aboutsummaryrefslogtreecommitdiff
path: root/docs/ml-classification-regression.md
blob: ab6f587e09ef25098da8bb3078b20662b3a1b513 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
---
layout: global
title: Classification and regression
displayTitle: Classification and regression
---


`\[
\newcommand{\R}{\mathbb{R}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\x}{\mathbf{x}}
\newcommand{\y}{\mathbf{y}}
\newcommand{\wv}{\mathbf{w}}
\newcommand{\av}{\mathbf{\alpha}}
\newcommand{\bv}{\mathbf{b}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\id}{\mathbf{I}}
\newcommand{\ind}{\mathbf{1}}
\newcommand{\0}{\mathbf{0}}
\newcommand{\unit}{\mathbf{e}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\zero}{\mathbf{0}}
\]`

This page covers algorithms for Classification and Regression.  It also includes sections
discussing specific classes of algorithms, such as linear methods, trees, and ensembles.

**Table of Contents**

* This will become a table of contents (this text will be scraped).
{:toc}

# Classification

## Logistic regression

Logistic regression is a popular method to predict a categorical response. It is a special case of [Generalized Linear models](https://en.wikipedia.org/wiki/Generalized_linear_model) that predicts the probability of the outcomes.
In `spark.ml` logistic regression can be used to predict a binary outcome by using binomial logistic regression, or it can be used to predict a multiclass outcome by using multinomial logistic regression. Use the `family`
parameter to select between these two algorithms, or leave it unset and Spark will infer the correct variant.

  > Multinomial logistic regression can be used for binary classification by setting the `family` param to "multinomial". It will produce two sets of coefficients and two intercepts.

  > When fitting LogisticRegressionModel without intercept on dataset with constant nonzero column, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is the same as R glmnet but different from LIBSVM.

### Binomial logistic regression

For more background and more details about the implementation of binomial logistic regression, refer to the documentation of [logistic regression in `spark.mllib`](mllib-linear-methods.html#logistic-regression). 

**Examples**

The following example shows how to train binomial and multinomial logistic regression 
models for binary classification with elastic net regularization. `elasticNetParam` corresponds to
$\alpha$ and `regParam` corresponds to $\lambda$.

<div class="codetabs">

<div data-lang="scala" markdown="1">

More details on parameters can be found in the [Scala API documentation](api/scala/index.html#org.apache.spark.ml.classification.LogisticRegression).

{% include_example scala/org/apache/spark/examples/ml/LogisticRegressionWithElasticNetExample.scala %}
</div>

<div data-lang="java" markdown="1">

More details on parameters can be found in the [Java API documentation](api/java/org/apache/spark/ml/classification/LogisticRegression.html).

{% include_example java/org/apache/spark/examples/ml/JavaLogisticRegressionWithElasticNetExample.java %}
</div>

<div data-lang="python" markdown="1">

More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegression).

{% include_example python/ml/logistic_regression_with_elastic_net.py %}
</div>

<div data-lang="r" markdown="1">

More details on parameters can be found in the [R API documentation](api/R/spark.logit.html).

{% include_example binomial r/ml/logit.R %}
</div>

</div>

The `spark.ml` implementation of logistic regression also supports
extracting a summary of the model over the training set. Note that the
predictions and metrics which are stored as `DataFrame` in
`BinaryLogisticRegressionSummary` are annotated `@transient` and hence
only available on the driver.

<div class="codetabs">

<div data-lang="scala" markdown="1">

[`LogisticRegressionTrainingSummary`](api/scala/index.html#org.apache.spark.ml.classification.LogisticRegressionTrainingSummary)
provides a summary for a
[`LogisticRegressionModel`](api/scala/index.html#org.apache.spark.ml.classification.LogisticRegressionModel).
Currently, only binary classification is supported and the
summary must be explicitly cast to
[`BinaryLogisticRegressionTrainingSummary`](api/scala/index.html#org.apache.spark.ml.classification.BinaryLogisticRegressionTrainingSummary).
This will likely change when multiclass classification is supported.

Continuing the earlier example:

{% include_example scala/org/apache/spark/examples/ml/LogisticRegressionSummaryExample.scala %}
</div>

<div data-lang="java" markdown="1">
[`LogisticRegressionTrainingSummary`](api/java/org/apache/spark/ml/classification/LogisticRegressionTrainingSummary.html)
provides a summary for a
[`LogisticRegressionModel`](api/java/org/apache/spark/ml/classification/LogisticRegressionModel.html).
Currently, only binary classification is supported and the
summary must be explicitly cast to
[`BinaryLogisticRegressionTrainingSummary`](api/java/org/apache/spark/ml/classification/BinaryLogisticRegressionTrainingSummary.html). 
Support for multiclass model summaries will be added in the future.

Continuing the earlier example:

{% include_example java/org/apache/spark/examples/ml/JavaLogisticRegressionSummaryExample.java %}
</div>

<div data-lang="python" markdown="1">
[`LogisticRegressionTrainingSummary`](api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegressionSummary)
provides a summary for a
[`LogisticRegressionModel`](api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegressionModel).
Currently, only binary classification is supported. Support for multiclass model summaries will be added in the future.

Continuing the earlier example:

{% include_example python/ml/logistic_regression_summary_example.py %}
</div>

</div>

### Multinomial logistic regression

Multiclass classification is supported via multinomial logistic (softmax) regression. In multinomial logistic regression,
the algorithm produces $K$ sets of coefficients, or a matrix of dimension $K \times J$ where $K$ is the number of outcome
classes and $J$ is the number of features. If the algorithm is fit with an intercept term then a length $K$ vector of
intercepts is available.

  > Multinomial coefficients are available as `coefficientMatrix` and intercepts are available as `interceptVector`.
 
  > `coefficients` and `intercept` methods on a logistic regression model trained with multinomial family are not supported. Use `coefficientMatrix` and `interceptVector` instead.

The conditional probabilities of the outcome classes $k \in \{1, 2, ..., K\}$ are modeled using the softmax function.

`\[
   P(Y=k|\mathbf{X}, \boldsymbol{\beta}_k, \beta_{0k}) =  \frac{e^{\boldsymbol{\beta}_k \cdot \mathbf{X}  + \beta_{0k}}}{\sum_{k'=0}^{K-1} e^{\boldsymbol{\beta}_{k'} \cdot \mathbf{X}  + \beta_{0k'}}}
\]`

We minimize the weighted negative log-likelihood, using a multinomial response model, with elastic-net penalty to control for overfitting.

`\[
\min_{\beta, \beta_0} -\left[\sum_{i=1}^L w_i \cdot \log P(Y = y_i|\mathbf{x}_i)\right] + \lambda \left[\frac{1}{2}\left(1 - \alpha\right)||\boldsymbol{\beta}||_2^2 + \alpha ||\boldsymbol{\beta}||_1\right]
\]`

For a detailed derivation please see [here](https://en.wikipedia.org/wiki/Multinomial_logistic_regression#As_a_log-linear_model).

**Examples**

The following example shows how to train a multiclass logistic regression 
model with elastic net regularization.

<div class="codetabs">

<div data-lang="scala" markdown="1">
{% include_example scala/org/apache/spark/examples/ml/MulticlassLogisticRegressionWithElasticNetExample.scala %}
</div>

<div data-lang="java" markdown="1">
{% include_example java/org/apache/spark/examples/ml/JavaMulticlassLogisticRegressionWithElasticNetExample.java %}
</div>

<div data-lang="python" markdown="1">
{% include_example python/ml/multiclass_logistic_regression_with_elastic_net.py %}
</div>

<div data-lang="r" markdown="1">

More details on parameters can be found in the [R API documentation](api/R/spark.logit.html).

{% include_example multinomial r/ml/logit.R %}
</div>

</div>


## Decision tree classifier

Decision trees are a popular family of classification and regression methods.
More information about the `spark.ml` implementation can be found further in the [section on decision trees](#decision-trees).

**Examples**

The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the `DataFrame` which the Decision Tree algorithm can recognize.

<div class="codetabs">
<div data-lang="scala" markdown="1">

More details on parameters can be found in the [Scala API documentation](api/scala/index.html#org.apache.spark.ml.classification.DecisionTreeClassifier).

{% include_example scala/org/apache/spark/examples/ml/DecisionTreeClassificationExample.scala %}

</div>

<div data-lang="java" markdown="1">

More details on parameters can be found in the [Java API documentation](api/java/org/apache/spark/ml/classification/DecisionTreeClassifier.html).

{% include_example java/org/apache/spark/examples/ml/JavaDecisionTreeClassificationExample.java %}

</div>

<div data-lang="python" markdown="1">

More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.classification.DecisionTreeClassifier).

{% include_example python/ml/decision_tree_classification_example.py %}

</div>

</div>

## Random forest classifier

Random forests are a popular family of classification and regression methods.
More information about the `spark.ml` implementation can be found further in the [section on random forests](#random-forests).

**Examples**

The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the `DataFrame` which the tree-based algorithms can recognize.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.classification.RandomForestClassifier) for more details.

{% include_example scala/org/apache/spark/examples/ml/RandomForestClassifierExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/RandomForestClassifier.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaRandomForestClassifierExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.RandomForestClassifier) for more details.

{% include_example python/ml/random_forest_classifier_example.py %}
</div>

<div data-lang="r" markdown="1">

Refer to the [R API docs](api/R/spark.randomForest.html) for more details.

{% include_example classification r/ml/randomForest.R %}
</div>

</div>

## Gradient-boosted tree classifier

Gradient-boosted trees (GBTs) are a popular classification and regression method using ensembles of decision trees. 
More information about the `spark.ml` implementation can be found further in the [section on GBTs](#gradient-boosted-trees-gbts).

**Examples**

The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use two feature transformers to prepare the data; these help index categories for the label and categorical features, adding metadata to the `DataFrame` which the tree-based algorithms can recognize.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.classification.GBTClassifier) for more details.

{% include_example scala/org/apache/spark/examples/ml/GradientBoostedTreeClassifierExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/GBTClassifier.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaGradientBoostedTreeClassifierExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.GBTClassifier) for more details.

{% include_example python/ml/gradient_boosted_tree_classifier_example.py %}
</div>

<div data-lang="r" markdown="1">

Refer to the [R API docs](api/R/spark.gbt.html) for more details.

{% include_example classification r/ml/gbt.R %}
</div>

</div>

## Multilayer perceptron classifier

Multilayer perceptron classifier (MLPC) is a classifier based on the [feedforward artificial neural network](https://en.wikipedia.org/wiki/Feedforward_neural_network). 
MLPC consists of multiple layers of nodes. 
Each layer is fully connected to the next layer in the network. Nodes in the input layer represent the input data. All other nodes map inputs to outputs 
by a linear combination of the inputs with the node's weights `$\wv$` and bias `$\bv$` and applying an activation function. 
This can be written in matrix form for MLPC with `$K+1$` layers as follows:
`\[
\mathrm{y}(\x) = \mathrm{f_K}(...\mathrm{f_2}(\wv_2^T\mathrm{f_1}(\wv_1^T \x+b_1)+b_2)...+b_K)
\]`
Nodes in intermediate layers use sigmoid (logistic) function:
`\[
\mathrm{f}(z_i) = \frac{1}{1 + e^{-z_i}}
\]`
Nodes in the output layer use softmax function:
`\[
\mathrm{f}(z_i) = \frac{e^{z_i}}{\sum_{k=1}^N e^{z_k}}
\]`
The number of nodes `$N$` in the output layer corresponds to the number of classes. 

MLPC employs backpropagation for learning the model. We use the logistic loss function for optimization and L-BFGS as an optimization routine.

**Examples**

<div class="codetabs">

<div data-lang="scala" markdown="1">

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.classification.MultilayerPerceptronClassifier) for more details.

{% include_example scala/org/apache/spark/examples/ml/MultilayerPerceptronClassifierExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.MultilayerPerceptronClassifier) for more details.

{% include_example python/ml/multilayer_perceptron_classification.py %}
</div>

<div data-lang="r" markdown="1">

Refer to the [R API docs](api/R/spark.mlp.html) for more details.

{% include_example r/ml/mlp.R %}
</div>

</div>

## Linear Support Vector Machine

A [support vector machine](https://en.wikipedia.org/wiki/Support_vector_machine) constructs a hyperplane
or set of hyperplanes in a high- or infinite-dimensional space, which can be used for classification,
regression, or other tasks. Intuitively, a good separation is achieved by the hyperplane that has
the largest distance to the nearest training-data points of any class (so-called functional margin),
since in general the larger the margin the lower the generalization error of the classifier. LinearSVC
in Spark ML supports binary classification with linear SVM. Internally, it optimizes the 
[Hinge Loss](https://en.wikipedia.org/wiki/Hinge_loss) using OWLQN optimizer.


**Examples**

<div class="codetabs">

<div data-lang="scala" markdown="1">

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.classification.LinearSVC) for more details.

{% include_example scala/org/apache/spark/examples/ml/LinearSVCExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/LinearSVC.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaLinearSVCExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.LinearSVC) for more details.

{% include_example python/ml/linearsvc.py %}
</div>

<div data-lang="r" markdown="1">

Refer to the [R API docs](api/R/spark.svmLinear.html) for more details.

{% include_example r/ml/svmLinear.R %}
</div>

</div>

## One-vs-Rest classifier (a.k.a. One-vs-All)

[OneVsRest](http://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest) is an example of a machine learning reduction for performing multiclass classification given a base classifier that can perform binary classification efficiently.  It is also known as "One-vs-All."

`OneVsRest` is implemented as an `Estimator`. For the base classifier it takes instances of `Classifier` and creates a binary classification problem for each of the k classes. The classifier for class i is trained to predict whether the label is i or not, distinguishing class i from all other classes.

Predictions are done by evaluating each binary classifier and the index of the most confident classifier is output as label.

**Examples**

The example below demonstrates how to load the
[Iris dataset](http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/iris.scale), parse it as a DataFrame and perform multiclass classification using `OneVsRest`. The test error is calculated to measure the algorithm accuracy.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.classification.OneVsRest) for more details.

{% include_example scala/org/apache/spark/examples/ml/OneVsRestExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/OneVsRest.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaOneVsRestExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.OneVsRest) for more details.

{% include_example python/ml/one_vs_rest_example.py %}
</div>
</div>

## Naive Bayes

[Naive Bayes classifiers](http://en.wikipedia.org/wiki/Naive_Bayes_classifier) are a family of simple 
probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence 
assumptions between the features. The `spark.ml` implementation currently supports both [multinomial
naive Bayes](http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html)
and [Bernoulli naive Bayes](http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html).
More information can be found in the section on [Naive Bayes in MLlib](mllib-naive-bayes.html#naive-bayes-sparkmllib).

**Examples**

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.classification.NaiveBayes) for more details.

{% include_example scala/org/apache/spark/examples/ml/NaiveBayesExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/NaiveBayes.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaNaiveBayesExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.NaiveBayes) for more details.

{% include_example python/ml/naive_bayes_example.py %}
</div>

<div data-lang="r" markdown="1">

Refer to the [R API docs](api/R/spark.naiveBayes.html) for more details.

{% include_example r/ml/naiveBayes.R %}
</div>

</div>


# Regression

## Linear regression

The interface for working with linear regression models and model
summaries is similar to the logistic regression case.

  > When fitting LinearRegressionModel without intercept on dataset with constant nonzero column by "l-bfgs" solver, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is the same as R glmnet but different from LIBSVM.

**Examples**

The following
example demonstrates training an elastic net regularized linear
regression model and extracting model summary statistics.

<div class="codetabs">

<div data-lang="scala" markdown="1">

More details on parameters can be found in the [Scala API documentation](api/scala/index.html#org.apache.spark.ml.regression.LinearRegression).

{% include_example scala/org/apache/spark/examples/ml/LinearRegressionWithElasticNetExample.scala %}
</div>

<div data-lang="java" markdown="1">

More details on parameters can be found in the [Java API documentation](api/java/org/apache/spark/ml/regression/LinearRegression.html).

{% include_example java/org/apache/spark/examples/ml/JavaLinearRegressionWithElasticNetExample.java %}
</div>

<div data-lang="python" markdown="1">
<!--- TODO: Add python model summaries once implemented -->

More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.regression.LinearRegression).

{% include_example python/ml/linear_regression_with_elastic_net.py %}
</div>

</div>

## Generalized linear regression

Contrasted with linear regression where the output is assumed to follow a Gaussian
distribution, [generalized linear models](https://en.wikipedia.org/wiki/Generalized_linear_model) (GLMs) are specifications of linear models where the response variable $Y_i$ follows some
distribution from the [exponential family of distributions](https://en.wikipedia.org/wiki/Exponential_family).
Spark's `GeneralizedLinearRegression` interface
allows for flexible specification of GLMs which can be used for various types of
prediction problems including linear regression, Poisson regression, logistic regression, and others.
Currently in `spark.ml`, only a subset of the exponential family distributions are supported and they are listed
[below](#available-families).

**NOTE**: Spark currently only supports up to 4096 features through its `GeneralizedLinearRegression`
interface, and will throw an exception if this constraint is exceeded. See the [advanced section](ml-advanced) for more details.
 Still, for linear and logistic regression, models with an increased number of features can be trained 
 using the `LinearRegression` and `LogisticRegression` estimators.

GLMs require exponential family distributions that can be written in their "canonical" or "natural" form, aka
[natural exponential family distributions](https://en.wikipedia.org/wiki/Natural_exponential_family). The form of a natural exponential family distribution is given as:

$$
f_Y(y|\theta, \tau) = h(y, \tau)\exp{\left( \frac{\theta \cdot y - A(\theta)}{d(\tau)} \right)}
$$

where $\theta$ is the parameter of interest and $\tau$ is a dispersion parameter. In a GLM the response variable $Y_i$ is assumed to be drawn from a natural exponential family distribution:

$$
Y_i \sim f\left(\cdot|\theta_i, \tau \right)
$$

where the parameter of interest $\theta_i$ is related to the expected value of the response variable $\mu_i$ by

$$
\mu_i = A'(\theta_i)
$$

Here, $A'(\theta_i)$ is defined by the form of the distribution selected. GLMs also allow specification
of a link function, which defines the relationship between the expected value of the response variable $\mu_i$
and the so called _linear predictor_ $\eta_i$:

$$
g(\mu_i) = \eta_i = \vec{x_i}^T \cdot \vec{\beta}
$$

Often, the link function is chosen such that $A' = g^{-1}$, which yields a simplified relationship
between the parameter of interest $\theta$ and the linear predictor $\eta$. In this case, the link
function $g(\mu)$ is said to be the "canonical" link function.

$$
\theta_i = A'^{-1}(\mu_i) = g(g^{-1}(\eta_i)) = \eta_i
$$

A GLM finds the regression coefficients $\vec{\beta}$ which maximize the likelihood function.

$$
\max_{\vec{\beta}} \mathcal{L}(\vec{\theta}|\vec{y},X) =
\prod_{i=1}^{N} h(y_i, \tau) \exp{\left(\frac{y_i\theta_i - A(\theta_i)}{d(\tau)}\right)}
$$

where the parameter of interest $\theta_i$ is related to the regression coefficients $\vec{\beta}$
by

$$
\theta_i = A'^{-1}(g^{-1}(\vec{x_i} \cdot \vec{\beta}))
$$

Spark's generalized linear regression interface also provides summary statistics for diagnosing the
fit of GLM models, including residuals, p-values, deviances, the Akaike information criterion, and
others.

[See here](http://data.princeton.edu/wws509/notes/) for a more comprehensive review of GLMs and their applications.

###  Available families

<table class="table">
  <thead>
    <tr>
      <th>Family</th>
      <th>Response Type</th>
      <th>Supported Links</th></tr>
  </thead>
  <tbody>
    <tr>
      <td>Gaussian</td>
      <td>Continuous</td>
      <td>Identity*, Log, Inverse</td>
    </tr>
    <tr>
      <td>Binomial</td>
      <td>Binary</td>
      <td>Logit*, Probit, CLogLog</td>
    </tr>
    <tr>
      <td>Poisson</td>
      <td>Count</td>
      <td>Log*, Identity, Sqrt</td>
    </tr>
    <tr>
      <td>Gamma</td>
      <td>Continuous</td>
      <td>Inverse*, Idenity, Log</td>
    </tr>
    <tr>
      <td>Tweedie</td>
      <td>Zero-inflated continuous</td>
      <td>Power link function</td>
    </tr>
    <tfoot><tr><td colspan="4">* Canonical Link</td></tr></tfoot>
  </tbody>
</table>

**Examples**

The following example demonstrates training a GLM with a Gaussian response and identity link
function and extracting model summary statistics.

<div class="codetabs">

<div data-lang="scala" markdown="1">

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.regression.GeneralizedLinearRegression) for more details.

{% include_example scala/org/apache/spark/examples/ml/GeneralizedLinearRegressionExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/GeneralizedLinearRegression.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaGeneralizedLinearRegressionExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.GeneralizedLinearRegression) for more details.

{% include_example python/ml/generalized_linear_regression_example.py %}
</div>

<div data-lang="r" markdown="1">

Refer to the [R API docs](api/R/spark.glm.html) for more details.

{% include_example r/ml/glm.R %}
</div>

</div>


## Decision tree regression

Decision trees are a popular family of classification and regression methods.
More information about the `spark.ml` implementation can be found further in the [section on decision trees](#decision-trees).

**Examples**

The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use a feature transformer to index categorical features, adding metadata to the `DataFrame` which the Decision Tree algorithm can recognize.

<div class="codetabs">
<div data-lang="scala" markdown="1">

More details on parameters can be found in the [Scala API documentation](api/scala/index.html#org.apache.spark.ml.regression.DecisionTreeRegressor).

{% include_example scala/org/apache/spark/examples/ml/DecisionTreeRegressionExample.scala %}
</div>

<div data-lang="java" markdown="1">

More details on parameters can be found in the [Java API documentation](api/java/org/apache/spark/ml/regression/DecisionTreeRegressor.html).

{% include_example java/org/apache/spark/examples/ml/JavaDecisionTreeRegressionExample.java %}
</div>

<div data-lang="python" markdown="1">

More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.regression.DecisionTreeRegressor).

{% include_example python/ml/decision_tree_regression_example.py %}
</div>

</div>


## Random forest regression

Random forests are a popular family of classification and regression methods.
More information about the `spark.ml` implementation can be found further in the [section on random forests](#random-forests).

**Examples**

The following examples load a dataset in LibSVM format, split it into training and test sets, train on the first dataset, and then evaluate on the held-out test set.
We use a feature transformer to index categorical features, adding metadata to the `DataFrame` which the tree-based algorithms can recognize.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.regression.RandomForestRegressor) for more details.

{% include_example scala/org/apache/spark/examples/ml/RandomForestRegressorExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/RandomForestRegressor.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaRandomForestRegressorExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.RandomForestRegressor) for more details.

{% include_example python/ml/random_forest_regressor_example.py %}
</div>

<div data-lang="r" markdown="1">

Refer to the [R API docs](api/R/spark.randomForest.html) for more details.

{% include_example regression r/ml/randomForest.R %}
</div>

</div>

## Gradient-boosted tree regression

Gradient-boosted trees (GBTs) are a popular regression method using ensembles of decision trees. 
More information about the `spark.ml` implementation can be found further in the [section on GBTs](#gradient-boosted-trees-gbts).

**Examples**

Note: For this example dataset, `GBTRegressor` actually only needs 1 iteration, but that will not
be true in general.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.regression.GBTRegressor) for more details.

{% include_example scala/org/apache/spark/examples/ml/GradientBoostedTreeRegressorExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/GBTRegressor.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaGradientBoostedTreeRegressorExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.GBTRegressor) for more details.

{% include_example python/ml/gradient_boosted_tree_regressor_example.py %}
</div>

<div data-lang="r" markdown="1">

Refer to the [R API docs](api/R/spark.gbt.html) for more details.

{% include_example regression r/ml/gbt.R %}
</div>

</div>


## Survival regression


In `spark.ml`, we implement the [Accelerated failure time (AFT)](https://en.wikipedia.org/wiki/Accelerated_failure_time_model) 
model which is a parametric survival regression model for censored data. 
It describes a model for the log of survival time, so it's often called a 
log-linear model for survival analysis. Different from a
[Proportional hazards](https://en.wikipedia.org/wiki/Proportional_hazards_model) model
designed for the same purpose, the AFT model is easier to parallelize 
because each instance contributes to the objective function independently.

Given the values of the covariates $x^{'}$, for random lifetime $t_{i}$ of 
subjects i = 1, ..., n, with possible right-censoring, 
the likelihood function under the AFT model is given as:
`\[
L(\beta,\sigma)=\prod_{i=1}^n[\frac{1}{\sigma}f_{0}(\frac{\log{t_{i}}-x^{'}\beta}{\sigma})]^{\delta_{i}}S_{0}(\frac{\log{t_{i}}-x^{'}\beta}{\sigma})^{1-\delta_{i}}
\]`
Where $\delta_{i}$ is the indicator of the event has occurred i.e. uncensored or not.
Using $\epsilon_{i}=\frac{\log{t_{i}}-x^{'}\beta}{\sigma}$, the log-likelihood function
assumes the form:
`\[
\iota(\beta,\sigma)=\sum_{i=1}^{n}[-\delta_{i}\log\sigma+\delta_{i}\log{f_{0}}(\epsilon_{i})+(1-\delta_{i})\log{S_{0}(\epsilon_{i})}]
\]`
Where $S_{0}(\epsilon_{i})$ is the baseline survivor function,
and $f_{0}(\epsilon_{i})$ is the corresponding density function.

The most commonly used AFT model is based on the Weibull distribution of the survival time. 
The Weibull distribution for lifetime corresponds to the extreme value distribution for the 
log of the lifetime, and the $S_{0}(\epsilon)$ function is:
`\[   
S_{0}(\epsilon_{i})=\exp(-e^{\epsilon_{i}})
\]`
the $f_{0}(\epsilon_{i})$ function is:
`\[
f_{0}(\epsilon_{i})=e^{\epsilon_{i}}\exp(-e^{\epsilon_{i}})
\]`
The log-likelihood function for AFT model with a Weibull distribution of lifetime is:
`\[
\iota(\beta,\sigma)= -\sum_{i=1}^n[\delta_{i}\log\sigma-\delta_{i}\epsilon_{i}+e^{\epsilon_{i}}]
\]`
Due to minimizing the negative log-likelihood equivalent to maximum a posteriori probability,
the loss function we use to optimize is $-\iota(\beta,\sigma)$.
The gradient functions for $\beta$ and $\log\sigma$ respectively are:
`\[   
\frac{\partial (-\iota)}{\partial \beta}=\sum_{1=1}^{n}[\delta_{i}-e^{\epsilon_{i}}]\frac{x_{i}}{\sigma}
\]`
`\[ 
\frac{\partial (-\iota)}{\partial (\log\sigma)}=\sum_{i=1}^{n}[\delta_{i}+(\delta_{i}-e^{\epsilon_{i}})\epsilon_{i}]
\]`

The AFT model can be formulated as a convex optimization problem, 
i.e. the task of finding a minimizer of a convex function $-\iota(\beta,\sigma)$ 
that depends on the coefficients vector $\beta$ and the log of scale parameter $\log\sigma$.
The optimization algorithm underlying the implementation is L-BFGS.
The implementation matches the result from R's survival function 
[survreg](https://stat.ethz.ch/R-manual/R-devel/library/survival/html/survreg.html)

  > When fitting AFTSurvivalRegressionModel without intercept on dataset with constant nonzero column, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is different from R survival::survreg.

**Examples**

<div class="codetabs">

<div data-lang="scala" markdown="1">

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.regression.AFTSurvivalRegression) for more details.

{% include_example scala/org/apache/spark/examples/ml/AFTSurvivalRegressionExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/AFTSurvivalRegression.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaAFTSurvivalRegressionExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.AFTSurvivalRegression) for more details.

{% include_example python/ml/aft_survival_regression.py %}
</div>

<div data-lang="r" markdown="1">

Refer to the [R API docs](api/R/spark.survreg.html) for more details.

{% include_example r/ml/survreg.R %}
</div>

</div>


## Isotonic regression
[Isotonic regression](http://en.wikipedia.org/wiki/Isotonic_regression)
belongs to the family of regression algorithms. Formally isotonic regression is a problem where
given a finite set of real numbers `$Y = {y_1, y_2, ..., y_n}$` representing observed responses
and `$X = {x_1, x_2, ..., x_n}$` the unknown response values to be fitted
finding a function that minimises

`\begin{equation}
  f(x) = \sum_{i=1}^n w_i (y_i - x_i)^2
\end{equation}`

with respect to complete order subject to
`$x_1\le x_2\le ...\le x_n$` where `$w_i$` are positive weights.
The resulting function is called isotonic regression and it is unique.
It can be viewed as least squares problem under order restriction.
Essentially isotonic regression is a
[monotonic function](http://en.wikipedia.org/wiki/Monotonic_function)
best fitting the original data points.

We implement a
[pool adjacent violators algorithm](http://doi.org/10.1198/TECH.2010.10111)
which uses an approach to
[parallelizing isotonic regression](http://doi.org/10.1007/978-3-642-99789-1_10).
The training input is a DataFrame which contains three columns
label, features and weight. Additionally IsotonicRegression algorithm has one
optional parameter called $isotonic$ defaulting to true.
This argument specifies if the isotonic regression is
isotonic (monotonically increasing) or antitonic (monotonically decreasing).

Training returns an IsotonicRegressionModel that can be used to predict
labels for both known and unknown features. The result of isotonic regression
is treated as piecewise linear function. The rules for prediction therefore are:

* If the prediction input exactly matches a training feature
  then associated prediction is returned. In case there are multiple predictions with the same
  feature then one of them is returned. Which one is undefined
  (same as java.util.Arrays.binarySearch).
* If the prediction input is lower or higher than all training features
  then prediction with lowest or highest feature is returned respectively.
  In case there are multiple predictions with the same feature
  then the lowest or highest is returned respectively.
* If the prediction input falls between two training features then prediction is treated
  as piecewise linear function and interpolated value is calculated from the
  predictions of the two closest features. In case there are multiple values
  with the same feature then the same rules as in previous point are used.

**Examples**

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [`IsotonicRegression` Scala docs](api/scala/index.html#org.apache.spark.ml.regression.IsotonicRegression) for details on the API.

{% include_example scala/org/apache/spark/examples/ml/IsotonicRegressionExample.scala %}
</div>
<div data-lang="java" markdown="1">

Refer to the [`IsotonicRegression` Java docs](api/java/org/apache/spark/ml/regression/IsotonicRegression.html) for details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaIsotonicRegressionExample.java %}
</div>
<div data-lang="python" markdown="1">

Refer to the [`IsotonicRegression` Python docs](api/python/pyspark.ml.html#pyspark.ml.regression.IsotonicRegression) for more details on the API.

{% include_example python/ml/isotonic_regression_example.py %}
</div>

<div data-lang="r" markdown="1">

Refer to the [`IsotonicRegression` R API docs](api/R/spark.isoreg.html) for more details on the API.

{% include_example r/ml/isoreg.R %}
</div>

</div>

# Linear methods

We implement popular linear methods such as logistic
regression and linear least squares with $L_1$ or $L_2$ regularization.
Refer to [the linear methods guide for the RDD-based API](mllib-linear-methods.html) for
details about implementation and tuning; this information is still relevant.

We also include a DataFrame API for [Elastic
net](http://en.wikipedia.org/wiki/Elastic_net_regularization), a hybrid
of $L_1$ and $L_2$ regularization proposed in [Zou et al, Regularization
and variable selection via the elastic
net](http://users.stat.umn.edu/~zouxx019/Papers/elasticnet.pdf).
Mathematically, it is defined as a convex combination of the $L_1$ and
the $L_2$ regularization terms:
`\[
\alpha \left( \lambda \|\wv\|_1 \right) + (1-\alpha) \left( \frac{\lambda}{2}\|\wv\|_2^2 \right) , \alpha \in [0, 1], \lambda \geq 0
\]`
By setting $\alpha$ properly, elastic net contains both $L_1$ and $L_2$
regularization as special cases. For example, if a [linear
regression](https://en.wikipedia.org/wiki/Linear_regression) model is
trained with the elastic net parameter $\alpha$ set to $1$, it is
equivalent to a
[Lasso](http://en.wikipedia.org/wiki/Least_squares#Lasso_method) model.
On the other hand, if $\alpha$ is set to $0$, the trained model reduces
to a [ridge
regression](http://en.wikipedia.org/wiki/Tikhonov_regularization) model.
We implement Pipelines API for both linear regression and logistic
regression with elastic net regularization.

# Decision trees

[Decision trees](http://en.wikipedia.org/wiki/Decision_tree_learning)
and their ensembles are popular methods for the machine learning tasks of
classification and regression. Decision trees are widely used since they are easy to interpret,
handle categorical features, extend to the multiclass classification setting, do not require
feature scaling, and are able to capture non-linearities and feature interactions. Tree ensemble
algorithms such as random forests and boosting are among the top performers for classification and
regression tasks.

The `spark.ml` implementation supports decision trees for binary and multiclass classification and for regression,
using both continuous and categorical features. The implementation partitions data by rows,
allowing distributed training with millions or even billions of instances.

Users can find more information about the decision tree algorithm in the [MLlib Decision Tree guide](mllib-decision-tree.html).
The main differences between this API and the [original MLlib Decision Tree API](mllib-decision-tree.html) are:

* support for ML Pipelines
* separation of Decision Trees for classification vs. regression
* use of DataFrame metadata to distinguish continuous and categorical features


The Pipelines API for Decision Trees offers a bit more functionality than the original API.  
In particular, for classification, users can get the predicted probability of each class (a.k.a. class conditional probabilities); 
for regression, users can get the biased sample variance of prediction.

Ensembles of trees (Random Forests and Gradient-Boosted Trees) are described below in the [Tree ensembles section](#tree-ensembles).

## Inputs and Outputs

We list the input and output (prediction) column types here.
All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.

### Input Columns

<table class="table">
  <thead>
    <tr>
      <th align="left">Param name</th>
      <th align="left">Type(s)</th>
      <th align="left">Default</th>
      <th align="left">Description</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>labelCol</td>
      <td>Double</td>
      <td>"label"</td>
      <td>Label to predict</td>
    </tr>
    <tr>
      <td>featuresCol</td>
      <td>Vector</td>
      <td>"features"</td>
      <td>Feature vector</td>
    </tr>
  </tbody>
</table>

### Output Columns

<table class="table">
  <thead>
    <tr>
      <th align="left">Param name</th>
      <th align="left">Type(s)</th>
      <th align="left">Default</th>
      <th align="left">Description</th>
      <th align="left">Notes</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>predictionCol</td>
      <td>Double</td>
      <td>"prediction"</td>
      <td>Predicted label</td>
      <td></td>
    </tr>
    <tr>
      <td>rawPredictionCol</td>
      <td>Vector</td>
      <td>"rawPrediction"</td>
      <td>Vector of length # classes, with the counts of training instance labels at the tree node which makes the prediction</td>
      <td>Classification only</td>
    </tr>
    <tr>
      <td>probabilityCol</td>
      <td>Vector</td>
      <td>"probability"</td>
      <td>Vector of length # classes equal to rawPrediction normalized to a multinomial distribution</td>
      <td>Classification only</td>
    </tr>
    <tr>
      <td>varianceCol</td>
      <td>Double</td>
      <td></td>
      <td>The biased sample variance of prediction</td>
      <td>Regression only</td>
      </tr>
  </tbody>
</table>


# Tree Ensembles

The DataFrame API supports two major tree ensemble algorithms: [Random Forests](http://en.wikipedia.org/wiki/Random_forest) and [Gradient-Boosted Trees (GBTs)](http://en.wikipedia.org/wiki/Gradient_boosting).
Both use [`spark.ml` decision trees](ml-classification-regression.html#decision-trees) as their base models.

Users can find more information about ensemble algorithms in the [MLlib Ensemble guide](mllib-ensembles.html).  
In this section, we demonstrate the DataFrame API for ensembles.

The main differences between this API and the [original MLlib ensembles API](mllib-ensembles.html) are:

* support for DataFrames and ML Pipelines
* separation of classification vs. regression
* use of DataFrame metadata to distinguish continuous and categorical features
* more functionality for random forests: estimates of feature importance, as well as the predicted probability of each class (a.k.a. class conditional probabilities) for classification.

## Random Forests

[Random forests](http://en.wikipedia.org/wiki/Random_forest)
are ensembles of [decision trees](ml-classification-regression.html#decision-trees).
Random forests combine many decision trees in order to reduce the risk of overfitting.
The `spark.ml` implementation supports random forests for binary and multiclass classification and for regression,
using both continuous and categorical features.

For more information on the algorithm itself, please see the [`spark.mllib` documentation on random forests](mllib-ensembles.html#random-forests).

### Inputs and Outputs

We list the input and output (prediction) column types here.
All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.

#### Input Columns

<table class="table">
  <thead>
    <tr>
      <th align="left">Param name</th>
      <th align="left">Type(s)</th>
      <th align="left">Default</th>
      <th align="left">Description</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>labelCol</td>
      <td>Double</td>
      <td>"label"</td>
      <td>Label to predict</td>
    </tr>
    <tr>
      <td>featuresCol</td>
      <td>Vector</td>
      <td>"features"</td>
      <td>Feature vector</td>
    </tr>
  </tbody>
</table>

#### Output Columns (Predictions)

<table class="table">
  <thead>
    <tr>
      <th align="left">Param name</th>
      <th align="left">Type(s)</th>
      <th align="left">Default</th>
      <th align="left">Description</th>
      <th align="left">Notes</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>predictionCol</td>
      <td>Double</td>
      <td>"prediction"</td>
      <td>Predicted label</td>
      <td></td>
    </tr>
    <tr>
      <td>rawPredictionCol</td>
      <td>Vector</td>
      <td>"rawPrediction"</td>
      <td>Vector of length # classes, with the counts of training instance labels at the tree node which makes the prediction</td>
      <td>Classification only</td>
    </tr>
    <tr>
      <td>probabilityCol</td>
      <td>Vector</td>
      <td>"probability"</td>
      <td>Vector of length # classes equal to rawPrediction normalized to a multinomial distribution</td>
      <td>Classification only</td>
    </tr>
  </tbody>
</table>



## Gradient-Boosted Trees (GBTs)

[Gradient-Boosted Trees (GBTs)](http://en.wikipedia.org/wiki/Gradient_boosting)
are ensembles of [decision trees](ml-classification-regression.html#decision-trees).
GBTs iteratively train decision trees in order to minimize a loss function.
The `spark.ml` implementation supports GBTs for binary classification and for regression,
using both continuous and categorical features.

For more information on the algorithm itself, please see the [`spark.mllib` documentation on GBTs](mllib-ensembles.html#gradient-boosted-trees-gbts).

### Inputs and Outputs

We list the input and output (prediction) column types here.
All output columns are optional; to exclude an output column, set its corresponding Param to an empty string.

#### Input Columns

<table class="table">
  <thead>
    <tr>
      <th align="left">Param name</th>
      <th align="left">Type(s)</th>
      <th align="left">Default</th>
      <th align="left">Description</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>labelCol</td>
      <td>Double</td>
      <td>"label"</td>
      <td>Label to predict</td>
    </tr>
    <tr>
      <td>featuresCol</td>
      <td>Vector</td>
      <td>"features"</td>
      <td>Feature vector</td>
    </tr>
  </tbody>
</table>

Note that `GBTClassifier` currently only supports binary labels.

#### Output Columns (Predictions)

<table class="table">
  <thead>
    <tr>
      <th align="left">Param name</th>
      <th align="left">Type(s)</th>
      <th align="left">Default</th>
      <th align="left">Description</th>
      <th align="left">Notes</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>predictionCol</td>
      <td>Double</td>
      <td>"prediction"</td>
      <td>Predicted label</td>
      <td></td>
    </tr>
  </tbody>
</table>

In the future, `GBTClassifier` will also output columns for `rawPrediction` and `probability`, just as `RandomForestClassifier` does.