aboutsummaryrefslogtreecommitdiff
path: root/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala
diff options
context:
space:
mode:
Diffstat (limited to 'mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala')
-rw-r--r--mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala1026
1 files changed, 1026 insertions, 0 deletions
diff --git a/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala b/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala
new file mode 100644
index 0000000000..baa04fb0fd
--- /dev/null
+++ b/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala
@@ -0,0 +1,1026 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.linalg
+
+import java.util.{Arrays, Random}
+
+import scala.collection.mutable.{ArrayBuffer, ArrayBuilder => MArrayBuilder, HashSet => MHashSet}
+
+import breeze.linalg.{CSCMatrix => BSM, DenseMatrix => BDM, Matrix => BM}
+import com.github.fommil.netlib.BLAS.{getInstance => blas}
+
+/**
+ * Trait for a local matrix.
+ */
+sealed trait Matrix extends Serializable {
+
+ /** Number of rows. */
+ def numRows: Int
+
+ /** Number of columns. */
+ def numCols: Int
+
+ /** Flag that keeps track whether the matrix is transposed or not. False by default. */
+ val isTransposed: Boolean = false
+
+ /** Converts to a dense array in column major. */
+ def toArray: Array[Double] = {
+ val newArray = new Array[Double](numRows * numCols)
+ foreachActive { (i, j, v) =>
+ newArray(j * numRows + i) = v
+ }
+ newArray
+ }
+
+ /**
+ * Returns an iterator of column vectors.
+ * This operation could be expensive, depending on the underlying storage.
+ */
+ def colIter: Iterator[Vector]
+
+ /**
+ * Returns an iterator of row vectors.
+ * This operation could be expensive, depending on the underlying storage.
+ */
+ def rowIter: Iterator[Vector] = this.transpose.colIter
+
+ /** Converts to a breeze matrix. */
+ private[ml] def toBreeze: BM[Double]
+
+ /** Gets the (i, j)-th element. */
+ def apply(i: Int, j: Int): Double
+
+ /** Return the index for the (i, j)-th element in the backing array. */
+ private[ml] def index(i: Int, j: Int): Int
+
+ /** Update element at (i, j) */
+ private[ml] def update(i: Int, j: Int, v: Double): Unit
+
+ /** Get a deep copy of the matrix. */
+ def copy: Matrix
+
+ /** Transpose the Matrix. Returns a new `Matrix` instance sharing the same underlying data. */
+ def transpose: Matrix
+
+ /** Convenience method for `Matrix`-`DenseMatrix` multiplication. */
+ def multiply(y: DenseMatrix): DenseMatrix = {
+ val C: DenseMatrix = DenseMatrix.zeros(numRows, y.numCols)
+ BLAS.gemm(1.0, this, y, 0.0, C)
+ C
+ }
+
+ /** Convenience method for `Matrix`-`DenseVector` multiplication. For binary compatibility. */
+ def multiply(y: DenseVector): DenseVector = {
+ multiply(y.asInstanceOf[Vector])
+ }
+
+ /** Convenience method for `Matrix`-`Vector` multiplication. */
+ def multiply(y: Vector): DenseVector = {
+ val output = new DenseVector(new Array[Double](numRows))
+ BLAS.gemv(1.0, this, y, 0.0, output)
+ output
+ }
+
+ /** A human readable representation of the matrix */
+ override def toString: String = toBreeze.toString()
+
+ /** A human readable representation of the matrix with maximum lines and width */
+ def toString(maxLines: Int, maxLineWidth: Int): String = toBreeze.toString(maxLines, maxLineWidth)
+
+ /**
+ * Map the values of this matrix using a function. Generates a new matrix. Performs the
+ * function on only the backing array. For example, an operation such as addition or
+ * subtraction will only be performed on the non-zero values in a `SparseMatrix`.
+ */
+ private[spark] def map(f: Double => Double): Matrix
+
+ /**
+ * Update all the values of this matrix using the function f. Performed in-place on the
+ * backing array. For example, an operation such as addition or subtraction will only be
+ * performed on the non-zero values in a `SparseMatrix`.
+ */
+ private[ml] def update(f: Double => Double): Matrix
+
+ /**
+ * Applies a function `f` to all the active elements of dense and sparse matrix. The ordering
+ * of the elements are not defined.
+ *
+ * @param f the function takes three parameters where the first two parameters are the row
+ * and column indices respectively with the type `Int`, and the final parameter is the
+ * corresponding value in the matrix with type `Double`.
+ */
+ private[spark] def foreachActive(f: (Int, Int, Double) => Unit)
+
+ /**
+ * Find the number of non-zero active values.
+ */
+ def numNonzeros: Int
+
+ /**
+ * Find the number of values stored explicitly. These values can be zero as well.
+ */
+ def numActives: Int
+}
+
+/**
+ * Column-major dense matrix.
+ * The entry values are stored in a single array of doubles with columns listed in sequence.
+ * For example, the following matrix
+ * {{{
+ * 1.0 2.0
+ * 3.0 4.0
+ * 5.0 6.0
+ * }}}
+ * is stored as `[1.0, 3.0, 5.0, 2.0, 4.0, 6.0]`.
+ *
+ * @param numRows number of rows
+ * @param numCols number of columns
+ * @param values matrix entries in column major if not transposed or in row major otherwise
+ * @param isTransposed whether the matrix is transposed. If true, `values` stores the matrix in
+ * row major.
+ */
+class DenseMatrix (
+ val numRows: Int,
+ val numCols: Int,
+ val values: Array[Double],
+ override val isTransposed: Boolean) extends Matrix {
+
+ require(values.length == numRows * numCols, "The number of values supplied doesn't match the " +
+ s"size of the matrix! values.length: ${values.length}, numRows * numCols: ${numRows * numCols}")
+
+ /**
+ * Column-major dense matrix.
+ * The entry values are stored in a single array of doubles with columns listed in sequence.
+ * For example, the following matrix
+ * {{{
+ * 1.0 2.0
+ * 3.0 4.0
+ * 5.0 6.0
+ * }}}
+ * is stored as `[1.0, 3.0, 5.0, 2.0, 4.0, 6.0]`.
+ *
+ * @param numRows number of rows
+ * @param numCols number of columns
+ * @param values matrix entries in column major
+ */
+ def this(numRows: Int, numCols: Int, values: Array[Double]) =
+ this(numRows, numCols, values, false)
+
+ override def equals(o: Any): Boolean = o match {
+ case m: Matrix => toBreeze == m.toBreeze
+ case _ => false
+ }
+
+ override def hashCode: Int = {
+ Seq(numRows, numCols, toArray).##
+ }
+
+ private[ml] def toBreeze: BM[Double] = {
+ if (!isTransposed) {
+ new BDM[Double](numRows, numCols, values)
+ } else {
+ val breezeMatrix = new BDM[Double](numCols, numRows, values)
+ breezeMatrix.t
+ }
+ }
+
+ private[ml] def apply(i: Int): Double = values(i)
+
+ override def apply(i: Int, j: Int): Double = values(index(i, j))
+
+ private[ml] def index(i: Int, j: Int): Int = {
+ require(i >= 0 && i < numRows, s"Expected 0 <= i < $numRows, got i = $i.")
+ require(j >= 0 && j < numCols, s"Expected 0 <= j < $numCols, got j = $j.")
+ if (!isTransposed) i + numRows * j else j + numCols * i
+ }
+
+ private[ml] def update(i: Int, j: Int, v: Double): Unit = {
+ values(index(i, j)) = v
+ }
+
+ override def copy: DenseMatrix = new DenseMatrix(numRows, numCols, values.clone())
+
+ private[spark] def map(f: Double => Double) = new DenseMatrix(numRows, numCols, values.map(f),
+ isTransposed)
+
+ private[ml] def update(f: Double => Double): DenseMatrix = {
+ val len = values.length
+ var i = 0
+ while (i < len) {
+ values(i) = f(values(i))
+ i += 1
+ }
+ this
+ }
+
+ override def transpose: DenseMatrix = new DenseMatrix(numCols, numRows, values, !isTransposed)
+
+ private[spark] override def foreachActive(f: (Int, Int, Double) => Unit): Unit = {
+ if (!isTransposed) {
+ // outer loop over columns
+ var j = 0
+ while (j < numCols) {
+ var i = 0
+ val indStart = j * numRows
+ while (i < numRows) {
+ f(i, j, values(indStart + i))
+ i += 1
+ }
+ j += 1
+ }
+ } else {
+ // outer loop over rows
+ var i = 0
+ while (i < numRows) {
+ var j = 0
+ val indStart = i * numCols
+ while (j < numCols) {
+ f(i, j, values(indStart + j))
+ j += 1
+ }
+ i += 1
+ }
+ }
+ }
+
+ override def numNonzeros: Int = values.count(_ != 0)
+
+ override def numActives: Int = values.length
+
+ /**
+ * Generate a `SparseMatrix` from the given `DenseMatrix`. The new matrix will have isTransposed
+ * set to false.
+ */
+ def toSparse: SparseMatrix = {
+ val spVals: MArrayBuilder[Double] = new MArrayBuilder.ofDouble
+ val colPtrs: Array[Int] = new Array[Int](numCols + 1)
+ val rowIndices: MArrayBuilder[Int] = new MArrayBuilder.ofInt
+ var nnz = 0
+ var j = 0
+ while (j < numCols) {
+ var i = 0
+ while (i < numRows) {
+ val v = values(index(i, j))
+ if (v != 0.0) {
+ rowIndices += i
+ spVals += v
+ nnz += 1
+ }
+ i += 1
+ }
+ j += 1
+ colPtrs(j) = nnz
+ }
+ new SparseMatrix(numRows, numCols, colPtrs, rowIndices.result(), spVals.result())
+ }
+
+ override def colIter: Iterator[Vector] = {
+ if (isTransposed) {
+ Iterator.tabulate(numCols) { j =>
+ val col = new Array[Double](numRows)
+ blas.dcopy(numRows, values, j, numCols, col, 0, 1)
+ new DenseVector(col)
+ }
+ } else {
+ Iterator.tabulate(numCols) { j =>
+ new DenseVector(values.slice(j * numRows, (j + 1) * numRows))
+ }
+ }
+ }
+}
+
+/**
+ * Factory methods for [[org.apache.spark.ml.linalg.DenseMatrix]].
+ */
+object DenseMatrix {
+
+ /**
+ * Generate a `DenseMatrix` consisting of zeros.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @return `DenseMatrix` with size `numRows` x `numCols` and values of zeros
+ */
+ def zeros(numRows: Int, numCols: Int): DenseMatrix = {
+ require(numRows.toLong * numCols <= Int.MaxValue,
+ s"$numRows x $numCols dense matrix is too large to allocate")
+ new DenseMatrix(numRows, numCols, new Array[Double](numRows * numCols))
+ }
+
+ /**
+ * Generate a `DenseMatrix` consisting of ones.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @return `DenseMatrix` with size `numRows` x `numCols` and values of ones
+ */
+ def ones(numRows: Int, numCols: Int): DenseMatrix = {
+ require(numRows.toLong * numCols <= Int.MaxValue,
+ s"$numRows x $numCols dense matrix is too large to allocate")
+ new DenseMatrix(numRows, numCols, Array.fill(numRows * numCols)(1.0))
+ }
+
+ /**
+ * Generate an Identity Matrix in `DenseMatrix` format.
+ * @param n number of rows and columns of the matrix
+ * @return `DenseMatrix` with size `n` x `n` and values of ones on the diagonal
+ */
+ def eye(n: Int): DenseMatrix = {
+ val identity = DenseMatrix.zeros(n, n)
+ var i = 0
+ while (i < n) {
+ identity.update(i, i, 1.0)
+ i += 1
+ }
+ identity
+ }
+
+ /**
+ * Generate a `DenseMatrix` consisting of `i.i.d.` uniform random numbers.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @param rng a random number generator
+ * @return `DenseMatrix` with size `numRows` x `numCols` and values in U(0, 1)
+ */
+ def rand(numRows: Int, numCols: Int, rng: Random): DenseMatrix = {
+ require(numRows.toLong * numCols <= Int.MaxValue,
+ s"$numRows x $numCols dense matrix is too large to allocate")
+ new DenseMatrix(numRows, numCols, Array.fill(numRows * numCols)(rng.nextDouble()))
+ }
+
+ /**
+ * Generate a `DenseMatrix` consisting of `i.i.d.` gaussian random numbers.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @param rng a random number generator
+ * @return `DenseMatrix` with size `numRows` x `numCols` and values in N(0, 1)
+ */
+ def randn(numRows: Int, numCols: Int, rng: Random): DenseMatrix = {
+ require(numRows.toLong * numCols <= Int.MaxValue,
+ s"$numRows x $numCols dense matrix is too large to allocate")
+ new DenseMatrix(numRows, numCols, Array.fill(numRows * numCols)(rng.nextGaussian()))
+ }
+
+ /**
+ * Generate a diagonal matrix in `DenseMatrix` format from the supplied values.
+ * @param vector a `Vector` that will form the values on the diagonal of the matrix
+ * @return Square `DenseMatrix` with size `values.length` x `values.length` and `values`
+ * on the diagonal
+ */
+ def diag(vector: Vector): DenseMatrix = {
+ val n = vector.size
+ val matrix = DenseMatrix.zeros(n, n)
+ val values = vector.toArray
+ var i = 0
+ while (i < n) {
+ matrix.update(i, i, values(i))
+ i += 1
+ }
+ matrix
+ }
+}
+
+/**
+ * Column-major sparse matrix.
+ * The entry values are stored in Compressed Sparse Column (CSC) format.
+ * For example, the following matrix
+ * {{{
+ * 1.0 0.0 4.0
+ * 0.0 3.0 5.0
+ * 2.0 0.0 6.0
+ * }}}
+ * is stored as `values: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]`,
+ * `rowIndices=[0, 2, 1, 0, 1, 2]`, `colPointers=[0, 2, 3, 6]`.
+ *
+ * @param numRows number of rows
+ * @param numCols number of columns
+ * @param colPtrs the index corresponding to the start of a new column (if not transposed)
+ * @param rowIndices the row index of the entry (if not transposed). They must be in strictly
+ * increasing order for each column
+ * @param values nonzero matrix entries in column major (if not transposed)
+ * @param isTransposed whether the matrix is transposed. If true, the matrix can be considered
+ * Compressed Sparse Row (CSR) format, where `colPtrs` behaves as rowPtrs,
+ * and `rowIndices` behave as colIndices, and `values` are stored in row major.
+ */
+class SparseMatrix (
+ val numRows: Int,
+ val numCols: Int,
+ val colPtrs: Array[Int],
+ val rowIndices: Array[Int],
+ val values: Array[Double],
+ override val isTransposed: Boolean) extends Matrix {
+
+ require(values.length == rowIndices.length, "The number of row indices and values don't match! " +
+ s"values.length: ${values.length}, rowIndices.length: ${rowIndices.length}")
+ // The Or statement is for the case when the matrix is transposed
+ require(colPtrs.length == numCols + 1 || colPtrs.length == numRows + 1, "The length of the " +
+ "column indices should be the number of columns + 1. Currently, colPointers.length: " +
+ s"${colPtrs.length}, numCols: $numCols")
+ require(values.length == colPtrs.last, "The last value of colPtrs must equal the number of " +
+ s"elements. values.length: ${values.length}, colPtrs.last: ${colPtrs.last}")
+
+ /**
+ * Column-major sparse matrix.
+ * The entry values are stored in Compressed Sparse Column (CSC) format.
+ * For example, the following matrix
+ * {{{
+ * 1.0 0.0 4.0
+ * 0.0 3.0 5.0
+ * 2.0 0.0 6.0
+ * }}}
+ * is stored as `values: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]`,
+ * `rowIndices=[0, 2, 1, 0, 1, 2]`, `colPointers=[0, 2, 3, 6]`.
+ *
+ * @param numRows number of rows
+ * @param numCols number of columns
+ * @param colPtrs the index corresponding to the start of a new column
+ * @param rowIndices the row index of the entry. They must be in strictly increasing
+ * order for each column
+ * @param values non-zero matrix entries in column major
+ */
+ def this(
+ numRows: Int,
+ numCols: Int,
+ colPtrs: Array[Int],
+ rowIndices: Array[Int],
+ values: Array[Double]) = this(numRows, numCols, colPtrs, rowIndices, values, false)
+
+ override def equals(o: Any): Boolean = o match {
+ case m: Matrix => toBreeze == m.toBreeze
+ case _ => false
+ }
+
+ private[ml] def toBreeze: BM[Double] = {
+ if (!isTransposed) {
+ new BSM[Double](values, numRows, numCols, colPtrs, rowIndices)
+ } else {
+ val breezeMatrix = new BSM[Double](values, numCols, numRows, colPtrs, rowIndices)
+ breezeMatrix.t
+ }
+ }
+
+ override def apply(i: Int, j: Int): Double = {
+ val ind = index(i, j)
+ if (ind < 0) 0.0 else values(ind)
+ }
+
+ private[ml] def index(i: Int, j: Int): Int = {
+ require(i >= 0 && i < numRows, s"Expected 0 <= i < $numRows, got i = $i.")
+ require(j >= 0 && j < numCols, s"Expected 0 <= j < $numCols, got j = $j.")
+ if (!isTransposed) {
+ Arrays.binarySearch(rowIndices, colPtrs(j), colPtrs(j + 1), i)
+ } else {
+ Arrays.binarySearch(rowIndices, colPtrs(i), colPtrs(i + 1), j)
+ }
+ }
+
+ private[ml] def update(i: Int, j: Int, v: Double): Unit = {
+ val ind = index(i, j)
+ if (ind < 0) {
+ throw new NoSuchElementException("The given row and column indices correspond to a zero " +
+ "value. Only non-zero elements in Sparse Matrices can be updated.")
+ } else {
+ values(ind) = v
+ }
+ }
+
+ override def copy: SparseMatrix = {
+ new SparseMatrix(numRows, numCols, colPtrs, rowIndices, values.clone())
+ }
+
+ private[spark] def map(f: Double => Double) =
+ new SparseMatrix(numRows, numCols, colPtrs, rowIndices, values.map(f), isTransposed)
+
+ private[ml] def update(f: Double => Double): SparseMatrix = {
+ val len = values.length
+ var i = 0
+ while (i < len) {
+ values(i) = f(values(i))
+ i += 1
+ }
+ this
+ }
+
+ override def transpose: SparseMatrix =
+ new SparseMatrix(numCols, numRows, colPtrs, rowIndices, values, !isTransposed)
+
+ private[spark] override def foreachActive(f: (Int, Int, Double) => Unit): Unit = {
+ if (!isTransposed) {
+ var j = 0
+ while (j < numCols) {
+ var idx = colPtrs(j)
+ val idxEnd = colPtrs(j + 1)
+ while (idx < idxEnd) {
+ f(rowIndices(idx), j, values(idx))
+ idx += 1
+ }
+ j += 1
+ }
+ } else {
+ var i = 0
+ while (i < numRows) {
+ var idx = colPtrs(i)
+ val idxEnd = colPtrs(i + 1)
+ while (idx < idxEnd) {
+ val j = rowIndices(idx)
+ f(i, j, values(idx))
+ idx += 1
+ }
+ i += 1
+ }
+ }
+ }
+
+ /**
+ * Generate a `DenseMatrix` from the given `SparseMatrix`. The new matrix will have isTransposed
+ * set to false.
+ */
+ def toDense: DenseMatrix = {
+ new DenseMatrix(numRows, numCols, toArray)
+ }
+
+ override def numNonzeros: Int = values.count(_ != 0)
+
+ override def numActives: Int = values.length
+
+ override def colIter: Iterator[Vector] = {
+ if (isTransposed) {
+ val indicesArray = Array.fill(numCols)(MArrayBuilder.make[Int])
+ val valuesArray = Array.fill(numCols)(MArrayBuilder.make[Double])
+ var i = 0
+ while (i < numRows) {
+ var k = colPtrs(i)
+ val rowEnd = colPtrs(i + 1)
+ while (k < rowEnd) {
+ val j = rowIndices(k)
+ indicesArray(j) += i
+ valuesArray(j) += values(k)
+ k += 1
+ }
+ i += 1
+ }
+ Iterator.tabulate(numCols) { j =>
+ val ii = indicesArray(j).result()
+ val vv = valuesArray(j).result()
+ new SparseVector(numRows, ii, vv)
+ }
+ } else {
+ Iterator.tabulate(numCols) { j =>
+ val colStart = colPtrs(j)
+ val colEnd = colPtrs(j + 1)
+ val ii = rowIndices.slice(colStart, colEnd)
+ val vv = values.slice(colStart, colEnd)
+ new SparseVector(numRows, ii, vv)
+ }
+ }
+ }
+}
+
+/**
+ * Factory methods for [[org.apache.spark.ml.linalg.SparseMatrix]].
+ */
+object SparseMatrix {
+
+ /**
+ * Generate a `SparseMatrix` from Coordinate List (COO) format. Input must be an array of
+ * (i, j, value) tuples. Entries that have duplicate values of i and j are
+ * added together. Tuples where value is equal to zero will be omitted.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @param entries Array of (i, j, value) tuples
+ * @return The corresponding `SparseMatrix`
+ */
+ def fromCOO(numRows: Int, numCols: Int, entries: Iterable[(Int, Int, Double)]): SparseMatrix = {
+ val sortedEntries = entries.toSeq.sortBy(v => (v._2, v._1))
+ val numEntries = sortedEntries.size
+ if (sortedEntries.nonEmpty) {
+ // Since the entries are sorted by column index, we only need to check the first and the last.
+ for (col <- Seq(sortedEntries.head._2, sortedEntries.last._2)) {
+ require(col >= 0 && col < numCols, s"Column index out of range [0, $numCols): $col.")
+ }
+ }
+ val colPtrs = new Array[Int](numCols + 1)
+ val rowIndices = MArrayBuilder.make[Int]
+ rowIndices.sizeHint(numEntries)
+ val values = MArrayBuilder.make[Double]
+ values.sizeHint(numEntries)
+ var nnz = 0
+ var prevCol = 0
+ var prevRow = -1
+ var prevVal = 0.0
+ // Append a dummy entry to include the last one at the end of the loop.
+ (sortedEntries.view :+ (numRows, numCols, 1.0)).foreach { case (i, j, v) =>
+ if (v != 0) {
+ if (i == prevRow && j == prevCol) {
+ prevVal += v
+ } else {
+ if (prevVal != 0) {
+ require(prevRow >= 0 && prevRow < numRows,
+ s"Row index out of range [0, $numRows): $prevRow.")
+ nnz += 1
+ rowIndices += prevRow
+ values += prevVal
+ }
+ prevRow = i
+ prevVal = v
+ while (prevCol < j) {
+ colPtrs(prevCol + 1) = nnz
+ prevCol += 1
+ }
+ }
+ }
+ }
+ new SparseMatrix(numRows, numCols, colPtrs, rowIndices.result(), values.result())
+ }
+
+ /**
+ * Generate an Identity Matrix in `SparseMatrix` format.
+ * @param n number of rows and columns of the matrix
+ * @return `SparseMatrix` with size `n` x `n` and values of ones on the diagonal
+ */
+ def speye(n: Int): SparseMatrix = {
+ new SparseMatrix(n, n, (0 to n).toArray, (0 until n).toArray, Array.fill(n)(1.0))
+ }
+
+ /**
+ * Generates the skeleton of a random `SparseMatrix` with a given random number generator.
+ * The values of the matrix returned are undefined.
+ */
+ private def genRandMatrix(
+ numRows: Int,
+ numCols: Int,
+ density: Double,
+ rng: Random): SparseMatrix = {
+ require(numRows > 0, s"numRows must be greater than 0 but got $numRows")
+ require(numCols > 0, s"numCols must be greater than 0 but got $numCols")
+ require(density >= 0.0 && density <= 1.0,
+ s"density must be a double in the range 0.0 <= d <= 1.0. Currently, density: $density")
+ val size = numRows.toLong * numCols
+ val expected = size * density
+ assert(expected < Int.MaxValue,
+ "The expected number of nonzeros cannot be greater than Int.MaxValue.")
+ val nnz = math.ceil(expected).toInt
+ if (density == 0.0) {
+ new SparseMatrix(numRows, numCols, new Array[Int](numCols + 1), Array[Int](), Array[Double]())
+ } else if (density == 1.0) {
+ val colPtrs = Array.tabulate(numCols + 1)(j => j * numRows)
+ val rowIndices = Array.tabulate(size.toInt)(idx => idx % numRows)
+ new SparseMatrix(numRows, numCols, colPtrs, rowIndices, new Array[Double](numRows * numCols))
+ } else if (density < 0.34) {
+ // draw-by-draw, expected number of iterations is less than 1.5 * nnz
+ val entries = MHashSet[(Int, Int)]()
+ while (entries.size < nnz) {
+ entries += ((rng.nextInt(numRows), rng.nextInt(numCols)))
+ }
+ SparseMatrix.fromCOO(numRows, numCols, entries.map(v => (v._1, v._2, 1.0)))
+ } else {
+ // selection-rejection method
+ var idx = 0L
+ var numSelected = 0
+ var j = 0
+ val colPtrs = new Array[Int](numCols + 1)
+ val rowIndices = new Array[Int](nnz)
+ while (j < numCols && numSelected < nnz) {
+ var i = 0
+ while (i < numRows && numSelected < nnz) {
+ if (rng.nextDouble() < 1.0 * (nnz - numSelected) / (size - idx)) {
+ rowIndices(numSelected) = i
+ numSelected += 1
+ }
+ i += 1
+ idx += 1
+ }
+ colPtrs(j + 1) = numSelected
+ j += 1
+ }
+ new SparseMatrix(numRows, numCols, colPtrs, rowIndices, new Array[Double](nnz))
+ }
+ }
+
+ /**
+ * Generate a `SparseMatrix` consisting of `i.i.d`. uniform random numbers. The number of non-zero
+ * elements equal the ceiling of `numRows` x `numCols` x `density`
+ *
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @param density the desired density for the matrix
+ * @param rng a random number generator
+ * @return `SparseMatrix` with size `numRows` x `numCols` and values in U(0, 1)
+ */
+ def sprand(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix = {
+ val mat = genRandMatrix(numRows, numCols, density, rng)
+ mat.update(i => rng.nextDouble())
+ }
+
+ /**
+ * Generate a `SparseMatrix` consisting of `i.i.d`. gaussian random numbers.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @param density the desired density for the matrix
+ * @param rng a random number generator
+ * @return `SparseMatrix` with size `numRows` x `numCols` and values in N(0, 1)
+ */
+ def sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix = {
+ val mat = genRandMatrix(numRows, numCols, density, rng)
+ mat.update(i => rng.nextGaussian())
+ }
+
+ /**
+ * Generate a diagonal matrix in `SparseMatrix` format from the supplied values.
+ * @param vector a `Vector` that will form the values on the diagonal of the matrix
+ * @return Square `SparseMatrix` with size `values.length` x `values.length` and non-zero
+ * `values` on the diagonal
+ */
+ def spdiag(vector: Vector): SparseMatrix = {
+ val n = vector.size
+ vector match {
+ case sVec: SparseVector =>
+ SparseMatrix.fromCOO(n, n, sVec.indices.zip(sVec.values).map(v => (v._1, v._1, v._2)))
+ case dVec: DenseVector =>
+ val entries = dVec.values.zipWithIndex
+ val nnzVals = entries.filter(v => v._1 != 0.0)
+ SparseMatrix.fromCOO(n, n, nnzVals.map(v => (v._2, v._2, v._1)))
+ }
+ }
+}
+
+/**
+ * Factory methods for [[org.apache.spark.ml.linalg.Matrix]].
+ */
+object Matrices {
+
+ /**
+ * Creates a column-major dense matrix.
+ *
+ * @param numRows number of rows
+ * @param numCols number of columns
+ * @param values matrix entries in column major
+ */
+ def dense(numRows: Int, numCols: Int, values: Array[Double]): Matrix = {
+ new DenseMatrix(numRows, numCols, values)
+ }
+
+ /**
+ * Creates a column-major sparse matrix in Compressed Sparse Column (CSC) format.
+ *
+ * @param numRows number of rows
+ * @param numCols number of columns
+ * @param colPtrs the index corresponding to the start of a new column
+ * @param rowIndices the row index of the entry
+ * @param values non-zero matrix entries in column major
+ */
+ def sparse(
+ numRows: Int,
+ numCols: Int,
+ colPtrs: Array[Int],
+ rowIndices: Array[Int],
+ values: Array[Double]): Matrix = {
+ new SparseMatrix(numRows, numCols, colPtrs, rowIndices, values)
+ }
+
+ /**
+ * Creates a Matrix instance from a breeze matrix.
+ * @param breeze a breeze matrix
+ * @return a Matrix instance
+ */
+ private[ml] def fromBreeze(breeze: BM[Double]): Matrix = {
+ breeze match {
+ case dm: BDM[Double] =>
+ new DenseMatrix(dm.rows, dm.cols, dm.data, dm.isTranspose)
+ case sm: BSM[Double] =>
+ // Spark-11507. work around breeze issue 479.
+ val mat = if (sm.colPtrs.last != sm.data.length) {
+ val matCopy = sm.copy
+ matCopy.compact()
+ matCopy
+ } else {
+ sm
+ }
+ // There is no isTranspose flag for sparse matrices in Breeze
+ new SparseMatrix(mat.rows, mat.cols, mat.colPtrs, mat.rowIndices, mat.data)
+ case _ =>
+ throw new UnsupportedOperationException(
+ s"Do not support conversion from type ${breeze.getClass.getName}.")
+ }
+ }
+
+ /**
+ * Generate a `Matrix` consisting of zeros.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @return `Matrix` with size `numRows` x `numCols` and values of zeros
+ */
+ def zeros(numRows: Int, numCols: Int): Matrix = DenseMatrix.zeros(numRows, numCols)
+
+ /**
+ * Generate a `DenseMatrix` consisting of ones.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @return `Matrix` with size `numRows` x `numCols` and values of ones
+ */
+ def ones(numRows: Int, numCols: Int): Matrix = DenseMatrix.ones(numRows, numCols)
+
+ /**
+ * Generate a dense Identity Matrix in `Matrix` format.
+ * @param n number of rows and columns of the matrix
+ * @return `Matrix` with size `n` x `n` and values of ones on the diagonal
+ */
+ def eye(n: Int): Matrix = DenseMatrix.eye(n)
+
+ /**
+ * Generate a sparse Identity Matrix in `Matrix` format.
+ * @param n number of rows and columns of the matrix
+ * @return `Matrix` with size `n` x `n` and values of ones on the diagonal
+ */
+ def speye(n: Int): Matrix = SparseMatrix.speye(n)
+
+ /**
+ * Generate a `DenseMatrix` consisting of `i.i.d.` uniform random numbers.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @param rng a random number generator
+ * @return `Matrix` with size `numRows` x `numCols` and values in U(0, 1)
+ */
+ def rand(numRows: Int, numCols: Int, rng: Random): Matrix =
+ DenseMatrix.rand(numRows, numCols, rng)
+
+ /**
+ * Generate a `SparseMatrix` consisting of `i.i.d.` gaussian random numbers.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @param density the desired density for the matrix
+ * @param rng a random number generator
+ * @return `Matrix` with size `numRows` x `numCols` and values in U(0, 1)
+ */
+ def sprand(numRows: Int, numCols: Int, density: Double, rng: Random): Matrix =
+ SparseMatrix.sprand(numRows, numCols, density, rng)
+
+ /**
+ * Generate a `DenseMatrix` consisting of `i.i.d.` gaussian random numbers.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @param rng a random number generator
+ * @return `Matrix` with size `numRows` x `numCols` and values in N(0, 1)
+ */
+ def randn(numRows: Int, numCols: Int, rng: Random): Matrix =
+ DenseMatrix.randn(numRows, numCols, rng)
+
+ /**
+ * Generate a `SparseMatrix` consisting of `i.i.d.` gaussian random numbers.
+ * @param numRows number of rows of the matrix
+ * @param numCols number of columns of the matrix
+ * @param density the desired density for the matrix
+ * @param rng a random number generator
+ * @return `Matrix` with size `numRows` x `numCols` and values in N(0, 1)
+ */
+ def sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): Matrix =
+ SparseMatrix.sprandn(numRows, numCols, density, rng)
+
+ /**
+ * Generate a diagonal matrix in `Matrix` format from the supplied values.
+ * @param vector a `Vector` that will form the values on the diagonal of the matrix
+ * @return Square `Matrix` with size `values.length` x `values.length` and `values`
+ * on the diagonal
+ */
+ def diag(vector: Vector): Matrix = DenseMatrix.diag(vector)
+
+ /**
+ * Horizontally concatenate a sequence of matrices. The returned matrix will be in the format
+ * the matrices are supplied in. Supplying a mix of dense and sparse matrices will result in
+ * a sparse matrix. If the Array is empty, an empty `DenseMatrix` will be returned.
+ * @param matrices array of matrices
+ * @return a single `Matrix` composed of the matrices that were horizontally concatenated
+ */
+ def horzcat(matrices: Array[Matrix]): Matrix = {
+ if (matrices.isEmpty) {
+ return new DenseMatrix(0, 0, Array[Double]())
+ } else if (matrices.length == 1) {
+ return matrices(0)
+ }
+ val numRows = matrices(0).numRows
+ var hasSparse = false
+ var numCols = 0
+ matrices.foreach { mat =>
+ require(numRows == mat.numRows, "The number of rows of the matrices in this sequence, " +
+ "don't match!")
+ mat match {
+ case sparse: SparseMatrix => hasSparse = true
+ case dense: DenseMatrix => // empty on purpose
+ case _ => throw new IllegalArgumentException("Unsupported matrix format. Expected " +
+ s"SparseMatrix or DenseMatrix. Instead got: ${mat.getClass}")
+ }
+ numCols += mat.numCols
+ }
+ if (!hasSparse) {
+ new DenseMatrix(numRows, numCols, matrices.flatMap(_.toArray))
+ } else {
+ var startCol = 0
+ val entries: Array[(Int, Int, Double)] = matrices.flatMap { mat =>
+ val nCols = mat.numCols
+ mat match {
+ case spMat: SparseMatrix =>
+ val data = new Array[(Int, Int, Double)](spMat.values.length)
+ var cnt = 0
+ spMat.foreachActive { (i, j, v) =>
+ data(cnt) = (i, j + startCol, v)
+ cnt += 1
+ }
+ startCol += nCols
+ data
+ case dnMat: DenseMatrix =>
+ val data = new ArrayBuffer[(Int, Int, Double)]()
+ dnMat.foreachActive { (i, j, v) =>
+ if (v != 0.0) {
+ data.append((i, j + startCol, v))
+ }
+ }
+ startCol += nCols
+ data
+ }
+ }
+ SparseMatrix.fromCOO(numRows, numCols, entries)
+ }
+ }
+
+ /**
+ * Vertically concatenate a sequence of matrices. The returned matrix will be in the format
+ * the matrices are supplied in. Supplying a mix of dense and sparse matrices will result in
+ * a sparse matrix. If the Array is empty, an empty `DenseMatrix` will be returned.
+ * @param matrices array of matrices
+ * @return a single `Matrix` composed of the matrices that were vertically concatenated
+ */
+ def vertcat(matrices: Array[Matrix]): Matrix = {
+ if (matrices.isEmpty) {
+ return new DenseMatrix(0, 0, Array[Double]())
+ } else if (matrices.length == 1) {
+ return matrices(0)
+ }
+ val numCols = matrices(0).numCols
+ var hasSparse = false
+ var numRows = 0
+ matrices.foreach { mat =>
+ require(numCols == mat.numCols, "The number of rows of the matrices in this sequence, " +
+ "don't match!")
+ mat match {
+ case sparse: SparseMatrix => hasSparse = true
+ case dense: DenseMatrix => // empty on purpose
+ case _ => throw new IllegalArgumentException("Unsupported matrix format. Expected " +
+ s"SparseMatrix or DenseMatrix. Instead got: ${mat.getClass}")
+ }
+ numRows += mat.numRows
+ }
+ if (!hasSparse) {
+ val allValues = new Array[Double](numRows * numCols)
+ var startRow = 0
+ matrices.foreach { mat =>
+ var j = 0
+ val nRows = mat.numRows
+ mat.foreachActive { (i, j, v) =>
+ val indStart = j * numRows + startRow
+ allValues(indStart + i) = v
+ }
+ startRow += nRows
+ }
+ new DenseMatrix(numRows, numCols, allValues)
+ } else {
+ var startRow = 0
+ val entries: Array[(Int, Int, Double)] = matrices.flatMap { mat =>
+ val nRows = mat.numRows
+ mat match {
+ case spMat: SparseMatrix =>
+ val data = new Array[(Int, Int, Double)](spMat.values.length)
+ var cnt = 0
+ spMat.foreachActive { (i, j, v) =>
+ data(cnt) = (i + startRow, j, v)
+ cnt += 1
+ }
+ startRow += nRows
+ data
+ case dnMat: DenseMatrix =>
+ val data = new ArrayBuffer[(Int, Int, Double)]()
+ dnMat.foreachActive { (i, j, v) =>
+ if (v != 0.0) {
+ data.append((i + startRow, j, v))
+ }
+ }
+ startRow += nRows
+ data
+ }
+ }
+ SparseMatrix.fromCOO(numRows, numCols, entries)
+ }
+ }
+}