summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/backend/jvm/opt/Inliner.scala
blob: 1c29859f466abd444d5ad5587ff90f5b18d0063b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
/* NSC -- new Scala compiler
 * Copyright 2005-2014 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.tools.nsc
package backend.jvm
package opt

import scala.annotation.tailrec
import scala.tools.asm
import asm.Opcodes._
import asm.tree._
import scala.collection.JavaConverters._
import AsmUtils._
import BytecodeUtils._
import collection.mutable
import BackendReporting._
import scala.tools.nsc.backend.jvm.BTypes.InternalName

class Inliner[BT <: BTypes](val btypes: BT) {
  import btypes._
  import callGraph._
  import inlinerHeuristics._
  import backendUtils._

  sealed trait InlineLog {
    def request: InlineRequest
  }
  final case class InlineLogSuccess(request: InlineRequest, sizeBefore: Int, sizeInlined: Int) extends InlineLog {
    var downstreamLog: mutable.Buffer[InlineLog] = mutable.ListBuffer.empty
  }
  final case class InlineLogFail(request: InlineRequest, warning: CannotInlineWarning) extends InlineLog
  final case class InlineLogRollback(request: InlineRequest, warnings: List[CannotInlineWarning]) extends InlineLog

  object InlineLog {
    private def shouldLog(request: InlineRequest): Boolean = {
      def logEnabled = compilerSettings.YoptLogInline.isSetByUser
      def matchesName = {
        val prefix = compilerSettings.YoptLogInline.value match {
          case "_" => ""
          case p => p
        }
        val name: String = request.callsite.callsiteClass.internalName + "." + request.callsite.callsiteMethod.name
        name startsWith prefix
      }
      logEnabled && (upstream != null || (isTopLevel && matchesName))
    }

    // indexed by callsite method
    private val logs = mutable.Map.empty[MethodNode, mutable.LinkedHashSet[InlineLog]]

    private var upstream: InlineLogSuccess = _
    private var isTopLevel = true

    def withInlineLogging[T](request: InlineRequest)(inlineRequest: => Unit)(inlinePost: => T): T = {
      def doInlinePost(): T = {
        val savedIsTopLevel = isTopLevel
        isTopLevel = false
        try inlinePost
        finally isTopLevel = savedIsTopLevel
      }
      if (shouldLog(request)) {
        val sizeBefore = request.callsite.callsiteMethod.instructions.size
        inlineRequest
        val log = InlineLogSuccess(request, sizeBefore, request.callsite.callee.get.callee.instructions.size)
        apply(log)

        val savedUpstream = upstream
        upstream = log
        try doInlinePost()
        finally upstream = savedUpstream
      } else {
        inlineRequest
        doInlinePost()
      }
    }

    def apply(log: => InlineLog): Unit = if (shouldLog(log.request)) {
      if (upstream != null) upstream.downstreamLog += log
      else {
        val methodLogs = logs.getOrElseUpdate(log.request.callsite.callsiteMethod, mutable.LinkedHashSet.empty)
        methodLogs += log
      }
    }

    def entryString(log: InlineLog, indent: Int = 0): String = {
      val callee = log.request.callsite.callee.get
      val calleeString = callee.calleeDeclarationClass.internalName + "." + callee.callee.name
      val indentString = " " * indent
      log match {
        case s @ InlineLogSuccess(_, sizeBefore, sizeInlined) =>
          val self = s"${indentString}inlined $calleeString. Before: $sizeBefore ins, inlined: $sizeInlined ins."
          if (s.downstreamLog.isEmpty) self
          else s.downstreamLog.iterator.map(entryString(_, indent + 2)).mkString(self + "\n", "\n", "")

        case InlineLogFail(_, w) =>
          s"${indentString}failed $calleeString. ${w.toString.replace('\n', ' ')}"

        case InlineLogRollback(_, _) =>
          s"${indentString}rolling back, nested inline failed."
      }
    }

    def print(): Unit = if (compilerSettings.YoptLogInline.isSetByUser) {
      val byClassAndMethod: List[(InternalName, mutable.Map[MethodNode, mutable.LinkedHashSet[InlineLog]])] = {
        logs.
          groupBy(_._2.head.request.callsite.callsiteClass.internalName).
          toList.sortBy(_._1)
      }
      for {
        (c, methodLogs) <- byClassAndMethod
        (m, mLogs) <- methodLogs.toList.sortBy(_._1.name)
        mLog <- mLogs // insertion order
      } {
        println(s"Inline into $c.${m.name}: ${entryString(mLog)}")
      }
    }
  }

  def runInliner(): Unit = {
    for (request <- collectAndOrderInlineRequests) {
      val Right(callee) = request.callsite.callee // collectAndOrderInlineRequests returns callsites with a known callee
      val warnings = inline(request)
      for (warning <- warnings) {
        if (warning.emitWarning(compilerSettings))
          backendReporting.inlinerWarning(request.callsite.callsitePosition, warning.toString)
      }
    }
    InlineLog.print()
  }

  /**
   * Ordering for inline requests. Required to make the inliner deterministic:
   *   - Always remove the same request when breaking inlining cycles
   *   - Perform inlinings in a consistent order
   */
  object callsiteOrdering extends Ordering[InlineRequest] {
    override def compare(x: InlineRequest, y: InlineRequest): Int = {
      val xCs = x.callsite
      val yCs = y.callsite
      val cls = xCs.callsiteClass.internalName compareTo yCs.callsiteClass.internalName
      if (cls != 0) return cls

      val name = xCs.callsiteMethod.name compareTo yCs.callsiteMethod.name
      if (name != 0) return name

      val desc = xCs.callsiteMethod.desc compareTo yCs.callsiteMethod.desc
      if (desc != 0) return desc

      def pos(c: Callsite) = c.callsiteMethod.instructions.indexOf(c.callsiteInstruction)
      pos(xCs) - pos(yCs)
    }
  }

  /**
   * Returns the callsites that can be inlined. Ensures that the returned inline request graph does
   * not contain cycles.
   *
   * The resulting list is sorted such that the leaves of the inline request graph are on the left.
   * Once these leaves are inlined, the successive elements will be leaves, etc.
   */
  private def collectAndOrderInlineRequests: List[InlineRequest] = {
    val requestsByMethod = selectCallsitesForInlining withDefaultValue Set.empty

    val elided = mutable.Set.empty[InlineRequest]
    def nonElidedRequests(methodNode: MethodNode): Set[InlineRequest] = requestsByMethod(methodNode) diff elided

    def allCallees(r: InlineRequest): Set[MethodNode] = r.post.flatMap(allCallees).toSet + r.callsite.callee.get.callee

    /**
     * Break cycles in the inline request graph by removing callsites.
     *
     * The list `requests` is traversed left-to-right, removing those callsites that are part of a
     * cycle. Elided callsites are also removed from the `inlineRequestsForMethod` map.
     */
    def breakInlineCycles: List[InlineRequest] = {
      // is there a path of inline requests from start to goal?
      def isReachable(start: Set[MethodNode], goal: MethodNode): Boolean = {
        @tailrec def reachableImpl(check: Set[MethodNode], visited: Set[MethodNode]): Boolean = {
          if (check.isEmpty) false
          else {
            val x = check.head
            if (x == goal) true
            else if (visited(x)) reachableImpl(check - x, visited)
            else {
              val callees = nonElidedRequests(x).flatMap(allCallees)
              reachableImpl(check - x ++ callees, visited + x)
            }
          }
        }
        reachableImpl(start, Set.empty)
      }

      val result = new mutable.ListBuffer[InlineRequest]()
      val requests = requestsByMethod.valuesIterator.flatten.toArray
      // sort the inline requests to ensure that removing requests is deterministic
      java.util.Arrays.sort(requests, callsiteOrdering)
      for (r <- requests) {
        // is there a chain of inlining requests that would inline the callsite method into the callee?
        if (isReachable(allCallees(r), r.callsite.callsiteMethod))
          elided += r
        else
          result += r
        ()
      }
      result.toList
    }

    // sort the remaining inline requests such that the leaves appear first, then those requests
    // that become leaves, etc.
    def leavesFirst(requests: List[InlineRequest], visited: Set[InlineRequest] = Set.empty): List[InlineRequest] = {
      if (requests.isEmpty) Nil
      else {
        val (leaves, others) = requests.partition(r => {
          val inlineRequestsForCallees = allCallees(r).flatMap(nonElidedRequests)
          inlineRequestsForCallees.forall(visited)
        })
        assert(leaves.nonEmpty, requests)
        leaves ::: leavesFirst(others, visited ++ leaves)
      }
    }

    leavesFirst(breakInlineCycles)
  }

  /**
   * Given an InlineRequest(mainCallsite, post = List(postCallsite)), the postCallsite is a callsite
   * in the method `mainCallsite.callee`. Once the mainCallsite is inlined into the target method
   * (mainCallsite.callsiteMethod), we need to find the cloned callsite that corresponds to the
   * postCallsite so we can inline that into the target method as well.
   *
   * However, it is possible that there is no cloned callsite at all that corresponds to the
   * postCallsite, for example if the corresponding callsite already inlined. Example:
   *
   *   def a() = 1
   *   def b() = a() + 2
   *   def c() = b() + 3
   *   def d() = c() + 4
   *
   * We have the following callsite objects in the call graph:
   *
   *   c1 = a() in b
   *   c2 = b() in c
   *   c3 = c() in d
   *
   * Assume we have the following inline request
   *   r = InlineRequest(c3,
   *         post = List(InlineRequest(c2,
   *           post = List(InlineRequest(c1, post = Nil)))))
   *
   * But before inlining r, assume a separate InlineRequest(c2, post = Nil) is inlined first. We get
   *
   *   c1' = a() in c                  // added to the call graph
   *   c1.inlinedClones += (c1' at c2) // remember that c1' was created when inlining c2
   *   ~c2~                            // c2 is removed from the call graph
   *
   * If we now inline r, we first inline c3. We get
   *
   *   c1'' = a() in d                   // added to call graph
   *   c1'.inlinedClones += (c1'' at c3) // remember that c1'' was created when inlining c3
   *   ~c3~
   *
   * Now we continue with the post-requests for r, i.e. c2.
   *   - we try to find the clone of c2 that was created when inlining c3 - but there is none. c2
   *     was already inlined before
   *   - we continue with the post-request of c2: c1
   *     - we search for the callsite of c1 that was cloned when inlining c2, we find c1'
   *     - recursively we search for the callsite of c1' that was cloned when inlining c3, we find c1''
   *     - so we create an inline request for c1''
   */
  def adaptPostRequestForMainCallsite(post: InlineRequest, mainCallsite: Callsite): List[InlineRequest] = {
    def impl(post: InlineRequest, at: Callsite): List[InlineRequest] = {
      post.callsite.inlinedClones.find(_.clonedWhenInlining == at) match {
        case Some(clonedCallsite) =>
          List(InlineRequest(clonedCallsite.callsite, post.post, post.reason))
        case None =>
          post.post.flatMap(impl(_, post.callsite)).flatMap(impl(_, at))
      }
    }
    impl(post, mainCallsite)
  }

  class UndoLog(active: Boolean = true) {
    import java.util.{ ArrayList => JArrayList }

    private var actions = List.empty[() => Unit]
    private var methodStateSaved = false

    def apply(a: => Unit): Unit = if (active) actions = (() => a) :: actions
    def rollback(): Unit = if (active) actions.foreach(_.apply())

    def saveMethodState(methodNode: MethodNode): Unit = if (active && !methodStateSaved) {
      methodStateSaved = true
      val currentInstructions = methodNode.instructions.toArray
      val currentLocalVariables = new JArrayList(methodNode.localVariables)
      val currentTryCatchBlocks = new JArrayList(methodNode.tryCatchBlocks)
      val currentMaxLocals = methodNode.maxLocals
      val currentMaxStack = methodNode.maxStack

      apply {
        // `methodNode.instructions.clear()` doesn't work: it keeps the `prev` / `next` / `index` of
        // instruction nodes. `instructions.removeAll(true)` would work, but is not public.
        methodNode.instructions.iterator.asScala.toList.foreach(methodNode.instructions.remove)
        for (i <- currentInstructions) methodNode.instructions.add(i)

        methodNode.localVariables.clear()
        methodNode.localVariables.addAll(currentLocalVariables)

        methodNode.tryCatchBlocks.clear()
        methodNode.tryCatchBlocks.addAll(currentTryCatchBlocks)

        methodNode.maxLocals = currentMaxLocals
        methodNode.maxStack = currentMaxStack
      }
    }
  }

  val NoUndoLogging = new UndoLog(active = false)

  /**
   * Inline the callsite of an inlining request and its post-inlining requests.
   *
   * @return An inliner warning for each callsite that could not be inlined.
   */
  def inline(request: InlineRequest, undo: UndoLog = NoUndoLogging): List[CannotInlineWarning] = {
    def doInline(undo: UndoLog, callRollback: Boolean = false): List[CannotInlineWarning] = {
      InlineLog.withInlineLogging(request) {
        inlineCallsite(request.callsite, undo)
      } {
        val postRequests = request.post.flatMap(adaptPostRequestForMainCallsite(_, request.callsite))
        val warnings = postRequests.flatMap(inline(_, undo))
        if (callRollback && warnings.nonEmpty) {
          undo.rollback()
          InlineLog(InlineLogRollback(request, warnings))
        }
        warnings
      }
    }

    def inlinedByPost(insns: List[AbstractInsnNode]): Boolean =
      insns.nonEmpty && insns.forall(ins => request.post.exists(_.callsite.callsiteInstruction == ins))

    canInlineCallsite(request.callsite) match {
      case None =>
        doInline(undo)

      case Some((_, illegalAccessInsns)) if inlinedByPost(illegalAccessInsns) =>
        // speculatively inline, roll back if an illegalAccessInsn cannot be eliminated
        if (undo == NoUndoLogging) doInline(new UndoLog(), callRollback = true)
        else doInline(undo)

      case Some((w, _)) =>
        InlineLog(InlineLogFail(request, w))
        List(w)
    }
  }

  /**
   * Copy and adapt the instructions of a method to a callsite.
   *
   * Preconditions:
   *   - The callsite can safely be inlined (canInlineBody is true)
   *   - The maxLocals and maxStack values of the callsite method are correctly computed
   *
   * @return A map associating instruction nodes of the callee with the corresponding cloned
   *         instruction in the callsite method.
   */
  def inlineCallsite(callsite: Callsite, undo: UndoLog = NoUndoLogging): Unit = {
    import callsite.{callsiteClass, callsiteMethod, callsiteInstruction, receiverKnownNotNull, callsiteStackHeight}
    val Right(callsiteCallee) = callsite.callee
    import callsiteCallee.{callee, calleeDeclarationClass, sourceFilePath}

    // Inlining requires the callee not to have unreachable code, the analyzer used below should not
    // return any `null` frames. Note that inlining a method can create unreachable code. Example:
    //   def f = throw e
    //   def g = f; println() // println is unreachable after inlining f
    // If we have an inline request for a call to g, and f has been already inlined into g, we
    // need to run DCE on g's body before inlining g.
    localOpt.minimalRemoveUnreachableCode(callee, calleeDeclarationClass.internalName)

    // If the callsite was eliminated by DCE, do nothing.
    if (!callGraph.containsCallsite(callsite)) return

    // New labels for the cloned instructions
    val labelsMap = cloneLabels(callee)
    val sameSourceFile = sourceFilePath match {
      case Some(calleeSource) => byteCodeRepository.compilingClasses.get(callsiteClass.internalName) match {
        case Some((_, `calleeSource`)) => true
        case _ => false
      }
      case _ => false
    }
    val (clonedInstructions, instructionMap, targetHandles) = cloneInstructions(callee, labelsMap, keepLineNumbers = sameSourceFile)

    // local vars in the callee are shifted by the number of locals at the callsite
    val localVarShift = callsiteMethod.maxLocals
    clonedInstructions.iterator.asScala foreach {
      case varInstruction: VarInsnNode => varInstruction.`var` += localVarShift
      case iinc: IincInsnNode          => iinc.`var` += localVarShift
      case _ => ()
    }

    // add a STORE instruction for each expected argument, including for THIS instance if any
    val argStores = new InsnList
    var nextLocalIndex = callsiteMethod.maxLocals
    if (!isStaticMethod(callee)) {
      if (!receiverKnownNotNull) {
        argStores.add(new InsnNode(DUP))
        val nonNullLabel = newLabelNode
        argStores.add(new JumpInsnNode(IFNONNULL, nonNullLabel))
        argStores.add(new InsnNode(ACONST_NULL))
        argStores.add(new InsnNode(ATHROW))
        argStores.add(nonNullLabel)
      }
      argStores.add(new VarInsnNode(ASTORE, nextLocalIndex))
      nextLocalIndex += 1
    }

    // We just use an asm.Type here, no need to create the MethodBType.
    val calleAsmType = asm.Type.getMethodType(callee.desc)
    val calleeParamTypes = calleAsmType.getArgumentTypes

    for(argTp <- calleeParamTypes) {
      val opc = argTp.getOpcode(ISTORE) // returns the correct xSTORE instruction for argTp
      argStores.insert(new VarInsnNode(opc, nextLocalIndex)) // "insert" is "prepend" - the last argument is on the top of the stack
      nextLocalIndex += argTp.getSize
    }

    clonedInstructions.insert(argStores)

    // label for the exit of the inlined functions. xRETURNs are replaced by GOTOs to this label.
    val postCallLabel = newLabelNode
    clonedInstructions.add(postCallLabel)

    // replace xRETURNs:
    //   - store the return value (if any)
    //   - clear the stack of the inlined method (insert DROPs)
    //   - load the return value
    //   - GOTO postCallLabel

    val returnType = calleAsmType.getReturnType
    val hasReturnValue = returnType.getSort != asm.Type.VOID
    val returnValueIndex = callsiteMethod.maxLocals + callee.maxLocals
    nextLocalIndex += returnType.getSize

    def returnValueStore(returnInstruction: AbstractInsnNode) = {
      val opc = returnInstruction.getOpcode match {
        case IRETURN => ISTORE
        case LRETURN => LSTORE
        case FRETURN => FSTORE
        case DRETURN => DSTORE
        case ARETURN => ASTORE
      }
      new VarInsnNode(opc, returnValueIndex)
    }

    // We run an interpreter to know the stack height at each xRETURN instruction and the sizes
    // of the values on the stack.
    // We don't need to worry about the method being too large for running an analysis. Callsites of
    // large methods are not added to the call graph.
    val analyzer = new AsmAnalyzer(callee, calleeDeclarationClass.internalName)

    for (originalReturn <- callee.instructions.iterator().asScala if isReturn(originalReturn)) {
      val frame = analyzer.frameAt(originalReturn)
      var stackHeight = frame.getStackSize

      val inlinedReturn = instructionMap(originalReturn)
      val returnReplacement = new InsnList

      def drop(slot: Int) = returnReplacement add getPop(frame.peekStack(slot).getSize)

      // for non-void methods, store the stack top into the return local variable
      if (hasReturnValue) {
        returnReplacement add returnValueStore(originalReturn)
        stackHeight -= 1
      }

      // drop the rest of the stack
      for (i <- 0 until stackHeight) drop(i)

      returnReplacement add new JumpInsnNode(GOTO, postCallLabel)
      clonedInstructions.insert(inlinedReturn, returnReplacement)
      clonedInstructions.remove(inlinedReturn)
    }

    // Load instruction for the return value
    if (hasReturnValue) {
      val retVarLoad = {
        val opc = returnType.getOpcode(ILOAD)
        new VarInsnNode(opc, returnValueIndex)
      }
      clonedInstructions.insert(postCallLabel, retVarLoad)
    }

    undo.saveMethodState(callsiteMethod)

    callsiteMethod.instructions.insert(callsiteInstruction, clonedInstructions)
    callsiteMethod.instructions.remove(callsiteInstruction)

    callsiteMethod.localVariables.addAll(cloneLocalVariableNodes(callee, labelsMap, callee.name, localVarShift).asJava)
    // prepend the handlers of the callee. the order of handlers matters: when an exception is thrown
    // at some instruction, the first handler guarding that instruction and having a matching exception
    // type is executed. prepending the callee's handlers makes sure to test those handlers first if
    // an exception is thrown in the inlined code.
    callsiteMethod.tryCatchBlocks.addAll(0, cloneTryCatchBlockNodes(callee, labelsMap).asJava)

    callsiteMethod.maxLocals += returnType.getSize + callee.maxLocals
    val maxStackOfInlinedCode = {
      // One slot per value is correct for long / double, see comment in the `analysis` package object.
      val numStoredArgs = calleeParamTypes.length + (if (isStaticMethod(callee)) 0 else 1)
      callee.maxStack + callsiteStackHeight - numStoredArgs
    }
    val stackHeightAtNullCheck = {
      // When adding a null check for the receiver, a DUP is inserted, which might cause a new maxStack.
      // If the callsite has other argument values than the receiver on the stack, these are pop'ed
      // and stored into locals before the null check, so in that case the maxStack doesn't grow.
      val stackSlotForNullCheck = if (!isStaticMethod(callee) && !receiverKnownNotNull && calleeParamTypes.isEmpty) 1 else 0
      callsiteStackHeight + stackSlotForNullCheck
    }

    callsiteMethod.maxStack = math.max(callsiteMethod.maxStack, math.max(stackHeightAtNullCheck, maxStackOfInlinedCode))

    val added = addIndyLambdaImplMethod(callsiteClass.internalName, targetHandles)
    undo { removeIndyLambdaImplMethod(callsiteClass.internalName, added) }

    callGraph.addIfMissing(callee, calleeDeclarationClass)

    def mapArgInfo(argInfo: (Int, ArgInfo)): Option[(Int, ArgInfo)] = argInfo match {
      case lit @ (_, FunctionLiteral)             => Some(lit)
      case (argIndex, ForwardedParam(paramIndex)) => callsite.argInfos.get(paramIndex).map((argIndex, _))
    }

    // Add all invocation instructions and closure instantiations that were inlined to the call graph
    callGraph.callsites(callee).valuesIterator foreach { originalCallsite =>
      val newCallsiteIns = instructionMap(originalCallsite.callsiteInstruction).asInstanceOf[MethodInsnNode]
      val argInfos = originalCallsite.argInfos flatMap mapArgInfo
      val newCallsite = originalCallsite.copy(
        callsiteInstruction = newCallsiteIns,
        callsiteMethod = callsiteMethod,
        callsiteClass = callsiteClass,
        argInfos = argInfos,
        callsiteStackHeight = callsiteStackHeight + originalCallsite.callsiteStackHeight
      )
      val clonedCallsite = ClonedCallsite(newCallsite, callsite)
      originalCallsite.inlinedClones += clonedCallsite
      callGraph.addCallsite(newCallsite)
      undo {
        originalCallsite.inlinedClones -= clonedCallsite
        callGraph.removeCallsite(newCallsite.callsiteInstruction, newCallsite.callsiteMethod)
      }
    }

    callGraph.closureInstantiations(callee).valuesIterator foreach { originalClosureInit =>
      val newIndy = instructionMap(originalClosureInit.lambdaMetaFactoryCall.indy).asInstanceOf[InvokeDynamicInsnNode]
      val capturedArgInfos = originalClosureInit.capturedArgInfos flatMap mapArgInfo
      val newClosureInit = ClosureInstantiation(
        originalClosureInit.lambdaMetaFactoryCall.copy(indy = newIndy),
        callsiteMethod,
        callsiteClass,
        capturedArgInfos)
      originalClosureInit.inlinedClones += newClosureInit
      callGraph.addClosureInstantiation(newClosureInit)
      undo {
        callGraph.removeClosureInstantiation(newClosureInit.lambdaMetaFactoryCall.indy, newClosureInit.ownerMethod)
      }
    }

    // Remove the elided invocation from the call graph
    callGraph.removeCallsite(callsiteInstruction, callsiteMethod)
    undo { callGraph.addCallsite(callsite) }

    // Inlining a method body can render some code unreachable, see example above in this method.
    unreachableCodeEliminated -= callsiteMethod
  }

  /**
   * Check whether an inlining can be performed. This method performs tests that don't change even
   * if the body of the callee is changed by the inliner / optimizer, so it can be used early
   * (when looking at the call graph and collecting inline requests for the program).
   *
   * The tests that inspect the callee's instructions are implemented in method `canInlineBody`,
   * which is queried when performing an inline.
   *
   * @return `Some(message)` if inlining cannot be performed, `None` otherwise
   */
  def earlyCanInlineCheck(callsite: Callsite): Option[CannotInlineWarning] = {
    import callsite.{callsiteMethod, callsiteClass}
    val Right(callsiteCallee) = callsite.callee
    import callsiteCallee.{callee, calleeDeclarationClass}

    if (isSynchronizedMethod(callee)) {
      // Could be done by locking on the receiver, wrapping the inlined code in a try and unlocking
      // in finally. But it's probably not worth the effort, scala never emits synchronized methods.
      Some(SynchronizedMethod(calleeDeclarationClass.internalName, callee.name, callee.desc, callsite.isInlineAnnotated))
    } else if (isStrictfpMethod(callsiteMethod) != isStrictfpMethod(callee)) {
      Some(StrictfpMismatch(
        calleeDeclarationClass.internalName, callee.name, callee.desc, callsite.isInlineAnnotated,
        callsiteClass.internalName, callsiteMethod.name, callsiteMethod.desc))
    } else
      None
  }

  /**
   * Check whether the body of the callee contains any instructions that prevent the callsite from
   * being inlined. See also method `earlyCanInlineCheck`.
   *
   * The result of this check depends on changes to the callee method's body. For example, if the
   * callee initially invokes a private method, it cannot be inlined into a different class. If the
   * private method is inlined into the callee, inlining the callee becomes possible. Therefore
   * we don't query it while traversing the call graph and selecting callsites to inline - it might
   * rule out callsites that can be inlined just fine.
   *
   * Returns
   *  - `None` if the callsite can be inlined
   *  - `Some((message, Nil))` if there was an issue performing the access checks, for example
   *    because of a missing classfile
   *  - `Some((message, instructions))` if inlining `instructions` into the callsite method would
   *    cause an IllegalAccessError
   */
  def canInlineCallsite(callsite: Callsite): Option[(CannotInlineWarning, List[AbstractInsnNode])] = {
    import callsite.{callsiteInstruction, callsiteMethod, callsiteClass, callsiteStackHeight}
    val Right(callsiteCallee) = callsite.callee
    import callsiteCallee.{callee, calleeDeclarationClass}

    def calleeDesc = s"${callee.name} of type ${callee.desc} in ${calleeDeclarationClass.internalName}"
    def methodMismatch = s"Wrong method node for inlining ${textify(callsiteInstruction)}: $calleeDesc"
    assert(callsiteInstruction.name == callee.name, methodMismatch)
    assert(callsiteInstruction.desc == callee.desc, methodMismatch)
    assert(!isConstructor(callee), s"Constructors cannot be inlined: $calleeDesc")
    assert(!BytecodeUtils.isAbstractMethod(callee), s"Callee is abstract: $calleeDesc")
    assert(callsiteMethod.instructions.contains(callsiteInstruction), s"Callsite ${textify(callsiteInstruction)} is not an instruction of $calleeDesc")

    // When an exception is thrown, the stack is cleared before jumping to the handler. When
    // inlining a method that catches an exception, all values that were on the stack before the
    // call (in addition to the arguments) would be cleared (SI-6157). So we don't inline methods
    // with handlers in case there are values on the stack.
    // Alternatively, we could save all stack values below the method arguments into locals, but
    // that would be inefficient: we'd need to pop all parameters, save the values, and push the
    // parameters back for the (inlined) invocation. Similarly for the result after the call.
    def stackHasNonParameters: Boolean = {
      val expectedArgs = asm.Type.getArgumentTypes(callsiteInstruction.desc).length + (callsiteInstruction.getOpcode match {
        case INVOKEVIRTUAL | INVOKESPECIAL | INVOKEINTERFACE => 1
        case INVOKESTATIC => 0
        case INVOKEDYNAMIC =>
          assertionError(s"Unexpected opcode, cannot inline ${textify(callsiteInstruction)}")
      })
      callsiteStackHeight > expectedArgs
    }

    if (codeSizeOKForInlining(callsiteMethod, callee)) {
      val warning = ResultingMethodTooLarge(
        calleeDeclarationClass.internalName, callee.name, callee.desc, callsite.isInlineAnnotated,
        callsiteClass.internalName, callsiteMethod.name, callsiteMethod.desc)
      Some((warning, Nil))
    } else if (!callee.tryCatchBlocks.isEmpty && stackHasNonParameters) {
      val warning = MethodWithHandlerCalledOnNonEmptyStack(
        calleeDeclarationClass.internalName, callee.name, callee.desc, callsite.isInlineAnnotated,
        callsiteClass.internalName, callsiteMethod.name, callsiteMethod.desc)
      Some((warning, Nil))
    } else findIllegalAccess(callee.instructions, calleeDeclarationClass, callsiteClass) match {
      case Right(Nil) =>
        None

      case Right(illegalAccessInsns) =>
        val warning = IllegalAccessInstruction(
          calleeDeclarationClass.internalName, callee.name, callee.desc, callsite.isInlineAnnotated,
          callsiteClass.internalName, illegalAccessInsns.head)
        Some((warning, illegalAccessInsns))

      case Left((illegalAccessIns, cause)) =>
        val warning = IllegalAccessCheckFailed(
          calleeDeclarationClass.internalName, callee.name, callee.desc, callsite.isInlineAnnotated,
          callsiteClass.internalName, illegalAccessIns, cause)
        Some((warning, Nil))
    }
  }

  /**
   * Check if a type is accessible to some class, as defined in JVMS 5.4.4.
   *  (A1) C is public
   *  (A2) C and D are members of the same run-time package
   */
  def classIsAccessible(accessed: BType, from: ClassBType): Either[OptimizerWarning, Boolean] = (accessed: @unchecked) match {
    // TODO: A2 requires "same run-time package", which seems to be package + classloader (JVMS 5.3.). is the below ok?
    case c: ClassBType     => c.isPublic.map(_ || c.packageInternalName == from.packageInternalName)
    case a: ArrayBType     => classIsAccessible(a.elementType, from)
    case _: PrimitiveBType => Right(true)
  }

  /**
   * Check if a member reference is accessible from the [[destinationClass]], as defined in the
   * JVMS 5.4.4. Note that the class name in a field / method reference is not necessarily the
   * class in which the member is declared:
   *
   *   class A { def f = 0 }; class B extends A { f }
   *
   * The INVOKEVIRTUAL instruction uses a method reference "B.f ()I". Therefore this method has
   * two parameters:
   *
   * @param memberDeclClass The class in which the member is declared (A)
   * @param memberRefClass  The class used in the member reference (B)
   *
   * (B0) JVMS 5.4.3.2 / 5.4.3.3: when resolving a member of class C in D, the class C is resolved
   * first. According to 5.4.3.1, this requires C to be accessible in D.
   *
   * JVMS 5.4.4 summary: A field or method R is accessible to a class D (destinationClass) iff
   *  (B1) R is public
   *  (B2) R is protected, declared in C (memberDeclClass) and D is a subclass of C.
   *       If R is not static, R must contain a symbolic reference to a class T (memberRefClass),
   *       such that T is either a subclass of D, a superclass of D, or D itself.
   *       Also (P) needs to be satisfied.
   *  (B3) R is either protected or has default access and declared by a class in the same
   *       run-time package as D.
   *       If R is protected, also (P) needs to be satisfied.
   *  (B4) R is private and is declared in D.
   *
   *  (P) When accessing a protected instance member, the target object on the stack (the receiver)
   *      has to be a subtype of D (destinationClass). This is enforced by classfile verification
   *      (https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.10.1.8).
   *
   * TODO: we cannot currently implement (P) because we don't have the necessary information
   * available. Once we have a type propagation analysis implemented, we can extract the receiver
   * type from there (https://github.com/scala-opt/scala/issues/13).
   */
  def memberIsAccessible(memberFlags: Int, memberDeclClass: ClassBType, memberRefClass: ClassBType, from: ClassBType): Either[OptimizerWarning, Boolean] = {
    // TODO: B3 requires "same run-time package", which seems to be package + classloader (JVMS 5.3.). is the below ok?
    def samePackageAsDestination = memberDeclClass.packageInternalName == from.packageInternalName
    def targetObjectConformsToDestinationClass = false // needs type propagation analysis, see above

    def memberIsAccessibleImpl = {
      val key = (ACC_PUBLIC | ACC_PROTECTED | ACC_PRIVATE) & memberFlags
      key match {
        case ACC_PUBLIC => // B1
          Right(true)

        case ACC_PROTECTED => // B2
          val isStatic = (ACC_STATIC & memberFlags) != 0
          tryEither {
            val condB2 = from.isSubtypeOf(memberDeclClass).orThrow && {
              isStatic || memberRefClass.isSubtypeOf(from).orThrow || from.isSubtypeOf(memberRefClass).orThrow
            }
            Right(
              (condB2 || samePackageAsDestination /* B3 (protected) */) &&
              (isStatic || targetObjectConformsToDestinationClass) // (P)
            )
          }

        case 0 => // B3 (default access)
          Right(samePackageAsDestination)

        case ACC_PRIVATE => // B4
          Right(memberDeclClass == from)
      }
    }

    classIsAccessible(memberDeclClass, from) match { // B0
      case Right(true) => memberIsAccessibleImpl
      case r => r
    }
  }

  /**
   * Returns
   *   - `Right(Nil)` if all instructions can be safely inlined
   *   - `Right(insns)` if inlining any of `insns` would cause a [[java.lang.IllegalAccessError]]
   *     when inlined into the `destinationClass`
   *   - `Left((insn, warning))` if validity of some instruction could not be checked because an
   *     error occurred
   */
  def findIllegalAccess(instructions: InsnList, calleeDeclarationClass: ClassBType, destinationClass: ClassBType): Either[(AbstractInsnNode, OptimizerWarning), List[AbstractInsnNode]] = {
    /**
     * Check if `instruction` can be transplanted to `destinationClass`.
     *
     * If the instruction references a class, method or field that cannot be found in the
     * byteCodeRepository, it is considered as not legal. This is known to happen in mixed
     * compilation: for Java classes there is no classfile that could be parsed, nor does the
     * compiler generate any bytecode.
     *
     * Returns a warning message describing the problem if checking the legality for the instruction
     * failed.
     */
    def isLegal(instruction: AbstractInsnNode): Either[OptimizerWarning, Boolean] = instruction match {
      case ti: TypeInsnNode  =>
        // NEW, ANEWARRAY, CHECKCAST or INSTANCEOF. For these instructions, the reference
        // "must be a symbolic reference to a class, array, or interface type" (JVMS 6), so
        // it can be an internal name, or a full array descriptor.
        classIsAccessible(bTypeForDescriptorOrInternalNameFromClassfile(ti.desc), destinationClass)

      case ma: MultiANewArrayInsnNode =>
        // "a symbolic reference to a class, array, or interface type"
        classIsAccessible(bTypeForDescriptorOrInternalNameFromClassfile(ma.desc), destinationClass)

      case fi: FieldInsnNode =>
        val fieldRefClass = classBTypeFromParsedClassfile(fi.owner)
        for {
          (fieldNode, fieldDeclClassNode) <- byteCodeRepository.fieldNode(fieldRefClass.internalName, fi.name, fi.desc): Either[OptimizerWarning, (FieldNode, InternalName)]
          fieldDeclClass                  =  classBTypeFromParsedClassfile(fieldDeclClassNode)
          res                             <- memberIsAccessible(fieldNode.access, fieldDeclClass, fieldRefClass, destinationClass)
        } yield {
          res
        }

      case mi: MethodInsnNode =>
        if (mi.owner.charAt(0) == '[') Right(true) // array methods are accessible
        else {
          def canInlineCall(opcode: Int, methodFlags: Int, methodDeclClass: ClassBType, methodRefClass: ClassBType): Either[OptimizerWarning, Boolean] = {
            opcode match {
              case INVOKESPECIAL if mi.name != GenBCode.INSTANCE_CONSTRUCTOR_NAME =>
                // invokespecial is used for private method calls, super calls and instance constructor calls.
                // private method and super calls can only be inlined into the same class.
                Right(destinationClass == calleeDeclarationClass)

              case _ => // INVOKEVIRTUAL, INVOKESTATIC, INVOKEINTERFACE and INVOKESPECIAL of constructors
                memberIsAccessible(methodFlags, methodDeclClass, methodRefClass, destinationClass)
            }
          }

          val methodRefClass = classBTypeFromParsedClassfile(mi.owner)
          for {
            (methodNode, methodDeclClassNode) <- byteCodeRepository.methodNode(methodRefClass.internalName, mi.name, mi.desc): Either[OptimizerWarning, (MethodNode, InternalName)]
            methodDeclClass                   =  classBTypeFromParsedClassfile(methodDeclClassNode)
            res                               <- canInlineCall(mi.getOpcode, methodNode.access, methodDeclClass, methodRefClass)
          } yield {
            res
          }
        }

      case _: InvokeDynamicInsnNode if destinationClass == calleeDeclarationClass =>
        // within the same class, any indy instruction can be inlined
         Right(true)

      // does the InvokeDynamicInsnNode call LambdaMetaFactory?
      case LambdaMetaFactoryCall(_, _, implMethod, _) =>
        // an indy instr points to a "call site specifier" (CSP) [1]
        //  - a reference to a bootstrap method [2]
        //    - bootstrap method name
        //    - references to constant arguments, which can be:
        //      - constant (string, long, int, float, double)
        //      - class
        //      - method type (without name)
        //      - method handle
        //  - a method name+type
        //
        // execution [3]
        //  - resolve the CSP, yielding the bootstrap method handle, the static args and the name+type
        //    - resolution entails accessibility checking [4]
        //  - execute the `invoke` method of the bootstrap method handle (which is signature polymorphic, check its javadoc)
        //    - the descriptor for the call is made up from the actual arguments on the stack:
        //      - the first parameters are "MethodHandles.Lookup, String, MethodType", then the types of the constant arguments,
        //      - the return type is CallSite
        //    - the values for the call are
        //      - the bootstrap method handle of the CSP is the receiver
        //      - the Lookup object for the class in which the callsite occurs (obtained as through calling MethodHandles.lookup())
        //      - the method name of the CSP
        //      - the method type of the CSP
        //      - the constants of the CSP (primitives are not boxed)
        //  - the resulting `CallSite` object
        //    - has as `type` the method type of the CSP
        //    - is popped from the operand stack
        //  - the `invokeExact` method (signature polymorphic!) of the `target` method handle of the CallSite is invoked
        //    - the method descriptor is that of the CSP
        //    - the receiver is the target of the CallSite
        //    - the other argument values are those that were on the operand stack at the indy instruction (indyLambda: the captured values)
        //
        // [1] http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.4.10
        // [2] http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7.23
        // [3] http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.invokedynamic
        // [4] http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3

        // We cannot generically check if an `invokedynamic` instruction can be safely inlined into
        // a different class, that depends on the bootstrap method. The Lookup object passed to the
        // bootstrap method is a capability to access private members of the callsite class. We can
        // only move the invokedynamic to a new class if we know that the bootstrap method doesn't
        // use this capability for otherwise non-accessible members.
        // In the case of indyLambda, it depends on the visibility of the implMethod handle. If
        // the implMethod is public, lambdaMetaFactory doesn't use the Lookup object's extended
        // capability, and we can safely inline the instruction into a different class.

        val methodRefClass = classBTypeFromParsedClassfile(implMethod.getOwner)
        for {
          (methodNode, methodDeclClassNode) <- byteCodeRepository.methodNode(methodRefClass.internalName, implMethod.getName, implMethod.getDesc): Either[OptimizerWarning, (MethodNode, InternalName)]
          methodDeclClass                   =  classBTypeFromParsedClassfile(methodDeclClassNode)
          res                               <- memberIsAccessible(methodNode.access, methodDeclClass, methodRefClass, destinationClass)
        } yield {
          res
        }

      case _: InvokeDynamicInsnNode => Left(UnknownInvokeDynamicInstruction)

      case ci: LdcInsnNode => ci.cst match {
        case t: asm.Type => classIsAccessible(bTypeForDescriptorOrInternalNameFromClassfile(t.getInternalName), destinationClass)
        case _           => Right(true)
      }

      case _ => Right(true)
    }

    val it = instructions.iterator.asScala
    val illegalAccess = mutable.ListBuffer.empty[AbstractInsnNode]
    while (it.hasNext) {
      val i = it.next()
      isLegal(i) match {
        case Left(warning) => return Left((i, warning)) // checking isLegal for i failed
        case Right(false)  => illegalAccess += i        // an illegal instruction was found
        case _ =>
      }
    }
    Right(illegalAccess.toList)
  }
}