summaryrefslogtreecommitdiff
path: root/nuttx/configs/dk-tm4c129x/README.txt
blob: 93e9c77b863648f63bc77131e5da7500032e6df6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
README.txt
==========

  This README file discuss discusses the port of NuttX to the Texas
  Instruments DK-TM4C129X Connected Development Kit.

  Description
  -----------
  The Tiva™ C Series TM4C129X Connected Development Kit highlights
  the 120-MHz Tiva C Series TM4C129XNCZAD ARM® Cortex™-M4 based
  microcontroller, including an integrated 10/100 Ethernet MAC +
  PHY as well as many other key features.

  Features
  --------

    - Color LCD interface 
    - USB 2.0 OTG | Host | Device port 
    - TI wireless EM connection 
    - BoosterPack and BoosterPack XL interfaces 
    - Quad SSI-supported 512-Mbit Flash memory 
    - MicroSD slot 
    - Expansion interface headers: MCU high-speed USB ULPI port,
      Ethernet RMII and MII ports External peripheral interface for
      memories, parallel peripherals, and other system functions. 
    - In-Circuit Debug Interface (ICDI)

Using OpenOCD and GDB with ICDI
===============================

  Building OpenOCD under Cygwin:

    Refer to configs/olimex-lpc1766stk/README.txt

  Installing OpenOCD in Linux:

      sudo apt-get install openocd

    You can also build openocd from its source:

      git clone http://git.code.sf.net/p/openocd/code openocd
      cd openocd

  Helper Scripts:

    I have been using the on-board In-Circuit Debug Interface (ICDI) interface.
    OpenOCD requires a configuration file.  I keep the one I used last here:

      configs/dk-tm4c129x/tools/dk-tm4c129x.cfg

    However, the "correct" configuration script to use with OpenOCD may
    change as the features of OpenOCD evolve.  So you should at least
    compare that dk-tm4c129x.cfg file with configuration files in
    /usr/share/openocd/scripts.  As of this writing, the configuration
    files of interest were:

      /usr/local/share/openocd/scripts/board/dk-tm4c129x.cfg
      /usr/local/share/openocd/scripts/interface/ti-icdi.cfg
      /usr/local/share/openocd/scripts/target/stellaris_icdi.cfg

    There is also a script on the tools/ directory that I use to start
    the OpenOCD daemon on my system called oocd.sh.  That script will
    probably require some modifications to work in another environment:

    - Possibly the value of OPENOCD_PATH and TARGET_PATH
    - It assumes that the correct script to use is the one at
      configs/dk-tm4c129x/tools/dk-tm4c129x.cfg

  Starting OpenOCD

    If you are in the top-level NuttX build directlory then you should
    be able to start the OpenOCD daemon like:

      oocd.sh $PWD

    The relative path to the oocd.sh script is configs/dk-tm4c129x/tools,
    but that should have been added to your PATH variable when you sourced
    the setenv.sh script.

    Note that OpenOCD needs to be run with administrator privileges in
    some environments (sudo).

  Connecting GDB

    Once the OpenOCD daemon has been started, you can connect to it via
    GDB using the following GDB command:

      arm-nuttx-elf-gdb
      (gdb) target remote localhost:3333

    NOTE:  The name of your GDB program may differ.  For example, with the
    CodeSourcery toolchain, the ARM GDB would be called arm-none-eabi-gdb.

    After starting GDB, you can load the NuttX ELF file:

      (gdb) symbol-file nuttx
      (gdb) monitor reset
      (gdb) monitor halt
      (gdb) load nuttx

    NOTES:

    1. Loading the symbol-file is only useful if you have built NuttX to
       include debug symbols (by setting CONFIG_DEBUG_SYMBOLS=y in the
       .config file).
    2. The MCU must be halted prior to loading code using 'mon reset'
       as described below.

    OpenOCD will support several special 'monitor' commands.  These
    GDB commands will send comments to the OpenOCD monitor.  Here
    are a couple that you will need to use:

     (gdb) monitor reset
     (gdb) monitor halt

    NOTES:

    1. The MCU must be halted using 'mon halt' prior to loading code.
    2. Reset will restart the processor after loading code.
    3. The 'monitor' command can be abbreviated as just 'mon'.

Development Environment
=======================

  Either Linux or Cygwin on Windows can be used for the development environment.
  The source has been built only using the GNU toolchain (see below).  Other
  toolchains will likely cause problems. Testing was performed using the Cygwin
  environment.

GNU Toolchain Options
=====================

  The NuttX make system has been modified to support the following different
  toolchain options.

  1. The NuttX buildroot Toolchain (default, see below),
  2. The CodeSourcery GNU toolchain,
  3. The devkitARM GNU toolchain,
  4. The Atollic toolchain, or
  5. The Code Red toolchain

  All testing has been conducted using the Buildroot toolchain for Cygwin/Linux.
  To use a different toolchain, you simply need to add one of the following
  configuration options to your .config (or defconfig) file:

    CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=y      : NuttX buildroot under Linux or Cygwin (default)
    CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYW=y  : CodeSourcery under Windows or Cygwin
    CONFIG_ARMV7M_TOOLCHAIN_CODESOURCERYL=y  : CodeSourcery under Linux
    CONFIG_ARMV7M_TOOLCHAIN_DEVKITARM=y      : The Atollic toolchain under Windows or Cygwin
    CONFIG_ARMV7M_TOOLCHAIN_CODEREDW=y       : The Code Red toolchain under Windows
    CONFIG_ARMV7M_TOOLCHAIN_CODEREDL=y       : The Code Red toolchain under Linux

    CONFIG_ARMV7M_OABI_TOOLCHAIN=y           : If you use an older, OABI buildroot toolchain

  If you change the default toolchain, then you may also have to modify the PATH in
  the setenv.h file if your make cannot find the tools.

  NOTE: the CodeSourcery (for Windows), Atollic, devkitARM, and Code Red (for Windows)
  toolchains are Windows native toolchains.  The CodeSourcey (for Linux) and NuttX
  buildroot toolchains are Cygwin and/or Linux native toolchains. There are several
  limitations to using a Windows based toolchain in a Cygwin environment.  The three
  biggest are:

  1. The Windows toolchain cannot follow Cygwin paths.  Path conversions are
     performed automatically in the Cygwin makefiles using the 'cygpath' utility
     but you might easily find some new path problems.  If so, check out 'cygpath -w'

  2. Windows toolchains cannot follow Cygwin symbolic links.  Many symbolic links
     are used in Nuttx (e.g., include/arch).  The make system works around these
     problems for the Windows tools by copying directories instead of linking them.
     But this can also cause some confusion for you:  For example, you may edit
     a file in a "linked" directory and find that your changes had no effect.
     That is because you are building the copy of the file in the "fake" symbolic
     directory.  If you use a Windows toolchain, you should get in the habit of
     making like this:

       make clean_context all

     An alias in your .bashrc file might make that less painful.

  3. Dependencies are not made when using Windows versions of the GCC.  This is
     because the dependencies are generated using Windows pathes which do not
     work with the Cygwin make.

       MKDEP                = $(TOPDIR)/tools/mknulldeps.sh

  NOTE 1: The CodeSourcery toolchain (2009q1) did not work with default optimization
  level of -Os (See Make.defs).  It will work with -O0, -O1, or -O2, but not with
  -Os.  I have not seen this problem with current toolchains.

  NOTE 2: The devkitARM toolchain includes a version of MSYS make.  Make sure that
  the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
  path or will get the wrong version of make.

IDEs
====

  NuttX is built using command-line make.  It can be used with an IDE, but some
  effort will be required to create the project.

  Makefile Build
  --------------
  Under Eclipse, it is pretty easy to set up an "empty makefile project" and
  simply use the NuttX makefile to build the system.  That is almost for free
  under Linux.  Under Windows, you will need to set up the "Cygwin GCC" empty
  makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
  there is a lot of help on the internet).

  Native Build
  ------------
  Here are a few tips before you start that effort:

  1) Select the toolchain that you will be using in your .config file
  2) Start the NuttX build at least one time from the Cygwin command line
     before trying to create your project.  This is necessary to create
     certain auto-generated files and directories that will be needed.
  3) Set up include paths:  You will need include/, arch/arm/src/tiva,
     arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
  4) All assembly files need to have the definition option -D __ASSEMBLY__
     on the command line.

  Startup files will probably cause you some headaches.  The NuttX startup file
  is arch/arm/src/tiva/tiva_vectors.S.

NuttX EABI "buildroot" Toolchain
================================

  A GNU GCC-based toolchain is assumed.  The files */setenv.sh should
  be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
  different from the default in your PATH variable).

  If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
  SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/).
  This GNU toolchain builds and executes in the Linux or Cygwin environment.

  1. You must have already configured Nuttx in <some-dir>/nuttx.

     cd tools
     ./configure.sh dk-tm4c129x/<sub-dir>

  2. Download the latest buildroot package into <some-dir>

  3. unpack the buildroot tarball.  The resulting directory may
     have versioning information on it like buildroot-x.y.z.  If so,
     rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.

  4. cd <some-dir>/buildroot

  5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config

  6. make oldconfig

  7. make

  8. Edit setenv.h, if necessary, so that the PATH variable includes
     the path to the newly built binaries.

  See the file configs/README.txt in the buildroot source tree.  That has more
  details PLUS some special instructions that you will need to follow if you
  are building a Cortex-M3 toolchain for Cygwin under Windows.

  NOTE:  Unfortunately, the 4.6.3 EABI toolchain is not compatible with the
  the NXFLAT tools.  See the top-level TODO file (under "Binary loaders") for
  more information about this problem. If you plan to use NXFLAT, please do not
  use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain.
  See instructions below.

NuttX OABI "buildroot" Toolchain
================================

  The older, OABI buildroot toolchain is also available.  To use the OABI
  toolchain:

  1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3
     configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI
     configuration such as cortexm3-defconfig-4.3.3

  2. Modify the Make.defs file to use the OABI conventions:

    +CROSSDEV = arm-nuttx-elf-
    +ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft
    +NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections
    -CROSSDEV = arm-nuttx-eabi-
    -ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft
    -NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections

NXFLAT Toolchain
================

  If you are *not* using the NuttX buildroot toolchain and you want to use
  the NXFLAT tools, then you will still have to build a portion of the buildroot
  tools -- just the NXFLAT tools.  The buildroot with the NXFLAT tools can
  be downloaded from the NuttX SourceForge download site
  (https://sourceforge.net/projects/nuttx/files/).

  This GNU toolchain builds and executes in the Linux or Cygwin environment.

  1. You must have already configured Nuttx in <some-dir>/nuttx.

     cd tools
     ./configure.sh dk-tm4c129x/<sub-dir>

  2. Download the latest buildroot package into <some-dir>

  3. unpack the buildroot tarball.  The resulting directory may
     have versioning information on it like buildroot-x.y.z.  If so,
     rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.

  4. cd <some-dir>/buildroot

  5. cp configs/cortexm3-defconfig-nxflat .config

  6. make oldconfig

  7. make

  8. Edit setenv.h, if necessary, so that the PATH variable includes
     the path to the newly builtNXFLAT binaries.

Buttons and LEDs
================

  Buttons
  -------
  There are three push buttons on the board.

    --- ------------ -----------------
    Pin Pin Function Jumper
    --- ------------ -----------------
    PP1 Select SW4   J37 pins 1 and 2
    PN3 Up SW2       J37 pins 3 and 4
    PE5 Down SW3     J37 pins 5 and 6
    --- ------------ -----------------

  LEDs
  ----
  The development board has one tri-color user LED.

    --- ------------ -----------------
    Pin Pin Function Jumper
    --- ------------ -----------------
    PN5 Red LED      J36 pins 1 and 2
    PQ4 Blue LED     J36 pins 3 and 4
    PQ7 Green LED    J36 pins 5 and 6
    --- ------------ -----------------

  If CONFIG_ARCH_LEDS is not defined, this LED is not used by the NuttX
  logic.  APIs are provided to support application control of the LED in
  that case (in include/board.h and src/tm4c_userleds.c).

  If CONFIG_ARCH_LEDS is defined then the usage of the LEDs by Nuttx is
  defined in include/board.h and src/tm4c_autoleds.c. The LEDs are used to
  encode OS-related events as follows:

    SYMBOL                Meaning                     LED state
    -------------------  -----------------------  -------- --------
    LED_STARTED          NuttX has been started     Blue
    LED_HEAPALLOCATE     Heap has been allocated    (No change)
    LED_IRQSENABLED      Interrupts enabled         (No change)
    LED_STACKCREATED     Idle stack created         Green
    LED_INIRQ            In an interrupt            (No change)
    LED_SIGNAL           In a signal handler        (No change)
    LED_ASSERTION        An assertion failed        (No change)
    LED_PANIC            The system has crashed     Blinking OFF/RED
    LED_IDLE             MCU is is sleep mode       (Not used)

  Thus if the LED is GREEN then NuttX has successfully booted and is,
  apparently, running normally.  If the LED is flashing OFF/RED at
  approximately 2Hz, then a fatal error has been detected and the
  system has halted.

Serial Console
==============

  By default, all configurations use UART0 which connects to the USB VCOM
  on the DEBUG port on the TM4C123 ICDI interface:

    UART0 RX - PA.0
    UART0 TX - PA.1

  However, if you use an external RS232 driver, then other options are
  available.  If your serial terminal loses connection with the USB serial
  port each time you power cycle the board, the VCOM option can be very
  painful.

  UART0 TTL level signals are also available at J3 (also at J1):

    DEBUG_TX - J3, pin 13.  Labelled PA1
    DEBUG_RX - J3, pin 15.  Labelled PA0

  Remove the jumper between pins 13-14 and 15-16 to disconnect UART0 from
  the TM4C123 ICDI chip; Connect your external RS-232 driver at pins 13
  and 16.  5v, 3.3v, AND GND are arvailable nearby at J10.

DK-TM4129X Configuration Options
================================

    CONFIG_ARCH - Identifies the arch/ subdirectory.  This should
       be set to:

       CONFIG_ARCH=arm

    CONFIG_ARCH_family - For use in C code:

       CONFIG_ARCH_ARM=y

    CONFIG_ARCH_architecture - For use in C code:

       CONFIG_ARCH_CORTEXM4=y

    CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory

       CONFIG_ARCH_CHIP="tiva"

    CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
       chip:

       CONFIG_ARCH_CHIP_TM4C129XNC

    CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
       hence, the board that supports the particular chip or SoC.

       CONFIG_ARCH_BOARD=dk-tm4c129x (for the DK-TM4129X)

    CONFIG_ARCH_BOARD_name - For use in C code

       CONFIG_ARCH_BOARD_DK_TM4C129X

    CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
       of delay loops

    CONFIG_ENDIAN_BIG - define if big endian (default is little
       endian)

    CONFIG_RAM_SIZE - Describes the installed DRAM (SRAM in this case):

       CONFIG_RAM_SIZE=0x00008000 (32Kb)

    CONFIG_RAM_START - The start address of installed DRAM

       CONFIG_RAM_START=0x20000000

    CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
       have LEDs

    CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
       stack. If defined, this symbol is the size of the interrupt
        stack in bytes.  If not defined, the user task stacks will be
      used during interrupt handling.

    CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions

    CONFIG_ARCH_LEDS -  Use LEDs to show state. Unique to board architecture.

    CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
       cause a 100 second delay during boot-up.  This 100 second delay
       serves no purpose other than it allows you to calibratre
       CONFIG_ARCH_LOOPSPERMSEC.  You simply use a stop watch to measure
       the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
       the delay actually is 100 seconds.

  There are configurations for disabling support for interrupts GPIO ports.
  Only GPIOP and GPIOQ pins can be used as interrupting sources on the
  TM4C129X.  Additional interrupt support can be disabled if desired to
  reduce memory footprint.

    CONFIG_TIVA_GPIOP_IRQS=y
    CONFIG_TIVA_GPIOQ_IRQS=y

  TM4C129X specific device driver settings

    CONFIG_UARTn_SERIAL_CONSOLE - selects the UARTn for the
       console and ttys0 (default is the UART0).
    CONFIG_UARTn_RXBUFSIZE - Characters are buffered as received.
       This specific the size of the receive buffer
    CONFIG_UARTn_TXBUFSIZE - Characters are buffered before
       being sent.  This specific the size of the transmit buffer
    CONFIG_UARTn_BAUD - The configure BAUD of the UART.  Must be
    CONFIG_UARTn_BITS - The number of bits.  Must be either 7 or 8.
    CONFIG_UARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
    CONFIG_UARTn_2STOP - Two stop bits

    CONFIG_TIVA_SSI0 - Select to enable support for SSI0
    CONFIG_TIVA_SSI1 - Select to enable support for SSI1
    CONFIG_SSI_POLLWAIT - Select to disable interrupt driven SSI support.
      Poll-waiting is recommended if the interrupt rate would be to
      high in the interrupt driven case.
    CONFIG_SSI_TXLIMIT - Write this many words to the Tx FIFO before
      emptying the Rx FIFO.  If the SPI frequency is high and this
      value is large, then larger values of this setting may cause
      Rx FIFO overrun errors.  Default: half of the Tx FIFO size (4).

    CONFIG_TIVA_ETHERNET - This must be set (along with CONFIG_NET)
      to build the Tiva Ethernet driver
    CONFIG_TIVA_ETHLEDS - Enable to use Ethernet LEDs on the board.
    CONFIG_TIVA_BOARDMAC - If the board-specific logic can provide
      a MAC address (via tiva_ethernetmac()), then this should be selected.
    CONFIG_TIVA_ETHHDUPLEX - Set to force half duplex operation
    CONFIG_TIVA_ETHNOAUTOCRC - Set to suppress auto-CRC generation
    CONFIG_TIVA_ETHNOPAD - Set to suppress Tx padding
    CONFIG_TIVA_MULTICAST - Set to enable multicast frames
    CONFIG_TIVA_PROMISCUOUS - Set to enable promiscuous mode
    CONFIG_TIVA_BADCRC - Set to enable bad CRC rejection.
    CONFIG_TIVA_DUMPPACKET - Dump each packet received/sent to the console.

Configurations
==============

Each DK-TM4129X configuration is maintained in a
sub-directory and can be selected as follow:

    cd tools
    ./configure.sh dk-tm4c129x/<subdir>
    cd -
    . ./setenv.sh

Where <subdir> is one of the following:

  nsh:
  ---
    Configures the NuttShell (nsh) located at apps/examples/nsh.  The
    configuration enables the serial VCOM interfaces on UART0.  Support for
    builtin applications is enabled, but in the base configuration no
    builtin applications are selected.

    NOTES:

    1. This configuration uses the mconf-based configuration tool.  To
       change this configuration using that tool, you should:

       a. Build and install the kconfig-mconf tool.  See nuttx/README.txt
          and misc/tools/

       b. Execute 'make menuconfig' in nuttx/ in order to start the
          reconfiguration process.

    2. By default, this configuration uses the CodeSourcery toolchain
       for Windows and builds under Cygwin (or probably MSYS).  That
       can easily be reconfigured, of course.

       CONFIG_HOST_LINUX=y                 : Linux (Cygwin under Windows okay too).
       CONFIG_ARMV7M_TOOLCHAIN_BUILDROOT=y : Buildroot (arm-nuttx-elf-gcc)
       CONFIG_RAW_BINARY=y                 : Output formats: ELF and raw binary