)

      val candidates = methods filterNot { s =>
        s.isConstructor  ||
        superHasProxy(s) ||
        jsInterop.isExport(s)
      }

      val proxies = candidates filter {
        c => candidates.find(weakMatch(c) _).get == c
      }

      proxies.map(genReflCallProxy _).toList
    }

    /** actually generates reflective call proxy for the given method symbol */
    private def genReflCallProxy(sym: Symbol): js.MethodDef = {
      implicit val pos = sym.pos

      val proxyIdent = encodeMethodSym(sym, reflProxy = true)

      withNewLocalNameScope {
        withScopedVars(
            currentMethodInfoBuilder :=
              currentClassInfoBuilder.addMethod(proxyIdent.name)
        ) {
          val jsParams = for (param <- sym.tpe.params) yield {
            implicit val pos = param.pos
            js.ParamDef(encodeLocalSym(param), toIRType(param.tpe),
                mutable = false)
          }

          val call = genApplyMethod(genThis(), sym.owner, sym,
              jsParams.map(_.ref))
          val body = ensureBoxed(call,
              enteringPhase(currentRun.posterasurePhase)(sym.tpe.resultType))

          js.MethodDef(proxyIdent, jsParams, jstpe.AnyType, body)(None)
        }
      }
    }

    /** Generates the MethodDef of a (non-constructor) method
     *
     *  Most normal methods are emitted straightforwardly. If the result
     *  type is Unit, then the body is emitted as a statement. Otherwise, it is
     *  emitted as an expression.
     *
     *  The additional complexity of this method handles the transformation of
     *  a peculiarity of recursive tail calls: the local ValDef that replaces
     *  `this`.
     */
    def genMethodDef(methodIdent: js.Ident, paramsSyms: List[Symbol],
        resultIRType: jstpe.Type, tree: Tree): js.MethodDef = {
      implicit val pos = tree.pos

      val jsParams = for (param <- paramsSyms) yield {
        implicit val pos = param.pos
        js.ParamDef(encodeLocalSym(param), toIRType(param.tpe), mutable = false)
      }

      val bodyIsStat = resultIRType == jstpe.NoType

      val body = tree match {
        case Block(
            (thisDef @ ValDef(_, nme.THIS, _, initialThis)) :: otherStats,
            rhs) =>
          // This method has tail jumps
          withScopedVars(
            (initialThis match {
              case This(_)  =>
                Seq(methodTailJumpThisSym := thisDef.symbol,
                    fakeTailJumpParamRepl := (NoSymbol, NoSymbol))
              case Ident(_) =>
                Seq(methodTailJumpThisSym := NoSymbol,
                    fakeTailJumpParamRepl := (thisDef.symbol, initialThis.symbol))
            }): _*
          ) {
            val innerBody = js.Block(otherStats.map(genStat) :+ (
                if (bodyIsStat) genStat(rhs)
                else            genExpr(rhs)))

            if (methodTailJumpThisSym.get == NoSymbol) {
              innerBody
            } else {
              if (methodTailJumpThisSym.isMutable)
                mutableLocalVars += methodTailJumpThisSym
              js.Block(
                  js.VarDef(encodeLocalSym(methodTailJumpThisSym),
                      currentClassType, methodTailJumpThisSym.isMutable,
                      js.This()(currentClassType)),
                  innerBody)
            }
          }

        case _ =>
          if (bodyIsStat) genStat(tree)
          else            genExpr(tree)
      }

      js.MethodDef(methodIdent, jsParams, resultIRType, body)(None)
    }

    /** Gen JS code for a tree in statement position (in the IR).
     */
    def genStat(tree: Tree): js.Tree = {
      exprToStat(genStatOrExpr(tree, isStat = true))
    }

    /** Turn a JavaScript expression of type Unit into a statement */
    def exprToStat(tree: js.Tree): js.Tree = {
      /* Any JavaScript expression is also a statement, but at least we get rid
       * of some pure expressions that come from our own codegen.
       */
      implicit val pos = tree.pos
      tree match {
        case js.Block(stats :+ expr)  => js.Block(stats :+ exprToStat(expr))
        case _:js.Literal | js.This() => js.Skip()
        case _                        => tree
      }
    }

    /** Gen JS code for a tree in expression position (in the IR).
     */
    def genExpr(tree: Tree): js.Tree = {
      val result = genStatOrExpr(tree, isStat = false)
      assert(result.tpe != jstpe.NoType,
          s"genExpr($tree) returned a tree with type NoType at pos ${tree.pos}")
      result
    }

    /** Gen JS code for a tree in statement or expression position (in the IR).
     *
     *  This is the main transformation method. Each node of the Scala AST
     *  is transformed into an equivalent portion of the JS AST.
     */
    def genStatOrExpr(tree: Tree, isStat: Boolean): js.Tree = {
      implicit val pos = tree.pos

      tree match {
        /** LabelDefs (for while and do..while loops) */
        case lblDf: LabelDef =>
          genLabelDef(lblDf)

        /** Local val or var declaration */
        case ValDef(_, name, _, rhs) =>
          /* Must have been eliminated by the tail call transform performed
           * by genMethodBody(). */
          assert(name != nme.THIS,
              s"ValDef(_, nme.THIS, _, _) found at ${tree.pos}")

          val sym = tree.symbol
          val rhsTree =
            if (rhs == EmptyTree) genZeroOf(sym.tpe)
            else genExpr(rhs)

          rhsTree match {
            case js.UndefinedParam() =>
              // This is an intermediate assignment for default params on a
              // js.Any. Add the symbol to the corresponding set to inform
              // the Ident resolver how to replace it and don't emit the symbol
              undefinedDefaultParams += sym
              js.Skip()
            case _ =>
              if (sym.isMutable)
                mutableLocalVars += sym
              js.VarDef(encodeLocalSym(sym),
                  toIRType(sym.tpe), sym.isMutable, rhsTree)
          }

        case If(cond, thenp, elsep) =>
          js.If(genExpr(cond), genStatOrExpr(thenp, isStat),
              genStatOrExpr(elsep, isStat))(toIRType(tree.tpe))

        case Return(expr) =>
          js.Return(toIRType(expr.tpe) match {
            case jstpe.NoType => js.Block(genStat(expr), js.Undefined())
            case _            => genExpr(expr)
          })

        case t: Try =>
          genTry(t, isStat)

        case Throw(expr) =>
          val ex = genExpr(expr)
          js.Throw {
            if (isMaybeJavaScriptException(expr.tpe)) {
              genApplyMethod(
                  genLoadModule(RuntimePackageModule),
                  RuntimePackageModule.moduleClass,
                  Runtime_unwrapJavaScriptException,
                  List(ex))
            } else {
              ex
            }
          }

        case app: Apply =>
          genApply(app, isStat)

        case app: ApplyDynamic =>
          genApplyDynamic(app)

        case This(qual) =>
          if (tree.symbol == currentClassSym.get) {
            genThis()
          } else {
            assert(tree.symbol.isModuleClass,
                "Trying to access the this of another class: " +
                "tree.symbol = " + tree.symbol +
                ", class symbol = " + currentClassSym.get +
                " compilation unit:" + currentUnit)
            genLoadModule(tree.symbol)
          }

        case Select(qualifier, selector) =>
          val sym = tree.symbol
          if (sym.isModule) {
            assert(!sym.isPackageClass, "Cannot use package as value: " + tree)
            genLoadModule(sym)
          } else if (sym.isStaticMember) {
            genStaticMember(sym)
          } else if (paramAccessorLocals contains sym) {
            paramAccessorLocals(sym).ref
          } else {
            js.Select(genExpr(qualifier), encodeFieldSym(sym),
                mutable = sym.isMutable)(toIRType(sym.tpe))
          }

        case Ident(name) =>
          val sym = tree.symbol
          if (!sym.hasPackageFlag) {
            if (sym.isModule) {
              assert(!sym.isPackageClass, "Cannot use package as value: " + tree)
              genLoadModule(sym)
            } else if (undefinedDefaultParams contains sym) {
              // This is a default parameter whose assignment was moved to
              // a local variable. Put a literal undefined param again
              js.UndefinedParam()(toIRType(sym.tpe))
            } else {
              js.VarRef(encodeLocalSym(sym), sym.isMutable)(toIRType(sym.tpe))
            }
          } else {
            sys.error("Cannot use package as value: " + tree)
          }

        case Literal(value) =>
          value.tag match {
            case UnitTag =>
              js.Skip()
            case BooleanTag =>
              js.BooleanLiteral(value.booleanValue)
            case ByteTag | ShortTag | CharTag | IntTag =>
              js.IntLiteral(value.intValue)
            case LongTag =>
              js.LongLiteral(value.longValue)
            case FloatTag =>
              js.FloatLiteral(value.floatValue)
            case DoubleTag =>
              js.DoubleLiteral(value.doubleValue)
            case StringTag =>
              js.StringLiteral(value.stringValue)
            case NullTag =>
              js.Null()
            case ClazzTag =>
              genClassConstant(value.typeValue)
            case EnumTag =>
              genStaticMember(value.symbolValue)
          }

        case tree: Block =>
          genBlock(tree, isStat)

        case Typed(Super(_, _), _) =>
          genThis()

        case Typed(expr, _) =>
          genExpr(expr)

        case Assign(lhs, rhs) =>
          val sym = lhs.symbol
          if (sym.isStaticMember)
            abort(s"Assignment to static member ${sym.fullName} not supported")
          val genLhs = lhs match {
            case Select(qualifier, _) =>
              js.Select(genExpr(qualifier), encodeFieldSym(sym),
                  mutable = sym.isMutable)(toIRType(sym.tpe))
            case _ =>
              mutatedLocalVars += sym
              js.VarRef(encodeLocalSym(sym), sym.isMutable)(toIRType(sym.tpe))
          }
          js.Assign(genLhs, genExpr(rhs))

        /** Array constructor */
        case av: ArrayValue =>
          genArrayValue(av)

        /** A Match reaching the backend is supposed to be optimized as a switch */
        case mtch: Match =>
          genMatch(mtch, isStat)

        /** Anonymous function (only with -Ydelambdafy:method) */
        case fun: Function =>
          genAnonFunction(fun)

        case EmptyTree =>
          js.Skip()

        case _ =>
          abort("Unexpected tree in genExpr: " +
              tree + "/" + tree.getClass + " at: " + tree.pos)
      }
    } // end of GenJSCode.genExpr()

    /** Gen JS this of the current class.
     *  Normally encoded straightforwardly as a JS this.
     *  But must be replaced by the tail-jump-this local variable if there
     *  is one.
     */
    private def genThis()(implicit pos: Position): js.Tree = {
      if (methodTailJumpThisSym.get != NoSymbol) {
        js.VarRef(
          encodeLocalSym(methodTailJumpThisSym),
          methodTailJumpThisSym.isMutable)(currentClassType)
      } else {
        if (tryingToGenMethodAsJSFunction)
          throw new CancelGenMethodAsJSFunction(
              "Trying to generate `this` inside the body")
        js.This()(currentClassType)
      }
    }

    /** Gen JS code for LabelDef
     *  The only LabelDefs that can reach here are the desugaring of
     *  while and do..while loops. All other LabelDefs (for tail calls or
     *  matches) are caught upstream and transformed in ad hoc ways.
     *
     *  So here we recognize all the possible forms of trees that can result
     *  of while or do..while loops, and we reconstruct the loop for emission
     *  to JS.
     */
    def genLabelDef(tree: LabelDef): js.Tree = {
      implicit val pos = tree.pos
      val sym = tree.symbol

      tree match {
        // while (cond) { body }
        case LabelDef(lname, Nil,
            If(cond,
                Block(bodyStats, Apply(target @ Ident(lname2), Nil)),
                Literal(_))) if (target.symbol == sym) =>
          js.While(genExpr(cond), js.Block(bodyStats map genStat))

        // while (cond) { body }; result
        case LabelDef(lname, Nil,
            Block(List(
                If(cond,
                    Block(bodyStats, Apply(target @ Ident(lname2), Nil)),
                    Literal(_))),
                result)) if (target.symbol == sym) =>
          js.Block(
              js.While(genExpr(cond), js.Block(bodyStats map genStat)),
              genExpr(result))

        // while (true) { body }
        case LabelDef(lname, Nil,
            Block(bodyStats,
                Apply(target @ Ident(lname2), Nil))) if (target.symbol == sym) =>
          js.While(js.BooleanLiteral(true), js.Block(bodyStats map genStat))

        // while (false) { body }
        case LabelDef(lname, Nil, Literal(Constant(()))) =>
          js.Skip()

        // do { body } while (cond)
        case LabelDef(lname, Nil,
            Block(bodyStats,
                If(cond,
                    Apply(target @ Ident(lname2), Nil),
                    Literal(_)))) if (target.symbol == sym) =>
          js.DoWhile(js.Block(bodyStats map genStat), genExpr(cond))

        // do { body } while (cond); result
        case LabelDef(lname, Nil,
            Block(
                bodyStats :+
                If(cond,
                    Apply(target @ Ident(lname2), Nil),
                    Literal(_)),
                result)) if (target.symbol == sym) =>
          js.Block(
              js.DoWhile(js.Block(bodyStats map genStat), genExpr(cond)),
              genExpr(result))

        /* Arbitrary other label - we can jump to it from inside it.
         * This is typically for the label-defs implementing tail-calls.
         * It can also handle other weird LabelDefs generated by some compiler
         * plugins (see for example #1148).
         */
        case LabelDef(labelName, labelParams, rhs) =>
          val labelParamSyms = labelParams.map(_.symbol) map {
            s => if (s == fakeTailJumpParamRepl._1) fakeTailJumpParamRepl._2 else s
          }

          withScopedVars(
            enclosingLabelDefParams :=
              enclosingLabelDefParams.get + (tree.symbol -> labelParamSyms)
          ) {
            val bodyType = toIRType(tree.tpe)
            val labelIdent = encodeLabelSym(tree.symbol)
            val blockLabelIdent = freshLocalIdent()

            js.Labeled(blockLabelIdent, bodyType, {
              js.While(js.BooleanLiteral(true), {
                if (bodyType == jstpe.NoType)
                  js.Block(genStat(rhs), js.Return(js.Undefined(), Some(blockLabelIdent)))
                else
                  js.Return(genExpr(rhs), Some(blockLabelIdent))
              }, Some(labelIdent))
            })
          }
      }
    }

    /** Gen JS code for a try..catch or try..finally block
     *
     *  try..finally blocks are compiled straightforwardly to try..finally
     *  blocks of JS.
     *
     *  try..catch blocks are a bit more subtle, as JS does not have
     *  type-based selection of exceptions to catch. We thus encode explicitly
     *  the type tests, like in:
     *
     *  try { ... }
     *  catch (e) {
     *    if (e.isInstanceOf[IOException]) { ... }
     *    else if (e.isInstanceOf[Exception]) { ... }
     *    else {
     *      throw e; // default, re-throw
     *    }
     *  }
     */
    def genTry(tree: Try, isStat: Boolean): js.Tree = {
      implicit val pos = tree.pos
      val Try(block, catches, finalizer) = tree

      val blockAST = genStatOrExpr(block, isStat)

      val exceptIdent = freshLocalIdent("e")
      val origExceptVar = js.VarRef(exceptIdent, mutable = false)(jstpe.AnyType)

      val resultType = toIRType(tree.tpe)

      val handlerAST = {
        if (catches.isEmpty) {
          js.EmptyTree
        } else {
          val mightCatchJavaScriptException = catches.exists { caseDef =>
            caseDef.pat match {
              case Typed(Ident(nme.WILDCARD), tpt) =>
                isMaybeJavaScriptException(tpt.tpe)
              case Ident(nme.WILDCARD) =>
                true
              case pat @ Bind(_, _) =>
                isMaybeJavaScriptException(pat.symbol.tpe)
            }
          }

          val (exceptValDef, exceptVar) = if (mightCatchJavaScriptException) {
            val valDef = js.VarDef(freshLocalIdent("e"),
                encodeClassType(ThrowableClass), mutable = false, {
              genApplyMethod(
                  genLoadModule(RuntimePackageModule),
                  RuntimePackageModule.moduleClass,
                  Runtime_wrapJavaScriptException,
                  List(origExceptVar))
            })
            (valDef, valDef.ref)
          } else {
            (js.Skip(), origExceptVar)
          }

          val elseHandler: js.Tree = js.Throw(origExceptVar)

          val handler0 = catches.foldRight(elseHandler) { (caseDef, elsep) =>
            implicit val pos = caseDef.pos
            val CaseDef(pat, _, body) = caseDef

            // Extract exception type and variable
            val (tpe, boundVar) = (pat match {
              case Typed(Ident(nme.WILDCARD), tpt) =>
                (tpt.tpe, None)
              case Ident(nme.WILDCARD) =>
                (ThrowableClass.tpe, None)
              case Bind(_, _) =>
                (pat.symbol.tpe, Some(encodeLocalSym(pat.symbol)))
            })

            // Generate the body that must be executed if the exception matches
            val bodyWithBoundVar = (boundVar match {
              case None =>
                genStatOrExpr(body, isStat)
              case Some(bv) =>
                val castException = genAsInstanceOf(exceptVar, tpe)
                js.Block(
                    js.VarDef(bv, toIRType(tpe), mutable = false, castException),
                    genStatOrExpr(body, isStat))
            })

            // Generate the test
            if (tpe == ThrowableClass.tpe) {
              bodyWithBoundVar
            } else {
              val cond = genIsInstanceOf(exceptVar, tpe)
              js.If(cond, bodyWithBoundVar, elsep)(resultType)
            }
          }

          js.Block(
              exceptValDef,
              handler0)
        }
      }

      val finalizerAST = genStat(finalizer) match {
        case js.Skip() => js.EmptyTree
        case ast       => ast
      }

      if (handlerAST == js.EmptyTree && finalizerAST == js.EmptyTree) blockAST
      else js.Try(blockAST, exceptIdent, handlerAST, finalizerAST)(resultType)
    }

    /** Gen JS code for an Apply node (method call)
     *
     *  There's a whole bunch of varieties of Apply nodes: regular method
     *  calls, super calls, constructor calls, isInstanceOf/asInstanceOf,
     *  primitives, JS calls, etc. They are further dispatched in here.
     */
    def genApply(tree: Apply, isStat: Boolean): js.Tree = {
      implicit val pos = tree.pos
      val Apply(fun, args) = tree

      fun match {
        case TypeApply(_, _) =>
          genApplyTypeApply(tree)

        case Select(Super(_, _), _) =>
          genSuperCall(tree)

        case Select(New(_), nme.CONSTRUCTOR) =>
          genApplyNew(tree)

        case _ =>
          val sym = fun.symbol

          if (sym.isLabel) {
            genLabelApply(tree)
          } else if (scalaPrimitives.isPrimitive(sym)) {
            genPrimitiveOp(tree, isStat)
          } else if (currentRun.runDefinitions.isBox(sym)) {
            // Box a primitive value (cannot be Unit)
            val arg = args.head
            makePrimitiveBox(genExpr(arg), arg.tpe)
          } else if (currentRun.runDefinitions.isUnbox(sym)) {
            // Unbox a primitive value (cannot be Unit)
            val arg = args.head
            makePrimitiveUnbox(genExpr(arg), tree.tpe)
          } else {
            genNormalApply(tree, isStat)
          }
      }
    }

    /** Gen an Apply with a TypeApply method.
     *  Only isInstanceOf and asInstanceOf keep their type argument until the
     *  backend.
     */
    private def genApplyTypeApply(tree: Apply): js.Tree = {
      implicit val pos = tree.pos
      val Apply(TypeApply(fun @ Select(obj, _), targs), _) = tree
      val sym = fun.symbol

      val cast = sym match {
        case Object_isInstanceOf => false
        case Object_asInstanceOf => true
        case _ =>
          abort("Unexpected type application " + fun +
              "[sym: " + sym.fullName + "]" + " in: " + tree)
      }

      val to = targs.head.tpe
      val l = toTypeKind(obj.tpe)
      val r = toTypeKind(to)
      val source = genExpr(obj)

      if (l.isValueType && r.isValueType) {
        if (cast)
          genConversion(l, r, source)
        else
          js.BooleanLiteral(l == r)
      } else if (l.isValueType) {
        val result = if (cast) {
          val ctor = ClassCastExceptionClass.info.member(
              nme.CONSTRUCTOR).suchThat(_.tpe.params.isEmpty)
          js.Throw(genNew(ClassCastExceptionClass, ctor, Nil))
        } else {
          js.BooleanLiteral(false)
        }
        js.Block(source, result) // eval and discard source
      } else if (r.isValueType) {
        assert(!cast, s"Unexpected asInstanceOf from ref type to value type")
        genIsInstanceOf(source, boxedClass(to.typeSymbol).tpe)
      } else {
        if (cast)
          genAsInstanceOf(source, to)
        else
          genIsInstanceOf(source, to)
      }
    }

    /** Gen JS code for a super call, of the form Class.super[mix].fun(args).
     *
     *  This does not include calls defined in mixin traits, as these are
     *  already desugared by the 'mixin' phase. Only calls to super classes
     *  remain.
     *  Since a class has exactly one direct superclass, and calling a method
     *  two classes above the current one is invalid, the `mix` item is
     *  irrelevant.
     */
    private def genSuperCall(tree: Apply): js.Tree = {
      implicit val pos = tree.pos
      val Apply(fun @ Select(sup @ Super(_, mix), _), args) = tree
      val sym = fun.symbol

      if (sym == Object_getClass) {
        // The only primitive that is also callable as super call
        js.GetClass(genThis())
      } else {
        val superCall = genStaticApplyMethod(
            genThis()(sup.pos), sym, genActualArgs(sym, args))

        // Initialize the module instance just after the super constructor call.
        if (isStaticModule(currentClassSym) && !isModuleInitialized &&
            currentMethodSym.isClassConstructor) {
          isModuleInitialized = true
          val thisType = jstpe.ClassType(encodeClassFullName(currentClassSym))
          val initModule = js.StoreModule(thisType, js.This()(thisType))
          js.Block(superCall, initModule, js.This()(thisType))
        } else {
          superCall
        }
      }
    }

    /** Gen JS code for a constructor call (new).
     *  Further refined into:
     *  * new String(...)
     *  * new of a hijacked boxed class
     *  * new of an anonymous function class that was recorded as JS function
     *  * new of a raw JS class
     *  * new Array
     *  * regular new
     */
    private def genApplyNew(tree: Apply): js.Tree = {
      implicit val pos = tree.pos
      val Apply(fun @ Select(New(tpt), nme.CONSTRUCTOR), args) = tree
      val ctor = fun.symbol
      val tpe = tpt.tpe

      assert(ctor.isClassConstructor,
          "'new' call to non-constructor: " + ctor.name)

      if (isStringType(tpe)) {
        genNewString(tree)
      } else if (isHijackedBoxedClass(tpe.typeSymbol)) {
        genNewHijackedBoxedClass(tpe.typeSymbol, ctor, args map genExpr)
      } else if (translatedAnonFunctions contains tpe.typeSymbol) {
        val (functionMaker, funInfo) = translatedAnonFunctions(tpe.typeSymbol)
        currentMethodInfoBuilder.createsAnonFunction(funInfo)
        functionMaker(args map genExpr)
      } else if (isRawJSType(tpe)) {
        genPrimitiveJSNew(tree)
      } else {
        toTypeKind(tpe) match {
          case arr @ ARRAY(elem) =>
            genNewArray(arr.toIRType, args map genExpr)
          case rt @ REFERENCE(cls) =>
            genNew(cls, ctor, genActualArgs(ctor, args))
          case generatedType =>
            abort(s"Non reference type cannot be instantiated: $generatedType")
        }
      }
    }

    /** Gen jump to a label.
     *  Most label-applys are caught upstream (while and do..while loops,
     *  jumps to next case of a pattern match), but some are still handled here:
     *  * Jumps to enclosing label-defs, including tail-recursive calls
     *  * Jump to the end of a pattern match
     */
    private def genLabelApply(tree: Apply): js.Tree = {
      implicit val pos = tree.pos
      val Apply(fun, args) = tree
      val sym = fun.symbol

      if (enclosingLabelDefParams.contains(sym)) {
        genEnclosingLabelApply(tree)
      } else if (sym.name.toString() startsWith "matchEnd") {
        /* Jump the to the end-label of a pattern match
         * Such labels have exactly one argument, which is the result of
         * the pattern match (of type BoxedUnit if the match is in statement
         * position). We simply `return` the argument as the result of the
         * labeled block surrounding the match.
         */
        js.Return(genExpr(args.head), Some(encodeLabelSym(sym)))
      } else {
        /* No other label apply should ever happen. If it does, then we
         * have missed a pattern of LabelDef/LabelApply and some new
         * translation must be found for it.
         */
        abort("Found unknown label apply at "+tree.pos+": "+tree)
      }
    }

    /** Gen a label-apply to an enclosing label def.
     *
     *  This is typically used for tail-recursive calls.
     *
     *  Basically this is compiled into
     *  continue labelDefIdent;
     *  but arguments need to be updated beforehand.
     *
     *  Since the rhs for the new value of an argument can depend on the value
     *  of another argument (and since deciding if it is indeed the case is
     *  impossible in general), new values are computed in temporary variables
     *  first, then copied to the actual variables representing the argument.
     *
     *  Trivial assignments (arg1 = arg1) are eliminated.
     *
     *  If, after elimination of trivial assignments, only one assignment
     *  remains, then we do not use a temporary variable for this one.
     */
    private def genEnclosingLabelApply(tree: Apply): js.Tree = {
      implicit val pos = tree.pos
      val Apply(fun, args) = tree
      val sym = fun.symbol

      // Prepare quadruplets of (formalArg, irType, tempVar, actualArg)
      // Do not include trivial assignments (when actualArg == formalArg)
      val formalArgs = enclosingLabelDefParams(sym)
      val actualArgs = args map genExpr
      val quadruplets = {
        for {
          (formalArgSym, actualArg) <- formalArgs zip actualArgs
          formalArg = encodeLocalSym(formalArgSym)
          if (actualArg match {
            case js.VarRef(`formalArg`, _) => false
            case _                         => true
          })
        } yield {
          mutatedLocalVars += formalArgSym
          val tpe = toIRType(formalArgSym.tpe)
          (js.VarRef(formalArg, formalArgSym.isMutable)(tpe), tpe,
              freshLocalIdent("temp$" + formalArg.name),
              actualArg)
        }
      }

      // The actual jump (continue labelDefIdent;)
      val jump = js.Continue(Some(encodeLabelSym(sym)))

      quadruplets match {
        case Nil => jump

        case (formalArg, argType, _, actualArg) :: Nil =>
          js.Block(
              js.Assign(formalArg, actualArg),
              jump)

        case _ =>
          val tempAssignments =
            for ((_, argType, tempArg, actualArg) <- quadruplets)
              yield js.VarDef(tempArg, argType, mutable = false, actualArg)
          val trueAssignments =
            for ((formalArg, argType, tempArg, _) <- quadruplets)
              yield js.Assign(
                  formalArg,
                  js.VarRef(tempArg, mutable = false)(argType))
          js.Block(tempAssignments ++ trueAssignments :+ jump)
      }
    }

    /** Gen a "normal" apply (to a true method).
     *
     *  But even these are further refined into:
     *  * Methods of java.lang.String, which are redirected to the
     *    RuntimeString trait implementation.
     *  * Calls to methods of raw JS types (Scala.js -> JS bridge)
     *  * Calls to methods in impl classes of traits.
     *  * Regular method call
     */
    private def genNormalApply(tree: Apply, isStat: Boolean): js.Tree = {
      implicit val pos = tree.pos
      val Apply(fun @ Select(receiver, _), args) = tree
      val sym = fun.symbol

      def isStringMethodFromObject: Boolean = sym.name match {
        case nme.toString_ | nme.equals_ | nme.hashCode_ => true
        case _                                           => false
      }

      if (sym.owner == StringClass && !isStringMethodFromObject) {
        genStringCall(tree)
      } else if (isRawJSType(receiver.tpe) && sym.owner != ObjectClass) {
        genPrimitiveJSCall(tree, isStat)
      } else if (foreignIsImplClass(sym.owner)) {
        genTraitImplApply(sym, args map genExpr)
      } else if (isRawJSCtorDefaultParam(sym)) {
        js.UndefinedParam()(toIRType(sym.tpe.resultType))
      } else if (sym.isClassConstructor) {
        /* See #66: we have to emit a static call to avoid calling a
         * constructor with the same signature in a subclass */
        genStaticApplyMethod(genExpr(receiver), sym, genActualArgs(sym, args))
      } else {
        genApplyMethod(genExpr(receiver), receiver.tpe, sym, genActualArgs(sym, args))
      }
    }

    def genStaticApplyMethod(receiver: js.Tree, method: Symbol,
        arguments: List[js.Tree])(implicit pos: Position): js.Tree = {
      val classIdent = encodeClassFullNameIdent(method.owner)
      val methodIdent = encodeMethodSym(method)
      currentMethodInfoBuilder.callsMethodStatic(classIdent, methodIdent)
      js.StaticApply(receiver, jstpe.ClassType(classIdent.name), methodIdent,
          arguments)(toIRType(method.tpe.resultType))
    }

    def genTraitImplApply(method: Symbol, arguments: List[js.Tree])(
        implicit pos: Position): js.Tree = {
      val implIdent = encodeClassFullNameIdent(method.owner)
      val methodIdent = encodeMethodSym(method)
      genTraitImplApply(implIdent, methodIdent, arguments,
          toIRType(method.tpe.resultType))
    }

    def genTraitImplApply(implIdent: js.Ident, methodIdent: js.Ident,
        arguments: List[js.Tree], resultType: jstpe.Type)(
        implicit pos: Position): js.Tree = {
      currentMethodInfoBuilder.callsMethod(implIdent, methodIdent)
      js.TraitImplApply(jstpe.ClassType(implIdent.name), methodIdent,
          arguments)(resultType)
    }

    /** Gen JS code for a conversion between primitive value types */
    def genConversion(from: TypeKind, to: TypeKind, value: js.Tree)(
        implicit pos: Position): js.Tree = {
      def int0 = js.IntLiteral(0)
      def int1 = js.IntLiteral(1)
      def long0 = js.LongLiteral(0L)
      def long1 = js.LongLiteral(1L)
      def float0 = js.FloatLiteral(0.0f)
      def float1 = js.FloatLiteral(1.0f)

      (from, to) match {
        case (INT(_),   BOOL) => js.BinaryOp(js.BinaryOp.Num_!=,  value, int0)
        case (LONG,     BOOL) => js.BinaryOp(js.BinaryOp.Long_!=, value, long0)
        case (FLOAT(_), BOOL) => js.BinaryOp(js.BinaryOp.Num_!=,  value, float0)

        case (BOOL, INT(_))   => js.If(value, int1,   int0  )(jstpe.IntType)
        case (BOOL, LONG)     => js.If(value, long1,  long0 )(jstpe.LongType)
        case (BOOL, FLOAT(_)) => js.If(value, float1, float0)(jstpe.FloatType)

        case _ => value
      }
    }

    /** Gen JS code for an isInstanceOf test (for reference types only) */
    def genIsInstanceOf(value: js.Tree, to: Type)(
        implicit pos: Position): js.Tree = {

      def genTypeOfTest(typeString: String) = {
        js.BinaryOp(js.BinaryOp.===,
            js.UnaryOp(js.UnaryOp.typeof, value),
            js.StringLiteral(typeString))
      }

      if (isRawJSType(to)) {
        to.typeSymbol match {
          case JSNumberClass    => genTypeOfTest("number")
          case JSStringClass    => genTypeOfTest("string")
          case JSBooleanClass   => genTypeOfTest("boolean")
          case JSUndefinedClass => genTypeOfTest("undefined")
          case sym if sym.isTrait =>
            reporter.error(pos,
                s"isInstanceOf[${sym.fullName}] not supported because it is a raw JS trait")
            js.BooleanLiteral(true)
          case sym =>
            js.BinaryOp(js.BinaryOp.instanceof, value, genGlobalJSObject(sym))
        }
      } else {
        val refType = toReferenceType(to)
        currentMethodInfoBuilder.accessesClassData(refType)
        js.IsInstanceOf(value, refType)
      }
    }

    /** Gen JS code for an asInstanceOf cast (for reference types only) */
    def genAsInstanceOf(value: js.Tree, to: Type)(
        implicit pos: Position): js.Tree = {

      def default: js.Tree = {
        val refType = toReferenceType(to)
        currentMethodInfoBuilder.accessesClassData(refType)
        js.AsInstanceOf(value, refType)
      }

      if (isRawJSType(to)) {
        // asInstanceOf on JavaScript is completely erased
        value
      } else if (FunctionClass.seq contains to.typeSymbol) {
        /* Don't hide a JSFunctionToScala inside a useless cast, otherwise
         * the optimization avoiding double-wrapping in genApply() will not
         * be able to kick in.
         */
        value match {
          case JSFunctionToScala(fun, _) => value
          case _                         => default
        }
      } else {
        default
      }
    }

    /** Gen JS code for a call to a Scala method.
     *  This also registers that the given method is called by the current
     *  method in the method info builder.
     */
    def genApplyMethod(receiver: js.Tree, receiverType: Type,
        methodSym: Symbol, arguments: List[js.Tree])(
        implicit pos: Position): js.Tree = {
      genApplyMethod(receiver, receiverType.typeSymbol, methodSym, arguments)
    }

    /** Gen JS code for a call to a Scala method.
     *  This also registers that the given method is called by the current
     *  method in the method info builder.
     */
    def genApplyMethod(receiver: js.Tree, receiverTypeSym: Symbol,
        methodSym: Symbol, arguments: List[js.Tree])(
        implicit pos: Position): js.Tree = {
      genApplyMethod(receiver, receiverTypeSym,
          encodeMethodSym(methodSym), arguments,
          toIRType(methodSym.tpe.resultType))
    }

    /** Gen JS code for a call to a Scala method.
     *  This also registers that the given method is called by the current
     *  method in the method info builder.
     */
    def genApplyMethod(receiver: js.Tree, receiverType: Type,
        methodIdent: js.Ident, arguments: List[js.Tree], resultType: jstpe.Type)(
        implicit pos: Position): js.Tree = {
      genApplyMethod(receiver, receiverType.typeSymbol, methodIdent,
          arguments, resultType)
    }

    /** Gen JS code for a call to a Scala method.
     *  This also registers that the given method is called by the current
     *  method in the method info builder.
     */
    def genApplyMethod(receiver: js.Tree, receiverTypeSym: Symbol,
        methodIdent: js.Ident, arguments: List[js.Tree], resultType: jstpe.Type)(
        implicit pos: Position): js.Tree = {
      currentMethodInfoBuilder.callsMethod(receiverTypeSym, methodIdent)
      js.Apply(receiver, methodIdent, arguments)(resultType)
    }

    /** Gen JS code for a call to a Scala class constructor.
     *
     *  This also registers that the given class is instantiated by the current
     *  method, and that the given constructor is called, in the method info
     *  builder.
     */
    def genNew(clazz: Symbol, ctor: Symbol, arguments: List[js.Tree])(
        implicit pos: Position): js.Tree = {
      if (clazz.isAnonymousFunction)
        instantiatedAnonFunctions += clazz
      assert(!isRawJSFunctionDef(clazz),
          s"Trying to instantiate a raw JS function def $clazz")
      val ctorIdent = encodeMethodSym(ctor)
      currentMethodInfoBuilder.instantiatesClass(clazz)
      currentMethodInfoBuilder.callsMethod(clazz, ctorIdent)
      js.New(jstpe.ClassType(encodeClassFullName(clazz)),
          ctorIdent, arguments)
    }

    /** Gen JS code for a call to a constructor of a hijacked boxed class.
     *  All of these have 2 constructors: one with the primitive
     *  value, which is erased, and one with a String, which is
     *  equivalent to BoxedClass.valueOf(arg).
     */
    private def genNewHijackedBoxedClass(clazz: Symbol, ctor: Symbol,
        arguments: List[js.Tree])(implicit pos: Position): js.Tree = {
      assert(arguments.size == 1)
      if (isStringType(ctor.tpe.params.head.tpe)) {
        // BoxedClass.valueOf(arg)
        val companion = clazz.companionModule.moduleClass
        val valueOf = getMemberMethod(companion, nme.valueOf) suchThat { s =>
          s.tpe.params.size == 1 && isStringType(s.tpe.params.head.tpe)
        }
        genApplyMethod(genLoadModule(companion), companion, valueOf, arguments)
      } else {
        // erased
        arguments.head
      }
    }

    /** Gen JS code for creating a new Array: new Array[T](length)
     *  For multidimensional arrays (dimensions > 1), the arguments can
     *  specify up to `dimensions` lengths for the first dimensions of the
     *  array.
     */
    def genNewArray(arrayType: jstpe.ArrayType, arguments: List[js.Tree])(
        implicit pos: Position): js.Tree = {
      assert(arguments.length <= arrayType.dimensions,
          "too many arguments for array constructor: found " + arguments.length +
          " but array has only " + arrayType.dimensions + " dimension(s)")

      currentMethodInfoBuilder.accessesClassData(arrayType)
      js.NewArray(arrayType, arguments)
    }

    /** Gen JS code for an array literal.
     */
    def genArrayValue(tree: Tree): js.Tree = {
      implicit val pos = tree.pos
      val ArrayValue(tpt @ TypeTree(), elems) = tree

      val arrType = toReferenceType(tree.tpe).asInstanceOf[jstpe.ArrayType]
      currentMethodInfoBuilder.accessesClassData(arrType)
      js.ArrayValue(arrType, elems map genExpr)
    }

    /** Gen JS code for a Match, i.e., a switch-able pattern match
     *  Eventually, this is compiled into a JS switch construct. But because
     *  we can be in expression position, and a JS switch cannot be given a
     *  meaning in expression position, we emit a JS "match" construct (which
     *  does not need the `break`s in each case. `JSDesugaring` will transform
     *  that in a switch.
     *
     *  Some caveat here. It may happen that there is a guard in here, despite
     *  the fact that switches cannot have guards (in the JVM nor in JS).
     *  The JVM backend emits a jump to the default clause when a guard is not
     *  fulfilled. We cannot do that. Instead, currently we duplicate the body
     *  of the default case in the else branch of the guard test.
     */
    def genMatch(tree: Tree, isStat: Boolean): js.Tree = {
      implicit val pos = tree.pos
      val Match(selector, cases) = tree

      val expr = genExpr(selector)
      val resultType = toIRType(tree.tpe)

      val List(defaultBody0) = for {
        CaseDef(Ident(nme.WILDCARD), EmptyTree, body) <- cases
      } yield body

      val (defaultBody, defaultLabelSym) = defaultBody0 match {
        case LabelDef(_, Nil, rhs) if hasSynthCaseSymbol(defaultBody0) =>
          (rhs, defaultBody0.symbol)
        case _ =>
          (defaultBody0, NoSymbol)
      }

      val genDefaultBody = genStatOrExpr(defaultBody, isStat)

      var clauses: List[(List[js.Literal], js.Tree)] = Nil
      var elseClause: js.Tree = js.EmptyTree

      for (caze @ CaseDef(pat, guard, body) <- cases) {
        assert(guard == EmptyTree)

        def genBody() = body match {
          // Yes, this will duplicate the default body in the output
          case If(cond, thenp, app @ Apply(_, Nil))
              if app.symbol == defaultLabelSym =>
            js.If(genExpr(cond), genStatOrExpr(thenp, isStat), genDefaultBody)(
                resultType)(body.pos)
          case If(cond, thenp, Block(List(app @ Apply(_, Nil)), _))
              if app.symbol == defaultLabelSym =>
            js.If(genExpr(cond), genStatOrExpr(thenp, isStat), genDefaultBody)(
                resultType)(body.pos)

          case _ =>
            genStatOrExpr(body, isStat)
        }

        def genLiteral(lit: Literal): js.Literal =
          genExpr(lit).asInstanceOf[js.Literal]

        pat match {
          case lit: Literal =>
            clauses = (List(genLiteral(lit)), genBody()) :: clauses
          case Ident(nme.WILDCARD) =>
            elseClause = genDefaultBody
          case Alternative(alts) =>
            val genAlts = {
              alts map {
                case lit: Literal => genLiteral(lit)
                case _ =>
                  abort("Invalid case in alternative in switch-like pattern match: " +
                      tree + " at: " + tree.pos)
              }
            }
            clauses = (genAlts, genBody()) :: clauses
          case _ =>
            abort("Invalid case statement in switch-like pattern match: " +
                tree + " at: " + (tree.pos))
        }
      }

      js.Match(expr, clauses.reverse, elseClause)(resultType)
    }

    private def genBlock(tree: Block, isStat: Boolean): js.Tree = {
      implicit val pos = tree.pos
      val Block(stats, expr) = tree

      /** Predicate satisfied by LabelDefs produced by the pattern matcher */
      def isCaseLabelDef(tree: Tree) =
        tree.isInstanceOf[LabelDef] && hasSynthCaseSymbol(tree)

      def translateMatch(expr: LabelDef) = {
        /* Block that appeared as the result of a translated match
         * Such blocks are recognized by having at least one element that is
         * a so-called case-label-def.
         * The method `genTranslatedMatch()` takes care of compiling the
         * actual match.
         *
         * The assumption is once we encounter a case, the remainder of the
         * block will consist of cases.
         * The prologue may be empty, usually it is the valdef that stores
         * the scrut.
         */
        val (prologue, cases) = stats.span(s => !isCaseLabelDef(s))
        assert(cases.forall(isCaseLabelDef),
            "Assumption on the form of translated matches broken: " + tree)

        val genPrologue = prologue map genStat
        val translatedMatch =
          genTranslatedMatch(cases.map(_.asInstanceOf[LabelDef]), expr)

        js.Block(genPrologue :+ translatedMatch)
      }

      expr match {
        case expr: LabelDef if isCaseLabelDef(expr) =>
          translateMatch(expr)

        // Sometimes the pattern matcher casts its final result
        case Apply(TypeApply(Select(expr: LabelDef, nme.asInstanceOf_Ob), _), _)
            if isCaseLabelDef(expr) =>
          translateMatch(expr)

        case _ =>
          assert(!stats.exists(isCaseLabelDef), "Found stats with case label " +
              s"def in non-match block at ${tree.pos}: $tree")

          /* Normal block */
          val statements = stats map genStat
          val expression = genStatOrExpr(expr, isStat)
          js.Block(statements :+ expression)
      }
    }

    /** Gen JS code for a translated match
     *
     *  This implementation relies heavily on the patterns of trees emitted
     *  by the current pattern match phase (as of Scala 2.10).
     *
     *  The trees output by the pattern matcher are assumed to follow these
     *  rules:
     *  * Each case LabelDef (in `cases`) must not take any argument.
     *  * The last one must be a catch-all (case _ =>) that never falls through.
     *  * Jumps to the `matchEnd` are allowed anywhere in the body of the
     *    corresponding case label-defs, but not outside.
     *  * Jumps to case label-defs are restricted to jumping to the very next
     *    case, and only in positions denoted by <jump> in:
     *    <case-body> ::=
     *        If(_, <case-body>, <case-body>)
     *      | Block(_, <case-body>)
     *      | <jump>
     *      | _
     *    These restrictions, together with the fact that we are in statement
     *    position (thanks to the above transformation), mean that they can be
     *    simply replaced by `skip`.
     *
     *  To implement jumps to `matchEnd`, which have one argument which is the
     *  result of the match, we enclose all the cases in one big labeled block.
     *  Jumps are then compiled as `return`s out of the block.
     */
    def genTranslatedMatch(cases: List[LabelDef],
        matchEnd: LabelDef)(implicit pos: Position): js.Tree = {

      val nextCaseSyms = (cases.tail map (_.symbol)) :+ NoSymbol

      val translatedCases = for {
        (LabelDef(_, Nil, rhs), nextCaseSym) <- cases zip nextCaseSyms
      } yield {
        def genCaseBody(tree: Tree): js.Tree = {
          implicit val pos = tree.pos
          tree match {
            case If(cond, thenp, elsep) =>
              js.If(genExpr(cond), genCaseBody(thenp), genCaseBody(elsep))(
                  jstpe.NoType)

            case Block(stats, expr) =>
              js.Block((stats map genStat) :+ genCaseBody(expr))

            case Apply(_, Nil) if tree.symbol == nextCaseSym =>
              js.Skip()

            case _ =>
              genStat(tree)
          }
        }

        genCaseBody(rhs)
      }

      js.Labeled(encodeLabelSym(matchEnd.symbol), toIRType(matchEnd.tpe),
          js.Block(translatedCases))
    }

    /** Gen JS code for a primitive method call */
    private def genPrimitiveOp(tree: Apply, isStat: Boolean): js.Tree = {
      import scalaPrimitives._

      implicit val pos = tree.pos

      val sym = tree.symbol
      val Apply(fun @ Select(receiver, _), args) = tree

      val code = scalaPrimitives.getPrimitive(sym, receiver.tpe)

      if (isArithmeticOp(code) || isLogicalOp(code) || isComparisonOp(code))
        genSimpleOp(tree, receiver :: args, code)
      else if (code == scalaPrimitives.CONCAT)
        genStringConcat(tree, receiver, args)
      else if (code == HASH)
        genScalaHash(tree, receiver)
      else if (isArrayOp(code))
        genArrayOp(tree, code)
      else if (code == SYNCHRONIZED)
        genSynchronized(tree, isStat)
      else if (isCoercion(code))
        genCoercion(tree, receiver, code)
      else if (jsPrimitives.isJavaScriptPrimitive(code))
        genJSPrimitive(tree, receiver, args, code)
      else
        abort("Unknown primitive operation: " + sym.fullName + "(" +
            fun.symbol.simpleName + ") " + " at: " + (tree.pos))
    }

    /** Gen JS code for a simple operation (arithmetic, logical, or comparison) */
    private def genSimpleOp(tree: Apply, args: List[Tree], code: Int): js.Tree = {
      import scalaPrimitives._

      implicit val pos = tree.pos

      def isLongOp(ltpe: Type, rtpe: Type) =
        (isLongType(ltpe) || isLongType(rtpe)) &&
        !(toTypeKind(ltpe).isInstanceOf[FLOAT] ||
          toTypeKind(rtpe).isInstanceOf[FLOAT] ||
          isStringType(ltpe) || isStringType(rtpe))

      val sources = args map genExpr

      val resultType = toIRType(tree.tpe)

      sources match {
        // Unary operation
        case List(source) =>
          (code match {
            case POS =>
              source
            case NEG =>
              (resultType: @unchecked) match {
                case jstpe.IntType =>
                  js.BinaryOp(js.BinaryOp.Int_-, js.IntLiteral(0), source)
                case jstpe.LongType =>
                  js.BinaryOp(js.BinaryOp.Long_-, js.LongLiteral(0), source)
                case jstpe.FloatType =>
                  js.BinaryOp(js.BinaryOp.Float_-, js.FloatLiteral(0.0f), source)
                case jstpe.DoubleType =>
                  js.BinaryOp(js.BinaryOp.Double_-, js.DoubleLiteral(0), source)
              }
            case NOT =>
              (resultType: @unchecked) match {
                case jstpe.IntType =>
                  js.BinaryOp(js.BinaryOp.Int_^, js.IntLiteral(-1), source)
                case jstpe.LongType =>
                  js.BinaryOp(js.BinaryOp.Long_^, js.LongLiteral(-1), source)
              }
            case ZNOT =>
              js.UnaryOp(js.UnaryOp.Boolean_!, source)
            case _ =>
              abort("Unknown unary operation code: " + code)
          })

        // Binary operation on Longs
        case List(lsrc, rsrc) if isLongOp(args(0).tpe, args(1).tpe) =>
          def toLong(tree: js.Tree, tpe: Type) =
            if (isLongType(tpe)) tree
            else js.UnaryOp(js.UnaryOp.IntToLong, tree)

          def toInt(tree: js.Tree, tpe: Type) =
            if (isLongType(tpe)) js.UnaryOp(js.UnaryOp.LongToInt, rsrc)
            else tree

          val ltree = toLong(lsrc, args(0).tpe)
          def rtree = toLong(rsrc, args(1).tpe)
          def rtreeInt = toInt(rsrc, args(1).tpe)

          import js.BinaryOp._
          (code: @switch) match {
            case ADD => js.BinaryOp(Long_+,   ltree, rtree)
            case SUB => js.BinaryOp(Long_-,   ltree, rtree)
            case MUL => js.BinaryOp(Long_*,   ltree, rtree)
            case DIV => js.BinaryOp(Long_/,   ltree, rtree)
            case MOD => js.BinaryOp(Long_%,   ltree, rtree)
            case OR  => js.BinaryOp(Long_|,   ltree, rtree)
            case XOR => js.BinaryOp(Long_^,   ltree, rtree)
            case AND => js.BinaryOp(Long_&,   ltree, rtree)
            case LSL => js.BinaryOp(Long_<<,  ltree, rtreeInt)
            case LSR => js.BinaryOp(Long_>>>, ltree, rtreeInt)
            case ASR => js.BinaryOp(Long_>>,  ltree, rtreeInt)
            case EQ  => js.BinaryOp(Long_==,  ltree, rtree)
            case NE  => js.BinaryOp(Long_!=,  ltree, rtree)
            case LT  => js.BinaryOp(Long_<,   ltree, rtree)
            case LE  => js.BinaryOp(Long_<=,  ltree, rtree)
            case GT  => js.BinaryOp(Long_>,   ltree, rtree)
            case GE  => js.BinaryOp(Long_>=,  ltree, rtree)
            case _ =>
              abort("Unknown binary operation code: " + code)
          }

        // Binary operation
        case List(lsrc_in, rsrc_in) =>
          def convertArg(tree: js.Tree, tpe: Type) = {
            val kind = toTypeKind(tpe)

            // If we end up with a long, target must be float or double
            val fromLong =
              if (kind == LongKind) js.UnaryOp(js.UnaryOp.LongToDouble, tree)
              else tree

            if (resultType != jstpe.FloatType) fromLong
            else if (kind == FloatKind) fromLong
            else js.UnaryOp(js.UnaryOp.DoubleToFloat, fromLong)
          }

          val lsrc = convertArg(lsrc_in, args(0).tpe)
          val rsrc = convertArg(rsrc_in, args(1).tpe)

          def genEquality(eqeq: Boolean, not: Boolean) = {
            val typeKind = toTypeKind(args(0).tpe)
            typeKind match {
              case INT(_) | LONG | FLOAT(_) =>
                /* Note that LONG happens when a fromLong() had to do something,
                 * which means we're effectively in the FLOAT case. */
                js.BinaryOp(if (not) js.BinaryOp.Num_!= else js.BinaryOp.Num_==, lsrc, rsrc)
              case BOOL =>
                js.BinaryOp(if (not) js.BinaryOp.Boolean_!= else js.BinaryOp.Boolean_==, lsrc, rsrc)
              case REFERENCE(_) =>
                if (eqeq &&
                    // don't call equals if we have a literal null at either side
                    !lsrc.isInstanceOf[js.Null] &&
                    !rsrc.isInstanceOf[js.Null]) {
                  val body = genEqEqPrimitive(args(0).tpe, args(1).tpe, lsrc, rsrc)
                  if (not) js.UnaryOp(js.UnaryOp.Boolean_!, body) else body
                } else {
                  js.BinaryOp(if (not) js.BinaryOp.!== else js.BinaryOp.===, lsrc, rsrc)
                }
              case _ =>
                // Arrays, Null, Nothing do not have an equals() method.
                js.BinaryOp(if (not) js.BinaryOp.!== else js.BinaryOp.===, lsrc, rsrc)
            }
          }

          (code: @switch) match {
            case EQ => genEquality(eqeq = true, not = false)
            case NE => genEquality(eqeq = true, not = true)
            case ID => genEquality(eqeq = false, not = false)
            case NI => genEquality(eqeq = false, not = true)

            case ZOR  => js.If(lsrc, js.BooleanLiteral(true), rsrc)(jstpe.BooleanType)
            case ZAND => js.If(lsrc, rsrc, js.BooleanLiteral(false))(jstpe.BooleanType)

            case _ =>
              import js.BinaryOp._
              val op = (resultType: @unchecked) match {
                case jstpe.IntType =>
                  (code: @switch) match {
                    case ADD => Int_+
                    case SUB => Int_-
                    case MUL => Int_*
                    case DIV => Int_/
                    case MOD => Int_%
                    case OR  => Int_|
                    case AND => Int_&
                    case XOR => Int_^
                    case LSL => Int_<<
                    case LSR => Int_>>>
                    case ASR => Int_>>
                  }
                case jstpe.FloatType =>
                  (code: @switch) match {
                    case ADD => Float_+
                    case SUB => Float_-
                    case MUL => Float_*
                    case DIV => Float_/
                    case MOD => Float_%
                  }
                case jstpe.DoubleType =>
                  (code: @switch) match {
                    case ADD => Double_+
                    case SUB => Double_-
                    case MUL => Double_*
                    case DIV => Double_/
                    case MOD => Double_%
                  }
                case jstpe.BooleanType =>
                  (code: @switch) match {
                    case LT   => Num_<
                    case LE   => Num_<=
                    case GT   => Num_>
                    case GE   => Num_>=
                    case OR   => Boolean_|
                    case AND  => Boolean_&
                    case XOR  => Boolean_!=
                  }
              }
              js.BinaryOp(op, lsrc, rsrc)
          }

        case _ =>
          abort("Too many arguments for primitive function: " + tree)
      }
    }

    /** Gen JS code for a call to Any.== */
    def genEqEqPrimitive(ltpe: Type, rtpe: Type, lsrc: js.Tree, rsrc: js.Tree)(
        implicit pos: Position): js.Tree = {
      /* True if the equality comparison is between values that require the
       * use of the rich equality comparator
       * (scala.runtime.BoxesRunTime.equals).
       * This is the case when either side of the comparison might have a
       * run-time type subtype of java.lang.Number or java.lang.Character,
       * **which includes when either is a raw JS type**.
       * When it is statically known that both sides are equal and subtypes of
       * Number or Character, not using the rich equality is possible (their
       * own equals method will do ok.)
       */
      val mustUseAnyComparator: Boolean = isRawJSType(ltpe) || isRawJSType(rtpe) || {
        val areSameFinals = ltpe.isFinalType && rtpe.isFinalType && (ltpe =:= rtpe)
        !areSameFinals && isMaybeBoxed(ltpe.typeSymbol) && isMaybeBoxed(rtpe.typeSymbol)
      }

      if (mustUseAnyComparator) {
        val equalsMethod: Symbol = {
          val ptfm = platform.asInstanceOf[backend.JavaPlatform with ThisPlatform] // 2.10 compat
          if (ltpe <:< BoxedNumberClass.tpe) {
            if (rtpe <:< BoxedNumberClass.tpe) ptfm.externalEqualsNumNum
            else if (rtpe <:< BoxedCharacterClass.tpe) ptfm.externalEqualsNumChar
            else ptfm.externalEqualsNumObject
          } else ptfm.externalEquals
        }
        val moduleClass = equalsMethod.owner
        val instance = genLoadModule(moduleClass)
        genApplyMethod(instance, moduleClass, equalsMethod, List(lsrc, rsrc))
      } else {
        // if (lsrc eq null) rsrc eq null else lsrc.equals(rsrc)
        if (isStringType(ltpe)) {
          // String.equals(that) === (this eq that)
          js.BinaryOp(js.BinaryOp.===, lsrc, rsrc)
        } else {
          /* This requires to evaluate both operands in local values first.
           * The optimizer will eliminate them if possible.
           */
          val ltemp = js.VarDef(freshLocalIdent(), lsrc.tpe, mutable = false, lsrc)
          val rtemp = js.VarDef(freshLocalIdent(), rsrc.tpe, mutable = false, rsrc)
          js.Block(
              ltemp,
              rtemp,
              js.If(js.BinaryOp(js.BinaryOp.===, ltemp.ref, js.Null()),
                  js.BinaryOp(js.BinaryOp.===, rtemp.ref, js.Null()),
                  genApplyMethod(ltemp.ref, ltpe, Object_equals, List(rtemp.ref)))(
                  jstpe.BooleanType))
        }
      }
    }

    /** Gen JS code for string concatenation.
     */
    private def genStringConcat(tree: Apply, receiver: Tree,
        args: List[Tree]): js.Tree = {
      implicit val pos = tree.pos

      /* Primitive number types such as scala.Int have a
       *   def +(s: String): String
       * method, which is why we have to box the lhs sometimes.
       * Otherwise, both lhs and rhs are already reference types (Any of String)
       * so boxing is not necessary (in particular, rhs is never a primitive).
       */
      assert(!isPrimitiveValueType(receiver.tpe) || isStringType(args.head.tpe))
      assert(!isPrimitiveValueType(args.head.tpe))

      val rhs = genExpr(args.head)

      val lhs = {
        val lhs0 = genExpr(receiver)
        // Box the receiver if it is a primitive value
        if (!isPrimitiveValueType(receiver.tpe)) lhs0
        else makePrimitiveBox(lhs0, receiver.tpe)
      }

      js.BinaryOp(js.BinaryOp.String_+, lhs, rhs)
    }

    /** Gen JS code for a call to Any.## */
    private def genScalaHash(tree: Apply, receiver: Tree): js.Tree = {
      implicit val pos = tree.pos

      val instance = genLoadModule(ScalaRunTimeModule)
      val arguments = List(genExpr(receiver))
      val sym = getMember(ScalaRunTimeModule, nme.hash_)

      genApplyMethod(instance, ScalaRunTimeModule.moduleClass, sym, arguments)
    }

    /** Gen JS code for an array operation (get, set or length) */
    private def genArrayOp(tree: Tree, code: Int): js.Tree = {
      import scalaPrimitives._

      implicit val pos = tree.pos

      val Apply(Select(arrayObj, _), args) = tree
      val arrayValue = genExpr(arrayObj)
      val arguments = args map genExpr

      def genSelect() = {
        val elemIRType =
          toTypeKind(arrayObj.tpe).asInstanceOf[ARRAY].elem.toIRType
        js.ArraySelect(arrayValue, arguments(0))(elemIRType)
      }

      if (scalaPrimitives.isArrayGet(code)) {
        // get an item of the array
        assert(args.length == 1,
            s"Array get requires 1 argument, found ${args.length} in $tree")
        genSelect()
      } else if (scalaPrimitives.isArraySet(code)) {
        // set an item of the array
        assert(args.length == 2,
            s"Array set requires 2 arguments, found ${args.length} in $tree")
        js.Assign(genSelect(), arguments(1))
      } else {
        // length of the array
        js.ArrayLength(arrayValue)
      }
    }

    /** Gen JS code for a call to AnyRef.synchronized */
    private def genSynchronized(tree: Apply, isStat: Boolean): js.Tree = {
      /* JavaScript is single-threaded, so we can drop the
       * synchronization altogether.
       */
      val Apply(Select(receiver, _), List(arg)) = tree
      val newReceiver = genExpr(receiver)
      val newArg = genStatOrExpr(arg, isStat)
      newReceiver match {
        case js.This() =>
          // common case for which there is no side-effect nor NPE
          newArg
        case _ =>
          implicit val pos = tree.pos
          val NPECtor = getMemberMethod(NullPointerExceptionClass,
              nme.CONSTRUCTOR).suchThat(_.tpe.params.isEmpty)
          js.Block(
              js.If(js.BinaryOp(js.BinaryOp.===, newReceiver, js.Null()),
                  js.Throw(genNew(NullPointerExceptionClass, NPECtor, Nil)),
                  js.Skip())(jstpe.NoType),
              newArg)
      }
    }

    /** Gen JS code for a coercion */
    private def genCoercion(tree: Apply, receiver: Tree, code: Int): js.Tree = {
      import scalaPrimitives._

      implicit val pos = tree.pos

      val source = genExpr(receiver)

      def source2int = (code: @switch) match {
        case F2C | D2C | F2B | D2B | F2S | D2S | F2I | D2I =>
          js.UnaryOp(js.UnaryOp.DoubleToInt, source)
        case L2C | L2B | L2S | L2I =>
          js.UnaryOp(js.UnaryOp.LongToInt, source)
        case _ =>
          source
      }

      (code: @switch) match {
        // To Char, need to crop at unsigned 16-bit
        case B2C | S2C | I2C | L2C | F2C | D2C =>
          js.BinaryOp(js.BinaryOp.Int_&, source2int, js.IntLiteral(0xffff))

        // To Byte, need to crop at signed 8-bit
        case C2B | S2B | I2B | L2B | F2B | D2B =>
          // note: & 0xff would not work because of negative values
          js.BinaryOp(js.BinaryOp.Int_>>,
              js.BinaryOp(js.BinaryOp.Int_<<, source2int, js.IntLiteral(24)),
              js.IntLiteral(24))

        // To Short, need to crop at signed 16-bit
        case C2S | I2S | L2S | F2S | D2S =>
          // note: & 0xffff would not work because of negative values
          js.BinaryOp(js.BinaryOp.Int_>>,
              js.BinaryOp(js.BinaryOp.Int_<<, source2int, js.IntLiteral(16)),
              js.IntLiteral(16))

        // To Int, need to crop at signed 32-bit
        case L2I | F2I | D2I =>
          source2int

        // Any int to Long
        case C2L | B2L | S2L | I2L =>
          js.UnaryOp(js.UnaryOp.IntToLong, source)

        // Any double to Long
        case F2L | D2L =>
          js.UnaryOp(js.UnaryOp.DoubleToLong, source)

        // Long to Double
        case L2D =>
          js.UnaryOp(js.UnaryOp.LongToDouble, source)

        // Any int, or Double, to Float
        case C2F | B2F | S2F | I2F | D2F =>
          js.UnaryOp(js.UnaryOp.DoubleToFloat, source)

        // Long to Float === Long to Double to Float
        case L2F =>
          js.UnaryOp(js.UnaryOp.DoubleToFloat,
              js.UnaryOp(js.UnaryOp.LongToDouble, source))

        // Identities and IR upcasts
        case C2C | B2B | S2S | I2I | L2L | F2F | D2D |
             C2I | C2D |
             B2S | B2I | B2D |
             S2I | S2D |
             I2D |
             F2D =>
          source
      }
    }

    /** Gen JS code for an ApplyDynamic
     *  ApplyDynamic nodes appear as the result of calls to methods of a
     *  structural type.
     *
     *  Most unfortunately, earlier phases of the compiler assume too much
     *  about the backend, namely, they believe arguments and the result must
     *  be boxed, and do the boxing themselves. This decision should be left
     *  to the backend, but it's not, so we have to undo these boxes.
     *  Note that this applies to parameter types only. The return type is boxed
     *  anyway since we do not know it's exact type.
     *
     *  This then generates a call to the reflective call proxy for the given
     *  arguments.
     */
    private def genApplyDynamic(tree: ApplyDynamic): js.Tree = {
      implicit val pos = tree.pos

      val sym = tree.symbol
      val params = sym.tpe.params

      /** check if the method we are invoking is eq or ne. they cannot be
       *  overridden since they are final. If this is true, we only emit a
       *  `===` or `!==`.
       */
      val isEqOrNeq = (sym.name == nme.eq || sym.name == nme.ne) &&
        params.size == 1 && params.head.tpe.typeSymbol == ObjectClass

      /** check if the method we are invoking conforms to a method on
       *  scala.Array. If this is the case, we check that case specially at
       *  runtime to avoid having reflective call proxies on scala.Array.
       *  (Also, note that the element type of Array#update is not erased and
       *  therefore the method name mangling would turn out wrong)
       *
       *  Note that we cannot check if the expected return type is correct,
       *  since this type information is already erased.
       */
      def isArrayLikeOp = {
        sym.name == nme.update &&
          params.size == 2 && params.head.tpe.typeSymbol == IntClass ||
        sym.name == nme.apply &&
          params.size == 1 && params.head.tpe.typeSymbol == IntClass ||
        sym.name == nme.length &&
          params.size == 0 ||
        sym.name == nme.clone_ &&
          params.size == 0
      }

      /**
       * Tests whether one of our reflective "boxes" for primitive types
       * implements the particular method. If this is the case
       * (result != NoSymbol), we generate a runtime instance check if we are
       * dealing with the appropriate primitive type.
       */
      def matchingSymIn(clazz: Symbol) = clazz.tpe.member(sym.name).suchThat { s =>
        val sParams = s.tpe.params
        !s.isBridge &&
        params.size == sParams.size &&
        (params zip sParams).forall { case (s1,s2) =>
          s1.tpe =:= s2.tpe
        }
      }

      val ApplyDynamic(receiver, args) = tree

      if (isEqOrNeq) {
        // Just emit a boxed equality check
        val jsThis = genExpr(receiver)
        val jsThat = genExpr(args.head)
        val op = if (sym.name == nme.eq) js.BinaryOp.=== else js.BinaryOp.!==
        ensureBoxed(js.BinaryOp(op, jsThis, jsThat), BooleanClass.tpe)
      } else {
        // Create a fully-fledged reflective call
        val receiverType = toIRType(receiver.tpe)
        val callTrgIdent = freshLocalIdent()
        val callTrgVarDef =
          js.VarDef(callTrgIdent, receiverType, mutable = false, genExpr(receiver))
        val callTrg = js.VarRef(callTrgIdent, mutable = false)(receiverType)

        val arguments = args zip sym.tpe.params map { case (arg, param) =>
          /* No need for enteringPosterasure, because value classes are not
           * supported as parameters of methods in structural types.
           * We could do it for safety and future-proofing anyway, except that
           * I am weary of calling enteringPosterasure for a reflective method
           * symbol.
           *
           * Note also that this will typically unbox a primitive value that
           * has just been boxed, or will .asInstanceOf[T] an expression which
           * is already of type T. But the optimizer will get rid of that, and
           * reflective calls are not numerous, so we don't complicate the
           * compiler to eliminate them early.
           */
          fromAny(genExpr(arg), param.tpe)
        }

        val proxyIdent = encodeMethodSym(sym, reflProxy = true)
        var callStatement: js.Tree =
          genApplyMethod(callTrg, receiver.tpe, proxyIdent, arguments,
              jstpe.AnyType)

        if (isArrayLikeOp) {
          def genRTCall(method: Symbol, args: js.Tree*) =
            genApplyMethod(genLoadModule(ScalaRunTimeModule),
                ScalaRunTimeModule.moduleClass, method, args.toList)
          val isArrayTree =
            genRTCall(ScalaRunTime_isArray, callTrg, js.IntLiteral(1))
          callStatement = js.If(isArrayTree, {
            sym.name match {
              case nme.update =>
                js.Block(
                    genRTCall(currentRun.runDefinitions.arrayUpdateMethod,
                        callTrg, arguments(0), arguments(1)),
                    js.Undefined()) // Boxed Unit
              case nme.apply =>
                genRTCall(currentRun.runDefinitions.arrayApplyMethod, callTrg,
                    arguments(0))
              case nme.length =>
                genRTCall(currentRun.runDefinitions.arrayLengthMethod, callTrg)
              case nme.clone_ =>
                genApplyMethod(callTrg, receiver.tpe, Object_clone, arguments)
            }
          }, {
            callStatement
          })(jstpe.AnyType)
        }

        for {
          (primTypeOf, reflBoxClass) <- Seq(
              ("string", StringClass),
              ("number", NumberReflectiveCallClass),
              ("boolean", BooleanReflectiveCallClass)
          )
          implMethodSym = matchingSymIn(reflBoxClass)
          if implMethodSym != NoSymbol && implMethodSym.isPublic
        } {
          callStatement = js.If(
              js.BinaryOp(js.BinaryOp.===,
                js.UnaryOp(js.UnaryOp.typeof, callTrg),
                js.StringLiteral(primTypeOf)), {
            if (implMethodSym.owner == ObjectClass) {
              // If the method is defined on Object, we can call it normally.
              genApplyMethod(callTrg, receiver.tpe, implMethodSym, arguments)
            } else {
              if (primTypeOf == "string") {
                val (rtModuleClass, methodIdent) =
                  encodeRTStringMethodSym(implMethodSym)
                val retTpe = implMethodSym.tpe.resultType
                val castCallTrg = fromAny(callTrg, StringClass.toTypeConstructor)
                val rawApply = genApplyMethod(
                    genLoadModule(rtModuleClass),
                    rtModuleClass,
                    methodIdent,
                    castCallTrg :: arguments,
                    toIRType(retTpe))
                // Box the result of the implementing method if required
                if (isPrimitiveValueType(retTpe))
                  makePrimitiveBox(rawApply, retTpe)
                else
                  rawApply
              } else {
                val (reflBoxClassPatched, callTrg1) = {
                  def isIntOrLongKind(kind: TypeKind) = kind match {
                    case _:INT | LONG => true
                    case _            => false
                  }
                  if (primTypeOf == "number" &&
                      toTypeKind(implMethodSym.tpe.resultType) == DoubleKind &&
                      isIntOrLongKind(toTypeKind(sym.tpe.resultType))) {
                    // This must be an Int, and not a Double
                    (IntegerReflectiveCallClass,
                        js.AsInstanceOf(callTrg,
                            toReferenceType(BoxedIntClass.toTypeConstructor)))
                  } else {
                    (reflBoxClass, callTrg)
                  }
                }
                val castCallTrg =
                  fromAny(callTrg1,
                      reflBoxClassPatched.primaryConstructor.tpe.params.head.tpe)
                val reflBox = genNew(reflBoxClassPatched,
                    reflBoxClassPatched.primaryConstructor, List(castCallTrg))
                genApplyMethod(
                    reflBox,
                    reflBoxClassPatched,
                    proxyIdent,
                    arguments,
                    jstpe.AnyType)
              }
            }
          }, { // else
            callStatement
          })(jstpe.AnyType)
        }

        js.Block(callTrgVarDef, callStatement)
      }
    }

    /** Ensures that the value of the given tree is boxed.
     *  @param expr Tree to be boxed if needed.
     *  @param tpeEnteringPosterasure The type of `expr` as it was entering
     *    the posterasure phase.
     */
    def ensureBoxed(expr: js.Tree, tpeEnteringPosterasure: Type)(
        implicit pos: Position): js.Tree = {

      tpeEnteringPosterasure match {
        case tpe if isPrimitiveValueType(tpe) =>
          makePrimitiveBox(expr, tpe)

        case tpe: ErasedValueType =>
          val boxedClass = tpe.valueClazz
          val ctor = boxedClass.primaryConstructor
          genNew(boxedClass, ctor, List(expr))

        case _ =>
          expr
      }
    }

    /** Extracts a value typed as Any to the given type after posterasure.
     *  @param expr Tree to be extracted.
     *  @param tpeEnteringPosterasure The type of `expr` as it was entering
     *    the posterasure phase.
     */
    def fromAny(expr: js.Tree, tpeEnteringPosterasure: Type)(
        implicit pos: Position): js.Tree = {

      tpeEnteringPosterasure match {
        case tpe if isPrimitiveValueType(tpe) =>
          makePrimitiveUnbox(expr, tpe)

        case tpe: ErasedValueType =>
          val boxedClass = tpe.valueClazz
          val unboxMethod = boxedClass.derivedValueClassUnbox
          val content = genApplyMethod(
              genAsInstanceOf(expr, tpe),
              boxedClass, unboxMethod, Nil)
          if (unboxMethod.tpe.resultType <:< tpe.erasedUnderlying)
            content
          else
            fromAny(content, tpe.erasedUnderlying)

        case tpe =>
          genAsInstanceOf(expr, tpe)
      }
    }

    /** Gen a boxing operation (tpe is the primitive type) */
    def makePrimitiveBox(expr: js.Tree, tpe: Type)(
        implicit pos: Position): js.Tree = {
      toTypeKind(tpe) match {
        case VOID => // must be handled at least for JS interop
          js.Block(expr, js.Undefined())
        case kind: ValueTypeKind =>
          if (kind == CharKind) {
            genApplyMethod(
                genLoadModule(BoxesRunTimeClass),
                BoxesRunTimeClass,
                BoxesRunTime_boxToCharacter,
                List(expr))
          } else {
            expr // box is identity for all non-Char types
          }
        case _ =>
          abort(s"makePrimitiveBox requires a primitive type, found $tpe at $pos")
      }
    }

    /** Gen an unboxing operation (tpe is the primitive type) */
    def makePrimitiveUnbox(expr: js.Tree, tpe: Type)(
        implicit pos: Position): js.Tree = {
      toTypeKind(tpe) match {
        case VOID => // must be handled at least for JS interop
          expr
        case kind: ValueTypeKind =>
          if (kind == CharKind) {
            genApplyMethod(
                genLoadModule(BoxesRunTimeClass),
                BoxesRunTimeClass,
                BoxesRunTime_unboxToChar,
                List(expr))
          } else {
            js.Unbox(expr, kind.primitiveCharCode)
          }
        case _ =>
          abort(s"makePrimitiveUnbox requires a primitive type, found $tpe at $pos")
      }
    }

    private def lookupModuleClass(name: String) = {
      val module = getModuleIfDefined(name)
      if (module == NoSymbol) NoSymbol
      else module.moduleClass
    }

    lazy val ReflectArrayModuleClass = lookupModuleClass("java.lang.reflect.Array")
    lazy val UtilArraysModuleClass = lookupModuleClass("java.util.Arrays")

    /** Gen JS code for a Scala.js-specific primitive method */
    private def genJSPrimitive(tree: Apply, receiver0: Tree,
        args: List[Tree], code: Int): js.Tree = {
      import jsPrimitives._

      implicit val pos = tree.pos

      def receiver = genExpr(receiver0)
      val genArgArray = genPrimitiveJSArgs(tree.symbol, args)

      lazy val js.JSArrayConstr(genArgs) = genArgArray

      def extractFirstArg() = {
        (genArgArray: @unchecked) match {
          case js.JSArrayConstr(firstArg :: otherArgs) =>
            (firstArg, js.JSArrayConstr(otherArgs))
          case js.JSBracketMethodApply(
              js.JSArrayConstr(firstArg :: firstPart), concat, otherParts) =>
            (firstArg, js.JSBracketMethodApply(
                js.JSArrayConstr(firstPart), concat, otherParts))
        }
      }

      if (code == DYNNEW) {
        // js.Dynamic.newInstance(clazz)(actualArgs:_*)
        val (jsClass, actualArgArray) = extractFirstArg()
        actualArgArray match {
          case js.JSArrayConstr(actualArgs) =>
            js.JSNew(jsClass, actualArgs)
          case _ =>
            genNewJSWithVarargs(jsClass, actualArgArray)
        }
      } else if (code == DYNAPPLY) {
        // js.Dynamic.applyDynamic(methodName)(actualArgs:_*)
        val (methodName, actualArgArray) = extractFirstArg()
        actualArgArray match {
          case js.JSArrayConstr(actualArgs) =>
            js.JSBracketMethodApply(receiver, methodName, actualArgs)
          case _ =>
            genApplyJSMethodWithVarargs(receiver, methodName, actualArgArray)
        }
      } else if (code == DYNLITN) {
        // We have a call of the form:
        //   js.Dynamic.literal(name1 = ..., name2 = ...)
        // Translate to:
        //   {"name1": ..., "name2": ... }
        extractFirstArg() match {
          case (js.StringLiteral("apply"),
                js.JSArrayConstr(jse.LitNamed(pairs))) =>
            js.JSObjectConstr(pairs)
          case (js.StringLiteral(name), _) if name != "apply" =>
            reporter.error(pos,
                s"js.Dynamic.literal does not have a method named $name")
            js.Undefined()
          case _ =>
            reporter.error(pos,
                "js.Dynamic.literal.applyDynamicNamed may not be called directly")
            js.Undefined()
        }
      } else if (code == DYNLIT) {
        // We have a call of some other form
        //   js.Dynamic.literal(...)
        // Translate to:
        //   var obj = {};
        //   obj[...] = ...;
        //   obj

        // Extract first arg to future proof against varargs
        extractFirstArg() match {
          // case js.Dynamic.literal("name1" -> ..., "name2" -> ...)
          case (js.StringLiteral("apply"),
                js.JSArrayConstr(jse.LitNamed(pairs))) =>
            js.JSObjectConstr(pairs)

          // case js.Dynamic.literal(x, y)
          case (js.StringLiteral("apply"), js.JSArrayConstr(tups)) =>
            // Create tmp variable
            val resIdent = freshLocalIdent("obj")
            val resVarDef = js.VarDef(resIdent, jstpe.AnyType, mutable = false,
                js.JSObjectConstr(Nil))
            val res = resVarDef.ref

            // Assign fields
            val tuple2Type = encodeClassType(TupleClass(2))
            val assigns = tups flatMap {
              // special case for literals
              case jse.Tuple2(name, value) =>
                js.Assign(js.JSBracketSelect(res, name), value) :: Nil
              case tupExpr =>
                val tupIdent = freshLocalIdent("tup")
                val tup = js.VarRef(tupIdent, mutable = false)(tuple2Type)
                js.VarDef(tupIdent, tuple2Type, mutable = false, tupExpr) ::
                js.Assign(js.JSBracketSelect(res,
                    genApplyMethod(tup, TupleClass(2), js.Ident("$$und1__O"), Nil, jstpe.AnyType)),
                    genApplyMethod(tup, TupleClass(2), js.Ident("$$und2__O"), Nil, jstpe.AnyType)) :: Nil
            }

            js.Block(resVarDef +: assigns :+ res: _*)

          /* Here we would need the case where the varargs are passed in
           * as non-literal list:
           *   js.Dynamic.literal(x: _*)
           * However, Scala does not currently support this
           */

          // case where another method is called
          case (js.StringLiteral(name), _) if name != "apply" =>
            reporter.error(pos,
                s"js.Dynamic.literal does not have a method named $name")
            js.Undefined()
          case _ =>
            reporter.error(pos,
                "js.Dynamic.literal.applyDynamic may not be called directly")
            js.Undefined()
        }
      } else if (code == ARR_CREATE) {
        // js.Array.create(elements: _*)
        genArgArray
      } else (genArgs match {
        case Nil =>
          code match {
            case GETCLASS  => js.GetClass(receiver)
            case ENV_INFO  => js.JSEnvInfo()
            case DEBUGGER  => js.Debugger()
            case UNDEFVAL  => js.Undefined()
            case UNITVAL   => js.Undefined()
            case UNITTYPE  => genClassConstant(UnitTpe)
            case JS_NATIVE =>
              reporter.error(pos, "js.native may only be used as stub implementation in facade types")
              js.Undefined()
          }

        case List(arg) =>

          /** Factorization of F2JS and F2JSTHIS. */
          def genFunctionToJSFunction(isThisFunction: Boolean): js.Tree = {
            val arity = {
              val funName = tree.fun.symbol.name.encoded
              assert(funName.startsWith("fromFunction"))
              funName.stripPrefix("fromFunction").toInt
            }
            val inputClass = FunctionClass(arity)
            val inputIRType = encodeClassType(inputClass)
            val applyMeth = getMemberMethod(inputClass, nme.apply) suchThat { s =>
              val ps = s.paramss
              ps.size == 1 &&
              ps.head.size == arity &&
              ps.head.forall(_.tpe.typeSymbol == ObjectClass)
            }
            val fCaptureParam = js.ParamDef(js.Ident("f"), inputIRType,
                mutable = false)
            val jsArity =
              if (isThisFunction) arity - 1
              else arity
            val jsParams = (1 to jsArity).toList map {
              x => js.ParamDef(js.Ident("arg"+x), jstpe.AnyType,
                  mutable = false)
            }
            js.Closure(
                List(fCaptureParam),
                jsParams,
                genApplyMethod(
                    fCaptureParam.ref,
                    inputClass, applyMeth,
                    if (isThisFunction)
                      js.This()(jstpe.AnyType) :: jsParams.map(_.ref)
                    else
                      jsParams.map(_.ref)),
                List(arg))
          }

          code match {
            /** Convert a scala.FunctionN f to a js.FunctionN. */
            case F2JS =>
              arg match {
                /* This case will happen every time we have a Scala lambda
                 * in js.FunctionN position. We remove the JS function to
                 * Scala function wrapper, instead of adding a Scala function
                 * to JS function wrapper.
                 */
                case JSFunctionToScala(fun, arity) =>
                  fun
                case _ =>
                  genFunctionToJSFunction(isThisFunction = false)
              }

            /** Convert a scala.FunctionN f to a js.ThisFunction{N-1}. */
            case F2JSTHIS =>
              genFunctionToJSFunction(isThisFunction = true)

            case DYNSELECT =>
              // js.Dynamic.selectDynamic(arg)
              js.JSBracketSelect(receiver, arg)

            case DICT_DEL =>
              // js.Dictionary.delete(arg)
              js.JSDelete(js.JSBracketSelect(receiver, arg))

            case ISUNDEF =>
              // js.isUndefined(arg)
              js.BinaryOp(js.BinaryOp.===, arg, js.Undefined())
            case TYPEOF =>
              // js.typeOf(arg)
              js.UnaryOp(js.UnaryOp.typeof, arg)

            case OBJPROPS =>
              // js.Object.properties(arg)
              genApplyMethod(
                  genLoadModule(RuntimePackageModule),
                  RuntimePackageModule.moduleClass,
                  Runtime_propertiesOf,
                  List(arg))
          }

        case List(arg1, arg2) =>
          code match {
            case DYNUPDATE =>
              // js.Dynamic.updateDynamic(arg1)(arg2)
              js.Assign(js.JSBracketSelect(receiver, arg1), arg2)

            case HASPROP =>
              // js.Object.hasProperty(arg1, arg2)
              /* Here we have an issue with evaluation order of arg1 and arg2,
               * since the obvious translation is `arg2 in arg1`, but then
               * arg2 is evaluated before arg1. Since this is not a commonly
               * used operator, we don't try to avoid unnessary temp vars, and
               * simply always evaluate arg1 in a temp before doing the `in`.
               */
              val temp = freshLocalIdent()
              js.Block(
                  js.VarDef(temp, jstpe.AnyType, mutable = false, arg1),
                  js.BinaryOp(js.BinaryOp.in, arg2,
                      js.VarRef(temp, mutable = false)(jstpe.AnyType)))
          }
      })
    }

    /** Gen JS code for a primitive JS call (to a method of a subclass of js.Any)
     *  This is the typed Scala.js to JS bridge feature. Basically it boils
     *  down to calling the method without name mangling. But other aspects
     *  come into play:
     *  * Operator methods are translated to JS operators (not method calls)
     *  * apply is translated as a function call, i.e. o() instead of o.apply()
     *  * Scala varargs are turned into JS varargs (see genPrimitiveJSArgs())
     *  * Getters and parameterless methods are translated as Selects
     *  * Setters are translated to Assigns of Selects
     */
    private def genPrimitiveJSCall(tree: Apply, isStat: Boolean): js.Tree = {
      implicit val pos = tree.pos

      val sym = tree.symbol
      val Apply(fun @ Select(receiver0, _), args0) = tree

      val funName = sym.unexpandedName.decoded
      val receiver = genExpr(receiver0)
      val argArray = genPrimitiveJSArgs(sym, args0)

      // valid only for methods that don't have any varargs
      lazy val js.JSArrayConstr(args) = argArray
      lazy val argc = args.length

      def hasExplicitJSEncoding =
        sym.hasAnnotation(JSNameAnnotation) ||
        sym.hasAnnotation(JSBracketAccessAnnotation)

      val boxedResult = funName match {
        case "unary_+" | "unary_-" | "unary_~" | "unary_!" =>
          assert(argc == 0)
          js.JSUnaryOp(funName.substring(funName.length-1), receiver)

        case "+" | "-" | "*" | "/" | "%" | "<<" | ">>" | ">>>" |
             "&" | "|" | "^" | "&&" | "||" | "<" | ">" | "<=" | ">=" =>
          assert(argc == 1)
          js.JSBinaryOp(funName, receiver, args.head)

        case "apply" if receiver0.tpe.typeSymbol.isSubClass(JSThisFunctionClass) =>
          js.JSBracketMethodApply(receiver, js.StringLiteral("call"), args)

        case "apply" if !hasExplicitJSEncoding =>
          argArray match {
            case js.JSArrayConstr(args) =>
              js.JSFunctionApply(receiver, args)
            case _ =>
              js.JSBracketMethodApply(
                receiver, js.StringLiteral("apply"), List(js.Null(), argArray))
          }

        case _ =>
          def jsFunName = jsNameOf(sym)

          if (sym.hasFlag(reflect.internal.Flags.DEFAULTPARAM)) {
            js.UndefinedParam()(toIRType(sym.tpe.resultType))
          } else if (jsInterop.isJSGetter(sym)) {
            assert(argc == 0)
            js.JSBracketSelect(receiver, js.StringLiteral(jsFunName))
          } else if (jsInterop.isJSSetter(sym)) {
            assert(argc == 1)
            js.Assign(
                js.JSBracketSelect(receiver,
                    js.StringLiteral(jsFunName.stripSuffix("_="))),
                args.head)
          } else if (jsInterop.isJSBracketAccess(sym)) {
            assert(argArray.isInstanceOf[js.JSArrayConstr] && (argc == 1 || argc == 2),
                s"@JSBracketAccess methods should have 1 or 2 non-varargs arguments")
            args match {
              case List(keyArg) =>
                js.JSBracketSelect(receiver, keyArg)
              case List(keyArg, valueArg) =>
                js.Assign(
                    js.JSBracketSelect(receiver, keyArg),
                    valueArg)
            }
          } else {
            argArray match {
              case js.JSArrayConstr(args) =>
                js.JSBracketMethodApply(
                    receiver, js.StringLiteral(jsFunName), args)
              case _ =>
                genApplyJSMethodWithVarargs(receiver,
                    js.StringLiteral(jsFunName), argArray)
            }
          }
      }

      boxedResult match {
        case js.UndefinedParam() | js.Assign(_, _) =>
          boxedResult
        case _ if isStat =>
          boxedResult
        case _ =>
          fromAny(boxedResult,
              enteringPhase(currentRun.posterasurePhase)(sym.tpe.resultType))
      }
    }

    /** Gen JS code to call a primitive JS method with variadic parameters. */
    private def genApplyJSMethodWithVarargs(receiver: js.Tree,
        methodName: js.Tree, argArray: js.Tree)(
        implicit pos: Position): js.Tree = {
      // We need to evaluate `receiver` only once
      val receiverValDef =
        js.VarDef(freshLocalIdent(), receiver.tpe, mutable = false, receiver)
      js.Block(
          receiverValDef,
          js.JSBracketMethodApply(
              js.JSBracketSelect(receiverValDef.ref, methodName),
              js.StringLiteral("apply"),
              List(receiverValDef.ref, argArray)))
    }

    /** Gen JS code to instantiate a JS class with variadic parameters. */
    private def genNewJSWithVarargs(jsClass: js.Tree, argArray: js.Tree)(
        implicit pos: Position): js.Tree = {
      genApplyMethod(
          genLoadModule(RuntimePackageModule),
          RuntimePackageModule.moduleClass,
          Runtime_newJSObjectWithVarargs,
          List(jsClass, argArray))
    }

    /** Gen JS code for new java.lang.String(...)
     *  Proxies calls to method newString on object
     *  scala.scalajs.runtime.RuntimeString with proper arguments
     */
    private def genNewString(tree: Apply): js.Tree = {
      implicit val pos = tree.pos
      val Apply(fun @ Select(_, _), args0) = tree

      val ctor = fun.symbol
      val args = args0 map genExpr

      // Filter members of target module for matching member
      val compMembers = for {
        mem <- RuntimeStringModule.tpe.members
        if mem.name == jsnme.newString && ctor.tpe.matches(mem.tpe)
      } yield mem

      if (compMembers.isEmpty) {
        reporter.error(pos,
            s"""Could not find implementation for constructor of java.lang.String
               |with type ${ctor.tpe}. Constructors on java.lang.String
               |are forwarded to the companion object of
               |scala.scalajs.runtime.RuntimeString""".stripMargin)
        js.Undefined()
      } else {
        assert(compMembers.size == 1,
            s"""For constructor with type ${ctor.tpe} on java.lang.String,
               |found multiple companion module members.""".stripMargin)

        // Emit call to companion object
        genApplyMethod(
          genLoadModule(RuntimeStringModule),
          RuntimeStringModule.moduleClass,
          compMembers.head,
          args)
      }
    }

    /** Gen JS code for calling a method on java.lang.String.
     *
     *  Forwards call on java.lang.String to the module
     *  scala.scalajs.runtime.RuntimeString.
     */
    private def genStringCall(tree: Apply): js.Tree = {
      implicit val pos = tree.pos

      val sym = tree.symbol

      // Deconstruct tree and create receiver and argument JS expressions
      val Apply(Select(receiver0, _), args0) = tree
      val receiver = genExpr(receiver0)
      val args = args0 map genExpr

      // Emit call to the RuntimeString module
      val (rtModuleClass, methodIdent) = encodeRTStringMethodSym(sym)
      genApplyMethod(
          genLoadModule(rtModuleClass),
          rtModuleClass,
          methodIdent,
          receiver :: args,
          toIRType(tree.tpe))
    }

    /** Gen JS code for a new of a raw JS class (subclass of js.Any) */
    private def genPrimitiveJSNew(tree: Apply): js.Tree = {
      implicit val pos = tree.pos

      val Apply(fun @ Select(New(tpt), _), args0) = tree
      val cls = tpt.tpe.typeSymbol
      val ctor = fun.symbol

      genPrimitiveJSArgs(ctor, args0) match {
        case js.JSArrayConstr(args) =>
          if (cls == JSObjectClass && args.isEmpty) js.JSObjectConstr(Nil)
          else if (cls == JSArrayClass && args.isEmpty) js.JSArrayConstr(Nil)
          else js.JSNew(genPrimitiveJSClass(cls), args)
        case argArray =>
          genNewJSWithVarargs(genPrimitiveJSClass(cls), argArray)
      }
    }

    /** Gen JS code representing a JS class (subclass of js.Any) */
    private def genPrimitiveJSClass(sym: Symbol)(
        implicit pos: Position): js.Tree = {
      genGlobalJSObject(sym)
    }

    /** Gen JS code representing a JS module (var of the global scope) */
    private def genPrimitiveJSModule(sym: Symbol)(
        implicit pos: Position): js.Tree = {
      genGlobalJSObject(sym)
    }

    /** Gen JS code representing a JS object (class or module) in global scope
     */
    private def genGlobalJSObject(sym: Symbol)(
        implicit pos: Position): js.Tree = {
      jsNameOf(sym).split('.').foldLeft(genLoadGlobal()) { (memo, chunk) =>
        js.JSBracketSelect(memo, js.StringLiteral(chunk))
      }
    }

    /** Gen actual actual arguments to Scala method call.
     *  Returns a list of the transformed arguments.
     *
     *  This tries to optimized repeated arguments (varargs) by turning them
     *  into js.WrappedArray instead of Scala wrapped arrays.
     */
    private def genActualArgs(sym: Symbol, args: List[Tree])(
        implicit pos: Position): List[js.Tree] = {
      val wereRepeated = exitingPhase(currentRun.typerPhase) {
        sym.tpe.params.map(p => isScalaRepeatedParamType(p.tpe))
      }

      if (wereRepeated.size > args.size) {
        // Should not happen, but let's not crash
        args.map(genExpr)
      } else {
        /* Arguments that are in excess compared to the type signature after
         * erasure are lambda-lifted arguments. They cannot be repeated, hence
         * the extension to `false`.
         */
        for ((arg, wasRepeated) <- args.zipAll(wereRepeated, EmptyTree, false)) yield {
          if (wasRepeated) {
            tryGenRepeatedParamAsJSArray(arg, handleNil = false).fold {
              genExpr(arg)
            } { argArray =>
              genNew(WrappedArrayClass, WrappedArray_ctor, List(argArray))
            }
          } else {
            genExpr(arg)
          }
        }
      }
    }

    /** Gen actual actual arguments to a primitive JS call
     *  This handles repeated arguments (varargs) by turning them into
     *  JS varargs, i.e., by expanding them into normal arguments.
     *
     *  Returns an only tree which is a JS array of the arguments. In most
     *  cases, it will be a js.JSArrayConstr with the expanded arguments. It will
     *  not if a Seq is passed to a varargs argument with the syntax seq: _*.
     */
    private def genPrimitiveJSArgs(sym: Symbol, args: List[Tree])(
        implicit pos: Position): js.Tree = {
      val wereRepeated = exitingPhase(currentRun.typerPhase) {
        for {
          params <- sym.tpe.paramss
          param <- params
        } yield isScalaRepeatedParamType(param.tpe)
      }

      var reversedParts: List[js.Tree] = Nil
      var reversedPartUnderConstruction: List[js.Tree] = Nil

      def closeReversedPartUnderConstruction() = {
        if (!reversedPartUnderConstruction.isEmpty) {
          val part = reversedPartUnderConstruction.reverse
          reversedParts ::= js.JSArrayConstr(part)
          reversedPartUnderConstruction = Nil
        }
      }

      val paramTpes = enteringPhase(currentRun.posterasurePhase) {
        for (param <- sym.tpe.params)
          yield param.tpe
      }

      for (((arg, wasRepeated), tpe) <- (args zip wereRepeated) zip paramTpes) {
        if (wasRepeated) {
          genPrimitiveJSRepeatedParam(arg) match {
            case js.JSArrayConstr(jsArgs) =>
              reversedPartUnderConstruction =
                jsArgs reverse_::: reversedPartUnderConstruction
            case jsArgArray =>
              closeReversedPartUnderConstruction()
              reversedParts ::= jsArgArray
          }
        } else {
          val unboxedArg = genExpr(arg)
          val boxedArg = unboxedArg match {
            case js.UndefinedParam() => unboxedArg
            case _                   => ensureBoxed(unboxedArg, tpe)
          }
          reversedPartUnderConstruction ::= boxedArg
        }
      }
      closeReversedPartUnderConstruction()

      // Find js.UndefinedParam at the end of the argument list. No check is
      // performed whether they may be there, since they will only be placed
      // where default arguments can be anyway
      reversedParts = reversedParts match {
        case Nil => Nil
        case js.JSArrayConstr(params) :: others =>
          val nparams =
            params.reverse.dropWhile(_.isInstanceOf[js.UndefinedParam]).reverse
          js.JSArrayConstr(nparams) :: others
        case parts => parts
      }

      // Find remaining js.UndefinedParam and replace by js.Undefined. This can
      // happen with named arguments or when multiple argument lists are present
      reversedParts = reversedParts map {
        case js.JSArrayConstr(params) =>
          val nparams = params map {
            case js.UndefinedParam() => js.Undefined()
            case param => param
          }
          js.JSArrayConstr(nparams)
        case part => part
      }

      reversedParts match {
        case Nil => js.JSArrayConstr(Nil)
        case List(part) => part
        case _ =>
          val partHead :: partTail = reversedParts.reverse
          js.JSBracketMethodApply(
              partHead, js.StringLiteral("concat"), partTail)
      }
    }

    /** Gen JS code for a repeated param of a primitive JS method
     *  In this case `arg` has type Seq[T] for some T, but the result should
     *  have type js.Array[T]. So this method takes care of the conversion.
     *  It is specialized for the shapes of tree generated by the desugaring
     *  of repeated params in Scala, so that these produce a js.JSArrayConstr.
     */
    private def genPrimitiveJSRepeatedParam(arg: Tree): js.Tree = {
      tryGenRepeatedParamAsJSArray(arg, handleNil = true) getOrElse {
        /* Fall back to calling runtime.genTraversableOnce2jsArray
         * to perform the conversion.
         */
        implicit val pos = arg.pos
        genApplyMethod(
            genLoadModule(RuntimePackageModule),
            RuntimePackageModule.moduleClass,
            Runtime_genTraversableOnce2jsArray,
            List(genExpr(arg)))
      }
    }

    /** Try and gen a js.Array for a repeated param (xs: T*).
     *  It is specialized for the shapes of tree generated by the desugaring
     *  of repeated params in Scala, so that these produce a js.JSArrayConstr.
     *  If `arg` does not have the shape of a generated repeated param, this
     *  method returns `None`.
     */
    private def tryGenRepeatedParamAsJSArray(arg: Tree,
        handleNil: Boolean): Option[js.Tree] = {
      implicit val pos = arg.pos

      // Given a method `def foo(args: T*)`
      arg match {
        // foo(arg1, arg2, ..., argN) where N > 0
        case MaybeAsInstanceOf(WrapArray(
            MaybeAsInstanceOf(ArrayValue(tpt, elems)))) =>
          /* Value classes in arrays are already boxed, so no need to use
           * the type before erasure.
           */
          val elemTpe = tpt.tpe
          Some(js.JSArrayConstr(elems.map(e => ensureBoxed(genExpr(e), elemTpe))))

        // foo()
        case Select(_, _) if handleNil && arg.symbol == NilModule =>
          Some(js.JSArrayConstr(Nil))

        // foo(argSeq:_*) - cannot be optimized
        case _ =>
          None
      }
    }

    object MaybeAsInstanceOf {
      def unapply(tree: Tree): Some[Tree] = tree match {
        case Apply(TypeApply(asInstanceOf_? @ Select(base, _), _), _)
        if asInstanceOf_?.symbol == Object_asInstanceOf =>
          Some(base)
        case _ =>
          Some(tree)
      }
    }

    object WrapArray {
      lazy val isWrapArray: Set[Symbol] = Seq(
          nme.wrapRefArray,
          nme.wrapByteArray,
          nme.wrapShortArray,
          nme.wrapCharArray,
          nme.wrapIntArray,
          nme.wrapLongArray,
          nme.wrapFloatArray,
          nme.wrapDoubleArray,
          nme.wrapBooleanArray,
          nme.wrapUnitArray,
          nme.genericWrapArray).map(getMemberMethod(PredefModule, _)).toSet

      def unapply(tree: Apply): Option[Tree] = tree match {
        case Apply(wrapArray_?, List(wrapped))
        if isWrapArray(wrapArray_?.symbol) =>
          Some(wrapped)
        case _ =>
          None
      }
    }

    // Synthesizers for raw JS functions ---------------------------------------

    /** Try and gen and record JS code for an anonymous function class.
     *
     *  Returns true if the class could be rewritten that way, false otherwise.
     *
     *  We make the following assumptions on the form of such classes:
     *  - It is an anonymous function
     *    - Includes being anonymous, final, and having exactly one constructor
     *  - It is not a PartialFunction
     *  - It has no field other than param accessors
     *  - It has exactly one constructor
     *  - It has exactly one non-bridge method apply if it is not specialized,
     *    or a method apply$...$sp and a forwarder apply if it is specialized.
     *  - As a precaution: it is synthetic
     *
     *  From a class looking like this:
     *
     *    final class <anon>(outer, capture1, ..., captureM) extends AbstractionFunctionN[...] {
     *      def apply(param1, ..., paramN) = {
     *        <body>
     *      }
     *    }
     *    new <anon>(o, c1, ..., cM)
     *
     *  we generate a function maker that emits:
     *
     *    lambda<o, c1, ..., cM>[notype](
     *        outer, capture1, ..., captureM, param1, ..., paramN) {
     *      <body>
     *    }
     *
     *  so that, at instantiation point, we can write:
     *
     *    new AnonFunctionN(functionMaker(this, captured1, ..., capturedM))
     *
     *  Trickier things apply when the function is specialized.
     */
    private def tryGenAndRecordAnonFunctionClass(cd: ClassDef): Boolean = {
      implicit val pos = cd.pos
      val sym = cd.symbol
      assert(sym.isAnonymousFunction,
          s"tryGenAndRecordAnonFunctionClass called with non-anonymous function $cd")

      withScopedVars(
          currentClassInfoBuilder := new ClassInfoBuilder(sym.asClass),
          currentClassSym         := sym
      ) {
        val (functionMakerBase, arity) =
          tryGenAndRecordAnonFunctionClassGeneric(cd) { msg =>
            return false
          }
        val functionMaker = { capturedArgs: List[js.Tree] =>
          JSFunctionToScala(functionMakerBase(capturedArgs), arity)
        }

        translatedAnonFunctions +=
          sym -> (functionMaker, currentClassInfoBuilder.get)
      }
      true
    }

    /** Constructor and extractor object for a tree that converts a JavaScript
     *  function into a Scala function.
     */
    private object JSFunctionToScala {
      private val AnonFunPrefScala =
        "scala.scalajs.runtime.AnonFunction"
      private val AnonFunPrefJS =
        "sjsr_AnonFunction"

      def apply(jsFunction: js.Tree, arity: Int)(
          implicit pos: Position): js.Tree = {
        val clsSym = getRequiredClass(AnonFunPrefScala + arity)
        val ctor = clsSym.tpe.member(nme.CONSTRUCTOR)
        genNew(clsSym, ctor, List(jsFunction))
      }

      def unapply(tree: js.New): Option[(js.Tree, Int)] = tree match {
        case js.New(jstpe.ClassType(wrapperName), _, List(fun))
            if wrapperName.startsWith(AnonFunPrefJS) =>
          val arityStr = wrapperName.substring(AnonFunPrefJS.length)
          try {
            Some((fun, arityStr.toInt))
          } catch {
            case e: NumberFormatException => None
          }

        case _ =>
          None
      }
    }

    /** Gen and record JS code for a raw JS function class.
     *
     *  This is called when emitting a ClassDef that represents an anonymous
     *  class extending `js.FunctionN`. These are generated by the SAM
     *  synthesizer when the target type is a `js.FunctionN`. Since JS
     *  functions are not classes, we deconstruct the ClassDef, then
     *  reconstruct it to be a genuine Closure.
     *
     *  Compared to `tryGenAndRecordAnonFunctionClass()`, this function must
     *  always succeed, because we really cannot afford keeping them as
     *  anonymous classes. The good news is that it can do so, because the
     *  body of SAM lambdas is hoisted in the enclosing class. Hence, the
     *  apply() method is just a forwarder to calling that hoisted method.
     *
     *  From a class looking like this:
     *
     *    final class <anon>(outer, capture1, ..., captureM) extends js.FunctionN[...] {
     *      def apply(param1, ..., paramN) = {
     *        outer.lambdaImpl(param1, ..., paramN, capture1, ..., captureM)
     *      }
     *    }
     *    new <anon>(o, c1, ..., cM)
     *
     *  we generate a function maker that emits:
     *
     *    lambda<o, c1, ..., cM>[notype](
     *        outer, capture1, ..., captureM, param1, ..., paramN) {
     *      outer.lambdaImpl(param1, ..., paramN, capture1, ..., captureM)
     *    }
     *
     *  The function maker is recorded in `translatedAnonFunctions` to be
     *  fetched later by the translation for New.
     */
    def genAndRecordRawJSFunctionClass(cd: ClassDef): Unit = {
      val sym = cd.symbol
      assert(isRawJSFunctionDef(sym),
          s"genAndRecordRawJSFunctionClass called with non-JS function $cd")

      withScopedVars(
          currentClassInfoBuilder := new ClassInfoBuilder(sym.asClass),
          currentClassSym         := sym
      ) {
        val (functionMaker, _) =
          tryGenAndRecordAnonFunctionClassGeneric(cd) { msg =>
            abort(s"Could not generate raw function maker for JS function: $msg")
          }

        translatedAnonFunctions +=
          sym -> (functionMaker, currentClassInfoBuilder.get)
      }
    }

    /** Code common to tryGenAndRecordAnonFunctionClass and
     *  genAndRecordRawJSFunctionClass.
     */
    private def tryGenAndRecordAnonFunctionClassGeneric(cd: ClassDef)(
        fail: (=> String) => Nothing): (List[js.Tree] => js.Tree, Int) = {
      implicit val pos = cd.pos
      val sym = cd.symbol

      // First checks

      if (sym.isSubClass(PartialFunctionClass))
        fail(s"Cannot rewrite PartialFunction $cd")
      if (instantiatedAnonFunctions contains sym) {
        // when the ordering we're given is evil (it happens!)
        fail(s"Abort function rewrite because it was already instantiated: $cd")
      }

      // First step: find the apply method def, and collect param accessors

      var paramAccessors: List[Symbol] = Nil
      var applyDef: DefDef = null

      def gen(tree: Tree): Unit = {
        tree match {
          case EmptyTree => ()
          case Template(_, _, body) => body foreach gen
          case vd @ ValDef(mods, name, tpt, rhs) =>
            val fsym = vd.symbol
            if (!fsym.isParamAccessor)
              fail(s"Found field $fsym which is not a param accessor in anon function $cd")

            if (fsym.isPrivate) {
              paramAccessors ::= fsym
            } else {
              // Uh oh ... an inner something will try to access my fields
              fail(s"Found a non-private field $fsym in $cd")
            }
          case dd: DefDef =>
            val ddsym = dd.symbol
            if (ddsym.isClassConstructor) {
              if (!ddsym.isPrimaryConstructor)
                fail(s"Non-primary constructor $ddsym in anon function $cd")
            } else {
              val name = dd.name.toString
              if (name == "apply" || (ddsym.isSpecialized && name.startsWith("apply$"))) {
                if ((applyDef eq null) || ddsym.isSpecialized)
                  applyDef = dd
              } else {
                // Found a method we cannot encode in the rewriting
                fail(s"Found a non-apply method $ddsym in $cd")
              }
            }
          case _ =>
            fail("Illegal tree in gen of genAndRecordAnonFunctionClass(): " + tree)
        }
      }
      gen(cd.impl)
      paramAccessors = paramAccessors.reverse // preserve definition order

      if (applyDef eq null)
        fail(s"Did not find any apply method in anon function $cd")

      withNewLocalNameScope {
        // Second step: build the list of useful constructor parameters

        val ctorParams = sym.primaryConstructor.tpe.params

        if (paramAccessors.size != ctorParams.size &&
            !(paramAccessors.size == ctorParams.size-1 &&
                ctorParams.head.unexpandedName == jsnme.arg_outer)) {
          fail(
              s"Have param accessors $paramAccessors but "+
              s"ctor params $ctorParams in anon function $cd")
        }

        val hasUnusedOuterCtorParam = paramAccessors.size != ctorParams.size
        val usedCtorParams =
          if (hasUnusedOuterCtorParam) ctorParams.tail
          else ctorParams
        val ctorParamDefs = usedCtorParams map { p =>
          // in the apply method's context
          js.ParamDef(encodeLocalSym(p)(p.pos), toIRType(p.tpe),
              mutable = false)(p.pos)
        }

        // Third step: emit the body of the apply method def

        val (applyMethod, methodInfoBuilder) = withScopedVars(
            paramAccessorLocals := (paramAccessors zip ctorParamDefs).toMap,
            tryingToGenMethodAsJSFunction := true
        ) {
          try {
            genMethodWithInfoBuilder(applyDef).getOrElse(
              abort(s"Oops, $applyDef did not produce a method"))
          } catch {
            case e: CancelGenMethodAsJSFunction =>
              fail(e.getMessage)
          }
        }

        withScopedVars(
            currentMethodInfoBuilder := methodInfoBuilder
        ) {
          // Fourth step: patch the body to unbox parameters and box result

          val js.MethodDef(_, params, _, body) = applyMethod
          val (patchedParams, patchedBody) =
            patchFunBodyWithBoxes(applyDef.symbol, params, body)

          // Fifth step: build the function maker

          val isThisFunction = JSThisFunctionClasses.exists(sym isSubClass _)
          assert(!isThisFunction || patchedParams.nonEmpty,
              s"Empty param list in ThisFunction: $cd")

          val functionMaker = { capturedArgs0: List[js.Tree] =>
            val capturedArgs =
              if (hasUnusedOuterCtorParam) capturedArgs0.tail
              else capturedArgs0
            assert(capturedArgs.size == ctorParamDefs.size)

            if (isThisFunction) {
              val thisParam :: actualParams = patchedParams
              js.Closure(
                  ctorParamDefs,
                  actualParams,
                  js.Block(
                      js.VarDef(thisParam.name, thisParam.ptpe, mutable = false,
                          js.This()(thisParam.ptpe)(thisParam.pos))(thisParam.pos),
                      patchedBody),
                  capturedArgs)
            } else {
              js.Closure(ctorParamDefs, patchedParams, patchedBody, capturedArgs)
            }
          }

          val arity = params.size

          (functionMaker, arity)
        }
      }
    }

    /** Generate JS code for an anonymous function
     *
     *  Anonymous functions survive until the backend only under
     *  -Ydelambdafy:method
     *  and when they do, their body is always of the form
     *  EnclosingClass.this.someMethod(arg1, ..., argN, capture1, ..., captureM)
     *  where argI are the formal arguments of the lambda, and captureI are
     *  local variables or the enclosing def.
     *
     *  We translate them by instantiating scala.scalajs.runtime.AnonFunctionN
     *  with a JS closure:
     *
     *  new ScalaJS.c.sjsr_AnonFunctionN().init___xyz(
     *    lambda<this, capture1, ..., captureM>(
     *        _this, capture1, ..., captureM, arg1, ..., argN) {
     *      _this.someMethod(arg1, ..., argN, capture1, ..., captureM)
     *    }
     *  )
     *
     *  In addition, input params are unboxed before use, and the result of
     *  someMethod() is boxed back.
     */
    private def genAnonFunction(originalFunction: Function): js.Tree = {
      implicit val pos = originalFunction.pos
      val Function(paramTrees, Apply(
          targetTree @ Select(receiver, _), allArgs0)) = originalFunction

      val target = targetTree.symbol
      val params = paramTrees.map(_.symbol)

      val allArgs = allArgs0 map genExpr

      val formalArgs = params map { p =>
        js.ParamDef(encodeLocalSym(p)(p.pos), toIRType(p.tpe),
            mutable = false)(p.pos)
      }

      val isInImplClass = target.owner.isImplClass

      def makeCaptures(actualCaptures: List[js.Tree]) = {
        (actualCaptures map { c => (c: @unchecked) match {
          case js.VarRef(ident, _) =>
            (js.ParamDef(ident, c.tpe, mutable = false)(c.pos),
                js.VarRef(ident, false)(c.tpe)(c.pos))
        }}).unzip
      }

      val (allFormalCaptures, body, allActualCaptures) = if (!isInImplClass) {
        val thisActualCapture = genExpr(receiver)
        val thisFormalCapture = js.ParamDef(
            freshLocalIdent("this")(receiver.pos),
            thisActualCapture.tpe, mutable = false)(receiver.pos)
        val thisCaptureArg = thisFormalCapture.ref
        val (actualArgs, actualCaptures) = allArgs.splitAt(formalArgs.size)
        val (formalCaptures, captureArgs) = makeCaptures(actualCaptures)
        val body = genApplyMethod(thisCaptureArg, receiver.tpe, target,
            actualArgs ::: captureArgs)

        (thisFormalCapture :: formalCaptures,
            body, thisActualCapture :: actualCaptures)
      } else {
        val (thisActualCapture :: actualArgs, actualCaptures) =
          allArgs.splitAt(formalArgs.size+1)
        val (thisFormalCapture :: formalCaptures, thisCaptureArg :: captureArgs) =
          makeCaptures(thisActualCapture :: actualCaptures)
        val body = genTraitImplApply(target,
            thisCaptureArg :: actualArgs ::: captureArgs)

        (thisFormalCapture :: formalCaptures,
            body, thisActualCapture :: actualCaptures)
      }

      val (patchedFormalArgs, patchedBody) =
        patchFunBodyWithBoxes(target, formalArgs, body)
      val closure = js.Closure(
          allFormalCaptures,
          patchedFormalArgs,
          patchedBody,
          allActualCaptures)

      JSFunctionToScala(closure, params.size)
    }

    private def patchFunBodyWithBoxes(methodSym: Symbol,
        params: List[js.ParamDef], body: js.Tree)(
        implicit pos: Position): (List[js.ParamDef], js.Tree) = {
      val methodType = enteringPhase(currentRun.posterasurePhase)(methodSym.tpe)

      val (patchedParams, paramsLocal) = (for {
        (param, paramSym) <- params zip methodType.params
      } yield {
        val paramTpe = enteringPhase(currentRun.posterasurePhase)(paramSym.tpe)
        val paramName = param.name
        val js.Ident(name, origName) = paramName
        val newOrigName = origName.getOrElse(name)
        val newNameIdent = freshLocalIdent(newOrigName)(paramName.pos)
        val patchedParam = js.ParamDef(newNameIdent, jstpe.AnyType,
            mutable = false)(param.pos)
        val paramLocal = js.VarDef(paramName, param.ptpe, mutable = false,
            fromAny(patchedParam.ref, paramTpe))
        (patchedParam, paramLocal)
      }).unzip

      val patchedBody = js.Block(
          paramsLocal :+ ensureBoxed(body, methodType.resultType))

      (patchedParams, patchedBody)
    }

    // Utilities ---------------------------------------------------------------

    /** Generate a literal "zero" for the requested type */
    def genZeroOf(tpe: Type)(implicit pos: Position): js.Tree = toTypeKind(tpe) match {
      case VOID       => abort("Cannot call genZeroOf(VOID)")
      case BOOL       => js.BooleanLiteral(false)
      case LONG       => js.LongLiteral(0L)
      case INT(_)     => js.IntLiteral(0)
      case FloatKind  => js.FloatLiteral(0.0f)
      case DoubleKind => js.DoubleLiteral(0.0)
      case _          => js.Null()
    }

    /** Generate loading of a module value
     *  Can be given either the module symbol, or its module class symbol.
     */
    def genLoadModule(sym0: Symbol)(implicit pos: Position): js.Tree = {
      require(sym0.isModuleOrModuleClass,
          "genLoadModule called with non-module symbol: " + sym0)
      val sym1 = if (sym0.isModule) sym0.moduleClass else sym0
      val sym = // redirect all static methods of String to RuntimeString
        if (sym1 == StringModule) RuntimeStringModule.moduleClass
        else sym1

      val isGlobalScope = sym.tpe.typeSymbol isSubClass JSGlobalScopeClass

      if (isGlobalScope) genLoadGlobal()
      else if (isRawJSType(sym.tpe)) genPrimitiveJSModule(sym)
      else {
        if (!foreignIsImplClass(sym))
          currentMethodInfoBuilder.accessesModule(sym)
        js.LoadModule(jstpe.ClassType(encodeClassFullName(sym)))
      }
    }

    /** Gen JS code to load the global scope. */
    private def genLoadGlobal()(implicit pos: Position): js.Tree =
      js.JSBracketSelect(js.JSEnvInfo(), js.StringLiteral("global"))

    /** Generate access to a static member */
    private def genStaticMember(sym: Symbol)(implicit pos: Position) = {
      /* Actually, there is no static member in Scala.js. If we come here, that
       * is because we found the symbol in a Java-emitted .class in the
       * classpath. But the corresponding implementation in Scala.js will
       * actually be a val in the companion module.
       * We cannot use the .class files produced by our reimplementations of
       * these classes (in which the symbol would be a Scala accessor) because
       * that crashes the rest of scalac (at least for some choice symbols).
       * Hence we cheat here.
       */
      import scalaPrimitives._
      import jsPrimitives._
      if (isPrimitive(sym)) {
        getPrimitive(sym) match {
          case UNITVAL  => js.Undefined()
          case UNITTYPE => genClassConstant(UnitTpe)
        }
      } else {
        val instance = genLoadModule(sym.owner)
        val method = encodeStaticMemberSym(sym)
        currentMethodInfoBuilder.callsMethod(sym.owner, method)
        js.Apply(instance, method, Nil)(toIRType(sym.tpe))
      }
    }

    /** Generate a Class[_] value (e.g. coming from classOf[T]) */
    private def genClassConstant(tpe: Type)(implicit pos: Position): js.Tree = {
      val refType = toReferenceType(tpe)
      currentMethodInfoBuilder.accessesClassData(refType)
      js.ClassOf(refType)
    }
  }

  /** Tests whether the given type represents a raw JavaScript type,
   *  i.e., whether it extends scala.scalajs.js.Any.
   */
  def isRawJSType(tpe: Type): Boolean =
    tpe.typeSymbol.annotations.find(_.tpe =:= RawJSTypeAnnot.tpe).isDefined

  /** Test whether `sym` is the symbol of a raw JS function definition */
  private def isRawJSFunctionDef(sym: Symbol): Boolean =
    sym.isAnonymousClass && AllJSFunctionClasses.exists(sym isSubClass _)

  private def isRawJSCtorDefaultParam(sym: Symbol) = {
    sym.hasFlag(reflect.internal.Flags.DEFAULTPARAM) &&
    sym.owner.isModuleClass &&
    isRawJSType(patchedLinkedClassOfClass(sym.owner).tpe) &&
    nme.defaultGetterToMethod(sym.name) == nme.CONSTRUCTOR
  }

  private def patchedLinkedClassOfClass(sym: Symbol): Symbol = {
    /* Work around a bug of scalac with linkedClassOfClass where package
     * objects are involved (the companion class would somehow exist twice
     * in the scope, making an assertion fail in Symbol.suchThat).
     * Basically this inlines linkedClassOfClass up to companionClass,
     * then replaces the `suchThat` by a `filter` and `head`.
     */
    val flatOwnerInfo = {
      // inline Symbol.flatOwnerInfo because it is protected
      if (sym.needsFlatClasses)
        sym.info
      sym.owner.rawInfo
    }
    val result = flatOwnerInfo.decl(sym.name).filter(_ isCoDefinedWith sym)
    if (!result.isOverloaded) result
    else result.alternatives.head
  }

  private def isStringType(tpe: Type): Boolean =
    tpe.typeSymbol == StringClass

  private def isLongType(tpe: Type): Boolean =
    tpe.typeSymbol == LongClass

  private lazy val BoxedBooleanClass = boxedClass(BooleanClass)
  private lazy val BoxedByteClass = boxedClass(ByteClass)
  private lazy val BoxedShortClass = boxedClass(ShortClass)
  private lazy val BoxedIntClass = boxedClass(IntClass)
  private lazy val BoxedLongClass = boxedClass(LongClass)
  private lazy val BoxedFloatClass = boxedClass(FloatClass)
  private lazy val BoxedDoubleClass = boxedClass(DoubleClass)

  private lazy val NumberClass = requiredClass[java.lang.Number]

  private lazy val HijackedNumberClasses =
    Seq(BoxedByteClass, BoxedShortClass, BoxedIntClass, BoxedLongClass,
        BoxedFloatClass, BoxedDoubleClass)
  private lazy val HijackedBoxedClasses =
    Seq(BoxedUnitClass, BoxedBooleanClass) ++ HijackedNumberClasses

  protected lazy val isHijackedBoxedClass: Set[Symbol] =
    HijackedBoxedClasses.toSet

  private lazy val InlineAnnotationClass = requiredClass[scala.inline]

  private def isMaybeJavaScriptException(tpe: Type) =
    JavaScriptExceptionClass isSubClass tpe.typeSymbol

  /** Get JS name of Symbol if it was specified with JSName annotation, or
   *  infers a default from the Scala name. */
  def jsNameOf(sym: Symbol): String =
    sym.getAnnotation(JSNameAnnotation).flatMap(_.stringArg(0)).getOrElse(
        sym.unexpandedName.decoded)

  def isStaticModule(sym: Symbol): Boolean =
    sym.isModuleClass && !sym.isImplClass && !sym.isLifted
}