aboutsummaryrefslogtreecommitdiff
path: root/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala
blob: d9f36f7f874d7729631940a7c9cd8684a03af8ee (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.analysis

import scala.annotation.tailrec
import scala.collection.mutable.ArrayBuffer

import org.apache.spark.sql.AnalysisException
import org.apache.spark.sql.catalyst._
import org.apache.spark.sql.catalyst.catalog._
import org.apache.spark.sql.catalyst.encoders.OuterScopes
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate._
import org.apache.spark.sql.catalyst.expressions.objects.{LambdaVariable, MapObjects, NewInstance, UnresolvedMapObjects}
import org.apache.spark.sql.catalyst.expressions.SubExprUtils._
import org.apache.spark.sql.catalyst.optimizer.BooleanSimplification
import org.apache.spark.sql.catalyst.plans._
import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, _}
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.trees.TreeNodeRef
import org.apache.spark.sql.catalyst.util.toPrettySQL
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._

/**
 * A trivial [[Analyzer]] with a dummy [[SessionCatalog]] and [[EmptyFunctionRegistry]].
 * Used for testing when all relations are already filled in and the analyzer needs only
 * to resolve attribute references.
 */
object SimpleAnalyzer extends Analyzer(
  new SessionCatalog(
    new InMemoryCatalog,
    EmptyFunctionRegistry,
    new SQLConf().copy(SQLConf.CASE_SENSITIVE -> true)) {
    override def createDatabase(dbDefinition: CatalogDatabase, ignoreIfExists: Boolean) {}
  },
  new SQLConf().copy(SQLConf.CASE_SENSITIVE -> true))

/**
 * Provides a way to keep state during the analysis, this enables us to decouple the concerns
 * of analysis environment from the catalog.
 *
 * Note this is thread local.
 *
 * @param defaultDatabase The default database used in the view resolution, this overrules the
 *                        current catalog database.
 * @param nestedViewDepth The nested depth in the view resolution, this enables us to limit the
 *                        depth of nested views.
 */
case class AnalysisContext(
    defaultDatabase: Option[String] = None,
    nestedViewDepth: Int = 0)

object AnalysisContext {
  private val value = new ThreadLocal[AnalysisContext]() {
    override def initialValue: AnalysisContext = AnalysisContext()
  }

  def get: AnalysisContext = value.get()
  private def set(context: AnalysisContext): Unit = value.set(context)

  def withAnalysisContext[A](database: Option[String])(f: => A): A = {
    val originContext = value.get()
    val context = AnalysisContext(defaultDatabase = database,
      nestedViewDepth = originContext.nestedViewDepth + 1)
    set(context)
    try f finally { set(originContext) }
  }
}

/**
 * Provides a logical query plan analyzer, which translates [[UnresolvedAttribute]]s and
 * [[UnresolvedRelation]]s into fully typed objects using information in a
 * [[SessionCatalog]] and a [[FunctionRegistry]].
 */
class Analyzer(
    catalog: SessionCatalog,
    conf: SQLConf,
    maxIterations: Int)
  extends RuleExecutor[LogicalPlan] with CheckAnalysis {

  def this(catalog: SessionCatalog, conf: SQLConf) = {
    this(catalog, conf, conf.optimizerMaxIterations)
  }

  def resolver: Resolver = conf.resolver

  protected val fixedPoint = FixedPoint(maxIterations)

  /**
   * Override to provide additional rules for the "Resolution" batch.
   */
  val extendedResolutionRules: Seq[Rule[LogicalPlan]] = Nil

  /**
   * Override to provide rules to do post-hoc resolution. Note that these rules will be executed
   * in an individual batch. This batch is to run right after the normal resolution batch and
   * execute its rules in one pass.
   */
  val postHocResolutionRules: Seq[Rule[LogicalPlan]] = Nil

  lazy val batches: Seq[Batch] = Seq(
    Batch("Hints", fixedPoint,
      new ResolveHints.ResolveBroadcastHints(conf),
      ResolveHints.RemoveAllHints),
    Batch("Simple Sanity Check", Once,
      LookupFunctions),
    Batch("Substitution", fixedPoint,
      CTESubstitution,
      WindowsSubstitution,
      EliminateUnions,
      new SubstituteUnresolvedOrdinals(conf)),
    Batch("Resolution", fixedPoint,
      ResolveTableValuedFunctions ::
      ResolveRelations ::
      ResolveReferences ::
      ResolveCreateNamedStruct ::
      ResolveDeserializer ::
      ResolveNewInstance ::
      ResolveUpCast ::
      ResolveGroupingAnalytics ::
      ResolvePivot ::
      ResolveOrdinalInOrderByAndGroupBy ::
      ResolveMissingReferences ::
      ExtractGenerator ::
      ResolveGenerate ::
      ResolveFunctions ::
      ResolveAliases ::
      ResolveSubquery ::
      ResolveWindowOrder ::
      ResolveWindowFrame ::
      ResolveNaturalAndUsingJoin ::
      ExtractWindowExpressions ::
      GlobalAggregates ::
      ResolveAggregateFunctions ::
      TimeWindowing ::
      ResolveInlineTables(conf) ::
      TypeCoercion.typeCoercionRules ++
      extendedResolutionRules : _*),
    Batch("Post-Hoc Resolution", Once, postHocResolutionRules: _*),
    Batch("View", Once,
      AliasViewChild(conf)),
    Batch("Nondeterministic", Once,
      PullOutNondeterministic),
    Batch("UDF", Once,
      HandleNullInputsForUDF),
    Batch("FixNullability", Once,
      FixNullability),
    Batch("ResolveTimeZone", Once,
      ResolveTimeZone),
    Batch("Subquery", Once,
      UpdateOuterReferences),
    Batch("Cleanup", fixedPoint,
      CleanupAliases)
  )

  /**
   * Analyze cte definitions and substitute child plan with analyzed cte definitions.
   */
  object CTESubstitution extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators  {
      case With(child, relations) =>
        substituteCTE(child, relations.foldLeft(Seq.empty[(String, LogicalPlan)]) {
          case (resolved, (name, relation)) =>
            resolved :+ name -> execute(substituteCTE(relation, resolved))
        })
      case other => other
    }

    def substituteCTE(plan: LogicalPlan, cteRelations: Seq[(String, LogicalPlan)]): LogicalPlan = {
      plan transformDown {
        case u : UnresolvedRelation =>
          cteRelations.find(x => resolver(x._1, u.tableIdentifier.table))
            .map(_._2).getOrElse(u)
        case other =>
          // This cannot be done in ResolveSubquery because ResolveSubquery does not know the CTE.
          other transformExpressions {
            case e: SubqueryExpression =>
              e.withNewPlan(substituteCTE(e.plan, cteRelations))
          }
      }
    }
  }

  /**
   * Substitute child plan with WindowSpecDefinitions.
   */
  object WindowsSubstitution extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      // Lookup WindowSpecDefinitions. This rule works with unresolved children.
      case WithWindowDefinition(windowDefinitions, child) =>
        child.transform {
          case p => p.transformExpressions {
            case UnresolvedWindowExpression(c, WindowSpecReference(windowName)) =>
              val errorMessage =
                s"Window specification $windowName is not defined in the WINDOW clause."
              val windowSpecDefinition =
                windowDefinitions.getOrElse(windowName, failAnalysis(errorMessage))
              WindowExpression(c, windowSpecDefinition)
          }
        }
    }
  }

  /**
   * Replaces [[UnresolvedAlias]]s with concrete aliases.
   */
  object ResolveAliases extends Rule[LogicalPlan] {
    private def assignAliases(exprs: Seq[NamedExpression]) = {
      exprs.zipWithIndex.map {
        case (expr, i) =>
          expr.transformUp { case u @ UnresolvedAlias(child, optGenAliasFunc) =>
            child match {
              case ne: NamedExpression => ne
              case go @ GeneratorOuter(g: Generator) if g.resolved => MultiAlias(go, Nil)
              case e if !e.resolved => u
              case g: Generator => MultiAlias(g, Nil)
              case c @ Cast(ne: NamedExpression, _, _) => Alias(c, ne.name)()
              case e: ExtractValue => Alias(e, toPrettySQL(e))()
              case e if optGenAliasFunc.isDefined =>
                Alias(child, optGenAliasFunc.get.apply(e))()
              case e => Alias(e, toPrettySQL(e))()
            }
          }
      }.asInstanceOf[Seq[NamedExpression]]
    }

    private def hasUnresolvedAlias(exprs: Seq[NamedExpression]) =
      exprs.exists(_.find(_.isInstanceOf[UnresolvedAlias]).isDefined)

    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case Aggregate(groups, aggs, child) if child.resolved && hasUnresolvedAlias(aggs) =>
        Aggregate(groups, assignAliases(aggs), child)

      case g: GroupingSets if g.child.resolved && hasUnresolvedAlias(g.aggregations) =>
        g.copy(aggregations = assignAliases(g.aggregations))

      case Pivot(groupByExprs, pivotColumn, pivotValues, aggregates, child)
        if child.resolved && hasUnresolvedAlias(groupByExprs) =>
        Pivot(assignAliases(groupByExprs), pivotColumn, pivotValues, aggregates, child)

      case Project(projectList, child) if child.resolved && hasUnresolvedAlias(projectList) =>
        Project(assignAliases(projectList), child)
    }
  }

  object ResolveGroupingAnalytics extends Rule[LogicalPlan] {
    /*
     *  GROUP BY a, b, c WITH ROLLUP
     *  is equivalent to
     *  GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (a), ( ) ).
     *  Group Count: N + 1 (N is the number of group expressions)
     *
     *  We need to get all of its subsets for the rule described above, the subset is
     *  represented as sequence of expressions.
     */
    def rollupExprs(exprs: Seq[Expression]): Seq[Seq[Expression]] = exprs.inits.toSeq

    /*
     *  GROUP BY a, b, c WITH CUBE
     *  is equivalent to
     *  GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (b, c), (a, c), (a), (b), (c), ( ) ).
     *  Group Count: 2 ^ N (N is the number of group expressions)
     *
     *  We need to get all of its subsets for a given GROUPBY expression, the subsets are
     *  represented as sequence of expressions.
     */
    def cubeExprs(exprs: Seq[Expression]): Seq[Seq[Expression]] = exprs.toList match {
      case x :: xs =>
        val initial = cubeExprs(xs)
        initial.map(x +: _) ++ initial
      case Nil =>
        Seq(Seq.empty)
    }

    private def hasGroupingAttribute(expr: Expression): Boolean = {
      expr.collectFirst {
        case u: UnresolvedAttribute if resolver(u.name, VirtualColumn.hiveGroupingIdName) => u
      }.isDefined
    }

    private[analysis] def hasGroupingFunction(e: Expression): Boolean = {
      e.collectFirst {
        case g: Grouping => g
        case g: GroupingID => g
      }.isDefined
    }

    private def replaceGroupingFunc(
        expr: Expression,
        groupByExprs: Seq[Expression],
        gid: Expression): Expression = {
      expr transform {
        case e: GroupingID =>
          if (e.groupByExprs.isEmpty || e.groupByExprs == groupByExprs) {
            Alias(gid, toPrettySQL(e))()
          } else {
            throw new AnalysisException(
              s"Columns of grouping_id (${e.groupByExprs.mkString(",")}) does not match " +
                s"grouping columns (${groupByExprs.mkString(",")})")
          }
        case e @ Grouping(col: Expression) =>
          val idx = groupByExprs.indexOf(col)
          if (idx >= 0) {
            Alias(Cast(BitwiseAnd(ShiftRight(gid, Literal(groupByExprs.length - 1 - idx)),
              Literal(1)), ByteType), toPrettySQL(e))()
          } else {
            throw new AnalysisException(s"Column of grouping ($col) can't be found " +
              s"in grouping columns ${groupByExprs.mkString(",")}")
          }
      }
    }

    /*
     * Create new alias for all group by expressions for `Expand` operator.
     */
    private def constructGroupByAlias(groupByExprs: Seq[Expression]): Seq[Alias] = {
      groupByExprs.map {
        case e: NamedExpression => Alias(e, e.name)()
        case other => Alias(other, other.toString)()
      }
    }

    /*
     * Construct [[Expand]] operator with grouping sets.
     */
    private def constructExpand(
        selectedGroupByExprs: Seq[Seq[Expression]],
        child: LogicalPlan,
        groupByAliases: Seq[Alias],
        gid: Attribute): LogicalPlan = {
      // Change the nullability of group by aliases if necessary. For example, if we have
      // GROUPING SETS ((a,b), a), we do not need to change the nullability of a, but we
      // should change the nullabilty of b to be TRUE.
      // TODO: For Cube/Rollup just set nullability to be `true`.
      val expandedAttributes = groupByAliases.map { alias =>
        if (selectedGroupByExprs.exists(!_.contains(alias.child))) {
          alias.toAttribute.withNullability(true)
        } else {
          alias.toAttribute
        }
      }

      val groupingSetsAttributes = selectedGroupByExprs.map { groupingSetExprs =>
        groupingSetExprs.map { expr =>
          val alias = groupByAliases.find(_.child.semanticEquals(expr)).getOrElse(
            failAnalysis(s"$expr doesn't show up in the GROUP BY list $groupByAliases"))
          // Map alias to expanded attribute.
          expandedAttributes.find(_.semanticEquals(alias.toAttribute)).getOrElse(
            alias.toAttribute)
        }
      }

      Expand(groupingSetsAttributes, groupByAliases, expandedAttributes, gid, child)
    }

    /*
     * Construct new aggregate expressions by replacing grouping functions.
     */
    private def constructAggregateExprs(
        groupByExprs: Seq[Expression],
        aggregations: Seq[NamedExpression],
        groupByAliases: Seq[Alias],
        groupingAttrs: Seq[Expression],
        gid: Attribute): Seq[NamedExpression] = aggregations.map {
      // collect all the found AggregateExpression, so we can check an expression is part of
      // any AggregateExpression or not.
      val aggsBuffer = ArrayBuffer[Expression]()
      // Returns whether the expression belongs to any expressions in `aggsBuffer` or not.
      def isPartOfAggregation(e: Expression): Boolean = {
        aggsBuffer.exists(a => a.find(_ eq e).isDefined)
      }
      replaceGroupingFunc(_, groupByExprs, gid).transformDown {
        // AggregateExpression should be computed on the unmodified value of its argument
        // expressions, so we should not replace any references to grouping expression
        // inside it.
        case e: AggregateExpression =>
          aggsBuffer += e
          e
        case e if isPartOfAggregation(e) => e
        case e =>
          // Replace expression by expand output attribute.
          val index = groupByAliases.indexWhere(_.child.semanticEquals(e))
          if (index == -1) {
            e
          } else {
            groupingAttrs(index)
          }
      }.asInstanceOf[NamedExpression]
    }

    /*
     * Construct [[Aggregate]] operator from Cube/Rollup/GroupingSets.
     */
    private def constructAggregate(
        selectedGroupByExprs: Seq[Seq[Expression]],
        groupByExprs: Seq[Expression],
        aggregationExprs: Seq[NamedExpression],
        child: LogicalPlan): LogicalPlan = {
      val gid = AttributeReference(VirtualColumn.groupingIdName, IntegerType, false)()

      // Expand works by setting grouping expressions to null as determined by the
      // `selectedGroupByExprs`. To prevent these null values from being used in an aggregate
      // instead of the original value we need to create new aliases for all group by expressions
      // that will only be used for the intended purpose.
      val groupByAliases = constructGroupByAlias(groupByExprs)

      val expand = constructExpand(selectedGroupByExprs, child, groupByAliases, gid)
      val groupingAttrs = expand.output.drop(child.output.length)

      val aggregations = constructAggregateExprs(
        groupByExprs, aggregationExprs, groupByAliases, groupingAttrs, gid)

      Aggregate(groupingAttrs, aggregations, expand)
    }

    private def findGroupingExprs(plan: LogicalPlan): Seq[Expression] = {
      plan.collectFirst {
        case a: Aggregate =>
          // this Aggregate should have grouping id as the last grouping key.
          val gid = a.groupingExpressions.last
          if (!gid.isInstanceOf[AttributeReference]
            || gid.asInstanceOf[AttributeReference].name != VirtualColumn.groupingIdName) {
            failAnalysis(s"grouping()/grouping_id() can only be used with GroupingSets/Cube/Rollup")
          }
          a.groupingExpressions.take(a.groupingExpressions.length - 1)
      }.getOrElse {
        failAnalysis(s"grouping()/grouping_id() can only be used with GroupingSets/Cube/Rollup")
      }
    }

    // This require transformUp to replace grouping()/grouping_id() in resolved Filter/Sort
    def apply(plan: LogicalPlan): LogicalPlan = plan transformUp {
      case a if !a.childrenResolved => a // be sure all of the children are resolved.
      case p if p.expressions.exists(hasGroupingAttribute) =>
        failAnalysis(
          s"${VirtualColumn.hiveGroupingIdName} is deprecated; use grouping_id() instead")

      // Ensure group by expressions and aggregate expressions have been resolved.
      case Aggregate(Seq(c @ Cube(groupByExprs)), aggregateExpressions, child)
        if (groupByExprs ++ aggregateExpressions).forall(_.resolved) =>
        constructAggregate(cubeExprs(groupByExprs), groupByExprs, aggregateExpressions, child)
      case Aggregate(Seq(r @ Rollup(groupByExprs)), aggregateExpressions, child)
        if (groupByExprs ++ aggregateExpressions).forall(_.resolved) =>
        constructAggregate(rollupExprs(groupByExprs), groupByExprs, aggregateExpressions, child)
      // Ensure all the expressions have been resolved.
      case x: GroupingSets if x.expressions.forall(_.resolved) =>
        constructAggregate(x.selectedGroupByExprs, x.groupByExprs, x.aggregations, x.child)

      // We should make sure all expressions in condition have been resolved.
      case f @ Filter(cond, child) if hasGroupingFunction(cond) && cond.resolved =>
        val groupingExprs = findGroupingExprs(child)
        // The unresolved grouping id will be resolved by ResolveMissingReferences
        val newCond = replaceGroupingFunc(cond, groupingExprs, VirtualColumn.groupingIdAttribute)
        f.copy(condition = newCond)

      // We should make sure all [[SortOrder]]s have been resolved.
      case s @ Sort(order, _, child)
        if order.exists(hasGroupingFunction) && order.forall(_.resolved) =>
        val groupingExprs = findGroupingExprs(child)
        val gid = VirtualColumn.groupingIdAttribute
        // The unresolved grouping id will be resolved by ResolveMissingReferences
        val newOrder = order.map(replaceGroupingFunc(_, groupingExprs, gid).asInstanceOf[SortOrder])
        s.copy(order = newOrder)
    }
  }

  object ResolvePivot extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case p: Pivot if !p.childrenResolved | !p.aggregates.forall(_.resolved)
        | !p.groupByExprs.forall(_.resolved) | !p.pivotColumn.resolved => p
      case Pivot(groupByExprs, pivotColumn, pivotValues, aggregates, child) =>
        val singleAgg = aggregates.size == 1
        def outputName(value: Literal, aggregate: Expression): String = {
          val utf8Value = Cast(value, StringType, Some(conf.sessionLocalTimeZone)).eval(EmptyRow)
          val stringValue: String = Option(utf8Value).map(_.toString).getOrElse("null")
          if (singleAgg) {
            stringValue
          } else {
            val suffix = aggregate match {
              case n: NamedExpression => n.name
              case _ => toPrettySQL(aggregate)
            }
            stringValue + "_" + suffix
          }
        }
        if (aggregates.forall(a => PivotFirst.supportsDataType(a.dataType))) {
          // Since evaluating |pivotValues| if statements for each input row can get slow this is an
          // alternate plan that instead uses two steps of aggregation.
          val namedAggExps: Seq[NamedExpression] = aggregates.map(a => Alias(a, a.sql)())
          val namedPivotCol = pivotColumn match {
            case n: NamedExpression => n
            case _ => Alias(pivotColumn, "__pivot_col")()
          }
          val bigGroup = groupByExprs :+ namedPivotCol
          val firstAgg = Aggregate(bigGroup, bigGroup ++ namedAggExps, child)
          val castPivotValues = pivotValues.map(Cast(_, pivotColumn.dataType).eval(EmptyRow))
          val pivotAggs = namedAggExps.map { a =>
            Alias(PivotFirst(namedPivotCol.toAttribute, a.toAttribute, castPivotValues)
              .toAggregateExpression()
            , "__pivot_" + a.sql)()
          }
          val groupByExprsAttr = groupByExprs.map(_.toAttribute)
          val secondAgg = Aggregate(groupByExprsAttr, groupByExprsAttr ++ pivotAggs, firstAgg)
          val pivotAggAttribute = pivotAggs.map(_.toAttribute)
          val pivotOutputs = pivotValues.zipWithIndex.flatMap { case (value, i) =>
            aggregates.zip(pivotAggAttribute).map { case (aggregate, pivotAtt) =>
              Alias(ExtractValue(pivotAtt, Literal(i), resolver), outputName(value, aggregate))()
            }
          }
          Project(groupByExprsAttr ++ pivotOutputs, secondAgg)
        } else {
          val pivotAggregates: Seq[NamedExpression] = pivotValues.flatMap { value =>
            def ifExpr(expr: Expression) = {
              If(EqualNullSafe(pivotColumn, value), expr, Literal(null))
            }
            aggregates.map { aggregate =>
              val filteredAggregate = aggregate.transformDown {
                // Assumption is the aggregate function ignores nulls. This is true for all current
                // AggregateFunction's with the exception of First and Last in their default mode
                // (which we handle) and possibly some Hive UDAF's.
                case First(expr, _) =>
                  First(ifExpr(expr), Literal(true))
                case Last(expr, _) =>
                  Last(ifExpr(expr), Literal(true))
                case a: AggregateFunction =>
                  a.withNewChildren(a.children.map(ifExpr))
              }.transform {
                // We are duplicating aggregates that are now computing a different value for each
                // pivot value.
                // TODO: Don't construct the physical container until after analysis.
                case ae: AggregateExpression => ae.copy(resultId = NamedExpression.newExprId)
              }
              if (filteredAggregate.fastEquals(aggregate)) {
                throw new AnalysisException(
                  s"Aggregate expression required for pivot, found '$aggregate'")
              }
              Alias(filteredAggregate, outputName(value, aggregate))()
            }
          }
          Aggregate(groupByExprs, groupByExprs ++ pivotAggregates, child)
        }
    }
  }

  /**
   * Replaces [[UnresolvedRelation]]s with concrete relations from the catalog.
   */
  object ResolveRelations extends Rule[LogicalPlan] {

    // If the unresolved relation is running directly on files, we just return the original
    // UnresolvedRelation, the plan will get resolved later. Else we look up the table from catalog
    // and change the default database name(in AnalysisContext) if it is a view.
    // We usually look up a table from the default database if the table identifier has an empty
    // database part, for a view the default database should be the currentDb when the view was
    // created. When the case comes to resolving a nested view, the view may have different default
    // database with that the referenced view has, so we need to use
    // `AnalysisContext.defaultDatabase` to track the current default database.
    // When the relation we resolve is a view, we fetch the view.desc(which is a CatalogTable), and
    // then set the value of `CatalogTable.viewDefaultDatabase` to
    // `AnalysisContext.defaultDatabase`, we look up the relations that the view references using
    // the default database.
    // For example:
    // |- view1 (defaultDatabase = db1)
    //   |- operator
    //     |- table2 (defaultDatabase = db1)
    //     |- view2 (defaultDatabase = db2)
    //        |- view3 (defaultDatabase = db3)
    //   |- view4 (defaultDatabase = db4)
    // In this case, the view `view1` is a nested view, it directly references `table2`, `view2`
    // and `view4`, the view `view2` references `view3`. On resolving the table, we look up the
    // relations `table2`, `view2`, `view4` using the default database `db1`, and look up the
    // relation `view3` using the default database `db2`.
    //
    // Note this is compatible with the views defined by older versions of Spark(before 2.2), which
    // have empty defaultDatabase and all the relations in viewText have database part defined.
    def resolveRelation(plan: LogicalPlan): LogicalPlan = plan match {
      case u: UnresolvedRelation if !isRunningDirectlyOnFiles(u.tableIdentifier) =>
        val defaultDatabase = AnalysisContext.get.defaultDatabase
        val relation = lookupTableFromCatalog(u, defaultDatabase)
        resolveRelation(relation)
      // The view's child should be a logical plan parsed from the `desc.viewText`, the variable
      // `viewText` should be defined, or else we throw an error on the generation of the View
      // operator.
      case view @ View(desc, _, child) if !child.resolved =>
        // Resolve all the UnresolvedRelations and Views in the child.
        val newChild = AnalysisContext.withAnalysisContext(desc.viewDefaultDatabase) {
          if (AnalysisContext.get.nestedViewDepth > conf.maxNestedViewDepth) {
            view.failAnalysis(s"The depth of view ${view.desc.identifier} exceeds the maximum " +
              s"view resolution depth (${conf.maxNestedViewDepth}). Analysis is aborted to " +
              "avoid errors. Increase the value of spark.sql.view.maxNestedViewDepth to work " +
              "aroud this.")
          }
          execute(child)
        }
        view.copy(child = newChild)
      case p @ SubqueryAlias(_, view: View) =>
        val newChild = resolveRelation(view)
        p.copy(child = newChild)
      case _ => plan
    }

    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case i @ InsertIntoTable(u: UnresolvedRelation, parts, child, _, _) if child.resolved =>
        EliminateSubqueryAliases(lookupTableFromCatalog(u)) match {
          case v: View =>
            u.failAnalysis(s"Inserting into a view is not allowed. View: ${v.desc.identifier}.")
          case other => i.copy(table = other)
        }
      case u: UnresolvedRelation => resolveRelation(u)
    }

    // Look up the table with the given name from catalog. The database we used is decided by the
    // precedence:
    // 1. Use the database part of the table identifier, if it is defined;
    // 2. Use defaultDatabase, if it is defined(In this case, no temporary objects can be used,
    //    and the default database is only used to look up a view);
    // 3. Use the currentDb of the SessionCatalog.
    private def lookupTableFromCatalog(
        u: UnresolvedRelation,
        defaultDatabase: Option[String] = None): LogicalPlan = {
      val tableIdentWithDb = u.tableIdentifier.copy(
        database = u.tableIdentifier.database.orElse(defaultDatabase))
      try {
        catalog.lookupRelation(tableIdentWithDb)
      } catch {
        case _: NoSuchTableException =>
          u.failAnalysis(s"Table or view not found: ${tableIdentWithDb.unquotedString}")
        // If the database is defined and that database is not found, throw an AnalysisException.
        // Note that if the database is not defined, it is possible we are looking up a temp view.
        case e: NoSuchDatabaseException =>
          u.failAnalysis(s"Table or view not found: ${tableIdentWithDb.unquotedString}, the " +
            s"database ${e.db} doesn't exsits.")
      }
    }

    // If the database part is specified, and we support running SQL directly on files, and
    // it's not a temporary view, and the table does not exist, then let's just return the
    // original UnresolvedRelation. It is possible we are matching a query like "select *
    // from parquet.`/path/to/query`". The plan will get resolved in the rule `ResolveDataSource`.
    // Note that we are testing (!db_exists || !table_exists) because the catalog throws
    // an exception from tableExists if the database does not exist.
    private def isRunningDirectlyOnFiles(table: TableIdentifier): Boolean = {
      table.database.isDefined && conf.runSQLonFile && !catalog.isTemporaryTable(table) &&
        (!catalog.databaseExists(table.database.get) || !catalog.tableExists(table))
    }
  }

  /**
   * Replaces [[UnresolvedAttribute]]s with concrete [[AttributeReference]]s from
   * a logical plan node's children.
   */
  object ResolveReferences extends Rule[LogicalPlan] {
    /**
     * Generate a new logical plan for the right child with different expression IDs
     * for all conflicting attributes.
     */
    private def dedupRight (left: LogicalPlan, right: LogicalPlan): LogicalPlan = {
      val conflictingAttributes = left.outputSet.intersect(right.outputSet)
      logDebug(s"Conflicting attributes ${conflictingAttributes.mkString(",")} " +
        s"between $left and $right")

      right.collect {
        // Handle base relations that might appear more than once.
        case oldVersion: MultiInstanceRelation
            if oldVersion.outputSet.intersect(conflictingAttributes).nonEmpty =>
          val newVersion = oldVersion.newInstance()
          (oldVersion, newVersion)

        case oldVersion: SerializeFromObject
            if oldVersion.outputSet.intersect(conflictingAttributes).nonEmpty =>
          (oldVersion, oldVersion.copy(serializer = oldVersion.serializer.map(_.newInstance())))

        // Handle projects that create conflicting aliases.
        case oldVersion @ Project(projectList, _)
            if findAliases(projectList).intersect(conflictingAttributes).nonEmpty =>
          (oldVersion, oldVersion.copy(projectList = newAliases(projectList)))

        case oldVersion @ Aggregate(_, aggregateExpressions, _)
            if findAliases(aggregateExpressions).intersect(conflictingAttributes).nonEmpty =>
          (oldVersion, oldVersion.copy(aggregateExpressions = newAliases(aggregateExpressions)))

        case oldVersion: Generate
            if oldVersion.generatedSet.intersect(conflictingAttributes).nonEmpty =>
          val newOutput = oldVersion.generatorOutput.map(_.newInstance())
          (oldVersion, oldVersion.copy(generatorOutput = newOutput))

        case oldVersion @ Window(windowExpressions, _, _, child)
            if AttributeSet(windowExpressions.map(_.toAttribute)).intersect(conflictingAttributes)
              .nonEmpty =>
          (oldVersion, oldVersion.copy(windowExpressions = newAliases(windowExpressions)))
      }
        // Only handle first case, others will be fixed on the next pass.
        .headOption match {
        case None =>
          /*
           * No result implies that there is a logical plan node that produces new references
           * that this rule cannot handle. When that is the case, there must be another rule
           * that resolves these conflicts. Otherwise, the analysis will fail.
           */
          right
        case Some((oldRelation, newRelation)) =>
          val attributeRewrites = AttributeMap(oldRelation.output.zip(newRelation.output))
          val newRight = right transformUp {
            case r if r == oldRelation => newRelation
          } transformUp {
            case other => other transformExpressions {
              case a: Attribute =>
                dedupAttr(a, attributeRewrites)
              case s: SubqueryExpression =>
                s.withNewPlan(dedupOuterReferencesInSubquery(s.plan, attributeRewrites))
            }
          }
          newRight
      }
    }

    private def dedupAttr(attr: Attribute, attrMap: AttributeMap[Attribute]): Attribute = {
      attrMap.get(attr).getOrElse(attr).withQualifier(attr.qualifier)
    }

    /**
     * The outer plan may have been de-duplicated and the function below updates the
     * outer references to refer to the de-duplicated attributes.
     *
     * For example (SQL):
     * {{{
     *   SELECT * FROM t1
     *   INTERSECT
     *   SELECT * FROM t1
     *   WHERE EXISTS (SELECT 1
     *                 FROM t2
     *                 WHERE t1.c1 = t2.c1)
     * }}}
     * Plan before resolveReference rule.
     *    'Intersect
     *    :- Project [c1#245, c2#246]
     *    :  +- SubqueryAlias t1
     *    :     +- Relation[c1#245,c2#246] parquet
     *    +- 'Project [*]
     *       +- Filter exists#257 [c1#245]
     *       :  +- Project [1 AS 1#258]
     *       :     +- Filter (outer(c1#245) = c1#251)
     *       :        +- SubqueryAlias t2
     *       :           +- Relation[c1#251,c2#252] parquet
     *       +- SubqueryAlias t1
     *          +- Relation[c1#245,c2#246] parquet
     * Plan after the resolveReference rule.
     *    Intersect
     *    :- Project [c1#245, c2#246]
     *    :  +- SubqueryAlias t1
     *    :     +- Relation[c1#245,c2#246] parquet
     *    +- Project [c1#259, c2#260]
     *       +- Filter exists#257 [c1#259]
     *       :  +- Project [1 AS 1#258]
     *       :     +- Filter (outer(c1#259) = c1#251) => Updated
     *       :        +- SubqueryAlias t2
     *       :           +- Relation[c1#251,c2#252] parquet
     *       +- SubqueryAlias t1
     *          +- Relation[c1#259,c2#260] parquet  => Outer plan's attributes are de-duplicated.
     */
    private def dedupOuterReferencesInSubquery(
        plan: LogicalPlan,
        attrMap: AttributeMap[Attribute]): LogicalPlan = {
      plan transformDown { case currentFragment =>
        currentFragment transformExpressions {
          case OuterReference(a: Attribute) =>
            OuterReference(dedupAttr(a, attrMap))
          case s: SubqueryExpression =>
            s.withNewPlan(dedupOuterReferencesInSubquery(s.plan, attrMap))
        }
      }
    }

    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case p: LogicalPlan if !p.childrenResolved => p

      // If the projection list contains Stars, expand it.
      case p: Project if containsStar(p.projectList) =>
        p.copy(projectList = buildExpandedProjectList(p.projectList, p.child))
      // If the aggregate function argument contains Stars, expand it.
      case a: Aggregate if containsStar(a.aggregateExpressions) =>
        if (a.groupingExpressions.exists(_.isInstanceOf[UnresolvedOrdinal])) {
          failAnalysis(
            "Star (*) is not allowed in select list when GROUP BY ordinal position is used")
        } else {
          a.copy(aggregateExpressions = buildExpandedProjectList(a.aggregateExpressions, a.child))
        }
      // If the script transformation input contains Stars, expand it.
      case t: ScriptTransformation if containsStar(t.input) =>
        t.copy(
          input = t.input.flatMap {
            case s: Star => s.expand(t.child, resolver)
            case o => o :: Nil
          }
        )
      case g: Generate if containsStar(g.generator.children) =>
        failAnalysis("Invalid usage of '*' in explode/json_tuple/UDTF")

      // To resolve duplicate expression IDs for Join and Intersect
      case j @ Join(left, right, _, _) if !j.duplicateResolved =>
        j.copy(right = dedupRight(left, right))
      case i @ Intersect(left, right) if !i.duplicateResolved =>
        i.copy(right = dedupRight(left, right))
      case i @ Except(left, right) if !i.duplicateResolved =>
        i.copy(right = dedupRight(left, right))

      // When resolve `SortOrder`s in Sort based on child, don't report errors as
      // we still have chance to resolve it based on its descendants
      case s @ Sort(ordering, global, child) if child.resolved && !s.resolved =>
        val newOrdering =
          ordering.map(order => resolveExpression(order, child).asInstanceOf[SortOrder])
        Sort(newOrdering, global, child)

      // A special case for Generate, because the output of Generate should not be resolved by
      // ResolveReferences. Attributes in the output will be resolved by ResolveGenerate.
      case g @ Generate(generator, _, _, _, _, _) if generator.resolved => g

      case g @ Generate(generator, join, outer, qualifier, output, child) =>
        val newG = resolveExpression(generator, child, throws = true)
        if (newG.fastEquals(generator)) {
          g
        } else {
          Generate(newG.asInstanceOf[Generator], join, outer, qualifier, output, child)
        }

      // Skips plan which contains deserializer expressions, as they should be resolved by another
      // rule: ResolveDeserializer.
      case plan if containsDeserializer(plan.expressions) => plan

      case q: LogicalPlan =>
        logTrace(s"Attempting to resolve ${q.simpleString}")
        q transformExpressionsUp  {
          case u @ UnresolvedAttribute(nameParts) =>
            // Leave unchanged if resolution fails.  Hopefully will be resolved next round.
            val result =
              withPosition(u) { q.resolveChildren(nameParts, resolver).getOrElse(u) }
            logDebug(s"Resolving $u to $result")
            result
          case UnresolvedExtractValue(child, fieldExpr) if child.resolved =>
            ExtractValue(child, fieldExpr, resolver)
        }
    }

    def newAliases(expressions: Seq[NamedExpression]): Seq[NamedExpression] = {
      expressions.map {
        case a: Alias => Alias(a.child, a.name)(isGenerated = a.isGenerated)
        case other => other
      }
    }

    def findAliases(projectList: Seq[NamedExpression]): AttributeSet = {
      AttributeSet(projectList.collect { case a: Alias => a.toAttribute })
    }

    /**
     * Build a project list for Project/Aggregate and expand the star if possible
     */
    private def buildExpandedProjectList(
      exprs: Seq[NamedExpression],
      child: LogicalPlan): Seq[NamedExpression] = {
      exprs.flatMap {
        // Using Dataframe/Dataset API: testData2.groupBy($"a", $"b").agg($"*")
        case s: Star => s.expand(child, resolver)
        // Using SQL API without running ResolveAlias: SELECT * FROM testData2 group by a, b
        case UnresolvedAlias(s: Star, _) => s.expand(child, resolver)
        case o if containsStar(o :: Nil) => expandStarExpression(o, child) :: Nil
        case o => o :: Nil
      }.map(_.asInstanceOf[NamedExpression])
    }

    /**
     * Returns true if `exprs` contains a [[Star]].
     */
    def containsStar(exprs: Seq[Expression]): Boolean =
      exprs.exists(_.collect { case _: Star => true }.nonEmpty)

    /**
     * Expands the matching attribute.*'s in `child`'s output.
     */
    def expandStarExpression(expr: Expression, child: LogicalPlan): Expression = {
      expr.transformUp {
        case f1: UnresolvedFunction if containsStar(f1.children) =>
          f1.copy(children = f1.children.flatMap {
            case s: Star => s.expand(child, resolver)
            case o => o :: Nil
          })
        case c: CreateNamedStruct if containsStar(c.valExprs) =>
          val newChildren = c.children.grouped(2).flatMap {
            case Seq(k, s : Star) => CreateStruct(s.expand(child, resolver)).children
            case kv => kv
          }
          c.copy(children = newChildren.toList )
        case c: CreateArray if containsStar(c.children) =>
          c.copy(children = c.children.flatMap {
            case s: Star => s.expand(child, resolver)
            case o => o :: Nil
          })
        case p: Murmur3Hash if containsStar(p.children) =>
          p.copy(children = p.children.flatMap {
            case s: Star => s.expand(child, resolver)
            case o => o :: Nil
          })
        // count(*) has been replaced by count(1)
        case o if containsStar(o.children) =>
          failAnalysis(s"Invalid usage of '*' in expression '${o.prettyName}'")
      }
    }
  }

  private def containsDeserializer(exprs: Seq[Expression]): Boolean = {
    exprs.exists(_.find(_.isInstanceOf[UnresolvedDeserializer]).isDefined)
  }

  protected[sql] def resolveExpression(
      expr: Expression,
      plan: LogicalPlan,
      throws: Boolean = false) = {
    // Resolve expression in one round.
    // If throws == false or the desired attribute doesn't exist
    // (like try to resolve `a.b` but `a` doesn't exist), fail and return the origin one.
    // Else, throw exception.
    try {
      expr transformUp {
        case GetColumnByOrdinal(ordinal, _) => plan.output(ordinal)
        case u @ UnresolvedAttribute(nameParts) =>
          withPosition(u) { plan.resolve(nameParts, resolver).getOrElse(u) }
        case UnresolvedExtractValue(child, fieldName) if child.resolved =>
          ExtractValue(child, fieldName, resolver)
      }
    } catch {
      case a: AnalysisException if !throws => expr
    }
  }

  /**
   * In many dialects of SQL it is valid to use ordinal positions in order/sort by and group by
   * clauses. This rule is to convert ordinal positions to the corresponding expressions in the
   * select list. This support is introduced in Spark 2.0.
   *
   * - When the sort references or group by expressions are not integer but foldable expressions,
   * just ignore them.
   * - When spark.sql.orderByOrdinal/spark.sql.groupByOrdinal is set to false, ignore the position
   * numbers too.
   *
   * Before the release of Spark 2.0, the literals in order/sort by and group by clauses
   * have no effect on the results.
   */
  object ResolveOrdinalInOrderByAndGroupBy extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case p if !p.childrenResolved => p
      // Replace the index with the related attribute for ORDER BY,
      // which is a 1-base position of the projection list.
      case s @ Sort(orders, global, child)
        if orders.exists(_.child.isInstanceOf[UnresolvedOrdinal]) =>
        val newOrders = orders map {
          case s @ SortOrder(UnresolvedOrdinal(index), direction, nullOrdering, _) =>
            if (index > 0 && index <= child.output.size) {
              SortOrder(child.output(index - 1), direction, nullOrdering, Set.empty)
            } else {
              s.failAnalysis(
                s"ORDER BY position $index is not in select list " +
                  s"(valid range is [1, ${child.output.size}])")
            }
          case o => o
        }
        Sort(newOrders, global, child)

      // Replace the index with the corresponding expression in aggregateExpressions. The index is
      // a 1-base position of aggregateExpressions, which is output columns (select expression)
      case a @ Aggregate(groups, aggs, child) if aggs.forall(_.resolved) &&
        groups.exists(_.isInstanceOf[UnresolvedOrdinal]) =>
        val newGroups = groups.map {
          case ordinal @ UnresolvedOrdinal(index) if index > 0 && index <= aggs.size =>
            aggs(index - 1) match {
              case e if ResolveAggregateFunctions.containsAggregate(e) =>
                ordinal.failAnalysis(
                  s"GROUP BY position $index is an aggregate function, and " +
                    "aggregate functions are not allowed in GROUP BY")
              case o => o
            }
          case ordinal @ UnresolvedOrdinal(index) =>
            ordinal.failAnalysis(
              s"GROUP BY position $index is not in select list " +
                s"(valid range is [1, ${aggs.size}])")
          case o => o
        }
        Aggregate(newGroups, aggs, child)
    }
  }

  /**
   * In many dialects of SQL it is valid to sort by attributes that are not present in the SELECT
   * clause.  This rule detects such queries and adds the required attributes to the original
   * projection, so that they will be available during sorting. Another projection is added to
   * remove these attributes after sorting.
   *
   * The HAVING clause could also used a grouping columns that is not presented in the SELECT.
   */
  object ResolveMissingReferences extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      // Skip sort with aggregate. This will be handled in ResolveAggregateFunctions
      case sa @ Sort(_, _, child: Aggregate) => sa

      case s @ Sort(order, _, child) if child.resolved =>
        try {
          val newOrder = order.map(resolveExpressionRecursively(_, child).asInstanceOf[SortOrder])
          val requiredAttrs = AttributeSet(newOrder).filter(_.resolved)
          val missingAttrs = requiredAttrs -- child.outputSet
          if (missingAttrs.nonEmpty) {
            // Add missing attributes and then project them away after the sort.
            Project(child.output,
              Sort(newOrder, s.global, addMissingAttr(child, missingAttrs)))
          } else if (newOrder != order) {
            s.copy(order = newOrder)
          } else {
            s
          }
        } catch {
          // Attempting to resolve it might fail. When this happens, return the original plan.
          // Users will see an AnalysisException for resolution failure of missing attributes
          // in Sort
          case ae: AnalysisException => s
        }

      case f @ Filter(cond, child) if child.resolved =>
        try {
          val newCond = resolveExpressionRecursively(cond, child)
          val requiredAttrs = newCond.references.filter(_.resolved)
          val missingAttrs = requiredAttrs -- child.outputSet
          if (missingAttrs.nonEmpty) {
            // Add missing attributes and then project them away.
            Project(child.output,
              Filter(newCond, addMissingAttr(child, missingAttrs)))
          } else if (newCond != cond) {
            f.copy(condition = newCond)
          } else {
            f
          }
        } catch {
          // Attempting to resolve it might fail. When this happens, return the original plan.
          // Users will see an AnalysisException for resolution failure of missing attributes
          case ae: AnalysisException => f
        }
    }

    /**
     * Add the missing attributes into projectList of Project/Window or aggregateExpressions of
     * Aggregate.
     */
    private def addMissingAttr(plan: LogicalPlan, missingAttrs: AttributeSet): LogicalPlan = {
      if (missingAttrs.isEmpty) {
        return plan
      }
      plan match {
        case p: Project =>
          val missing = missingAttrs -- p.child.outputSet
          Project(p.projectList ++ missingAttrs, addMissingAttr(p.child, missing))
        case a: Aggregate =>
          // all the missing attributes should be grouping expressions
          // TODO: push down AggregateExpression
          missingAttrs.foreach { attr =>
            if (!a.groupingExpressions.exists(_.semanticEquals(attr))) {
              throw new AnalysisException(s"Can't add $attr to ${a.simpleString}")
            }
          }
          val newAggregateExpressions = a.aggregateExpressions ++ missingAttrs
          a.copy(aggregateExpressions = newAggregateExpressions)
        case g: Generate =>
          // If join is false, we will convert it to true for getting from the child the missing
          // attributes that its child might have or could have.
          val missing = missingAttrs -- g.child.outputSet
          g.copy(join = true, child = addMissingAttr(g.child, missing))
        case d: Distinct =>
          throw new AnalysisException(s"Can't add $missingAttrs to $d")
        case u: UnaryNode =>
          u.withNewChildren(addMissingAttr(u.child, missingAttrs) :: Nil)
        case other =>
          throw new AnalysisException(s"Can't add $missingAttrs to $other")
      }
    }

    /**
     * Resolve the expression on a specified logical plan and it's child (recursively), until
     * the expression is resolved or meet a non-unary node or Subquery.
     */
    @tailrec
    private def resolveExpressionRecursively(expr: Expression, plan: LogicalPlan): Expression = {
      val resolved = resolveExpression(expr, plan)
      if (resolved.resolved) {
        resolved
      } else {
        plan match {
          case u: UnaryNode if !u.isInstanceOf[SubqueryAlias] =>
            resolveExpressionRecursively(resolved, u.child)
          case other => resolved
        }
      }
    }
  }

  /**
   * Checks whether a function identifier referenced by an [[UnresolvedFunction]] is defined in the
   * function registry. Note that this rule doesn't try to resolve the [[UnresolvedFunction]]. It
   * only performs simple existence check according to the function identifier to quickly identify
   * undefined functions without triggering relation resolution, which may incur potentially
   * expensive partition/schema discovery process in some cases.
   *
   * @see [[ResolveFunctions]]
   * @see https://issues.apache.org/jira/browse/SPARK-19737
   */
  object LookupFunctions extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan.transformAllExpressions {
      case f: UnresolvedFunction if !catalog.functionExists(f.name) =>
        withPosition(f) {
          throw new NoSuchFunctionException(f.name.database.getOrElse("default"), f.name.funcName)
        }
    }
  }

  /**
   * Replaces [[UnresolvedFunction]]s with concrete [[Expression]]s.
   */
  object ResolveFunctions extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case q: LogicalPlan =>
        q transformExpressions {
          case u if !u.childrenResolved => u // Skip until children are resolved.
          case u @ UnresolvedGenerator(name, children) =>
            withPosition(u) {
              catalog.lookupFunction(name, children) match {
                case generator: Generator => generator
                case other =>
                  failAnalysis(s"$name is expected to be a generator. However, " +
                    s"its class is ${other.getClass.getCanonicalName}, which is not a generator.")
              }
            }
          case u @ UnresolvedFunction(funcId, children, isDistinct) =>
            withPosition(u) {
              catalog.lookupFunction(funcId, children) match {
                // DISTINCT is not meaningful for a Max or a Min.
                case max: Max if isDistinct =>
                  AggregateExpression(max, Complete, isDistinct = false)
                case min: Min if isDistinct =>
                  AggregateExpression(min, Complete, isDistinct = false)
                // AggregateWindowFunctions are AggregateFunctions that can only be evaluated within
                // the context of a Window clause. They do not need to be wrapped in an
                // AggregateExpression.
                case wf: AggregateWindowFunction => wf
                // We get an aggregate function, we need to wrap it in an AggregateExpression.
                case agg: AggregateFunction => AggregateExpression(agg, Complete, isDistinct)
                // This function is not an aggregate function, just return the resolved one.
                case other => other
              }
            }
        }
    }
  }

  /**
   * This rule resolves and rewrites subqueries inside expressions.
   *
   * Note: CTEs are handled in CTESubstitution.
   */
  object ResolveSubquery extends Rule[LogicalPlan] with PredicateHelper {
    /**
     * Resolve the correlated expressions in a subquery by using the an outer plans' references. All
     * resolved outer references are wrapped in an [[OuterReference]]
     */
    private def resolveOuterReferences(plan: LogicalPlan, outer: LogicalPlan): LogicalPlan = {
      plan transformDown {
        case q: LogicalPlan if q.childrenResolved && !q.resolved =>
          q transformExpressions {
            case u @ UnresolvedAttribute(nameParts) =>
              withPosition(u) {
                try {
                  outer.resolve(nameParts, resolver) match {
                    case Some(outerAttr) => OuterReference(outerAttr)
                    case None => u
                  }
                } catch {
                  case _: AnalysisException => u
                }
              }
          }
      }
    }

    /**
     * Validates to make sure the outer references appearing inside the subquery
     * are legal. This function also returns the list of expressions
     * that contain outer references. These outer references would be kept as children
     * of subquery expressions by the caller of this function.
     */
    private def checkAndGetOuterReferences(sub: LogicalPlan): Seq[Expression] = {
      val outerReferences = ArrayBuffer.empty[Expression]

      // Make sure a plan's subtree does not contain outer references
      def failOnOuterReferenceInSubTree(p: LogicalPlan): Unit = {
        if (hasOuterReferences(p)) {
          failAnalysis(s"Accessing outer query column is not allowed in:\n$p")
        }
      }

      // Make sure a plan's expressions do not contain outer references
      def failOnOuterReference(p: LogicalPlan): Unit = {
        if (p.expressions.exists(containsOuter)) {
          failAnalysis(
            "Expressions referencing the outer query are not supported outside of WHERE/HAVING " +
              s"clauses:\n$p")
        }
      }

      // SPARK-17348: A potential incorrect result case.
      // When a correlated predicate is a non-equality predicate,
      // certain operators are not permitted from the operator
      // hosting the correlated predicate up to the operator on the outer table.
      // Otherwise, the pull up of the correlated predicate
      // will generate a plan with a different semantics
      // which could return incorrect result.
      // Currently we check for Aggregate and Window operators
      //
      // Below shows an example of a Logical Plan during Analyzer phase that
      // show this problem. Pulling the correlated predicate [outer(c2#77) >= ..]
      // through the Aggregate (or Window) operator could alter the result of
      // the Aggregate.
      //
      // Project [c1#76]
      // +- Project [c1#87, c2#88]
      // :  (Aggregate or Window operator)
      // :  +- Filter [outer(c2#77) >= c2#88)]
      // :     +- SubqueryAlias t2, `t2`
      // :        +- Project [_1#84 AS c1#87, _2#85 AS c2#88]
      // :           +- LocalRelation [_1#84, _2#85]
      // +- SubqueryAlias t1, `t1`
      // +- Project [_1#73 AS c1#76, _2#74 AS c2#77]
      // +- LocalRelation [_1#73, _2#74]
      def failOnNonEqualCorrelatedPredicate(found: Boolean, p: LogicalPlan): Unit = {
        if (found) {
          // Report a non-supported case as an exception
          failAnalysis(s"Correlated column is not allowed in a non-equality predicate:\n$p")
        }
      }

      var foundNonEqualCorrelatedPred : Boolean = false

      // Simplify the predicates before validating any unsupported correlation patterns
      // in the plan.
      BooleanSimplification(sub).foreachUp {

        // Whitelist operators allowed in a correlated subquery
        // There are 4 categories:
        // 1. Operators that are allowed anywhere in a correlated subquery, and,
        //    by definition of the operators, they either do not contain
        //    any columns or cannot host outer references.
        // 2. Operators that are allowed anywhere in a correlated subquery
        //    so long as they do not host outer references.
        // 3. Operators that need special handlings. These operators are
        //    Project, Filter, Join, Aggregate, and Generate.
        //
        // Any operators that are not in the above list are allowed
        // in a correlated subquery only if they are not on a correlation path.
        // In other word, these operators are allowed only under a correlation point.
        //
        // A correlation path is defined as the sub-tree of all the operators that
        // are on the path from the operator hosting the correlated expressions
        // up to the operator producing the correlated values.

        // Category 1:
        // BroadcastHint, Distinct, LeafNode, Repartition, and SubqueryAlias
        case _: BroadcastHint | _: Distinct | _: LeafNode | _: Repartition | _: SubqueryAlias =>

        // Category 2:
        // These operators can be anywhere in a correlated subquery.
        // so long as they do not host outer references in the operators.
        case s: Sort =>
          failOnOuterReference(s)
        case r: RepartitionByExpression =>
          failOnOuterReference(r)

        // Category 3:
        // Filter is one of the two operators allowed to host correlated expressions.
        // The other operator is Join. Filter can be anywhere in a correlated subquery.
        case f: Filter =>
          // Find all predicates with an outer reference.
          val (correlated, _) = splitConjunctivePredicates(f.condition).partition(containsOuter)

          // Find any non-equality correlated predicates
          foundNonEqualCorrelatedPred = foundNonEqualCorrelatedPred || correlated.exists {
            case _: EqualTo | _: EqualNullSafe => false
            case _ => true
          }
          // The aggregate expressions are treated in a special way by getOuterReferences. If the
          // aggregate expression contains only outer reference attributes then the entire aggregate
          // expression is isolated as an OuterReference.
          // i.e min(OuterReference(b)) => OuterReference(min(b))
          outerReferences ++= getOuterReferences(correlated)

        // Project cannot host any correlated expressions
        // but can be anywhere in a correlated subquery.
        case p: Project =>
          failOnOuterReference(p)

        // Aggregate cannot host any correlated expressions
        // It can be on a correlation path if the correlation contains
        // only equality correlated predicates.
        // It cannot be on a correlation path if the correlation has
        // non-equality correlated predicates.
        case a: Aggregate =>
          failOnOuterReference(a)
          failOnNonEqualCorrelatedPredicate(foundNonEqualCorrelatedPred, a)

        // Join can host correlated expressions.
        case j @ Join(left, right, joinType, _) =>
          joinType match {
            // Inner join, like Filter, can be anywhere.
            case _: InnerLike =>
              failOnOuterReference(j)

            // Left outer join's right operand cannot be on a correlation path.
            // LeftAnti and ExistenceJoin are special cases of LeftOuter.
            // Note that ExistenceJoin cannot be expressed externally in both SQL and DataFrame
            // so it should not show up here in Analysis phase. This is just a safety net.
            //
            // LeftSemi does not allow output from the right operand.
            // Any correlated references in the subplan
            // of the right operand cannot be pulled up.
            case LeftOuter | LeftSemi | LeftAnti | ExistenceJoin(_) =>
              failOnOuterReference(j)
              failOnOuterReferenceInSubTree(right)

            // Likewise, Right outer join's left operand cannot be on a correlation path.
            case RightOuter =>
              failOnOuterReference(j)
              failOnOuterReferenceInSubTree(left)

            // Any other join types not explicitly listed above,
            // including Full outer join, are treated as Category 4.
            case _ =>
              failOnOuterReferenceInSubTree(j)
          }

        // Generator with join=true, i.e., expressed with
        // LATERAL VIEW [OUTER], similar to inner join,
        // allows to have correlation under it
        // but must not host any outer references.
        // Note:
        // Generator with join=false is treated as Category 4.
        case g: Generate if g.join =>
          failOnOuterReference(g)

        // Category 4: Any other operators not in the above 3 categories
        // cannot be on a correlation path, that is they are allowed only
        // under a correlation point but they and their descendant operators
        // are not allowed to have any correlated expressions.
        case p =>
          failOnOuterReferenceInSubTree(p)
      }
      outerReferences
    }

    /**
     * Resolves the subquery. The subquery is resolved using its outer plans. This method
     * will resolve the subquery by alternating between the regular analyzer and by applying the
     * resolveOuterReferences rule.
     *
     * Outer references from the correlated predicates are updated as children of
     * Subquery expression.
     */
    private def resolveSubQuery(
        e: SubqueryExpression,
        plans: Seq[LogicalPlan],
        requiredColumns: Int = 0)(
        f: (LogicalPlan, Seq[Expression]) => SubqueryExpression): SubqueryExpression = {
      // Step 1: Resolve the outer expressions.
      var previous: LogicalPlan = null
      var current = e.plan
      do {
        // Try to resolve the subquery plan using the regular analyzer.
        previous = current
        current = execute(current)

        // Use the outer references to resolve the subquery plan if it isn't resolved yet.
        val i = plans.iterator
        val afterResolve = current
        while (!current.resolved && current.fastEquals(afterResolve) && i.hasNext) {
          current = resolveOuterReferences(current, i.next())
        }
      } while (!current.resolved && !current.fastEquals(previous))

      // Step 2: If the subquery plan is fully resolved, pull the outer references and record
      // them as children of SubqueryExpression.
      if (current.resolved) {
        // Make sure the resolved query has the required number of output columns. This is only
        // needed for Scalar and IN subqueries.
        if (requiredColumns > 0 && requiredColumns != current.output.size) {
          failAnalysis(s"The number of columns in the subquery (${current.output.size}) " +
            s"does not match the required number of columns ($requiredColumns)")
        }
        // Validate the outer reference and record the outer references as children of
        // subquery expression.
        f(current, checkAndGetOuterReferences(current))
      } else {
        e.withNewPlan(current)
      }
    }

    /**
     * Resolves the subquery. Apart of resolving the subquery and outer references (if any)
     * in the subquery plan, the children of subquery expression are updated to record the
     * outer references. This is needed to make sure
     * (1) The column(s) referred from the outer query are not pruned from the plan during
     *     optimization.
     * (2) Any aggregate expression(s) that reference outer attributes are pushed down to
     *     outer plan to get evaluated.
     */
    private def resolveSubQueries(plan: LogicalPlan, plans: Seq[LogicalPlan]): LogicalPlan = {
      plan transformExpressions {
        case s @ ScalarSubquery(sub, _, exprId) if !sub.resolved =>
          resolveSubQuery(s, plans, 1)(ScalarSubquery(_, _, exprId))
        case e @ Exists(sub, _, exprId) if !sub.resolved =>
          resolveSubQuery(e, plans)(Exists(_, _, exprId))
        case In(value, Seq(l @ ListQuery(sub, _, exprId))) if value.resolved && !sub.resolved =>
          // Get the left hand side expressions.
          val expressions = value match {
            case cns : CreateNamedStruct => cns.valExprs
            case expr => Seq(expr)
          }
          val expr = resolveSubQuery(l, plans, expressions.size)(ListQuery(_, _, exprId))
          In(value, Seq(expr))
      }
    }

    /**
     * Resolve and rewrite all subqueries in an operator tree..
     */
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      // In case of HAVING (a filter after an aggregate) we use both the aggregate and
      // its child for resolution.
      case f @ Filter(_, a: Aggregate) if f.childrenResolved =>
        resolveSubQueries(f, Seq(a, a.child))
      // Only a few unary nodes (Project/Filter/Aggregate) can contain subqueries.
      case q: UnaryNode if q.childrenResolved =>
        resolveSubQueries(q, q.children)
    }
  }

  /**
   * Turns projections that contain aggregate expressions into aggregations.
   */
  object GlobalAggregates extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case Project(projectList, child) if containsAggregates(projectList) =>
        Aggregate(Nil, projectList, child)
    }

    def containsAggregates(exprs: Seq[Expression]): Boolean = {
      // Collect all Windowed Aggregate Expressions.
      val windowedAggExprs = exprs.flatMap { expr =>
        expr.collect {
          case WindowExpression(ae: AggregateExpression, _) => ae
        }
      }.toSet

      // Find the first Aggregate Expression that is not Windowed.
      exprs.exists(_.collectFirst {
        case ae: AggregateExpression if !windowedAggExprs.contains(ae) => ae
      }.isDefined)
    }
  }

  /**
   * This rule finds aggregate expressions that are not in an aggregate operator.  For example,
   * those in a HAVING clause or ORDER BY clause.  These expressions are pushed down to the
   * underlying aggregate operator and then projected away after the original operator.
   */
  object ResolveAggregateFunctions extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case filter @ Filter(havingCondition,
             aggregate @ Aggregate(grouping, originalAggExprs, child))
          if aggregate.resolved =>

        // Try resolving the condition of the filter as though it is in the aggregate clause
        try {
          val aggregatedCondition =
            Aggregate(
              grouping,
              Alias(havingCondition, "havingCondition")(isGenerated = true) :: Nil,
              child)
          val resolvedOperator = execute(aggregatedCondition)
          def resolvedAggregateFilter =
            resolvedOperator
              .asInstanceOf[Aggregate]
              .aggregateExpressions.head

          // If resolution was successful and we see the filter has an aggregate in it, add it to
          // the original aggregate operator.
          if (resolvedOperator.resolved) {
            // Try to replace all aggregate expressions in the filter by an alias.
            val aggregateExpressions = ArrayBuffer.empty[NamedExpression]
            val transformedAggregateFilter = resolvedAggregateFilter.transform {
              case ae: AggregateExpression =>
                val alias = Alias(ae, ae.toString)()
                aggregateExpressions += alias
                alias.toAttribute
              // Grouping functions are handled in the rule [[ResolveGroupingAnalytics]].
              case e: Expression if grouping.exists(_.semanticEquals(e)) &&
                  !ResolveGroupingAnalytics.hasGroupingFunction(e) &&
                  !aggregate.output.exists(_.semanticEquals(e)) =>
                e match {
                  case ne: NamedExpression =>
                    aggregateExpressions += ne
                    ne.toAttribute
                  case _ =>
                    val alias = Alias(e, e.toString)()
                    aggregateExpressions += alias
                    alias.toAttribute
                }
            }

            // Push the aggregate expressions into the aggregate (if any).
            if (aggregateExpressions.nonEmpty) {
              Project(aggregate.output,
                Filter(transformedAggregateFilter,
                  aggregate.copy(aggregateExpressions = originalAggExprs ++ aggregateExpressions)))
            } else {
              filter
            }
          } else {
            filter
          }
        } catch {
          // Attempting to resolve in the aggregate can result in ambiguity.  When this happens,
          // just return the original plan.
          case ae: AnalysisException => filter
        }

      case sort @ Sort(sortOrder, global, aggregate: Aggregate) if aggregate.resolved =>

        // Try resolving the ordering as though it is in the aggregate clause.
        try {
          val unresolvedSortOrders = sortOrder.filter(s => !s.resolved || containsAggregate(s))
          val aliasedOrdering =
            unresolvedSortOrders.map(o => Alias(o.child, "aggOrder")(isGenerated = true))
          val aggregatedOrdering = aggregate.copy(aggregateExpressions = aliasedOrdering)
          val resolvedAggregate: Aggregate = execute(aggregatedOrdering).asInstanceOf[Aggregate]
          val resolvedAliasedOrdering: Seq[Alias] =
            resolvedAggregate.aggregateExpressions.asInstanceOf[Seq[Alias]]

          // If we pass the analysis check, then the ordering expressions should only reference to
          // aggregate expressions or grouping expressions, and it's safe to push them down to
          // Aggregate.
          checkAnalysis(resolvedAggregate)

          val originalAggExprs = aggregate.aggregateExpressions.map(
            CleanupAliases.trimNonTopLevelAliases(_).asInstanceOf[NamedExpression])

          // If the ordering expression is same with original aggregate expression, we don't need
          // to push down this ordering expression and can reference the original aggregate
          // expression instead.
          val needsPushDown = ArrayBuffer.empty[NamedExpression]
          val evaluatedOrderings = resolvedAliasedOrdering.zip(sortOrder).map {
            case (evaluated, order) =>
              val index = originalAggExprs.indexWhere {
                case Alias(child, _) => child semanticEquals evaluated.child
                case other => other semanticEquals evaluated.child
              }

              if (index == -1) {
                needsPushDown += evaluated
                order.copy(child = evaluated.toAttribute)
              } else {
                order.copy(child = originalAggExprs(index).toAttribute)
              }
          }

          val sortOrdersMap = unresolvedSortOrders
            .map(new TreeNodeRef(_))
            .zip(evaluatedOrderings)
            .toMap
          val finalSortOrders = sortOrder.map(s => sortOrdersMap.getOrElse(new TreeNodeRef(s), s))

          // Since we don't rely on sort.resolved as the stop condition for this rule,
          // we need to check this and prevent applying this rule multiple times
          if (sortOrder == finalSortOrders) {
            sort
          } else {
            Project(aggregate.output,
              Sort(finalSortOrders, global,
                aggregate.copy(aggregateExpressions = originalAggExprs ++ needsPushDown)))
          }
        } catch {
          // Attempting to resolve in the aggregate can result in ambiguity.  When this happens,
          // just return the original plan.
          case ae: AnalysisException => sort
        }
    }

    def containsAggregate(condition: Expression): Boolean = {
      condition.find(_.isInstanceOf[AggregateExpression]).isDefined
    }
  }

  /**
   * Extracts [[Generator]] from the projectList of a [[Project]] operator and create [[Generate]]
   * operator under [[Project]].
   *
   * This rule will throw [[AnalysisException]] for following cases:
   * 1. [[Generator]] is nested in expressions, e.g. `SELECT explode(list) + 1 FROM tbl`
   * 2. more than one [[Generator]] is found in projectList,
   *    e.g. `SELECT explode(list), explode(list) FROM tbl`
   * 3. [[Generator]] is found in other operators that are not [[Project]] or [[Generate]],
   *    e.g. `SELECT * FROM tbl SORT BY explode(list)`
   */
  object ExtractGenerator extends Rule[LogicalPlan] {
    private def hasGenerator(expr: Expression): Boolean = {
      expr.find(_.isInstanceOf[Generator]).isDefined
    }

    private def hasNestedGenerator(expr: NamedExpression): Boolean = expr match {
      case UnresolvedAlias(_: Generator, _) => false
      case Alias(_: Generator, _) => false
      case MultiAlias(_: Generator, _) => false
      case other => hasGenerator(other)
    }

    private def trimAlias(expr: NamedExpression): Expression = expr match {
      case UnresolvedAlias(child, _) => child
      case Alias(child, _) => child
      case MultiAlias(child, _) => child
      case _ => expr
    }

    private object AliasedGenerator {
      /**
       * Extracts a [[Generator]] expression, any names assigned by aliases to the outputs
       * and the outer flag. The outer flag is used when joining the generator output.
       * @param e the [[Expression]]
       * @return (the [[Generator]], seq of output names, outer flag)
       */
      def unapply(e: Expression): Option[(Generator, Seq[String], Boolean)] = e match {
        case Alias(GeneratorOuter(g: Generator), name) if g.resolved => Some((g, name :: Nil, true))
        case MultiAlias(GeneratorOuter(g: Generator), names) if g.resolved => Some(g, names, true)
        case Alias(g: Generator, name) if g.resolved => Some((g, name :: Nil, false))
        case MultiAlias(g: Generator, names) if g.resolved => Some(g, names, false)
        case _ => None
      }
    }

    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case Project(projectList, _) if projectList.exists(hasNestedGenerator) =>
        val nestedGenerator = projectList.find(hasNestedGenerator).get
        throw new AnalysisException("Generators are not supported when it's nested in " +
          "expressions, but got: " + toPrettySQL(trimAlias(nestedGenerator)))

      case Project(projectList, _) if projectList.count(hasGenerator) > 1 =>
        val generators = projectList.filter(hasGenerator).map(trimAlias)
        throw new AnalysisException("Only one generator allowed per select clause but found " +
          generators.size + ": " + generators.map(toPrettySQL).mkString(", "))

      case p @ Project(projectList, child) =>
        // Holds the resolved generator, if one exists in the project list.
        var resolvedGenerator: Generate = null

        val newProjectList = projectList.flatMap {
          case AliasedGenerator(generator, names, outer) if generator.childrenResolved =>
            // It's a sanity check, this should not happen as the previous case will throw
            // exception earlier.
            assert(resolvedGenerator == null, "More than one generator found in SELECT.")

            resolvedGenerator =
              Generate(
                generator,
                join = projectList.size > 1, // Only join if there are other expressions in SELECT.
                outer = outer,
                qualifier = None,
                generatorOutput = ResolveGenerate.makeGeneratorOutput(generator, names),
                child)

            resolvedGenerator.generatorOutput
          case other => other :: Nil
        }

        if (resolvedGenerator != null) {
          Project(newProjectList, resolvedGenerator)
        } else {
          p
        }

      case g: Generate => g

      case p if p.expressions.exists(hasGenerator) =>
        throw new AnalysisException("Generators are not supported outside the SELECT clause, but " +
          "got: " + p.simpleString)
    }
  }

  /**
   * Rewrites table generating expressions that either need one or more of the following in order
   * to be resolved:
   *  - concrete attribute references for their output.
   *  - to be relocated from a SELECT clause (i.e. from  a [[Project]]) into a [[Generate]]).
   *
   * Names for the output [[Attribute]]s are extracted from [[Alias]] or [[MultiAlias]] expressions
   * that wrap the [[Generator]].
   */
  object ResolveGenerate extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case g: Generate if !g.child.resolved || !g.generator.resolved => g
      case g: Generate if !g.resolved =>
        g.copy(generatorOutput = makeGeneratorOutput(g.generator, g.generatorOutput.map(_.name)))
    }

    /**
     * Construct the output attributes for a [[Generator]], given a list of names.  If the list of
     * names is empty names are assigned from field names in generator.
     */
    private[analysis] def makeGeneratorOutput(
        generator: Generator,
        names: Seq[String]): Seq[Attribute] = {
      val elementAttrs = generator.elementSchema.toAttributes

      if (names.length == elementAttrs.length) {
        names.zip(elementAttrs).map {
          case (name, attr) => attr.withName(name)
        }
      } else if (names.isEmpty) {
        elementAttrs
      } else {
        failAnalysis(
          "The number of aliases supplied in the AS clause does not match the number of columns " +
          s"output by the UDTF expected ${elementAttrs.size} aliases but got " +
          s"${names.mkString(",")} ")
      }
    }
  }

  /**
   * Fixes nullability of Attributes in a resolved LogicalPlan by using the nullability of
   * corresponding Attributes of its children output Attributes. This step is needed because
   * users can use a resolved AttributeReference in the Dataset API and outer joins
   * can change the nullability of an AttribtueReference. Without the fix, a nullable column's
   * nullable field can be actually set as non-nullable, which cause illegal optimization
   * (e.g., NULL propagation) and wrong answers.
   * See SPARK-13484 and SPARK-13801 for the concrete queries of this case.
   */
  object FixNullability extends Rule[LogicalPlan] {

    def apply(plan: LogicalPlan): LogicalPlan = plan transformUp {
      case p if !p.resolved => p // Skip unresolved nodes.
      case p: LogicalPlan if p.resolved =>
        val childrenOutput = p.children.flatMap(c => c.output).groupBy(_.exprId).flatMap {
          case (exprId, attributes) =>
            // If there are multiple Attributes having the same ExprId, we need to resolve
            // the conflict of nullable field. We do not really expect this happen.
            val nullable = attributes.exists(_.nullable)
            attributes.map(attr => attr.withNullability(nullable))
        }.toSeq
        // At here, we create an AttributeMap that only compare the exprId for the lookup
        // operation. So, we can find the corresponding input attribute's nullability.
        val attributeMap = AttributeMap[Attribute](childrenOutput.map(attr => attr -> attr))
        // For an Attribute used by the current LogicalPlan, if it is from its children,
        // we fix the nullable field by using the nullability setting of the corresponding
        // output Attribute from the children.
        p.transformExpressions {
          case attr: Attribute if attributeMap.contains(attr) =>
            attr.withNullability(attributeMap(attr).nullable)
        }
    }
  }

  /**
   * Extracts [[WindowExpression]]s from the projectList of a [[Project]] operator and
   * aggregateExpressions of an [[Aggregate]] operator and creates individual [[Window]]
   * operators for every distinct [[WindowSpecDefinition]].
   *
   * This rule handles three cases:
   *  - A [[Project]] having [[WindowExpression]]s in its projectList;
   *  - An [[Aggregate]] having [[WindowExpression]]s in its aggregateExpressions.
   *  - A [[Filter]]->[[Aggregate]] pattern representing GROUP BY with a HAVING
   *    clause and the [[Aggregate]] has [[WindowExpression]]s in its aggregateExpressions.
   * Note: If there is a GROUP BY clause in the query, aggregations and corresponding
   * filters (expressions in the HAVING clause) should be evaluated before any
   * [[WindowExpression]]. If a query has SELECT DISTINCT, the DISTINCT part should be
   * evaluated after all [[WindowExpression]]s.
   *
   * For every case, the transformation works as follows:
   * 1. For a list of [[Expression]]s (a projectList or an aggregateExpressions), partitions
   *    it two lists of [[Expression]]s, one for all [[WindowExpression]]s and another for
   *    all regular expressions.
   * 2. For all [[WindowExpression]]s, groups them based on their [[WindowSpecDefinition]]s.
   * 3. For every distinct [[WindowSpecDefinition]], creates a [[Window]] operator and inserts
   *    it into the plan tree.
   */
  object ExtractWindowExpressions extends Rule[LogicalPlan] {
    private def hasWindowFunction(projectList: Seq[NamedExpression]): Boolean =
      projectList.exists(hasWindowFunction)

    private def hasWindowFunction(expr: NamedExpression): Boolean = {
      expr.find {
        case window: WindowExpression => true
        case _ => false
      }.isDefined
    }

    /**
     * From a Seq of [[NamedExpression]]s, extract expressions containing window expressions and
     * other regular expressions that do not contain any window expression. For example, for
     * `col1, Sum(col2 + col3) OVER (PARTITION BY col4 ORDER BY col5)`, we will extract
     * `col1`, `col2 + col3`, `col4`, and `col5` out and replace their appearances in
     * the window expression as attribute references. So, the first returned value will be
     * `[Sum(_w0) OVER (PARTITION BY _w1 ORDER BY _w2)]` and the second returned value will be
     * [col1, col2 + col3 as _w0, col4 as _w1, col5 as _w2].
     *
     * @return (seq of expressions containing at lease one window expressions,
     *          seq of non-window expressions)
     */
    private def extract(
        expressions: Seq[NamedExpression]): (Seq[NamedExpression], Seq[NamedExpression]) = {
      // First, we partition the input expressions to two part. For the first part,
      // every expression in it contain at least one WindowExpression.
      // Expressions in the second part do not have any WindowExpression.
      val (expressionsWithWindowFunctions, regularExpressions) =
        expressions.partition(hasWindowFunction)

      // Then, we need to extract those regular expressions used in the WindowExpression.
      // For example, when we have col1 - Sum(col2 + col3) OVER (PARTITION BY col4 ORDER BY col5),
      // we need to make sure that col1 to col5 are all projected from the child of the Window
      // operator.
      val extractedExprBuffer = new ArrayBuffer[NamedExpression]()
      def extractExpr(expr: Expression): Expression = expr match {
        case ne: NamedExpression =>
          // If a named expression is not in regularExpressions, add it to
          // extractedExprBuffer and replace it with an AttributeReference.
          val missingExpr =
            AttributeSet(Seq(expr)) -- (regularExpressions ++ extractedExprBuffer)
          if (missingExpr.nonEmpty) {
            extractedExprBuffer += ne
          }
          // alias will be cleaned in the rule CleanupAliases
          ne
        case e: Expression if e.foldable =>
          e // No need to create an attribute reference if it will be evaluated as a Literal.
        case e: Expression =>
          // For other expressions, we extract it and replace it with an AttributeReference (with
          // an internal column name, e.g. "_w0").
          val withName = Alias(e, s"_w${extractedExprBuffer.length}")()
          extractedExprBuffer += withName
          withName.toAttribute
      }

      // Now, we extract regular expressions from expressionsWithWindowFunctions
      // by using extractExpr.
      val seenWindowAggregates = new ArrayBuffer[AggregateExpression]
      val newExpressionsWithWindowFunctions = expressionsWithWindowFunctions.map {
        _.transform {
          // Extracts children expressions of a WindowFunction (input parameters of
          // a WindowFunction).
          case wf: WindowFunction =>
            val newChildren = wf.children.map(extractExpr)
            wf.withNewChildren(newChildren)

          // Extracts expressions from the partition spec and order spec.
          case wsc @ WindowSpecDefinition(partitionSpec, orderSpec, _) =>
            val newPartitionSpec = partitionSpec.map(extractExpr)
            val newOrderSpec = orderSpec.map { so =>
              val newChild = extractExpr(so.child)
              so.copy(child = newChild)
            }
            wsc.copy(partitionSpec = newPartitionSpec, orderSpec = newOrderSpec)

          // Extract Windowed AggregateExpression
          case we @ WindowExpression(
              ae @ AggregateExpression(function, _, _, _),
              spec: WindowSpecDefinition) =>
            val newChildren = function.children.map(extractExpr)
            val newFunction = function.withNewChildren(newChildren).asInstanceOf[AggregateFunction]
            val newAgg = ae.copy(aggregateFunction = newFunction)
            seenWindowAggregates += newAgg
            WindowExpression(newAgg, spec)

          // Extracts AggregateExpression. For example, for SUM(x) - Sum(y) OVER (...),
          // we need to extract SUM(x).
          case agg: AggregateExpression if !seenWindowAggregates.contains(agg) =>
            val withName = Alias(agg, s"_w${extractedExprBuffer.length}")()
            extractedExprBuffer += withName
            withName.toAttribute

          // Extracts other attributes
          case attr: Attribute => extractExpr(attr)

        }.asInstanceOf[NamedExpression]
      }

      (newExpressionsWithWindowFunctions, regularExpressions ++ extractedExprBuffer)
    } // end of extract

    /**
     * Adds operators for Window Expressions. Every Window operator handles a single Window Spec.
     */
    private def addWindow(
        expressionsWithWindowFunctions: Seq[NamedExpression],
        child: LogicalPlan): LogicalPlan = {
      // First, we need to extract all WindowExpressions from expressionsWithWindowFunctions
      // and put those extracted WindowExpressions to extractedWindowExprBuffer.
      // This step is needed because it is possible that an expression contains multiple
      // WindowExpressions with different Window Specs.
      // After extracting WindowExpressions, we need to construct a project list to generate
      // expressionsWithWindowFunctions based on extractedWindowExprBuffer.
      // For example, for "sum(a) over (...) / sum(b) over (...)", we will first extract
      // "sum(a) over (...)" and "sum(b) over (...)" out, and assign "_we0" as the alias to
      // "sum(a) over (...)" and "_we1" as the alias to "sum(b) over (...)".
      // Then, the projectList will be [_we0/_we1].
      val extractedWindowExprBuffer = new ArrayBuffer[NamedExpression]()
      val newExpressionsWithWindowFunctions = expressionsWithWindowFunctions.map {
        // We need to use transformDown because we want to trigger
        // "case alias @ Alias(window: WindowExpression, _)" first.
        _.transformDown {
          case alias @ Alias(window: WindowExpression, _) =>
            // If a WindowExpression has an assigned alias, just use it.
            extractedWindowExprBuffer += alias
            alias.toAttribute
          case window: WindowExpression =>
            // If there is no alias assigned to the WindowExpressions. We create an
            // internal column.
            val withName = Alias(window, s"_we${extractedWindowExprBuffer.length}")()
            extractedWindowExprBuffer += withName
            withName.toAttribute
        }.asInstanceOf[NamedExpression]
      }

      // Second, we group extractedWindowExprBuffer based on their Partition and Order Specs.
      val groupedWindowExpressions = extractedWindowExprBuffer.groupBy { expr =>
        val distinctWindowSpec = expr.collect {
          case window: WindowExpression => window.windowSpec
        }.distinct

        // We do a final check and see if we only have a single Window Spec defined in an
        // expressions.
        if (distinctWindowSpec.isEmpty) {
          failAnalysis(s"$expr does not have any WindowExpression.")
        } else if (distinctWindowSpec.length > 1) {
          // newExpressionsWithWindowFunctions only have expressions with a single
          // WindowExpression. If we reach here, we have a bug.
          failAnalysis(s"$expr has multiple Window Specifications ($distinctWindowSpec)." +
            s"Please file a bug report with this error message, stack trace, and the query.")
        } else {
          val spec = distinctWindowSpec.head
          (spec.partitionSpec, spec.orderSpec)
        }
      }.toSeq

      // Third, we aggregate them by adding each Window operator for each Window Spec and then
      // setting this to the child of the next Window operator.
      val windowOps =
        groupedWindowExpressions.foldLeft(child) {
          case (last, ((partitionSpec, orderSpec), windowExpressions)) =>
            Window(windowExpressions, partitionSpec, orderSpec, last)
        }

      // Finally, we create a Project to output windowOps's output
      // newExpressionsWithWindowFunctions.
      Project(windowOps.output ++ newExpressionsWithWindowFunctions, windowOps)
    } // end of addWindow

    // We have to use transformDown at here to make sure the rule of
    // "Aggregate with Having clause" will be triggered.
    def apply(plan: LogicalPlan): LogicalPlan = plan transformDown {

      // Aggregate with Having clause. This rule works with an unresolved Aggregate because
      // a resolved Aggregate will not have Window Functions.
      case f @ Filter(condition, a @ Aggregate(groupingExprs, aggregateExprs, child))
        if child.resolved &&
           hasWindowFunction(aggregateExprs) &&
           a.expressions.forall(_.resolved) =>
        val (windowExpressions, aggregateExpressions) = extract(aggregateExprs)
        // Create an Aggregate operator to evaluate aggregation functions.
        val withAggregate = Aggregate(groupingExprs, aggregateExpressions, child)
        // Add a Filter operator for conditions in the Having clause.
        val withFilter = Filter(condition, withAggregate)
        val withWindow = addWindow(windowExpressions, withFilter)

        // Finally, generate output columns according to the original projectList.
        val finalProjectList = aggregateExprs.map(_.toAttribute)
        Project(finalProjectList, withWindow)

      case p: LogicalPlan if !p.childrenResolved => p

      // Aggregate without Having clause.
      case a @ Aggregate(groupingExprs, aggregateExprs, child)
        if hasWindowFunction(aggregateExprs) &&
           a.expressions.forall(_.resolved) =>
        val (windowExpressions, aggregateExpressions) = extract(aggregateExprs)
        // Create an Aggregate operator to evaluate aggregation functions.
        val withAggregate = Aggregate(groupingExprs, aggregateExpressions, child)
        // Add Window operators.
        val withWindow = addWindow(windowExpressions, withAggregate)

        // Finally, generate output columns according to the original projectList.
        val finalProjectList = aggregateExprs.map(_.toAttribute)
        Project(finalProjectList, withWindow)

      // We only extract Window Expressions after all expressions of the Project
      // have been resolved.
      case p @ Project(projectList, child)
        if hasWindowFunction(projectList) && !p.expressions.exists(!_.resolved) =>
        val (windowExpressions, regularExpressions) = extract(projectList)
        // We add a project to get all needed expressions for window expressions from the child
        // of the original Project operator.
        val withProject = Project(regularExpressions, child)
        // Add Window operators.
        val withWindow = addWindow(windowExpressions, withProject)

        // Finally, generate output columns according to the original projectList.
        val finalProjectList = projectList.map(_.toAttribute)
        Project(finalProjectList, withWindow)
    }
  }

  /**
   * Pulls out nondeterministic expressions from LogicalPlan which is not Project or Filter,
   * put them into an inner Project and finally project them away at the outer Project.
   */
  object PullOutNondeterministic extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case p if !p.resolved => p // Skip unresolved nodes.
      case p: Project => p
      case f: Filter => f

      case a: Aggregate if a.groupingExpressions.exists(!_.deterministic) =>
        val nondeterToAttr = getNondeterToAttr(a.groupingExpressions)
        val newChild = Project(a.child.output ++ nondeterToAttr.values, a.child)
        a.transformExpressions { case e =>
          nondeterToAttr.get(e).map(_.toAttribute).getOrElse(e)
        }.copy(child = newChild)

      // todo: It's hard to write a general rule to pull out nondeterministic expressions
      // from LogicalPlan, currently we only do it for UnaryNode which has same output
      // schema with its child.
      case p: UnaryNode if p.output == p.child.output && p.expressions.exists(!_.deterministic) =>
        val nondeterToAttr = getNondeterToAttr(p.expressions)
        val newPlan = p.transformExpressions { case e =>
          nondeterToAttr.get(e).map(_.toAttribute).getOrElse(e)
        }
        val newChild = Project(p.child.output ++ nondeterToAttr.values, p.child)
        Project(p.output, newPlan.withNewChildren(newChild :: Nil))
    }

    private def getNondeterToAttr(exprs: Seq[Expression]): Map[Expression, NamedExpression] = {
      exprs.filterNot(_.deterministic).flatMap { expr =>
        val leafNondeterministic = expr.collect { case n: Nondeterministic => n }
        leafNondeterministic.distinct.map { e =>
          val ne = e match {
            case n: NamedExpression => n
            case _ => Alias(e, "_nondeterministic")(isGenerated = true)
          }
          e -> ne
        }
      }.toMap
    }
  }

  /**
   * Correctly handle null primitive inputs for UDF by adding extra [[If]] expression to do the
   * null check.  When user defines a UDF with primitive parameters, there is no way to tell if the
   * primitive parameter is null or not, so here we assume the primitive input is null-propagatable
   * and we should return null if the input is null.
   */
  object HandleNullInputsForUDF extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case p if !p.resolved => p // Skip unresolved nodes.

      case p => p transformExpressionsUp {

        case udf @ ScalaUDF(func, _, inputs, _, _) =>
          val parameterTypes = ScalaReflection.getParameterTypes(func)
          assert(parameterTypes.length == inputs.length)

          val inputsNullCheck = parameterTypes.zip(inputs)
            // TODO: skip null handling for not-nullable primitive inputs after we can completely
            // trust the `nullable` information.
            // .filter { case (cls, expr) => cls.isPrimitive && expr.nullable }
            .filter { case (cls, _) => cls.isPrimitive }
            .map { case (_, expr) => IsNull(expr) }
            .reduceLeftOption[Expression]((e1, e2) => Or(e1, e2))
          inputsNullCheck.map(If(_, Literal.create(null, udf.dataType), udf)).getOrElse(udf)
      }
    }
  }

  /**
   * Check and add proper window frames for all window functions.
   */
  object ResolveWindowFrame extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case logical: LogicalPlan => logical transformExpressions {
        case WindowExpression(wf: WindowFunction,
        WindowSpecDefinition(_, _, f: SpecifiedWindowFrame))
          if wf.frame != UnspecifiedFrame && wf.frame != f =>
          failAnalysis(s"Window Frame $f must match the required frame ${wf.frame}")
        case WindowExpression(wf: WindowFunction,
        s @ WindowSpecDefinition(_, o, UnspecifiedFrame))
          if wf.frame != UnspecifiedFrame =>
          WindowExpression(wf, s.copy(frameSpecification = wf.frame))
        case we @ WindowExpression(e, s @ WindowSpecDefinition(_, o, UnspecifiedFrame))
          if e.resolved =>
          val frame = SpecifiedWindowFrame.defaultWindowFrame(o.nonEmpty, acceptWindowFrame = true)
          we.copy(windowSpec = s.copy(frameSpecification = frame))
      }
    }
  }

  /**
   * Check and add order to [[AggregateWindowFunction]]s.
   */
  object ResolveWindowOrder extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case logical: LogicalPlan => logical transformExpressions {
        case WindowExpression(wf: WindowFunction, spec) if spec.orderSpec.isEmpty =>
          failAnalysis(s"Window function $wf requires window to be ordered, please add ORDER BY " +
            s"clause. For example SELECT $wf(value_expr) OVER (PARTITION BY window_partition " +
            s"ORDER BY window_ordering) from table")
        case WindowExpression(rank: RankLike, spec) if spec.resolved =>
          val order = spec.orderSpec.map(_.child)
          WindowExpression(rank.withOrder(order), spec)
      }
    }
  }

  /**
   * Removes natural or using joins by calculating output columns based on output from two sides,
   * Then apply a Project on a normal Join to eliminate natural or using join.
   */
  object ResolveNaturalAndUsingJoin extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case j @ Join(left, right, UsingJoin(joinType, usingCols), condition)
          if left.resolved && right.resolved && j.duplicateResolved =>
        commonNaturalJoinProcessing(left, right, joinType, usingCols, None)
      case j @ Join(left, right, NaturalJoin(joinType), condition) if j.resolvedExceptNatural =>
        // find common column names from both sides
        val joinNames = left.output.map(_.name).intersect(right.output.map(_.name))
        commonNaturalJoinProcessing(left, right, joinType, joinNames, condition)
    }
  }

  private def commonNaturalJoinProcessing(
      left: LogicalPlan,
      right: LogicalPlan,
      joinType: JoinType,
      joinNames: Seq[String],
      condition: Option[Expression]) = {
    val leftKeys = joinNames.map { keyName =>
      left.output.find(attr => resolver(attr.name, keyName)).getOrElse {
        throw new AnalysisException(s"USING column `$keyName` cannot be resolved on the left " +
          s"side of the join. The left-side columns: [${left.output.map(_.name).mkString(", ")}]")
      }
    }
    val rightKeys = joinNames.map { keyName =>
      right.output.find(attr => resolver(attr.name, keyName)).getOrElse {
        throw new AnalysisException(s"USING column `$keyName` cannot be resolved on the right " +
          s"side of the join. The right-side columns: [${right.output.map(_.name).mkString(", ")}]")
      }
    }
    val joinPairs = leftKeys.zip(rightKeys)

    val newCondition = (condition ++ joinPairs.map(EqualTo.tupled)).reduceOption(And)

    // columns not in joinPairs
    val lUniqueOutput = left.output.filterNot(att => leftKeys.contains(att))
    val rUniqueOutput = right.output.filterNot(att => rightKeys.contains(att))

    // the output list looks like: join keys, columns from left, columns from right
    val projectList = joinType match {
      case LeftOuter =>
        leftKeys ++ lUniqueOutput ++ rUniqueOutput.map(_.withNullability(true))
      case LeftExistence(_) =>
        leftKeys ++ lUniqueOutput
      case RightOuter =>
        rightKeys ++ lUniqueOutput.map(_.withNullability(true)) ++ rUniqueOutput
      case FullOuter =>
        // in full outer join, joinCols should be non-null if there is.
        val joinedCols = joinPairs.map { case (l, r) => Alias(Coalesce(Seq(l, r)), l.name)() }
        joinedCols ++
          lUniqueOutput.map(_.withNullability(true)) ++
          rUniqueOutput.map(_.withNullability(true))
      case _ : InnerLike =>
        leftKeys ++ lUniqueOutput ++ rUniqueOutput
      case _ =>
        sys.error("Unsupported natural join type " + joinType)
    }
    // use Project to trim unnecessary fields
    Project(projectList, Join(left, right, joinType, newCondition))
  }

  /**
   * Replaces [[UnresolvedDeserializer]] with the deserialization expression that has been resolved
   * to the given input attributes.
   */
  object ResolveDeserializer extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case p if !p.childrenResolved => p
      case p if p.resolved => p

      case p => p transformExpressions {
        case UnresolvedDeserializer(deserializer, inputAttributes) =>
          val inputs = if (inputAttributes.isEmpty) {
            p.children.flatMap(_.output)
          } else {
            inputAttributes
          }

          validateTopLevelTupleFields(deserializer, inputs)
          val resolved = resolveExpression(
            deserializer, LocalRelation(inputs), throws = true)
          val result = resolved transformDown {
            case UnresolvedMapObjects(func, inputData, cls) if inputData.resolved =>
              inputData.dataType match {
                case ArrayType(et, cn) =>
                  val expr = MapObjects(func, inputData, et, cn, cls) transformUp {
                    case UnresolvedExtractValue(child, fieldName) if child.resolved =>
                      ExtractValue(child, fieldName, resolver)
                  }
                  expr
                case other =>
                  throw new AnalysisException("need an array field but got " + other.simpleString)
              }
          }
          validateNestedTupleFields(result)
          result
      }
    }

    private def fail(schema: StructType, maxOrdinal: Int): Unit = {
      throw new AnalysisException(s"Try to map ${schema.simpleString} to Tuple${maxOrdinal + 1}, " +
        "but failed as the number of fields does not line up.")
    }

    /**
     * For each top-level Tuple field, we use [[GetColumnByOrdinal]] to get its corresponding column
     * by position.  However, the actual number of columns may be different from the number of Tuple
     * fields.  This method is used to check the number of columns and fields, and throw an
     * exception if they do not match.
     */
    private def validateTopLevelTupleFields(
        deserializer: Expression, inputs: Seq[Attribute]): Unit = {
      val ordinals = deserializer.collect {
        case GetColumnByOrdinal(ordinal, _) => ordinal
      }.distinct.sorted

      if (ordinals.nonEmpty && ordinals != inputs.indices) {
        fail(inputs.toStructType, ordinals.last)
      }
    }

    /**
     * For each nested Tuple field, we use [[GetStructField]] to get its corresponding struct field
     * by position.  However, the actual number of struct fields may be different from the number
     * of nested Tuple fields.  This method is used to check the number of struct fields and nested
     * Tuple fields, and throw an exception if they do not match.
     */
    private def validateNestedTupleFields(deserializer: Expression): Unit = {
      val structChildToOrdinals = deserializer
        // There are 2 kinds of `GetStructField`:
        //   1. resolved from `UnresolvedExtractValue`, and it will have a `name` property.
        //   2. created when we build deserializer expression for nested tuple, no `name` property.
        // Here we want to validate the ordinals of nested tuple, so we should only catch
        // `GetStructField` without the name property.
        .collect { case g: GetStructField if g.name.isEmpty => g }
        .groupBy(_.child)
        .mapValues(_.map(_.ordinal).distinct.sorted)

      structChildToOrdinals.foreach { case (expr, ordinals) =>
        val schema = expr.dataType.asInstanceOf[StructType]
        if (ordinals != schema.indices) {
          fail(schema, ordinals.last)
        }
      }
    }
  }

  /**
   * Resolves [[NewInstance]] by finding and adding the outer scope to it if the object being
   * constructed is an inner class.
   */
  object ResolveNewInstance extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case p if !p.childrenResolved => p
      case p if p.resolved => p

      case p => p transformExpressions {
        case n: NewInstance if n.childrenResolved && !n.resolved =>
          val outer = OuterScopes.getOuterScope(n.cls)
          if (outer == null) {
            throw new AnalysisException(
              s"Unable to generate an encoder for inner class `${n.cls.getName}` without " +
                "access to the scope that this class was defined in.\n" +
                "Try moving this class out of its parent class.")
          }
          n.copy(outerPointer = Some(outer))
      }
    }
  }

  /**
   * Replace the [[UpCast]] expression by [[Cast]], and throw exceptions if the cast may truncate.
   */
  object ResolveUpCast extends Rule[LogicalPlan] {
    private def fail(from: Expression, to: DataType, walkedTypePath: Seq[String]) = {
      val fromStr = from match {
        case l: LambdaVariable => "array element"
        case e => e.sql
      }
      throw new AnalysisException(s"Cannot up cast $fromStr from " +
        s"${from.dataType.simpleString} to ${to.simpleString} as it may truncate\n" +
        "The type path of the target object is:\n" + walkedTypePath.mkString("", "\n", "\n") +
        "You can either add an explicit cast to the input data or choose a higher precision " +
        "type of the field in the target object")
    }

    def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
      case p if !p.childrenResolved => p
      case p if p.resolved => p

      case p => p transformExpressions {
        case u @ UpCast(child, _, _) if !child.resolved => u

        case UpCast(child, dataType, walkedTypePath)
          if Cast.mayTruncate(child.dataType, dataType) =>
          fail(child, dataType, walkedTypePath)

        case UpCast(child, dataType, walkedTypePath) => Cast(child, dataType.asNullable)
      }
    }
  }

  /**
   * Replace [[TimeZoneAwareExpression]] without timezone id by its copy with session local
   * time zone.
   */
  object ResolveTimeZone extends Rule[LogicalPlan] {

    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveExpressions {
      case e: TimeZoneAwareExpression if e.timeZoneId.isEmpty =>
        e.withTimeZone(conf.sessionLocalTimeZone)
      // Casts could be added in the subquery plan through the rule TypeCoercion while coercing
      // the types between the value expression and list query expression of IN expression.
      // We need to subject the subquery plan through ResolveTimeZone again to setup timezone
      // information for time zone aware expressions.
      case e: ListQuery => e.withNewPlan(apply(e.plan))
    }
  }
}

/**
 * Removes [[SubqueryAlias]] operators from the plan. Subqueries are only required to provide
 * scoping information for attributes and can be removed once analysis is complete.
 */
object EliminateSubqueryAliases extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = plan transformUp {
    case SubqueryAlias(_, child) => child
  }
}

/**
 * Removes [[Union]] operators from the plan if it just has one child.
 */
object EliminateUnions extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = plan transform {
    case Union(children) if children.size == 1 => children.head
  }
}

/**
 * Cleans up unnecessary Aliases inside the plan. Basically we only need Alias as a top level
 * expression in Project(project list) or Aggregate(aggregate expressions) or
 * Window(window expressions).
 */
object CleanupAliases extends Rule[LogicalPlan] {
  private def trimAliases(e: Expression): Expression = {
    e.transformDown {
      case Alias(child, _) => child
    }
  }

  def trimNonTopLevelAliases(e: Expression): Expression = e match {
    case a: Alias =>
      a.withNewChildren(trimAliases(a.child) :: Nil)
    case other => trimAliases(other)
  }

  override def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
    case Project(projectList, child) =>
      val cleanedProjectList =
        projectList.map(trimNonTopLevelAliases(_).asInstanceOf[NamedExpression])
      Project(cleanedProjectList, child)

    case Aggregate(grouping, aggs, child) =>
      val cleanedAggs = aggs.map(trimNonTopLevelAliases(_).asInstanceOf[NamedExpression])
      Aggregate(grouping.map(trimAliases), cleanedAggs, child)

    case w @ Window(windowExprs, partitionSpec, orderSpec, child) =>
      val cleanedWindowExprs =
        windowExprs.map(e => trimNonTopLevelAliases(e).asInstanceOf[NamedExpression])
      Window(cleanedWindowExprs, partitionSpec.map(trimAliases),
        orderSpec.map(trimAliases(_).asInstanceOf[SortOrder]), child)

    // Operators that operate on objects should only have expressions from encoders, which should
    // never have extra aliases.
    case o: ObjectConsumer => o
    case o: ObjectProducer => o
    case a: AppendColumns => a

    case other =>
      other transformExpressionsDown {
        case Alias(child, _) => child
      }
  }
}

/**
 * Maps a time column to multiple time windows using the Expand operator. Since it's non-trivial to
 * figure out how many windows a time column can map to, we over-estimate the number of windows and
 * filter out the rows where the time column is not inside the time window.
 */
object TimeWindowing extends Rule[LogicalPlan] {
  import org.apache.spark.sql.catalyst.dsl.expressions._

  private final val WINDOW_START = "start"
  private final val WINDOW_END = "end"

  /**
   * Generates the logical plan for generating window ranges on a timestamp column. Without
   * knowing what the timestamp value is, it's non-trivial to figure out deterministically how many
   * window ranges a timestamp will map to given all possible combinations of a window duration,
   * slide duration and start time (offset). Therefore, we express and over-estimate the number of
   * windows there may be, and filter the valid windows. We use last Project operator to group
   * the window columns into a struct so they can be accessed as `window.start` and `window.end`.
   *
   * The windows are calculated as below:
   * maxNumOverlapping <- ceil(windowDuration / slideDuration)
   * for (i <- 0 until maxNumOverlapping)
   *   windowId <- ceil((timestamp - startTime) / slideDuration)
   *   windowStart <- windowId * slideDuration + (i - maxNumOverlapping) * slideDuration + startTime
   *   windowEnd <- windowStart + windowDuration
   *   return windowStart, windowEnd
   *
   * This behaves as follows for the given parameters for the time: 12:05. The valid windows are
   * marked with a +, and invalid ones are marked with a x. The invalid ones are filtered using the
   * Filter operator.
   * window: 12m, slide: 5m, start: 0m :: window: 12m, slide: 5m, start: 2m
   *     11:55 - 12:07 +                      11:52 - 12:04 x
   *     12:00 - 12:12 +                      11:57 - 12:09 +
   *     12:05 - 12:17 +                      12:02 - 12:14 +
   *
   * @param plan The logical plan
   * @return the logical plan that will generate the time windows using the Expand operator, with
   *         the Filter operator for correctness and Project for usability.
   */
  def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
    case p: LogicalPlan if p.children.size == 1 =>
      val child = p.children.head
      val windowExpressions =
        p.expressions.flatMap(_.collect { case t: TimeWindow => t }).distinct.toList // Not correct.

      // Only support a single window expression for now
      if (windowExpressions.size == 1 &&
          windowExpressions.head.timeColumn.resolved &&
          windowExpressions.head.checkInputDataTypes().isSuccess) {
        val window = windowExpressions.head

        val metadata = window.timeColumn match {
          case a: Attribute => a.metadata
          case _ => Metadata.empty
        }
        val windowAttr =
          AttributeReference("window", window.dataType, metadata = metadata)()

        val maxNumOverlapping = math.ceil(window.windowDuration * 1.0 / window.slideDuration).toInt
        val windows = Seq.tabulate(maxNumOverlapping + 1) { i =>
          val windowId = Ceil((PreciseTimestamp(window.timeColumn) - window.startTime) /
            window.slideDuration)
          val windowStart = (windowId + i - maxNumOverlapping) *
              window.slideDuration + window.startTime
          val windowEnd = windowStart + window.windowDuration

          CreateNamedStruct(
            Literal(WINDOW_START) :: windowStart ::
            Literal(WINDOW_END) :: windowEnd :: Nil)
        }

        val projections = windows.map(_ +: p.children.head.output)

        val filterExpr =
          window.timeColumn >= windowAttr.getField(WINDOW_START) &&
          window.timeColumn < windowAttr.getField(WINDOW_END)

        val expandedPlan =
          Filter(filterExpr,
            Expand(projections, windowAttr +: child.output, child))

        val substitutedPlan = p transformExpressions {
          case t: TimeWindow => windowAttr
        }

        substitutedPlan.withNewChildren(expandedPlan :: Nil)
      } else if (windowExpressions.size > 1) {
        p.failAnalysis("Multiple time window expressions would result in a cartesian product " +
          "of rows, therefore they are currently not supported.")
      } else {
        p // Return unchanged. Analyzer will throw exception later
      }
  }
}

/**
 * Resolve a [[CreateNamedStruct]] if it contains [[NamePlaceholder]]s.
 */
object ResolveCreateNamedStruct extends Rule[LogicalPlan] {
  override def apply(plan: LogicalPlan): LogicalPlan = plan.transformAllExpressions {
    case e: CreateNamedStruct if !e.resolved =>
      val children = e.children.grouped(2).flatMap {
        case Seq(NamePlaceholder, e: NamedExpression) if e.resolved =>
          Seq(Literal(e.name), e)
        case kv =>
          kv
      }
      CreateNamedStruct(children.toList)
  }
}

/**
 * The aggregate expressions from subquery referencing outer query block are pushed
 * down to the outer query block for evaluation. This rule below updates such outer references
 * as AttributeReference referring attributes from the parent/outer query block.
 *
 * For example (SQL):
 * {{{
 *   SELECT l.a FROM l GROUP BY 1 HAVING EXISTS (SELECT 1 FROM r WHERE r.d < min(l.b))
 * }}}
 * Plan before the rule.
 *    Project [a#226]
 *    +- Filter exists#245 [min(b#227)#249]
 *       :  +- Project [1 AS 1#247]
 *       :     +- Filter (d#238 < min(outer(b#227)))       <-----
 *       :        +- SubqueryAlias r
 *       :           +- Project [_1#234 AS c#237, _2#235 AS d#238]
 *       :              +- LocalRelation [_1#234, _2#235]
 *       +- Aggregate [a#226], [a#226, min(b#227) AS min(b#227)#249]
 *          +- SubqueryAlias l
 *             +- Project [_1#223 AS a#226, _2#224 AS b#227]
 *                +- LocalRelation [_1#223, _2#224]
 * Plan after the rule.
 *    Project [a#226]
 *    +- Filter exists#245 [min(b#227)#249]
 *       :  +- Project [1 AS 1#247]
 *       :     +- Filter (d#238 < outer(min(b#227)#249))   <-----
 *       :        +- SubqueryAlias r
 *       :           +- Project [_1#234 AS c#237, _2#235 AS d#238]
 *       :              +- LocalRelation [_1#234, _2#235]
 *       +- Aggregate [a#226], [a#226, min(b#227) AS min(b#227)#249]
 *          +- SubqueryAlias l
 *             +- Project [_1#223 AS a#226, _2#224 AS b#227]
 *                +- LocalRelation [_1#223, _2#224]
 */
object UpdateOuterReferences extends Rule[LogicalPlan] {
  private def stripAlias(expr: Expression): Expression = expr match { case a: Alias => a.child }

  private def updateOuterReferenceInSubquery(
      plan: LogicalPlan,
      refExprs: Seq[Expression]): LogicalPlan = {
    plan transformAllExpressions { case e =>
      val outerAlias =
        refExprs.find(stripAlias(_).semanticEquals(stripOuterReference(e)))
      outerAlias match {
        case Some(a: Alias) => OuterReference(a.toAttribute)
        case _ => e
      }
    }
  }

  def apply(plan: LogicalPlan): LogicalPlan = {
    plan transform {
      case f @ Filter(_, a: Aggregate) if f.resolved =>
        f transformExpressions {
          case s: SubqueryExpression if s.children.nonEmpty =>
            // Collect the aliases from output of aggregate.
            val outerAliases = a.aggregateExpressions collect { case a: Alias => a }
            // Update the subquery plan to record the OuterReference to point to outer query plan.
            s.withNewPlan(updateOuterReferenceInSubquery(s.plan, outerAliases))
      }
    }
  }
}