aboutsummaryrefslogtreecommitdiff
path: root/docs/ml-features.md
blob: e19fba249fb2df981df2dd7553eb4ca4329799c1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
---
layout: global
title: Extracting, transforming and selecting features
displayTitle: Extracting, transforming and selecting features
---

This section covers algorithms for working with features, roughly divided into these groups:

* Extraction: Extracting features from "raw" data
* Transformation: Scaling, converting, or modifying features
* Selection: Selecting a subset from a larger set of features
* Locality Sensitive Hashing (LSH): This class of algorithms combines aspects of feature transformation with other algorithms.

**Table of Contents**

* This will become a table of contents (this text will be scraped).
{:toc}


# Feature Extractors

## TF-IDF

[Term frequency-inverse document frequency (TF-IDF)](http://en.wikipedia.org/wiki/Tf%E2%80%93idf) 
is a feature vectorization method widely used in text mining to reflect the importance of a term 
to a document in the corpus. Denote a term by `$t$`, a document by `$d$`, and the corpus by `$D$`.
Term frequency `$TF(t, d)$` is the number of times that term `$t$` appears in document `$d$`, while 
document frequency `$DF(t, D)$` is the number of documents that contains term `$t$`. If we only use 
term frequency to measure the importance, it is very easy to over-emphasize terms that appear very 
often but carry little information about the document, e.g. "a", "the", and "of". If a term appears 
very often across the corpus, it means it doesn't carry special information about a particular document.
Inverse document frequency is a numerical measure of how much information a term provides:
`\[
IDF(t, D) = \log \frac{|D| + 1}{DF(t, D) + 1},
\]`
where `$|D|$` is the total number of documents in the corpus. Since logarithm is used, if a term 
appears in all documents, its IDF value becomes 0. Note that a smoothing term is applied to avoid 
dividing by zero for terms outside the corpus. The TF-IDF measure is simply the product of TF and IDF:
`\[
TFIDF(t, d, D) = TF(t, d) \cdot IDF(t, D).
\]`
There are several variants on the definition of term frequency and document frequency.
In MLlib, we separate TF and IDF to make them flexible.

**TF**: Both `HashingTF` and `CountVectorizer` can be used to generate the term frequency vectors. 

`HashingTF` is a `Transformer` which takes sets of terms and converts those sets into 
fixed-length feature vectors.  In text processing, a "set of terms" might be a bag of words.
`HashingTF` utilizes the [hashing trick](http://en.wikipedia.org/wiki/Feature_hashing).
A raw feature is mapped into an index (term) by applying a hash function. The hash function
used here is [MurmurHash 3](https://en.wikipedia.org/wiki/MurmurHash). Then term frequencies
are calculated based on the mapped indices. This approach avoids the need to compute a global 
term-to-index map, which can be expensive for a large corpus, but it suffers from potential hash 
collisions, where different raw features may become the same term after hashing. To reduce the 
chance of collision, we can increase the target feature dimension, i.e. the number of buckets 
of the hash table. Since a simple modulo is used to transform the hash function to a column index, 
it is advisable to use a power of two as the feature dimension, otherwise the features will 
not be mapped evenly to the columns. The default feature dimension is `$2^{18} = 262,144$`.
An optional binary toggle parameter controls term frequency counts. When set to true all nonzero
frequency counts are set to 1. This is especially useful for discrete probabilistic models that
model binary, rather than integer, counts.

`CountVectorizer` converts text documents to vectors of term counts. Refer to [CountVectorizer
](ml-features.html#countvectorizer) for more details.

**IDF**: `IDF` is an `Estimator` which is fit on a dataset and produces an `IDFModel`.  The 
`IDFModel` takes feature vectors (generally created from `HashingTF` or `CountVectorizer`) and 
scales each column. Intuitively, it down-weights columns which appear frequently in a corpus.

**Note:** `spark.ml` doesn't provide tools for text segmentation.
We refer users to the [Stanford NLP Group](http://nlp.stanford.edu/) and 
[scalanlp/chalk](https://github.com/scalanlp/chalk).

**Examples**

In the following code segment, we start with a set of sentences.  We split each sentence into words 
using `Tokenizer`.  For each sentence (bag of words), we use `HashingTF` to hash the sentence into 
a feature vector.  We use `IDF` to rescale the feature vectors; this generally improves performance 
when using text as features.  Our feature vectors could then be passed to a learning algorithm.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [HashingTF Scala docs](api/scala/index.html#org.apache.spark.ml.feature.HashingTF) and
the [IDF Scala docs](api/scala/index.html#org.apache.spark.ml.feature.IDF) for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/TfIdfExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [HashingTF Java docs](api/java/org/apache/spark/ml/feature/HashingTF.html) and the
[IDF Java docs](api/java/org/apache/spark/ml/feature/IDF.html) for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaTfIdfExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [HashingTF Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.HashingTF) and
the [IDF Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.IDF) for more details on the API.

{% include_example python/ml/tf_idf_example.py %}
</div>
</div>

## Word2Vec

`Word2Vec` is an `Estimator` which takes sequences of words representing documents and trains a
`Word2VecModel`. The model maps each word to a unique fixed-size vector. The `Word2VecModel`
transforms each document into a vector using the average of all words in the document; this vector
can then be used as features for prediction, document similarity calculations, etc.
Please refer to the [MLlib user guide on Word2Vec](mllib-feature-extraction.html#word2vec) for more
details.

**Examples**

In the following code segment, we start with a set of documents, each of which is represented as a sequence of words. For each document, we transform it into a feature vector. This feature vector could then be passed to a learning algorithm.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Word2Vec Scala docs](api/scala/index.html#org.apache.spark.ml.feature.Word2Vec)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/Word2VecExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Word2Vec Java docs](api/java/org/apache/spark/ml/feature/Word2Vec.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaWord2VecExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Word2Vec Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Word2Vec)
for more details on the API.

{% include_example python/ml/word2vec_example.py %}
</div>
</div>

## CountVectorizer

`CountVectorizer` and `CountVectorizerModel` aim to help convert a collection of text documents
 to vectors of token counts. When an a-priori dictionary is not available, `CountVectorizer` can
 be used as an `Estimator` to extract the vocabulary, and generates a `CountVectorizerModel`. The
 model produces sparse representations for the documents over the vocabulary, which can then be
 passed to other algorithms like LDA.

 During the fitting process, `CountVectorizer` will select the top `vocabSize` words ordered by
 term frequency across the corpus. An optional parameter `minDF` also affects the fitting process
 by specifying the minimum number (or fraction if < 1.0) of documents a term must appear in to be
 included in the vocabulary. Another optional binary toggle parameter controls the output vector.
 If set to true all nonzero counts are set to 1. This is especially useful for discrete probabilistic
 models that model binary, rather than integer, counts.

**Examples**

Assume that we have the following DataFrame with columns `id` and `texts`:

~~~~
 id | texts
----|----------
 0  | Array("a", "b", "c")
 1  | Array("a", "b", "b", "c", "a")
~~~~

each row in `texts` is a document of type Array[String].
Invoking fit of `CountVectorizer` produces a `CountVectorizerModel` with vocabulary (a, b, c).
Then the output column "vector" after transformation contains:

~~~~
 id | texts                           | vector
----|---------------------------------|---------------
 0  | Array("a", "b", "c")            | (3,[0,1,2],[1.0,1.0,1.0])
 1  | Array("a", "b", "b", "c", "a")  | (3,[0,1,2],[2.0,2.0,1.0])
~~~~

Each vector represents the token counts of the document over the vocabulary.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [CountVectorizer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.CountVectorizer)
and the [CountVectorizerModel Scala docs](api/scala/index.html#org.apache.spark.ml.feature.CountVectorizerModel)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/CountVectorizerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [CountVectorizer Java docs](api/java/org/apache/spark/ml/feature/CountVectorizer.html)
and the [CountVectorizerModel Java docs](api/java/org/apache/spark/ml/feature/CountVectorizerModel.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaCountVectorizerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [CountVectorizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.CountVectorizer)
and the [CountVectorizerModel Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.CountVectorizerModel)
for more details on the API.

{% include_example python/ml/count_vectorizer_example.py %}
</div>
</div>

# Feature Transformers

## Tokenizer

[Tokenization](http://en.wikipedia.org/wiki/Lexical_analysis#Tokenization) is the process of taking text (such as a sentence) and breaking it into individual terms (usually words).  A simple [Tokenizer](api/scala/index.html#org.apache.spark.ml.feature.Tokenizer) class provides this functionality.  The example below shows how to split sentences into sequences of words.

[RegexTokenizer](api/scala/index.html#org.apache.spark.ml.feature.RegexTokenizer) allows more
 advanced tokenization based on regular expression (regex) matching.
 By default, the parameter "pattern" (regex, default: `"\\s+"`) is used as delimiters to split the input text.
 Alternatively, users can set parameter "gaps" to false indicating the regex "pattern" denotes
 "tokens" rather than splitting gaps, and find all matching occurrences as the tokenization result.

**Examples**

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Tokenizer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.Tokenizer)
and the [RegexTokenizer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.RegexTokenizer)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/TokenizerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Tokenizer Java docs](api/java/org/apache/spark/ml/feature/Tokenizer.html)
and the [RegexTokenizer Java docs](api/java/org/apache/spark/ml/feature/RegexTokenizer.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaTokenizerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Tokenizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Tokenizer) and
the [RegexTokenizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.RegexTokenizer)
for more details on the API.

{% include_example python/ml/tokenizer_example.py %}
</div>
</div>

## StopWordsRemover
[Stop words](https://en.wikipedia.org/wiki/Stop_words) are words which
should be excluded from the input, typically because the words appear
frequently and don't carry as much meaning.

`StopWordsRemover` takes as input a sequence of strings (e.g. the output
of a [Tokenizer](ml-features.html#tokenizer)) and drops all the stop
words from the input sequences. The list of stopwords is specified by
the `stopWords` parameter. Default stop words for some languages are accessible 
by calling `StopWordsRemover.loadDefaultStopWords(language)`, for which available 
options are "danish", "dutch", "english", "finnish", "french", "german", "hungarian", 
"italian", "norwegian", "portuguese", "russian", "spanish", "swedish" and "turkish". 
A boolean parameter `caseSensitive` indicates if the matches should be case sensitive 
(false by default).

**Examples**

Assume that we have the following DataFrame with columns `id` and `raw`:

~~~~
 id | raw
----|----------
 0  | [I, saw, the, red, baloon]
 1  | [Mary, had, a, little, lamb]
~~~~

Applying `StopWordsRemover` with `raw` as the input column and `filtered` as the output
column, we should get the following:

~~~~
 id | raw                         | filtered
----|-----------------------------|--------------------
 0  | [I, saw, the, red, baloon]  |  [saw, red, baloon]
 1  | [Mary, had, a, little, lamb]|[Mary, little, lamb]
~~~~

In `filtered`, the stop words "I", "the", "had", and "a" have been
filtered out.

<div class="codetabs">

<div data-lang="scala" markdown="1">

Refer to the [StopWordsRemover Scala docs](api/scala/index.html#org.apache.spark.ml.feature.StopWordsRemover)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/StopWordsRemoverExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [StopWordsRemover Java docs](api/java/org/apache/spark/ml/feature/StopWordsRemover.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaStopWordsRemoverExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [StopWordsRemover Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.StopWordsRemover)
for more details on the API.

{% include_example python/ml/stopwords_remover_example.py %}
</div>
</div>

## $n$-gram

An [n-gram](https://en.wikipedia.org/wiki/N-gram) is a sequence of $n$ tokens (typically words) for some integer $n$. The `NGram` class can be used to transform input features into $n$-grams.

`NGram` takes as input a sequence of strings (e.g. the output of a [Tokenizer](ml-features.html#tokenizer)).  The parameter `n` is used to determine the number of terms in each $n$-gram. The output will consist of a sequence of $n$-grams where each $n$-gram is represented by a space-delimited string of $n$ consecutive words.  If the input sequence contains fewer than `n` strings, no output is produced.

**Examples**

<div class="codetabs">

<div data-lang="scala" markdown="1">

Refer to the [NGram Scala docs](api/scala/index.html#org.apache.spark.ml.feature.NGram)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/NGramExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [NGram Java docs](api/java/org/apache/spark/ml/feature/NGram.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaNGramExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [NGram Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.NGram)
for more details on the API.

{% include_example python/ml/n_gram_example.py %}
</div>
</div>


## Binarizer

Binarization is the process of thresholding numerical features to binary (0/1) features.

`Binarizer` takes the common parameters `inputCol` and `outputCol`, as well as the `threshold`
for binarization. Feature values greater than the threshold are binarized to 1.0; values equal
to or less than the threshold are binarized to 0.0. Both Vector and Double types are supported
for `inputCol`.

**Examples**

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Binarizer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.Binarizer)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/BinarizerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Binarizer Java docs](api/java/org/apache/spark/ml/feature/Binarizer.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaBinarizerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Binarizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Binarizer)
for more details on the API.

{% include_example python/ml/binarizer_example.py %}
</div>
</div>

## PCA

[PCA](http://en.wikipedia.org/wiki/Principal_component_analysis) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. A [PCA](api/scala/index.html#org.apache.spark.ml.feature.PCA) class trains a model to project vectors to a low-dimensional space using PCA. The example below shows how to project 5-dimensional feature vectors into 3-dimensional principal components.

**Examples**

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [PCA Scala docs](api/scala/index.html#org.apache.spark.ml.feature.PCA)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/PCAExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [PCA Java docs](api/java/org/apache/spark/ml/feature/PCA.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaPCAExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [PCA Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.PCA)
for more details on the API.

{% include_example python/ml/pca_example.py %}
</div>
</div>

## PolynomialExpansion

[Polynomial expansion](http://en.wikipedia.org/wiki/Polynomial_expansion) is the process of expanding your features into a polynomial space, which is formulated by an n-degree combination of original dimensions. A [PolynomialExpansion](api/scala/index.html#org.apache.spark.ml.feature.PolynomialExpansion) class provides this functionality.  The example below shows how to expand your features into a 3-degree polynomial space.

**Examples**

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [PolynomialExpansion Scala docs](api/scala/index.html#org.apache.spark.ml.feature.PolynomialExpansion)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/PolynomialExpansionExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [PolynomialExpansion Java docs](api/java/org/apache/spark/ml/feature/PolynomialExpansion.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaPolynomialExpansionExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [PolynomialExpansion Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.PolynomialExpansion)
for more details on the API.

{% include_example python/ml/polynomial_expansion_example.py %}
</div>
</div>

## Discrete Cosine Transform (DCT)

The [Discrete Cosine
Transform](https://en.wikipedia.org/wiki/Discrete_cosine_transform)
transforms a length $N$ real-valued sequence in the time domain into
another length $N$ real-valued sequence in the frequency domain. A
[DCT](api/scala/index.html#org.apache.spark.ml.feature.DCT) class
provides this functionality, implementing the
[DCT-II](https://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II)
and scaling the result by $1/\sqrt{2}$ such that the representing matrix
for the transform is unitary. No shift is applied to the transformed
sequence (e.g. the $0$th element of the transformed sequence is the
$0$th DCT coefficient and _not_ the $N/2$th).

**Examples**

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [DCT Scala docs](api/scala/index.html#org.apache.spark.ml.feature.DCT)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/DCTExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [DCT Java docs](api/java/org/apache/spark/ml/feature/DCT.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaDCTExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [DCT Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.DCT)
for more details on the API.

{% include_example python/ml/dct_example.py %}
</div>
</div>

## StringIndexer

`StringIndexer` encodes a string column of labels to a column of label indices.
The indices are in `[0, numLabels)`, ordered by label frequencies, so the most frequent label gets index `0`.
The unseen labels will be put at index numLabels if user chooses to keep them.
If the input column is numeric, we cast it to string and index the string
values. When downstream pipeline components such as `Estimator` or
`Transformer` make use of this string-indexed label, you must set the input
column of the component to this string-indexed column name. In many cases,
you can set the input column with `setInputCol`.

**Examples**

Assume that we have the following DataFrame with columns `id` and `category`:

~~~~
 id | category
----|----------
 0  | a
 1  | b
 2  | c
 3  | a
 4  | a
 5  | c
~~~~

`category` is a string column with three labels: "a", "b", and "c".
Applying `StringIndexer` with `category` as the input column and `categoryIndex` as the output
column, we should get the following:

~~~~
 id | category | categoryIndex
----|----------|---------------
 0  | a        | 0.0
 1  | b        | 2.0
 2  | c        | 1.0
 3  | a        | 0.0
 4  | a        | 0.0
 5  | c        | 1.0
~~~~

"a" gets index `0` because it is the most frequent, followed by "c" with index `1` and "b" with
index `2`.

Additionally, there are three strategies regarding how `StringIndexer` will handle
unseen labels when you have fit a `StringIndexer` on one dataset and then use it
to transform another:

- throw an exception (which is the default)
- skip the row containing the unseen label entirely
- put unseen labels in a special additional bucket, at index numLabels

**Examples**

Let's go back to our previous example but this time reuse our previously defined
`StringIndexer` on the following dataset:

~~~~
 id | category
----|----------
 0  | a
 1  | b
 2  | c
 3  | d
 4  | e
~~~~

If you've not set how `StringIndexer` handles unseen labels or set it to
"error", an exception will be thrown.
However, if you had called `setHandleInvalid("skip")`, the following dataset
will be generated:

~~~~
 id | category | categoryIndex
----|----------|---------------
 0  | a        | 0.0
 1  | b        | 2.0
 2  | c        | 1.0
~~~~

Notice that the rows containing "d" or "e" do not appear.

If you call `setHandleInvalid("keep")`, the following dataset
will be generated:

~~~~
 id | category | categoryIndex
----|----------|---------------
 0  | a        | 0.0
 1  | b        | 2.0
 2  | c        | 1.0
 3  | d        | 3.0
 4  | e        | 3.0
~~~~

Notice that the rows containing "d" or "e" are mapped to index "3.0"

<div class="codetabs">

<div data-lang="scala" markdown="1">

Refer to the [StringIndexer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.StringIndexer)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/StringIndexerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [StringIndexer Java docs](api/java/org/apache/spark/ml/feature/StringIndexer.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaStringIndexerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [StringIndexer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.StringIndexer)
for more details on the API.

{% include_example python/ml/string_indexer_example.py %}
</div>
</div>


## IndexToString

Symmetrically to `StringIndexer`, `IndexToString` maps a column of label indices
back to a column containing the original labels as strings. A common use case
is to produce indices from labels with `StringIndexer`, train a model with those
indices and retrieve the original labels from the column of predicted indices
with `IndexToString`. However, you are free to supply your own labels.

**Examples**

Building on the `StringIndexer` example, let's assume we have the following
DataFrame with columns `id` and `categoryIndex`:

~~~~
 id | categoryIndex
----|---------------
 0  | 0.0
 1  | 2.0
 2  | 1.0
 3  | 0.0
 4  | 0.0
 5  | 1.0
~~~~

Applying `IndexToString` with `categoryIndex` as the input column,
`originalCategory` as the output column, we are able to retrieve our original
labels (they will be inferred from the columns' metadata):

~~~~
 id | categoryIndex | originalCategory
----|---------------|-----------------
 0  | 0.0           | a
 1  | 2.0           | b
 2  | 1.0           | c
 3  | 0.0           | a
 4  | 0.0           | a
 5  | 1.0           | c
~~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [IndexToString Scala docs](api/scala/index.html#org.apache.spark.ml.feature.IndexToString)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/IndexToStringExample.scala %}

</div>

<div data-lang="java" markdown="1">

Refer to the [IndexToString Java docs](api/java/org/apache/spark/ml/feature/IndexToString.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaIndexToStringExample.java %}

</div>

<div data-lang="python" markdown="1">

Refer to the [IndexToString Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.IndexToString)
for more details on the API.

{% include_example python/ml/index_to_string_example.py %}

</div>
</div>

## OneHotEncoder

[One-hot encoding](http://en.wikipedia.org/wiki/One-hot) maps a column of label indices to a column of binary vectors, with at most a single one-value. This encoding allows algorithms which expect continuous features, such as Logistic Regression, to use categorical features.

**Examples**

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [OneHotEncoder Scala docs](api/scala/index.html#org.apache.spark.ml.feature.OneHotEncoder)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/OneHotEncoderExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [OneHotEncoder Java docs](api/java/org/apache/spark/ml/feature/OneHotEncoder.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaOneHotEncoderExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [OneHotEncoder Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.OneHotEncoder)
for more details on the API.

{% include_example python/ml/onehot_encoder_example.py %}
</div>
</div>

## VectorIndexer

`VectorIndexer` helps index categorical features in datasets of `Vector`s.
It can both automatically decide which features are categorical and convert original values to category indices.  Specifically, it does the following:

1. Take an input column of type [Vector](api/scala/index.html#org.apache.spark.ml.linalg.Vector) and a parameter `maxCategories`.
2. Decide which features should be categorical based on the number of distinct values, where features with at most `maxCategories` are declared categorical.
3. Compute 0-based category indices for each categorical feature.
4. Index categorical features and transform original feature values to indices.

Indexing categorical features allows algorithms such as Decision Trees and Tree Ensembles to treat categorical features appropriately, improving performance.

**Examples**

In the example below, we read in a dataset of labeled points and then use `VectorIndexer` to decide which features should be treated as categorical.  We transform the categorical feature values to their indices.  This transformed data could then be passed to algorithms such as `DecisionTreeRegressor` that handle categorical features.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [VectorIndexer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.VectorIndexer)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/VectorIndexerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [VectorIndexer Java docs](api/java/org/apache/spark/ml/feature/VectorIndexer.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaVectorIndexerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [VectorIndexer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.VectorIndexer)
for more details on the API.

{% include_example python/ml/vector_indexer_example.py %}
</div>
</div>

## Interaction

`Interaction` is a `Transformer` which takes vector or double-valued columns, and generates a single vector column that contains the product of all combinations of one value from each input column.

For example, if you have 2 vector type columns each of which has 3 dimensions as input columns, then you'll get a 9-dimensional vector as the output column.

**Examples**

Assume that we have the following DataFrame with the columns "id1", "vec1", and "vec2":

~~~~
  id1|vec1          |vec2          
  ---|--------------|--------------
  1  |[1.0,2.0,3.0] |[8.0,4.0,5.0] 
  2  |[4.0,3.0,8.0] |[7.0,9.0,8.0] 
  3  |[6.0,1.0,9.0] |[2.0,3.0,6.0] 
  4  |[10.0,8.0,6.0]|[9.0,4.0,5.0] 
  5  |[9.0,2.0,7.0] |[10.0,7.0,3.0]
  6  |[1.0,1.0,4.0] |[2.0,8.0,4.0]     
~~~~

Applying `Interaction` with those input columns,
then `interactedCol` as the output column contains:

~~~~
  id1|vec1          |vec2          |interactedCol                                         
  ---|--------------|--------------|------------------------------------------------------
  1  |[1.0,2.0,3.0] |[8.0,4.0,5.0] |[8.0,4.0,5.0,16.0,8.0,10.0,24.0,12.0,15.0]            
  2  |[4.0,3.0,8.0] |[7.0,9.0,8.0] |[56.0,72.0,64.0,42.0,54.0,48.0,112.0,144.0,128.0]     
  3  |[6.0,1.0,9.0] |[2.0,3.0,6.0] |[36.0,54.0,108.0,6.0,9.0,18.0,54.0,81.0,162.0]        
  4  |[10.0,8.0,6.0]|[9.0,4.0,5.0] |[360.0,160.0,200.0,288.0,128.0,160.0,216.0,96.0,120.0]
  5  |[9.0,2.0,7.0] |[10.0,7.0,3.0]|[450.0,315.0,135.0,100.0,70.0,30.0,350.0,245.0,105.0] 
  6  |[1.0,1.0,4.0] |[2.0,8.0,4.0] |[12.0,48.0,24.0,12.0,48.0,24.0,48.0,192.0,96.0]       
~~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Interaction Scala docs](api/scala/index.html#org.apache.spark.ml.feature.Interaction)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/InteractionExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Interaction Java docs](api/java/org/apache/spark/ml/feature/Interaction.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaInteractionExample.java %}
</div>
</div>

## Normalizer

`Normalizer` is a `Transformer` which transforms a dataset of `Vector` rows, normalizing each `Vector` to have unit norm.  It takes parameter `p`, which specifies the [p-norm](http://en.wikipedia.org/wiki/Norm_%28mathematics%29#p-norm) used for normalization.  ($p = 2$ by default.)  This normalization can help standardize your input data and improve the behavior of learning algorithms.

**Examples**

The following example demonstrates how to load a dataset in libsvm format and then normalize each row to have unit $L^1$ norm and unit $L^\infty$ norm.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Normalizer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.Normalizer)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/NormalizerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Normalizer Java docs](api/java/org/apache/spark/ml/feature/Normalizer.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaNormalizerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Normalizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Normalizer)
for more details on the API.

{% include_example python/ml/normalizer_example.py %}
</div>
</div>


## StandardScaler

`StandardScaler` transforms a dataset of `Vector` rows, normalizing each feature to have unit standard deviation and/or zero mean.  It takes parameters:

* `withStd`: True by default. Scales the data to unit standard deviation.
* `withMean`: False by default. Centers the data with mean before scaling. It will build a dense output, so take care when applying to sparse input.

`StandardScaler` is an `Estimator` which can be `fit` on a dataset to produce a `StandardScalerModel`; this amounts to computing summary statistics.  The model can then transform a `Vector` column in a dataset to have unit standard deviation and/or zero mean features.

Note that if the standard deviation of a feature is zero, it will return default `0.0` value in the `Vector` for that feature.

**Examples**

The following example demonstrates how to load a dataset in libsvm format and then normalize each feature to have unit standard deviation.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [StandardScaler Scala docs](api/scala/index.html#org.apache.spark.ml.feature.StandardScaler)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/StandardScalerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [StandardScaler Java docs](api/java/org/apache/spark/ml/feature/StandardScaler.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaStandardScalerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [StandardScaler Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.StandardScaler)
for more details on the API.

{% include_example python/ml/standard_scaler_example.py %}
</div>
</div>

## MinMaxScaler

`MinMaxScaler` transforms a dataset of `Vector` rows, rescaling each feature to a specific range (often [0, 1]).  It takes parameters:

* `min`: 0.0 by default. Lower bound after transformation, shared by all features.
* `max`: 1.0 by default. Upper bound after transformation, shared by all features.

`MinMaxScaler` computes summary statistics on a data set and produces a `MinMaxScalerModel`. The model can then transform each feature individually such that it is in the given range.

The rescaled value for a feature E is calculated as,
`\begin{equation}
  Rescaled(e_i) = \frac{e_i - E_{min}}{E_{max} - E_{min}} * (max - min) + min
\end{equation}`
For the case `$E_{max} == E_{min}$`, `$Rescaled(e_i) = 0.5 * (max + min)$`

Note that since zero values will probably be transformed to non-zero values, output of the transformer will be `DenseVector` even for sparse input.

**Examples**

The following example demonstrates how to load a dataset in libsvm format and then rescale each feature to [0, 1].

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [MinMaxScaler Scala docs](api/scala/index.html#org.apache.spark.ml.feature.MinMaxScaler)
and the [MinMaxScalerModel Scala docs](api/scala/index.html#org.apache.spark.ml.feature.MinMaxScalerModel)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/MinMaxScalerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [MinMaxScaler Java docs](api/java/org/apache/spark/ml/feature/MinMaxScaler.html)
and the [MinMaxScalerModel Java docs](api/java/org/apache/spark/ml/feature/MinMaxScalerModel.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaMinMaxScalerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [MinMaxScaler Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MinMaxScaler)
and the [MinMaxScalerModel Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MinMaxScalerModel)
for more details on the API.

{% include_example python/ml/min_max_scaler_example.py %}
</div>
</div>


## MaxAbsScaler

`MaxAbsScaler` transforms a dataset of `Vector` rows, rescaling each feature to range [-1, 1] 
by dividing through the maximum absolute value in each feature. It does not shift/center the 
data, and thus does not destroy any sparsity.

`MaxAbsScaler` computes summary statistics on a data set and produces a `MaxAbsScalerModel`. The 
model can then transform each feature individually to range [-1, 1].

**Examples**

The following example demonstrates how to load a dataset in libsvm format and then rescale each feature to [-1, 1].

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [MaxAbsScaler Scala docs](api/scala/index.html#org.apache.spark.ml.feature.MaxAbsScaler)
and the [MaxAbsScalerModel Scala docs](api/scala/index.html#org.apache.spark.ml.feature.MaxAbsScalerModel)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/MaxAbsScalerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [MaxAbsScaler Java docs](api/java/org/apache/spark/ml/feature/MaxAbsScaler.html)
and the [MaxAbsScalerModel Java docs](api/java/org/apache/spark/ml/feature/MaxAbsScalerModel.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaMaxAbsScalerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [MaxAbsScaler Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MaxAbsScaler)
and the [MaxAbsScalerModel Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MaxAbsScalerModel)
for more details on the API.

{% include_example python/ml/max_abs_scaler_example.py %}
</div>
</div>

## Bucketizer

`Bucketizer` transforms a column of continuous features to a column of feature buckets, where the buckets are specified by users. It takes a parameter:

* `splits`: Parameter for mapping continuous features into buckets. With n+1 splits, there are n buckets. A bucket defined by splits x,y holds values in the range [x,y) except the last bucket, which also includes y. Splits should be strictly increasing. Values at -inf, inf must be explicitly provided to cover all Double values; Otherwise, values outside the splits specified will be treated as errors. Two examples of `splits` are `Array(Double.NegativeInfinity, 0.0, 1.0, Double.PositiveInfinity)` and `Array(0.0, 1.0, 2.0)`.

Note that if you have no idea of the upper and lower bounds of the targeted column, you should add `Double.NegativeInfinity` and `Double.PositiveInfinity` as the bounds of your splits to prevent a potential out of Bucketizer bounds exception.

Note also that the splits that you provided have to be in strictly increasing order, i.e. `s0 < s1 < s2 < ... < sn`.

More details can be found in the API docs for [Bucketizer](api/scala/index.html#org.apache.spark.ml.feature.Bucketizer).

**Examples**

The following example demonstrates how to bucketize a column of `Double`s into another index-wised column.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Bucketizer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.Bucketizer)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/BucketizerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Bucketizer Java docs](api/java/org/apache/spark/ml/feature/Bucketizer.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaBucketizerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Bucketizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Bucketizer)
for more details on the API.

{% include_example python/ml/bucketizer_example.py %}
</div>
</div>

## ElementwiseProduct

ElementwiseProduct multiplies each input vector by a provided "weight" vector, using element-wise multiplication. In other words, it scales each column of the dataset by a scalar multiplier.  This represents the [Hadamard product](https://en.wikipedia.org/wiki/Hadamard_product_%28matrices%29) between the input vector, `v` and transforming vector, `w`, to yield a result vector.

`\[ \begin{pmatrix}
v_1 \\
\vdots \\
v_N
\end{pmatrix} \circ \begin{pmatrix}
                    w_1 \\
                    \vdots \\
                    w_N
                    \end{pmatrix}
= \begin{pmatrix}
  v_1 w_1 \\
  \vdots \\
  v_N w_N
  \end{pmatrix}
\]`

**Examples**

This example below demonstrates how to transform vectors using a transforming vector value.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [ElementwiseProduct Scala docs](api/scala/index.html#org.apache.spark.ml.feature.ElementwiseProduct)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/ElementwiseProductExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [ElementwiseProduct Java docs](api/java/org/apache/spark/ml/feature/ElementwiseProduct.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaElementwiseProductExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [ElementwiseProduct Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.ElementwiseProduct)
for more details on the API.

{% include_example python/ml/elementwise_product_example.py %}
</div>
</div>

## SQLTransformer

`SQLTransformer` implements the transformations which are defined by SQL statement.
Currently we only support SQL syntax like `"SELECT ... FROM __THIS__ ..."`
where `"__THIS__"` represents the underlying table of the input dataset.
The select clause specifies the fields, constants, and expressions to display in
the output, and can be any select clause that Spark SQL supports. Users can also
use Spark SQL built-in function and UDFs to operate on these selected columns.
For example, `SQLTransformer` supports statements like:

* `SELECT a, a + b AS a_b FROM __THIS__`
* `SELECT a, SQRT(b) AS b_sqrt FROM __THIS__ where a > 5`
* `SELECT a, b, SUM(c) AS c_sum FROM __THIS__ GROUP BY a, b`

**Examples**

Assume that we have the following DataFrame with columns `id`, `v1` and `v2`:

~~~~
 id |  v1 |  v2
----|-----|-----
 0  | 1.0 | 3.0  
 2  | 2.0 | 5.0
~~~~

This is the output of the `SQLTransformer` with statement `"SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__"`:

~~~~
 id |  v1 |  v2 |  v3 |  v4
----|-----|-----|-----|-----
 0  | 1.0 | 3.0 | 4.0 | 3.0
 2  | 2.0 | 5.0 | 7.0 |10.0
~~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [SQLTransformer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.SQLTransformer)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/SQLTransformerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [SQLTransformer Java docs](api/java/org/apache/spark/ml/feature/SQLTransformer.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaSQLTransformerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [SQLTransformer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.SQLTransformer) for more details on the API.

{% include_example python/ml/sql_transformer.py %}
</div>
</div>

## VectorAssembler

`VectorAssembler` is a transformer that combines a given list of columns into a single vector
column.
It is useful for combining raw features and features generated by different feature transformers
into a single feature vector, in order to train ML models like logistic regression and decision
trees.
`VectorAssembler` accepts the following input column types: all numeric types, boolean type,
and vector type.
In each row, the values of the input columns will be concatenated into a vector in the specified
order.

**Examples**

Assume that we have a DataFrame with the columns `id`, `hour`, `mobile`, `userFeatures`,
and `clicked`:

~~~
 id | hour | mobile | userFeatures     | clicked
----|------|--------|------------------|---------
 0  | 18   | 1.0    | [0.0, 10.0, 0.5] | 1.0
~~~

`userFeatures` is a vector column that contains three user features.
We want to combine `hour`, `mobile`, and `userFeatures` into a single feature vector
called `features` and use it to predict `clicked` or not.
If we set `VectorAssembler`'s input columns to `hour`, `mobile`, and `userFeatures` and
output column to `features`, after transformation we should get the following DataFrame:

~~~
 id | hour | mobile | userFeatures     | clicked | features
----|------|--------|------------------|---------|-----------------------------
 0  | 18   | 1.0    | [0.0, 10.0, 0.5] | 1.0     | [18.0, 1.0, 0.0, 10.0, 0.5]
~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [VectorAssembler Scala docs](api/scala/index.html#org.apache.spark.ml.feature.VectorAssembler)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/VectorAssemblerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [VectorAssembler Java docs](api/java/org/apache/spark/ml/feature/VectorAssembler.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaVectorAssemblerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [VectorAssembler Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.VectorAssembler)
for more details on the API.

{% include_example python/ml/vector_assembler_example.py %}
</div>
</div>

## QuantileDiscretizer

`QuantileDiscretizer` takes a column with continuous features and outputs a column with binned
categorical features. The number of bins is set by the `numBuckets` parameter. It is possible
that the number of buckets used will be smaller than this value, for example, if there are too few
distinct values of the input to create enough distinct quantiles.

NaN values:
NaN values will be removed from the column during `QuantileDiscretizer` fitting. This will produce
a `Bucketizer` model for making predictions. During the transformation, `Bucketizer`
will raise an error when it finds NaN values in the dataset, but the user can also choose to either
keep or remove NaN values within the dataset by setting `handleInvalid`. If the user chooses to keep
NaN values, they will be handled specially and placed into their own bucket, for example, if 4 buckets
are used, then non-NaN data will be put into buckets[0-3], but NaNs will be counted in a special bucket[4].

Algorithm: The bin ranges are chosen using an approximate algorithm (see the documentation for
[approxQuantile](api/scala/index.html#org.apache.spark.sql.DataFrameStatFunctions) for a
detailed description). The precision of the approximation can be controlled with the
`relativeError` parameter. When set to zero, exact quantiles are calculated
(**Note:** Computing exact quantiles is an expensive operation). The lower and upper bin bounds
will be `-Infinity` and `+Infinity` covering all real values.

**Examples**

Assume that we have a DataFrame with the columns `id`, `hour`:

~~~
 id | hour
----|------
 0  | 18.0
----|------
 1  | 19.0
----|------
 2  | 8.0
----|------
 3  | 5.0
----|------
 4  | 2.2
~~~

`hour` is a continuous feature with `Double` type. We want to turn the continuous feature into
a categorical one. Given `numBuckets = 3`, we should get the following DataFrame:

~~~
 id | hour | result
----|------|------
 0  | 18.0 | 2.0
----|------|------
 1  | 19.0 | 2.0
----|------|------
 2  | 8.0  | 1.0
----|------|------
 3  | 5.0  | 1.0
----|------|------
 4  | 2.2  | 0.0
~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [QuantileDiscretizer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.QuantileDiscretizer)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/QuantileDiscretizerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [QuantileDiscretizer Java docs](api/java/org/apache/spark/ml/feature/QuantileDiscretizer.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaQuantileDiscretizerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [QuantileDiscretizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.QuantileDiscretizer)
for more details on the API.

{% include_example python/ml/quantile_discretizer_example.py %}
</div>

</div>


## Imputer

The `Imputer` transformer completes missing values in a dataset, either using the mean or the 
median of the columns in which the missing values are located. The input columns should be of
`DoubleType` or `FloatType`. Currently `Imputer` does not support categorical features and possibly
creates incorrect values for columns containing categorical features.

**Note** all `null` values in the input columns are treated as missing, and so are also imputed.

**Examples**

Suppose that we have a DataFrame with the columns `a` and `b`:

~~~
      a     |      b      
------------|-----------
     1.0    | Double.NaN
     2.0    | Double.NaN
 Double.NaN |     3.0   
     4.0    |     4.0   
     5.0    |     5.0   
~~~

In this example, Imputer will replace all occurrences of `Double.NaN` (the default for the missing value)
with the mean (the default imputation strategy) computed from the other values in the corresponding columns.
In this example, the surrogate values for columns `a` and `b` are 3.0 and 4.0 respectively. After
transformation, the missing values in the output columns will be replaced by the surrogate value for
the relevant column.

~~~
      a     |      b     | out_a | out_b   
------------|------------|-------|-------
     1.0    | Double.NaN |  1.0  |  4.0 
     2.0    | Double.NaN |  2.0  |  4.0 
 Double.NaN |     3.0    |  3.0  |  3.0 
     4.0    |     4.0    |  4.0  |  4.0
     5.0    |     5.0    |  5.0  |  5.0 
~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [Imputer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.Imputer)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/ImputerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [Imputer Java docs](api/java/org/apache/spark/ml/feature/Imputer.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaImputerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [Imputer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Imputer)
for more details on the API.

{% include_example python/ml/imputer_example.py %}
</div>
</div>

# Feature Selectors

## VectorSlicer

`VectorSlicer` is a transformer that takes a feature vector and outputs a new feature vector with a
sub-array of the original features. It is useful for extracting features from a vector column.

`VectorSlicer` accepts a vector column with specified indices, then outputs a new vector column
whose values are selected via those indices. There are two types of indices,

 1. Integer indices that represent the indices into the vector, `setIndices()`.

 2. String indices that represent the names of features into the vector, `setNames()`.
 *This requires the vector column to have an `AttributeGroup` since the implementation matches on
 the name field of an `Attribute`.*

Specification by integer and string are both acceptable. Moreover, you can use integer index and
string name simultaneously. At least one feature must be selected. Duplicate features are not
allowed, so there can be no overlap between selected indices and names. Note that if names of
features are selected, an exception will be thrown if empty input attributes are encountered.

The output vector will order features with the selected indices first (in the order given),
followed by the selected names (in the order given).

**Examples**

Suppose that we have a DataFrame with the column `userFeatures`:

~~~
 userFeatures
------------------
 [0.0, 10.0, 0.5]
~~~

`userFeatures` is a vector column that contains three user features. Assume that the first column
of `userFeatures` are all zeros, so we want to remove it and select only the last two columns.
The `VectorSlicer` selects the last two elements with `setIndices(1, 2)` then produces a new vector
column named `features`:

~~~
 userFeatures     | features
------------------|-----------------------------
 [0.0, 10.0, 0.5] | [10.0, 0.5]
~~~

Suppose also that we have potential input attributes for the `userFeatures`, i.e.
`["f1", "f2", "f3"]`, then we can use `setNames("f2", "f3")` to select them.

~~~
 userFeatures     | features
------------------|-----------------------------
 [0.0, 10.0, 0.5] | [10.0, 0.5]
 ["f1", "f2", "f3"] | ["f2", "f3"]
~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [VectorSlicer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.VectorSlicer)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/VectorSlicerExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [VectorSlicer Java docs](api/java/org/apache/spark/ml/feature/VectorSlicer.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaVectorSlicerExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [VectorSlicer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.VectorSlicer)
for more details on the API.

{% include_example python/ml/vector_slicer_example.py %}
</div>
</div>

## RFormula

`RFormula` selects columns specified by an [R model formula](https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html). 
Currently we support a limited subset of the R operators, including '~', '.', ':', '+', and '-'.
The basic operators are:

* `~` separate target and terms
* `+` concat terms, "+ 0" means removing intercept
* `-` remove a term, "- 1" means removing intercept
* `:` interaction (multiplication for numeric values, or binarized categorical values)
* `.` all columns except target

Suppose `a` and `b` are double columns, we use the following simple examples to illustrate the effect of `RFormula`:

* `y ~ a + b` means model `y ~ w0 + w1 * a + w2 * b` where `w0` is the intercept and `w1, w2` are coefficients.
* `y ~ a + b + a:b - 1` means model `y ~ w1 * a + w2 * b + w3 * a * b` where `w1, w2, w3` are coefficients.

`RFormula` produces a vector column of features and a double or string column of label. 
Like when formulas are used in R for linear regression, string input columns will be one-hot encoded, and numeric columns will be cast to doubles.
If the label column is of type string, it will be first transformed to double with `StringIndexer`.
If the label column does not exist in the DataFrame, the output label column will be created from the specified response variable in the formula.

**Examples**

Assume that we have a DataFrame with the columns `id`, `country`, `hour`, and `clicked`:

~~~
id | country | hour | clicked
---|---------|------|---------
 7 | "US"    | 18   | 1.0
 8 | "CA"    | 12   | 0.0
 9 | "NZ"    | 15   | 0.0
~~~

If we use `RFormula` with a formula string of `clicked ~ country + hour`, which indicates that we want to
predict `clicked` based on `country` and `hour`, after transformation we should get the following DataFrame:

~~~
id | country | hour | clicked | features         | label
---|---------|------|---------|------------------|-------
 7 | "US"    | 18   | 1.0     | [0.0, 0.0, 18.0] | 1.0
 8 | "CA"    | 12   | 0.0     | [0.0, 1.0, 12.0] | 0.0
 9 | "NZ"    | 15   | 0.0     | [1.0, 0.0, 15.0] | 0.0
~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [RFormula Scala docs](api/scala/index.html#org.apache.spark.ml.feature.RFormula)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/RFormulaExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [RFormula Java docs](api/java/org/apache/spark/ml/feature/RFormula.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaRFormulaExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [RFormula Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.RFormula)
for more details on the API.

{% include_example python/ml/rformula_example.py %}
</div>
</div>

## ChiSqSelector

`ChiSqSelector` stands for Chi-Squared feature selection. It operates on labeled data with
categorical features. ChiSqSelector uses the
[Chi-Squared test of independence](https://en.wikipedia.org/wiki/Chi-squared_test) to decide which
features to choose. It supports five selection methods: `numTopFeatures`, `percentile`, `fpr`, `fdr`, `fwe`:
* `numTopFeatures` chooses a fixed number of top features according to a chi-squared test. This is akin to yielding the features with the most predictive power.
* `percentile` is similar to `numTopFeatures` but chooses a fraction of all features instead of a fixed number.
* `fpr` chooses all features whose p-values are below a threshold, thus controlling the false positive rate of selection.
* `fdr` uses the [Benjamini-Hochberg procedure](https://en.wikipedia.org/wiki/False_discovery_rate#Benjamini.E2.80.93Hochberg_procedure) to choose all features whose false discovery rate is below a threshold.
* `fwe` chooses all features whose p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate of selection.
By default, the selection method is `numTopFeatures`, with the default number of top features set to 50.
The user can choose a selection method using `setSelectorType`.

**Examples**

Assume that we have a DataFrame with the columns `id`, `features`, and `clicked`, which is used as
our target to be predicted:

~~~
id | features              | clicked
---|-----------------------|---------
 7 | [0.0, 0.0, 18.0, 1.0] | 1.0
 8 | [0.0, 1.0, 12.0, 0.0] | 0.0
 9 | [1.0, 0.0, 15.0, 0.1] | 0.0
~~~

If we use `ChiSqSelector` with `numTopFeatures = 1`, then according to our label `clicked` the
last column in our `features` is chosen as the most useful feature:

~~~
id | features              | clicked | selectedFeatures
---|-----------------------|---------|------------------
 7 | [0.0, 0.0, 18.0, 1.0] | 1.0     | [1.0]
 8 | [0.0, 1.0, 12.0, 0.0] | 0.0     | [0.0]
 9 | [1.0, 0.0, 15.0, 0.1] | 0.0     | [0.1]
~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [ChiSqSelector Scala docs](api/scala/index.html#org.apache.spark.ml.feature.ChiSqSelector)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/ChiSqSelectorExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [ChiSqSelector Java docs](api/java/org/apache/spark/ml/feature/ChiSqSelector.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaChiSqSelectorExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [ChiSqSelector Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.ChiSqSelector)
for more details on the API.

{% include_example python/ml/chisq_selector_example.py %}
</div>
</div>

# Locality Sensitive Hashing
[Locality Sensitive Hashing (LSH)](https://en.wikipedia.org/wiki/Locality-sensitive_hashing) is an important class of hashing techniques, which is commonly used in clustering, approximate nearest neighbor search and outlier detection with large datasets.

The general idea of LSH is to use a family of functions ("LSH families") to hash data points into buckets, so that the data points which are close to each other are in the same buckets with high probability, while data points that are far away from each other are very likely in different buckets. An LSH family is formally defined as follows.

In a metric space `(M, d)`, where `M` is a set and `d` is a distance function on `M`, an LSH family is a family of functions `h` that satisfy the following properties:
`\[
\forall p, q \in M,\\
d(p,q) \leq r1 \Rightarrow Pr(h(p)=h(q)) \geq p1\\
d(p,q) \geq r2 \Rightarrow Pr(h(p)=h(q)) \leq p2
\]`
This LSH family is called `(r1, r2, p1, p2)`-sensitive.

In Spark, different LSH families are implemented in separate classes (e.g., `MinHash`), and APIs for feature transformation, approximate similarity join and approximate nearest neighbor are provided in each class.

In LSH, we define a false positive as a pair of distant input features (with `$d(p,q) \geq r2$`) which are hashed into the same bucket, and we define a false negative as a pair of nearby features (with `$d(p,q) \leq r1$`) which are hashed into different buckets.

## LSH Operations

We describe the major types of operations which LSH can be used for.  A fitted LSH model has methods for each of these operations.

### Feature Transformation
Feature transformation is the basic functionality to add hashed values as a new column. This can be useful for dimensionality reduction. Users can specify input and output column names by setting `inputCol` and `outputCol`.

LSH also supports multiple LSH hash tables. Users can specify the number of hash tables by setting `numHashTables`. This is also used for [OR-amplification](https://en.wikipedia.org/wiki/Locality-sensitive_hashing#Amplification) in approximate similarity join and approximate nearest neighbor. Increasing the number of hash tables will increase the accuracy but will also increase communication cost and running time.

The type of `outputCol` is `Seq[Vector]` where the dimension of the array equals `numHashTables`, and the dimensions of the vectors are currently set to 1. In future releases, we will implement AND-amplification so that users can specify the dimensions of these vectors.

### Approximate Similarity Join
Approximate similarity join takes two datasets and approximately returns pairs of rows in the datasets whose distance is smaller than a user-defined threshold. Approximate similarity join supports both joining two different datasets and self-joining. Self-joining will produce some duplicate pairs.

Approximate similarity join accepts both transformed and untransformed datasets as input. If an untransformed dataset is used, it will be transformed automatically. In this case, the hash signature will be created as `outputCol`.

In the joined dataset, the origin datasets can be queried in `datasetA` and `datasetB`. A distance column will be added to the output dataset to show the true distance between each pair of rows returned.

### Approximate Nearest Neighbor Search
Approximate nearest neighbor search takes a dataset (of feature vectors) and a key (a single feature vector), and it approximately returns a specified number of rows in the dataset that are closest to the vector.

Approximate nearest neighbor search accepts both transformed and untransformed datasets as input. If an untransformed dataset is used, it will be transformed automatically. In this case, the hash signature will be created as `outputCol`.

A distance column will be added to the output dataset to show the true distance between each output row and the searched key.

**Note:** Approximate nearest neighbor search will return fewer than `k` rows when there are not enough candidates in the hash bucket.

## LSH Algorithms

### Bucketed Random Projection for Euclidean Distance

[Bucketed Random Projection](https://en.wikipedia.org/wiki/Locality-sensitive_hashing#Stable_distributions) is an LSH family for Euclidean distance. The Euclidean distance is defined as follows:
`\[
d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_i (x_i - y_i)^2}
\]`
Its LSH family projects feature vectors `$\mathbf{x}$` onto a random unit vector `$\mathbf{v}$` and portions the projected results into hash buckets:
`\[
h(\mathbf{x}) = \Big\lfloor \frac{\mathbf{x} \cdot \mathbf{v}}{r} \Big\rfloor
\]`
where `r` is a user-defined bucket length. The bucket length can be used to control the average size of hash buckets (and thus the number of buckets). A larger bucket length (i.e., fewer buckets) increases the probability of features being hashed to the same bucket (increasing the numbers of true and false positives).

Bucketed Random Projection accepts arbitrary vectors as input features, and supports both sparse and dense vectors.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [BucketedRandomProjectionLSH Scala docs](api/scala/index.html#org.apache.spark.ml.feature.BucketedRandomProjectionLSH)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/BucketedRandomProjectionLSHExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [BucketedRandomProjectionLSH Java docs](api/java/org/apache/spark/ml/feature/BucketedRandomProjectionLSH.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaBucketedRandomProjectionLSHExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [BucketedRandomProjectionLSH Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.BucketedRandomProjectionLSH)
for more details on the API.

{% include_example python/ml/bucketed_random_projection_lsh_example.py %}
</div>

</div>

### MinHash for Jaccard Distance
[MinHash](https://en.wikipedia.org/wiki/MinHash) is an LSH family for Jaccard distance where input features are sets of natural numbers. Jaccard distance of two sets is defined by the cardinality of their intersection and union:
`\[
d(\mathbf{A}, \mathbf{B}) = 1 - \frac{|\mathbf{A} \cap \mathbf{B}|}{|\mathbf{A} \cup \mathbf{B}|}
\]`
MinHash applies a random hash function `g` to each element in the set and take the minimum of all hashed values:
`\[
h(\mathbf{A}) = \min_{a \in \mathbf{A}}(g(a))
\]`

The input sets for MinHash are represented as binary vectors, where the vector indices represent the elements themselves and the non-zero values in the vector represent the presence of that element in the set. While both dense and sparse vectors are supported, typically sparse vectors are recommended for efficiency. For example, `Vectors.sparse(10, Array[(2, 1.0), (3, 1.0), (5, 1.0)])` means there are 10 elements in the space. This set contains elem 2, elem 3 and elem 5. All non-zero values are treated as binary "1" values.

**Note:** Empty sets cannot be transformed by MinHash, which means any input vector must have at least 1 non-zero entry.

<div class="codetabs">
<div data-lang="scala" markdown="1">

Refer to the [MinHashLSH Scala docs](api/scala/index.html#org.apache.spark.ml.feature.MinHashLSH)
for more details on the API.

{% include_example scala/org/apache/spark/examples/ml/MinHashLSHExample.scala %}
</div>

<div data-lang="java" markdown="1">

Refer to the [MinHashLSH Java docs](api/java/org/apache/spark/ml/feature/MinHashLSH.html)
for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaMinHashLSHExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [MinHashLSH Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MinHashLSH)
for more details on the API.

{% include_example python/ml/min_hash_lsh_example.py %}
</div>
</div>