aboutsummaryrefslogtreecommitdiff
path: root/docs/ml-decision-tree.md
diff options
context:
space:
mode:
authorJoseph K. Bradley <joseph@databricks.com>2015-08-19 07:38:27 -0700
committerXiangrui Meng <meng@databricks.com>2015-08-19 07:38:27 -0700
commit39e4ebd521defdb68a0787bcd3bde6bc855f5198 (patch)
treed8e7a51b1249481df3259472a225987556feb486 /docs/ml-decision-tree.md
parent3d16a545007922ee6fa36e5f5c3959406cb46484 (diff)
downloadspark-39e4ebd521defdb68a0787bcd3bde6bc855f5198.tar.gz
spark-39e4ebd521defdb68a0787bcd3bde6bc855f5198.tar.bz2
spark-39e4ebd521defdb68a0787bcd3bde6bc855f5198.zip
[SPARK-10060] [ML] [DOC] spark.ml DecisionTree user guide
New user guide section ml-decision-tree.md, including code examples. I have run all examples, including the Java ones. CC: manishamde yanboliang mengxr Author: Joseph K. Bradley <joseph@databricks.com> Closes #8244 from jkbradley/ml-dt-docs.
Diffstat (limited to 'docs/ml-decision-tree.md')
-rw-r--r--docs/ml-decision-tree.md510
1 files changed, 510 insertions, 0 deletions
diff --git a/docs/ml-decision-tree.md b/docs/ml-decision-tree.md
new file mode 100644
index 0000000000..958c6f5e47
--- /dev/null
+++ b/docs/ml-decision-tree.md
@@ -0,0 +1,510 @@
+---
+layout: global
+title: Decision Trees - SparkML
+displayTitle: <a href="ml-guide.html">ML</a> - Decision Trees
+---
+
+**Table of Contents**
+
+* This will become a table of contents (this text will be scraped).
+{:toc}
+
+
+# Overview
+
+[Decision trees](http://en.wikipedia.org/wiki/Decision_tree_learning)
+and their ensembles are popular methods for the machine learning tasks of
+classification and regression. Decision trees are widely used since they are easy to interpret,
+handle categorical features, extend to the multiclass classification setting, do not require
+feature scaling, and are able to capture non-linearities and feature interactions. Tree ensemble
+algorithms such as random forests and boosting are among the top performers for classification and
+regression tasks.
+
+MLlib supports decision trees for binary and multiclass classification and for regression,
+using both continuous and categorical features. The implementation partitions data by rows,
+allowing distributed training with millions or even billions of instances.
+
+Users can find more information about the decision tree algorithm in the [MLlib Decision Tree guide](mllib-decision-tree.html). In this section, we demonstrate the Pipelines API for Decision Trees.
+
+The Pipelines API for Decision Trees offers a bit more functionality than the original API. In particular, for classification, users can get the predicted probability of each class (a.k.a. class conditional probabilities).
+
+Ensembles of trees (Random Forests and Gradient-Boosted Trees) are described in the [Ensembles guide](ml-ensembles.html).
+
+# Inputs and Outputs (Predictions)
+
+We list the input and output (prediction) column types here.
+All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.
+
+## Input Columns
+
+<table class="table">
+ <thead>
+ <tr>
+ <th align="left">Param name</th>
+ <th align="left">Type(s)</th>
+ <th align="left">Default</th>
+ <th align="left">Description</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>labelCol</td>
+ <td>Double</td>
+ <td>"label"</td>
+ <td>Label to predict</td>
+ </tr>
+ <tr>
+ <td>featuresCol</td>
+ <td>Vector</td>
+ <td>"features"</td>
+ <td>Feature vector</td>
+ </tr>
+ </tbody>
+</table>
+
+## Output Columns
+
+<table class="table">
+ <thead>
+ <tr>
+ <th align="left">Param name</th>
+ <th align="left">Type(s)</th>
+ <th align="left">Default</th>
+ <th align="left">Description</th>
+ <th align="left">Notes</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td>predictionCol</td>
+ <td>Double</td>
+ <td>"prediction"</td>
+ <td>Predicted label</td>
+ <td></td>
+ </tr>
+ <tr>
+ <td>rawPredictionCol</td>
+ <td>Vector</td>
+ <td>"rawPrediction"</td>
+ <td>Vector of length # classes, with the counts of training instance labels at the tree node which makes the prediction</td>
+ <td>Classification only</td>
+ </tr>
+ <tr>
+ <td>probabilityCol</td>
+ <td>Vector</td>
+ <td>"probability"</td>
+ <td>Vector of length # classes equal to rawPrediction normalized to a multinomial distribution</td>
+ <td>Classification only</td>
+ </tr>
+ </tbody>
+</table>
+
+# Examples
+
+The below examples demonstrate the Pipelines API for Decision Trees. The main differences between this API and the [original MLlib Decision Tree API](mllib-decision-tree.html) are:
+
+* support for ML Pipelines
+* separation of Decision Trees for classification vs. regression
+* use of DataFrame metadata to distinguish continuous and categorical features
+
+
+## Classification
+
+The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
+We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the `DataFrame` which the Decision Tree algorithm can recognize.
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+
+More details on parameters can be found in the [Scala API documentation](api/scala/index.html#org.apache.spark.ml.classification.DecisionTreeClassifier).
+
+{% highlight scala %}
+import org.apache.spark.ml.Pipeline
+import org.apache.spark.ml.classification.DecisionTreeClassifier
+import org.apache.spark.ml.classification.DecisionTreeClassificationModel
+import org.apache.spark.ml.feature.{StringIndexer, IndexToString, VectorIndexer}
+import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
+import org.apache.spark.mllib.util.MLUtils
+
+// Load and parse the data file, converting it to a DataFrame.
+val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF()
+
+// Index labels, adding metadata to the label column.
+// Fit on whole dataset to include all labels in index.
+val labelIndexer = new StringIndexer()
+ .setInputCol("label")
+ .setOutputCol("indexedLabel")
+ .fit(data)
+// Automatically identify categorical features, and index them.
+val featureIndexer = new VectorIndexer()
+ .setInputCol("features")
+ .setOutputCol("indexedFeatures")
+ .setMaxCategories(4) // features with > 4 distinct values are treated as continuous
+ .fit(data)
+
+// Split the data into training and test sets (30% held out for testing)
+val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))
+
+// Train a DecisionTree model.
+val dt = new DecisionTreeClassifier()
+ .setLabelCol("indexedLabel")
+ .setFeaturesCol("indexedFeatures")
+
+// Convert indexed labels back to original labels.
+val labelConverter = new IndexToString()
+ .setInputCol("prediction")
+ .setOutputCol("predictedLabel")
+ .setLabels(labelIndexer.labels)
+
+// Chain indexers and tree in a Pipeline
+val pipeline = new Pipeline()
+ .setStages(Array(labelIndexer, featureIndexer, dt, labelConverter))
+
+// Train model. This also runs the indexers.
+val model = pipeline.fit(trainingData)
+
+// Make predictions.
+val predictions = model.transform(testData)
+
+// Select example rows to display.
+predictions.select("predictedLabel", "label", "features").show(5)
+
+// Select (prediction, true label) and compute test error
+val evaluator = new MulticlassClassificationEvaluator()
+ .setLabelCol("indexedLabel")
+ .setPredictionCol("prediction")
+ .setMetricName("precision")
+val accuracy = evaluator.evaluate(predictions)
+println("Test Error = " + (1.0 - accuracy))
+
+val treeModel = model.stages(2).asInstanceOf[DecisionTreeClassificationModel]
+println("Learned classification tree model:\n" + treeModel.toDebugString)
+{% endhighlight %}
+</div>
+
+<div data-lang="java" markdown="1">
+
+More details on parameters can be found in the [Java API documentation](api/java/org/apache/spark/ml/classification/DecisionTreeClassifier.html).
+
+{% highlight java %}
+import org.apache.spark.ml.Pipeline;
+import org.apache.spark.ml.PipelineModel;
+import org.apache.spark.ml.PipelineStage;
+import org.apache.spark.ml.classification.DecisionTreeClassifier;
+import org.apache.spark.ml.classification.DecisionTreeClassificationModel;
+import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
+import org.apache.spark.ml.feature.*;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.mllib.util.MLUtils;
+import org.apache.spark.rdd.RDD;
+import org.apache.spark.sql.DataFrame;
+
+// Load and parse the data file, converting it to a DataFrame.
+RDD<LabeledPoint> rdd = MLUtils.loadLibSVMFile(sc.sc(), "data/mllib/sample_libsvm_data.txt");
+DataFrame data = jsql.createDataFrame(rdd, LabeledPoint.class);
+
+// Index labels, adding metadata to the label column.
+// Fit on whole dataset to include all labels in index.
+StringIndexerModel labelIndexer = new StringIndexer()
+ .setInputCol("label")
+ .setOutputCol("indexedLabel")
+ .fit(data);
+// Automatically identify categorical features, and index them.
+VectorIndexerModel featureIndexer = new VectorIndexer()
+ .setInputCol("features")
+ .setOutputCol("indexedFeatures")
+ .setMaxCategories(4) // features with > 4 distinct values are treated as continuous
+ .fit(data);
+
+// Split the data into training and test sets (30% held out for testing)
+DataFrame[] splits = data.randomSplit(new double[] {0.7, 0.3});
+DataFrame trainingData = splits[0];
+DataFrame testData = splits[1];
+
+// Train a DecisionTree model.
+DecisionTreeClassifier dt = new DecisionTreeClassifier()
+ .setLabelCol("indexedLabel")
+ .setFeaturesCol("indexedFeatures");
+
+// Convert indexed labels back to original labels.
+IndexToString labelConverter = new IndexToString()
+ .setInputCol("prediction")
+ .setOutputCol("predictedLabel")
+ .setLabels(labelIndexer.labels());
+
+// Chain indexers and tree in a Pipeline
+Pipeline pipeline = new Pipeline()
+ .setStages(new PipelineStage[]{labelIndexer, featureIndexer, dt, labelConverter});
+
+// Train model. This also runs the indexers.
+PipelineModel model = pipeline.fit(trainingData);
+
+// Make predictions.
+DataFrame predictions = model.transform(testData);
+
+// Select example rows to display.
+predictions.select("predictedLabel", "label", "features").show(5);
+
+// Select (prediction, true label) and compute test error
+MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
+ .setLabelCol("indexedLabel")
+ .setPredictionCol("prediction")
+ .setMetricName("precision");
+double accuracy = evaluator.evaluate(predictions);
+System.out.println("Test Error = " + (1.0 - accuracy));
+
+DecisionTreeClassificationModel treeModel =
+ (DecisionTreeClassificationModel)(model.stages()[2]);
+System.out.println("Learned classification tree model:\n" + treeModel.toDebugString());
+{% endhighlight %}
+</div>
+
+<div data-lang="python" markdown="1">
+
+More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.classification.DecisionTreeClassifier).
+
+{% highlight python %}
+from pyspark.ml import Pipeline
+from pyspark.ml.classification import DecisionTreeClassifier
+from pyspark.ml.feature import StringIndexer, VectorIndexer
+from pyspark.ml.evaluation import MulticlassClassificationEvaluator
+from pyspark.mllib.util import MLUtils
+
+# Load and parse the data file, converting it to a DataFrame.
+data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF()
+
+# Index labels, adding metadata to the label column.
+# Fit on whole dataset to include all labels in index.
+labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
+# Automatically identify categorical features, and index them.
+# We specify maxCategories so features with > 4 distinct values are treated as continuous.
+featureIndexer =\
+ VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
+
+# Split the data into training and test sets (30% held out for testing)
+(trainingData, testData) = data.randomSplit([0.7, 0.3])
+
+# Train a DecisionTree model.
+dt = DecisionTreeClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures")
+
+# Chain indexers and tree in a Pipeline
+pipeline = Pipeline(stages=[labelIndexer, featureIndexer, dt])
+
+# Train model. This also runs the indexers.
+model = pipeline.fit(trainingData)
+
+# Make predictions.
+predictions = model.transform(testData)
+
+# Select example rows to display.
+predictions.select("prediction", "indexedLabel", "features").show(5)
+
+# Select (prediction, true label) and compute test error
+evaluator = MulticlassClassificationEvaluator(
+ labelCol="indexedLabel", predictionCol="prediction", metricName="precision")
+accuracy = evaluator.evaluate(predictions)
+print "Test Error = %g" % (1.0 - accuracy)
+
+treeModel = model.stages[2]
+print treeModel # summary only
+{% endhighlight %}
+</div>
+
+</div>
+
+
+## Regression
+
+<div class="codetabs">
+<div data-lang="scala" markdown="1">
+
+More details on parameters can be found in the [Scala API documentation](api/scala/index.html#org.apache.spark.ml.classification.DecisionTreeClassifier).
+
+{% highlight scala %}
+import org.apache.spark.ml.Pipeline
+import org.apache.spark.ml.regression.DecisionTreeRegressor
+import org.apache.spark.ml.regression.DecisionTreeRegressionModel
+import org.apache.spark.ml.feature.VectorIndexer
+import org.apache.spark.ml.evaluation.RegressionEvaluator
+import org.apache.spark.mllib.util.MLUtils
+
+// Load and parse the data file, converting it to a DataFrame.
+val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF()
+
+// Automatically identify categorical features, and index them.
+// Here, we treat features with > 4 distinct values as continuous.
+val featureIndexer = new VectorIndexer()
+ .setInputCol("features")
+ .setOutputCol("indexedFeatures")
+ .setMaxCategories(4)
+ .fit(data)
+
+// Split the data into training and test sets (30% held out for testing)
+val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))
+
+// Train a DecisionTree model.
+val dt = new DecisionTreeRegressor()
+ .setLabelCol("label")
+ .setFeaturesCol("indexedFeatures")
+
+// Chain indexers and tree in a Pipeline
+val pipeline = new Pipeline()
+ .setStages(Array(featureIndexer, dt))
+
+// Train model. This also runs the indexer.
+val model = pipeline.fit(trainingData)
+
+// Make predictions.
+val predictions = model.transform(testData)
+
+// Select example rows to display.
+predictions.select("prediction", "label", "features").show(5)
+
+// Select (prediction, true label) and compute test error
+val evaluator = new RegressionEvaluator()
+ .setLabelCol("label")
+ .setPredictionCol("prediction")
+ .setMetricName("rmse")
+// We negate the RMSE value since RegressionEvalutor returns negated RMSE
+// (since evaluation metrics are meant to be maximized by CrossValidator).
+val rmse = - evaluator.evaluate(predictions)
+println("Root Mean Squared Error (RMSE) on test data = " + rmse)
+
+val treeModel = model.stages(1).asInstanceOf[DecisionTreeRegressionModel]
+println("Learned regression tree model:\n" + treeModel.toDebugString)
+{% endhighlight %}
+</div>
+
+<div data-lang="java" markdown="1">
+
+More details on parameters can be found in the [Java API documentation](api/java/org/apache/spark/ml/classification/DecisionTreeClassifier.html).
+
+{% highlight java %}
+import org.apache.spark.ml.Pipeline;
+import org.apache.spark.ml.PipelineModel;
+import org.apache.spark.ml.PipelineStage;
+import org.apache.spark.ml.evaluation.RegressionEvaluator;
+import org.apache.spark.ml.feature.*;
+import org.apache.spark.ml.regression.DecisionTreeRegressionModel;
+import org.apache.spark.ml.regression.DecisionTreeRegressor;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.mllib.util.MLUtils;
+import org.apache.spark.rdd.RDD;
+import org.apache.spark.sql.DataFrame;
+
+// Load and parse the data file, converting it to a DataFrame.
+RDD<LabeledPoint> rdd = MLUtils.loadLibSVMFile(sc.sc(), "data/mllib/sample_libsvm_data.txt");
+DataFrame data = jsql.createDataFrame(rdd, LabeledPoint.class);
+
+// Index labels, adding metadata to the label column.
+// Fit on whole dataset to include all labels in index.
+StringIndexerModel labelIndexer = new StringIndexer()
+ .setInputCol("label")
+ .setOutputCol("indexedLabel")
+ .fit(data);
+// Automatically identify categorical features, and index them.
+VectorIndexerModel featureIndexer = new VectorIndexer()
+ .setInputCol("features")
+ .setOutputCol("indexedFeatures")
+ .setMaxCategories(4) // features with > 4 distinct values are treated as continuous
+ .fit(data);
+
+// Split the data into training and test sets (30% held out for testing)
+DataFrame[] splits = data.randomSplit(new double[] {0.7, 0.3});
+DataFrame trainingData = splits[0];
+DataFrame testData = splits[1];
+
+// Train a DecisionTree model.
+DecisionTreeRegressor dt = new DecisionTreeRegressor()
+ .setLabelCol("indexedLabel")
+ .setFeaturesCol("indexedFeatures");
+
+// Convert indexed labels back to original labels.
+IndexToString labelConverter = new IndexToString()
+ .setInputCol("prediction")
+ .setOutputCol("predictedLabel")
+ .setLabels(labelIndexer.labels());
+
+// Chain indexers and tree in a Pipeline
+Pipeline pipeline = new Pipeline()
+ .setStages(new PipelineStage[]{labelIndexer, featureIndexer, dt, labelConverter});
+
+// Train model. This also runs the indexers.
+PipelineModel model = pipeline.fit(trainingData);
+
+// Make predictions.
+DataFrame predictions = model.transform(testData);
+
+// Select example rows to display.
+predictions.select("predictedLabel", "label", "features").show(5);
+
+// Select (prediction, true label) and compute test error
+RegressionEvaluator evaluator = new RegressionEvaluator()
+ .setLabelCol("indexedLabel")
+ .setPredictionCol("prediction")
+ .setMetricName("rmse");
+// We negate the RMSE value since RegressionEvalutor returns negated RMSE
+// (since evaluation metrics are meant to be maximized by CrossValidator).
+double rmse = - evaluator.evaluate(predictions);
+System.out.println("Root Mean Squared Error (RMSE) on test data = " + rmse);
+
+DecisionTreeRegressionModel treeModel =
+ (DecisionTreeRegressionModel)(model.stages()[2]);
+System.out.println("Learned regression tree model:\n" + treeModel.toDebugString());
+{% endhighlight %}
+</div>
+
+<div data-lang="python" markdown="1">
+
+More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.classification.DecisionTreeClassifier).
+
+{% highlight python %}
+from pyspark.ml import Pipeline
+from pyspark.ml.regression import DecisionTreeRegressor
+from pyspark.ml.feature import StringIndexer, VectorIndexer
+from pyspark.ml.evaluation import RegressionEvaluator
+from pyspark.mllib.util import MLUtils
+
+# Load and parse the data file, converting it to a DataFrame.
+data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF()
+
+# Index labels, adding metadata to the label column.
+# Fit on whole dataset to include all labels in index.
+labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
+# Automatically identify categorical features, and index them.
+# We specify maxCategories so features with > 4 distinct values are treated as continuous.
+featureIndexer =\
+ VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
+
+# Split the data into training and test sets (30% held out for testing)
+(trainingData, testData) = data.randomSplit([0.7, 0.3])
+
+# Train a DecisionTree model.
+dt = DecisionTreeRegressor(labelCol="indexedLabel", featuresCol="indexedFeatures")
+
+# Chain indexers and tree in a Pipeline
+pipeline = Pipeline(stages=[labelIndexer, featureIndexer, dt])
+
+# Train model. This also runs the indexers.
+model = pipeline.fit(trainingData)
+
+# Make predictions.
+predictions = model.transform(testData)
+
+# Select example rows to display.
+predictions.select("prediction", "indexedLabel", "features").show(5)
+
+# Select (prediction, true label) and compute test error
+evaluator = RegressionEvaluator(
+ labelCol="indexedLabel", predictionCol="prediction", metricName="rmse")
+# We negate the RMSE value since RegressionEvalutor returns negated RMSE
+# (since evaluation metrics are meant to be maximized by CrossValidator).
+rmse = -evaluator.evaluate(predictions)
+print "Root Mean Squared Error (RMSE) on test data = %g" % rmse
+
+treeModel = model.stages[1]
+print treeModel # summary only
+{% endhighlight %}
+</div>
+
+</div>