aboutsummaryrefslogtreecommitdiff
path: root/mavlink/share/pyshared/pymavlink/examples/rotmat.py
diff options
context:
space:
mode:
Diffstat (limited to 'mavlink/share/pyshared/pymavlink/examples/rotmat.py')
-rw-r--r--mavlink/share/pyshared/pymavlink/examples/rotmat.py269
1 files changed, 0 insertions, 269 deletions
diff --git a/mavlink/share/pyshared/pymavlink/examples/rotmat.py b/mavlink/share/pyshared/pymavlink/examples/rotmat.py
deleted file mode 100644
index 6d5405949..000000000
--- a/mavlink/share/pyshared/pymavlink/examples/rotmat.py
+++ /dev/null
@@ -1,269 +0,0 @@
-#!/usr/bin/env python
-#
-# vector3 and rotation matrix classes
-# This follows the conventions in the ArduPilot code,
-# and is essentially a python version of the AP_Math library
-#
-# Andrew Tridgell, March 2012
-#
-# This library is free software; you can redistribute it and/or modify it
-# under the terms of the GNU Lesser General Public License as published by the
-# Free Software Foundation; either version 2.1 of the License, or (at your
-# option) any later version.
-#
-# This library is distributed in the hope that it will be useful, but WITHOUT
-# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
-# for more details.
-#
-# You should have received a copy of the GNU Lesser General Public License
-# along with this library; if not, write to the Free Software Foundation,
-# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
-
-'''rotation matrix class
-'''
-
-from math import sin, cos, sqrt, asin, atan2, pi, radians, acos
-
-class Vector3:
- '''a vector'''
- def __init__(self, x=None, y=None, z=None):
- if x != None and y != None and z != None:
- self.x = float(x)
- self.y = float(y)
- self.z = float(z)
- elif x != None and len(x) == 3:
- self.x = float(x[0])
- self.y = float(x[1])
- self.z = float(x[2])
- elif x != None:
- raise ValueError('bad initialiser')
- else:
- self.x = float(0)
- self.y = float(0)
- self.z = float(0)
-
- def __repr__(self):
- return 'Vector3(%.2f, %.2f, %.2f)' % (self.x,
- self.y,
- self.z)
-
- def __add__(self, v):
- return Vector3(self.x + v.x,
- self.y + v.y,
- self.z + v.z)
-
- __radd__ = __add__
-
- def __sub__(self, v):
- return Vector3(self.x - v.x,
- self.y - v.y,
- self.z - v.z)
-
- def __neg__(self):
- return Vector3(-self.x, -self.y, -self.z)
-
- def __rsub__(self, v):
- return Vector3(v.x - self.x,
- v.y - self.y,
- v.z - self.z)
-
- def __mul__(self, v):
- if isinstance(v, Vector3):
- '''dot product'''
- return self.x*v.x + self.y*v.y + self.z*v.z
- return Vector3(self.x * v,
- self.y * v,
- self.z * v)
-
- __rmul__ = __mul__
-
- def __div__(self, v):
- return Vector3(self.x / v,
- self.y / v,
- self.z / v)
-
- def __mod__(self, v):
- '''cross product'''
- return Vector3(self.y*v.z - self.z*v.y,
- self.z*v.x - self.x*v.z,
- self.x*v.y - self.y*v.x)
-
- def __copy__(self):
- return Vector3(self.x, self.y, self.z)
-
- copy = __copy__
-
- def length(self):
- return sqrt(self.x**2 + self.y**2 + self.z**2)
-
- def zero(self):
- self.x = self.y = self.z = 0
-
- def angle(self, v):
- '''return the angle between this vector and another vector'''
- return acos(self * v) / (self.length() * v.length())
-
- def normalized(self):
- return self / self.length()
-
- def normalize(self):
- v = self.normalized()
- self.x = v.x
- self.y = v.y
- self.z = v.z
-
-class Matrix3:
- '''a 3x3 matrix, intended as a rotation matrix'''
- def __init__(self, a=None, b=None, c=None):
- if a is not None and b is not None and c is not None:
- self.a = a.copy()
- self.b = b.copy()
- self.c = c.copy()
- else:
- self.identity()
-
- def __repr__(self):
- return 'Matrix3((%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f))' % (
- self.a.x, self.a.y, self.a.z,
- self.b.x, self.b.y, self.b.z,
- self.c.x, self.c.y, self.c.z)
-
- def identity(self):
- self.a = Vector3(1,0,0)
- self.b = Vector3(0,1,0)
- self.c = Vector3(0,0,1)
-
- def transposed(self):
- return Matrix3(Vector3(self.a.x, self.b.x, self.c.x),
- Vector3(self.a.y, self.b.y, self.c.y),
- Vector3(self.a.z, self.b.z, self.c.z))
-
-
- def from_euler(self, roll, pitch, yaw):
- '''fill the matrix from Euler angles in radians'''
- cp = cos(pitch)
- sp = sin(pitch)
- sr = sin(roll)
- cr = cos(roll)
- sy = sin(yaw)
- cy = cos(yaw)
-
- self.a.x = cp * cy
- self.a.y = (sr * sp * cy) - (cr * sy)
- self.a.z = (cr * sp * cy) + (sr * sy)
- self.b.x = cp * sy
- self.b.y = (sr * sp * sy) + (cr * cy)
- self.b.z = (cr * sp * sy) - (sr * cy)
- self.c.x = -sp
- self.c.y = sr * cp
- self.c.z = cr * cp
-
-
- def to_euler(self):
- '''find Euler angles for the matrix'''
- if self.c.x >= 1.0:
- pitch = pi
- elif self.c.x <= -1.0:
- pitch = -pi
- else:
- pitch = -asin(self.c.x)
- roll = atan2(self.c.y, self.c.z)
- yaw = atan2(self.b.x, self.a.x)
- return (roll, pitch, yaw)
-
- def __add__(self, m):
- return Matrix3(self.a + m.a, self.b + m.b, self.c + m.c)
-
- __radd__ = __add__
-
- def __sub__(self, m):
- return Matrix3(self.a - m.a, self.b - m.b, self.c - m.c)
-
- def __rsub__(self, m):
- return Matrix3(m.a - self.a, m.b - self.b, m.c - self.c)
-
- def __mul__(self, other):
- if isinstance(other, Vector3):
- v = other
- return Vector3(self.a.x * v.x + self.a.y * v.y + self.a.z * v.z,
- self.b.x * v.x + self.b.y * v.y + self.b.z * v.z,
- self.c.x * v.x + self.c.y * v.y + self.c.z * v.z)
- elif isinstance(other, Matrix3):
- m = other
- return Matrix3(Vector3(self.a.x * m.a.x + self.a.y * m.b.x + self.a.z * m.c.x,
- self.a.x * m.a.y + self.a.y * m.b.y + self.a.z * m.c.y,
- self.a.x * m.a.z + self.a.y * m.b.z + self.a.z * m.c.z),
- Vector3(self.b.x * m.a.x + self.b.y * m.b.x + self.b.z * m.c.x,
- self.b.x * m.a.y + self.b.y * m.b.y + self.b.z * m.c.y,
- self.b.x * m.a.z + self.b.y * m.b.z + self.b.z * m.c.z),
- Vector3(self.c.x * m.a.x + self.c.y * m.b.x + self.c.z * m.c.x,
- self.c.x * m.a.y + self.c.y * m.b.y + self.c.z * m.c.y,
- self.c.x * m.a.z + self.c.y * m.b.z + self.c.z * m.c.z))
- v = other
- return Matrix3(self.a * v, self.b * v, self.c * v)
-
- def __div__(self, v):
- return Matrix3(self.a / v, self.b / v, self.c / v)
-
- def __neg__(self):
- return Matrix3(-self.a, -self.b, -self.c)
-
- def __copy__(self):
- return Matrix3(self.a, self.b, self.c)
-
- copy = __copy__
-
- def rotate(self, g):
- '''rotate the matrix by a given amount on 3 axes'''
- temp_matrix = Matrix3()
- a = self.a
- b = self.b
- c = self.c
- temp_matrix.a.x = a.y * g.z - a.z * g.y
- temp_matrix.a.y = a.z * g.x - a.x * g.z
- temp_matrix.a.z = a.x * g.y - a.y * g.x
- temp_matrix.b.x = b.y * g.z - b.z * g.y
- temp_matrix.b.y = b.z * g.x - b.x * g.z
- temp_matrix.b.z = b.x * g.y - b.y * g.x
- temp_matrix.c.x = c.y * g.z - c.z * g.y
- temp_matrix.c.y = c.z * g.x - c.x * g.z
- temp_matrix.c.z = c.x * g.y - c.y * g.x
- self.a += temp_matrix.a
- self.b += temp_matrix.b
- self.c += temp_matrix.c
-
- def normalize(self):
- '''re-normalise a rotation matrix'''
- error = self.a * self.b
- t0 = self.a - (self.b * (0.5 * error))
- t1 = self.b - (self.a * (0.5 * error))
- t2 = t0 % t1
- self.a = t0 * (1.0 / t0.length())
- self.b = t1 * (1.0 / t1.length())
- self.c = t2 * (1.0 / t2.length())
-
- def trace(self):
- '''the trace of the matrix'''
- return self.a.x + self.b.y + self.c.z
-
-def test_euler():
- '''check that from_euler() and to_euler() are consistent'''
- m = Matrix3()
- from math import radians, degrees
- for r in range(-179, 179, 3):
- for p in range(-89, 89, 3):
- for y in range(-179, 179, 3):
- m.from_euler(radians(r), radians(p), radians(y))
- (r2, p2, y2) = m.to_euler()
- v1 = Vector3(r,p,y)
- v2 = Vector3(degrees(r2),degrees(p2),degrees(y2))
- diff = v1 - v2
- if diff.length() > 1.0e-12:
- print('EULER ERROR:', v1, v2, diff.length())
-
-if __name__ == "__main__":
- import doctest
- doctest.testmod()
- test_euler()
-