aboutsummaryrefslogtreecommitdiff
path: root/ext/mavlink/include/mavlink/mavlink_conversions.h
diff options
context:
space:
mode:
Diffstat (limited to 'ext/mavlink/include/mavlink/mavlink_conversions.h')
-rw-r--r--ext/mavlink/include/mavlink/mavlink_conversions.h185
1 files changed, 185 insertions, 0 deletions
diff --git a/ext/mavlink/include/mavlink/mavlink_conversions.h b/ext/mavlink/include/mavlink/mavlink_conversions.h
new file mode 100644
index 0000000..beac630
--- /dev/null
+++ b/ext/mavlink/include/mavlink/mavlink_conversions.h
@@ -0,0 +1,185 @@
+#ifndef _MAVLINK_CONVERSIONS_H_
+#define _MAVLINK_CONVERSIONS_H_
+
+/* enable math defines on Windows */
+#ifdef _MSC_VER
+#ifndef _USE_MATH_DEFINES
+#define _USE_MATH_DEFINES
+#endif
+#endif
+#include <math.h>
+
+#ifndef M_PI_2
+ #define M_PI_2 ((float)asin(1))
+#endif
+
+/**
+ * @file mavlink_conversions.h
+ *
+ * These conversion functions follow the NASA rotation standards definition file
+ * available online.
+ *
+ * Their intent is to lower the barrier for MAVLink adopters to use gimbal-lock free
+ * (both rotation matrices, sometimes called DCM, and quaternions are gimbal-lock free)
+ * rotation representations. Euler angles (roll, pitch, yaw) will be phased out of the
+ * protocol as widely as possible.
+ *
+ * @author James Goppert
+ */
+
+
+/**
+ * Converts a quaternion to a rotation matrix
+ *
+ * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
+ * @param dcm a 3x3 rotation matrix
+ */
+MAVLINK_HELPER void mavlink_quaternion_to_dcm(const float quaternion[4], float dcm[3][3])
+{
+ double a = quaternion[0];
+ double b = quaternion[1];
+ double c = quaternion[2];
+ double d = quaternion[3];
+ double aSq = a * a;
+ double bSq = b * b;
+ double cSq = c * c;
+ double dSq = d * d;
+ dcm[0][0] = aSq + bSq - cSq - dSq;
+ dcm[0][1] = 2.0 * (b * c - a * d);
+ dcm[0][2] = 2.0 * (a * c + b * d);
+ dcm[1][0] = 2.0 * (b * c + a * d);
+ dcm[1][1] = aSq - bSq + cSq - dSq;
+ dcm[1][2] = 2.0 * (c * d - a * b);
+ dcm[2][0] = 2.0 * (b * d - a * c);
+ dcm[2][1] = 2.0 * (a * b + c * d);
+ dcm[2][2] = aSq - bSq - cSq + dSq;
+}
+
+
+/**
+ * Converts a rotation matrix to euler angles
+ *
+ * @param dcm a 3x3 rotation matrix
+ * @param roll the roll angle in radians
+ * @param pitch the pitch angle in radians
+ * @param yaw the yaw angle in radians
+ */
+MAVLINK_HELPER void mavlink_dcm_to_euler(const float dcm[3][3], float* roll, float* pitch, float* yaw)
+{
+ float phi, theta, psi;
+ theta = asin(-dcm[2][0]);
+
+ if (fabsf(theta - (float)M_PI_2) < 1.0e-3f) {
+ phi = 0.0f;
+ psi = (atan2f(dcm[1][2] - dcm[0][1],
+ dcm[0][2] + dcm[1][1]) + phi);
+
+ } else if (fabsf(theta + (float)M_PI_2) < 1.0e-3f) {
+ phi = 0.0f;
+ psi = atan2f(dcm[1][2] - dcm[0][1],
+ dcm[0][2] + dcm[1][1] - phi);
+
+ } else {
+ phi = atan2f(dcm[2][1], dcm[2][2]);
+ psi = atan2f(dcm[1][0], dcm[0][0]);
+ }
+
+ *roll = phi;
+ *pitch = theta;
+ *yaw = psi;
+}
+
+
+/**
+ * Converts a quaternion to euler angles
+ *
+ * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
+ * @param roll the roll angle in radians
+ * @param pitch the pitch angle in radians
+ * @param yaw the yaw angle in radians
+ */
+MAVLINK_HELPER void mavlink_quaternion_to_euler(const float quaternion[4], float* roll, float* pitch, float* yaw)
+{
+ float dcm[3][3];
+ mavlink_quaternion_to_dcm(quaternion, dcm);
+ mavlink_dcm_to_euler((const float(*)[3])dcm, roll, pitch, yaw);
+}
+
+
+/**
+ * Converts euler angles to a quaternion
+ *
+ * @param roll the roll angle in radians
+ * @param pitch the pitch angle in radians
+ * @param yaw the yaw angle in radians
+ * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
+ */
+MAVLINK_HELPER void mavlink_euler_to_quaternion(float roll, float pitch, float yaw, float quaternion[4])
+{
+ double cosPhi_2 = cos((double)roll / 2.0);
+ double sinPhi_2 = sin((double)roll / 2.0);
+ double cosTheta_2 = cos((double)pitch / 2.0);
+ double sinTheta_2 = sin((double)pitch / 2.0);
+ double cosPsi_2 = cos((double)yaw / 2.0);
+ double sinPsi_2 = sin((double)yaw / 2.0);
+ quaternion[0] = (cosPhi_2 * cosTheta_2 * cosPsi_2 +
+ sinPhi_2 * sinTheta_2 * sinPsi_2);
+ quaternion[1] = (sinPhi_2 * cosTheta_2 * cosPsi_2 -
+ cosPhi_2 * sinTheta_2 * sinPsi_2);
+ quaternion[2] = (cosPhi_2 * sinTheta_2 * cosPsi_2 +
+ sinPhi_2 * cosTheta_2 * sinPsi_2);
+ quaternion[3] = (cosPhi_2 * cosTheta_2 * sinPsi_2 -
+ sinPhi_2 * sinTheta_2 * cosPsi_2);
+}
+
+
+/**
+ * Converts a rotation matrix to a quaternion
+ *
+ * @param dcm a 3x3 rotation matrix
+ * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0)
+ */
+MAVLINK_HELPER void mavlink_dcm_to_quaternion(const float dcm[3][3], float quaternion[4])
+{
+ quaternion[0] = (0.5 * sqrt(1.0 +
+ (double)(dcm[0][0] + dcm[1][1] + dcm[2][2])));
+ quaternion[1] = (0.5 * sqrt(1.0 +
+ (double)(dcm[0][0] - dcm[1][1] - dcm[2][2])));
+ quaternion[2] = (0.5 * sqrt(1.0 +
+ (double)(-dcm[0][0] + dcm[1][1] - dcm[2][2])));
+ quaternion[3] = (0.5 * sqrt(1.0 +
+ (double)(-dcm[0][0] - dcm[1][1] + dcm[2][2])));
+}
+
+
+/**
+ * Converts euler angles to a rotation matrix
+ *
+ * @param roll the roll angle in radians
+ * @param pitch the pitch angle in radians
+ * @param yaw the yaw angle in radians
+ * @param dcm a 3x3 rotation matrix
+ */
+MAVLINK_HELPER void mavlink_euler_to_dcm(float roll, float pitch, float yaw, float dcm[3][3])
+{
+ double cosPhi = cos(roll);
+ double sinPhi = sin(roll);
+ double cosThe = cos(pitch);
+ double sinThe = sin(pitch);
+ double cosPsi = cos(yaw);
+ double sinPsi = sin(yaw);
+
+ dcm[0][0] = cosThe * cosPsi;
+ dcm[0][1] = -cosPhi * sinPsi + sinPhi * sinThe * cosPsi;
+ dcm[0][2] = sinPhi * sinPsi + cosPhi * sinThe * cosPsi;
+
+ dcm[1][0] = cosThe * sinPsi;
+ dcm[1][1] = cosPhi * cosPsi + sinPhi * sinThe * sinPsi;
+ dcm[1][2] = -sinPhi * cosPsi + cosPhi * sinThe * sinPsi;
+
+ dcm[2][0] = -sinThe;
+ dcm[2][1] = sinPhi * cosThe;
+ dcm[2][2] = cosPhi * cosThe;
+}
+
+#endif