aboutsummaryrefslogtreecommitdiff
path: root/src/modules/commander/calibration_routines.cpp
blob: 7e8c0fa52e63e269052425e48e8861325baf893d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
/****************************************************************************
 *
 *   Copyright (c) 2012 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file calibration_routines.cpp
 * Calibration routines implementations.
 *
 * @author Lorenz Meier <lm@inf.ethz.ch>
 */

#include <stdio.h>
#include <math.h>
#include <float.h>
#include <poll.h>
#include <drivers/drv_hrt.h>
#include <drivers/drv_accel.h>
#include <mavlink/mavlink_log.h>
#include <geo/geo.h>
#include <string.h>

#include <uORB/topics/vehicle_command.h>

#include "calibration_routines.h"
#include "calibration_messages.h"
#include "commander_helper.h"

// FIXME: Fix return codes
static const int ERROR = -1;

int sphere_fit_least_squares(const float x[], const float y[], const float z[],
			     unsigned int size, unsigned int max_iterations, float delta, float *sphere_x, float *sphere_y, float *sphere_z,
			     float *sphere_radius)
{

	float x_sumplain = 0.0f;
	float x_sumsq = 0.0f;
	float x_sumcube = 0.0f;

	float y_sumplain = 0.0f;
	float y_sumsq = 0.0f;
	float y_sumcube = 0.0f;

	float z_sumplain = 0.0f;
	float z_sumsq = 0.0f;
	float z_sumcube = 0.0f;

	float xy_sum = 0.0f;
	float xz_sum = 0.0f;
	float yz_sum = 0.0f;

	float x2y_sum = 0.0f;
	float x2z_sum = 0.0f;
	float y2x_sum = 0.0f;
	float y2z_sum = 0.0f;
	float z2x_sum = 0.0f;
	float z2y_sum = 0.0f;

	for (unsigned int i = 0; i < size; i++) {

		float x2 = x[i] * x[i];
		float y2 = y[i] * y[i];
		float z2 = z[i] * z[i];

		x_sumplain += x[i];
		x_sumsq += x2;
		x_sumcube += x2 * x[i];

		y_sumplain += y[i];
		y_sumsq += y2;
		y_sumcube += y2 * y[i];

		z_sumplain += z[i];
		z_sumsq += z2;
		z_sumcube += z2 * z[i];

		xy_sum += x[i] * y[i];
		xz_sum += x[i] * z[i];
		yz_sum += y[i] * z[i];

		x2y_sum += x2 * y[i];
		x2z_sum += x2 * z[i];

		y2x_sum += y2 * x[i];
		y2z_sum += y2 * z[i];

		z2x_sum += z2 * x[i];
		z2y_sum += z2 * y[i];
	}

	//
	//Least Squares Fit a sphere A,B,C with radius squared Rsq to 3D data
	//
	//    P is a structure that has been computed with the data earlier.
	//    P.npoints is the number of elements; the length of X,Y,Z are identical.
	//    P's members are logically named.
	//
	//    X[n] is the x component of point n
	//    Y[n] is the y component of point n
	//    Z[n] is the z component of point n
	//
	//    A is the x coordiante of the sphere
	//    B is the y coordiante of the sphere
	//    C is the z coordiante of the sphere
	//    Rsq is the radius squared of the sphere.
	//
	//This method should converge; maybe 5-100 iterations or more.
	//
	float x_sum = x_sumplain / size;        //sum( X[n] )
	float x_sum2 = x_sumsq / size;    //sum( X[n]^2 )
	float x_sum3 = x_sumcube / size;    //sum( X[n]^3 )
	float y_sum = y_sumplain / size;        //sum( Y[n] )
	float y_sum2 = y_sumsq / size;    //sum( Y[n]^2 )
	float y_sum3 = y_sumcube / size;    //sum( Y[n]^3 )
	float z_sum = z_sumplain / size;        //sum( Z[n] )
	float z_sum2 = z_sumsq / size;    //sum( Z[n]^2 )
	float z_sum3 = z_sumcube / size;    //sum( Z[n]^3 )

	float XY = xy_sum / size;        //sum( X[n] * Y[n] )
	float XZ = xz_sum / size;        //sum( X[n] * Z[n] )
	float YZ = yz_sum / size;        //sum( Y[n] * Z[n] )
	float X2Y = x2y_sum / size;    //sum( X[n]^2 * Y[n] )
	float X2Z = x2z_sum / size;    //sum( X[n]^2 * Z[n] )
	float Y2X = y2x_sum / size;    //sum( Y[n]^2 * X[n] )
	float Y2Z = y2z_sum / size;    //sum( Y[n]^2 * Z[n] )
	float Z2X = z2x_sum / size;    //sum( Z[n]^2 * X[n] )
	float Z2Y = z2y_sum / size;    //sum( Z[n]^2 * Y[n] )

	//Reduction of multiplications
	float F0 = x_sum2 + y_sum2 + z_sum2;
	float F1 =  0.5f * F0;
	float F2 = -8.0f * (x_sum3 + Y2X + Z2X);
	float F3 = -8.0f * (X2Y + y_sum3 + Z2Y);
	float F4 = -8.0f * (X2Z + Y2Z + z_sum3);

	//Set initial conditions:
	float A = x_sum;
	float B = y_sum;
	float C = z_sum;

	//First iteration computation:
	float A2 = A * A;
	float B2 = B * B;
	float C2 = C * C;
	float QS = A2 + B2 + C2;
	float QB = -2.0f * (A * x_sum + B * y_sum + C * z_sum);

	//Set initial conditions:
	float Rsq = F0 + QB + QS;

	//First iteration computation:
	float Q0 = 0.5f * (QS - Rsq);
	float Q1 = F1 + Q0;
	float Q2 = 8.0f * (QS - Rsq + QB + F0);
	float aA, aB, aC, nA, nB, nC, dA, dB, dC;

	//Iterate N times, ignore stop condition.
	unsigned int n = 0;

	while (n < max_iterations) {
		n++;

		//Compute denominator:
		aA = Q2 + 16.0f * (A2 - 2.0f * A * x_sum + x_sum2);
		aB = Q2 + 16.0f * (B2 - 2.0f * B * y_sum + y_sum2);
		aC = Q2 + 16.0f * (C2 - 2.0f * C * z_sum + z_sum2);
		aA = (fabsf(aA) < FLT_EPSILON) ? 1.0f : aA;
		aB = (fabsf(aB) < FLT_EPSILON) ? 1.0f : aB;
		aC = (fabsf(aC) < FLT_EPSILON) ? 1.0f : aC;

		//Compute next iteration
		nA = A - ((F2 + 16.0f * (B * XY + C * XZ + x_sum * (-A2 - Q0) + A * (x_sum2 + Q1 - C * z_sum - B * y_sum))) / aA);
		nB = B - ((F3 + 16.0f * (A * XY + C * YZ + y_sum * (-B2 - Q0) + B * (y_sum2 + Q1 - A * x_sum - C * z_sum))) / aB);
		nC = C - ((F4 + 16.0f * (A * XZ + B * YZ + z_sum * (-C2 - Q0) + C * (z_sum2 + Q1 - A * x_sum - B * y_sum))) / aC);

		//Check for stop condition
		dA = (nA - A);
		dB = (nB - B);
		dC = (nC - C);

		if ((dA * dA + dB * dB + dC * dC) <= delta) { break; }

		//Compute next iteration's values
		A = nA;
		B = nB;
		C = nC;
		A2 = A * A;
		B2 = B * B;
		C2 = C * C;
		QS = A2 + B2 + C2;
		QB = -2.0f * (A * x_sum + B * y_sum + C * z_sum);
		Rsq = F0 + QB + QS;
		Q0 = 0.5f * (QS - Rsq);
		Q1 = F1 + Q0;
		Q2 = 8.0f * (QS - Rsq + QB + F0);
	}

	*sphere_x = A;
	*sphere_y = B;
	*sphere_z = C;
	*sphere_radius = sqrtf(Rsq);

	return 0;
}

enum detect_orientation_return detect_orientation(int mavlink_fd, int cancel_sub, int accel_sub, bool lenient_still_position)
{
	const unsigned ndim = 3;
	
	struct accel_report sensor;
	float		accel_ema[ndim] = { 0.0f };		// exponential moving average of accel
	float		accel_disp[3] = { 0.0f, 0.0f, 0.0f };	// max-hold dispersion of accel
	float		ema_len = 0.5f;				// EMA time constant in seconds
	const float	normal_still_thr = 0.25;		// normal still threshold
	float		still_thr2 = powf(lenient_still_position ? (normal_still_thr * 3) : normal_still_thr, 2);
	float		accel_err_thr = 5.0f;			// set accel error threshold to 5m/s^2
	hrt_abstime	still_time = lenient_still_position ? 1000000 : 1500000;	// still time required in us
    
	struct pollfd fds[1];
	fds[0].fd = accel_sub;
	fds[0].events = POLLIN;
	
	hrt_abstime t_start = hrt_absolute_time();
	/* set timeout to 30s */
	hrt_abstime timeout = 30000000;
	hrt_abstime t_timeout = t_start + timeout;
	hrt_abstime t = t_start;
	hrt_abstime t_prev = t_start;
	hrt_abstime t_still = 0;
	
	unsigned poll_errcount = 0;
	
	while (true) {
		/* wait blocking for new data */
		int poll_ret = poll(fds, 1, 1000);
		
		if (poll_ret) {
			orb_copy(ORB_ID(sensor_accel), accel_sub, &sensor);
			t = hrt_absolute_time();
			float dt = (t - t_prev) / 1000000.0f;
			t_prev = t;
			float w = dt / ema_len;
			
			for (unsigned i = 0; i < ndim; i++) {
				
				float di = 0.0f;
				switch (i) {
					case 0:
						di = sensor.x;
						break;
					case 1:
						di = sensor.y;
						break;
					case 2:
						di = sensor.z;
						break;
				}
				
				float d = di - accel_ema[i];
				accel_ema[i] += d * w;
				d = d * d;
				accel_disp[i] = accel_disp[i] * (1.0f - w);
				
				if (d > still_thr2 * 8.0f) {
					d = still_thr2 * 8.0f;
				}
				
				if (d > accel_disp[i]) {
					accel_disp[i] = d;
				}
			}
			
			/* still detector with hysteresis */
			if (accel_disp[0] < still_thr2 &&
			    accel_disp[1] < still_thr2 &&
			    accel_disp[2] < still_thr2) {
				/* is still now */
				if (t_still == 0) {
					/* first time */
					mavlink_and_console_log_info(mavlink_fd, "[cal] detected rest position, hold still...");
					t_still = t;
					t_timeout = t + timeout;
					
				} else {
					/* still since t_still */
					if (t > t_still + still_time) {
						/* vehicle is still, exit from the loop to detection of its orientation */
						break;
					}
				}
				
			} else if (accel_disp[0] > still_thr2 * 4.0f ||
				   accel_disp[1] > still_thr2 * 4.0f ||
				   accel_disp[2] > still_thr2 * 4.0f) {
				/* not still, reset still start time */
				if (t_still != 0) {
					mavlink_and_console_log_info(mavlink_fd, "[cal] detected motion, hold still...");
					usleep(500000);
					t_still = 0;
				}
			}
			
		} else if (poll_ret == 0) {
			poll_errcount++;
		}
		
		if (t > t_timeout) {
			poll_errcount++;
		}
		
		if (poll_errcount > 1000) {
			mavlink_and_console_log_critical(mavlink_fd, CAL_ERROR_SENSOR_MSG);
			return DETECT_ORIENTATION_ERROR;
		}
	}

	if (fabsf(accel_ema[0] - CONSTANTS_ONE_G) < accel_err_thr &&
	    fabsf(accel_ema[1]) < accel_err_thr &&
	    fabsf(accel_ema[2]) < accel_err_thr) {
		return DETECT_ORIENTATION_TAIL_DOWN;        // [ g, 0, 0 ]
	}
	
	if (fabsf(accel_ema[0] + CONSTANTS_ONE_G) < accel_err_thr &&
	    fabsf(accel_ema[1]) < accel_err_thr &&
	    fabsf(accel_ema[2]) < accel_err_thr) {
		return DETECT_ORIENTATION_NOSE_DOWN;        // [ -g, 0, 0 ]
	}
	
	if (fabsf(accel_ema[0]) < accel_err_thr &&
	    fabsf(accel_ema[1] - CONSTANTS_ONE_G) < accel_err_thr &&
	    fabsf(accel_ema[2]) < accel_err_thr) {
		return DETECT_ORIENTATION_LEFT;        // [ 0, g, 0 ]
	}
	
	if (fabsf(accel_ema[0]) < accel_err_thr &&
	    fabsf(accel_ema[1] + CONSTANTS_ONE_G) < accel_err_thr &&
	    fabsf(accel_ema[2]) < accel_err_thr) {
		return DETECT_ORIENTATION_RIGHT;        // [ 0, -g, 0 ]
	}
	
	if (fabsf(accel_ema[0]) < accel_err_thr &&
	    fabsf(accel_ema[1]) < accel_err_thr &&
	    fabsf(accel_ema[2] - CONSTANTS_ONE_G) < accel_err_thr) {
		return DETECT_ORIENTATION_UPSIDE_DOWN;        // [ 0, 0, g ]
	}
	
	if (fabsf(accel_ema[0]) < accel_err_thr &&
	    fabsf(accel_ema[1]) < accel_err_thr &&
	    fabsf(accel_ema[2] + CONSTANTS_ONE_G) < accel_err_thr) {
		return DETECT_ORIENTATION_RIGHTSIDE_UP;        // [ 0, 0, -g ]
	}
	
	mavlink_and_console_log_critical(mavlink_fd, "[cal] ERROR: invalid orientation");
	
	return DETECT_ORIENTATION_ERROR;	// Can't detect orientation
}

const char* detect_orientation_str(enum detect_orientation_return orientation)
{
	static const char* rgOrientationStrs[] = {
		"back",		// tail down
		"front",	// nose down
		"left",
		"right",
		"up",		// upside-down
		"down",		// right-side up
		"error"
	};
	
	return rgOrientationStrs[orientation];
}

calibrate_return calibrate_from_orientation(int		mavlink_fd,
					    int		cancel_sub,
					    bool	side_data_collected[detect_orientation_side_count],
					    calibration_from_orientation_worker_t calibration_worker,
					    void*	worker_data,
					    bool	lenient_still_position)
{
	calibrate_return result = calibrate_return_ok;
	
	// Setup subscriptions to onboard accel sensor
	
	int sub_accel = orb_subscribe_multi(ORB_ID(sensor_accel), 0);
	if (sub_accel < 0) {
		mavlink_and_console_log_critical(mavlink_fd, CAL_QGC_FAILED_MSG, "No onboard accel");
		return calibrate_return_error;
	}
	
	unsigned orientation_failures = 0;
	
	// Rotate through all requested orientation
	while (true) {
		if (calibrate_cancel_check(mavlink_fd, cancel_sub)) {
			result = calibrate_return_cancelled;
			break;
		}
		
		if (orientation_failures > 4) {
			result = calibrate_return_error;
			mavlink_and_console_log_critical(mavlink_fd, CAL_QGC_FAILED_MSG, "timeout: no motion");
			break;
		}
		
		unsigned int side_complete_count = 0;
		
		// Update the number of completed sides
		for (unsigned i = 0; i < detect_orientation_side_count; i++) {
			if (side_data_collected[i]) {
				side_complete_count++;
			}
		}
		
		if (side_complete_count == detect_orientation_side_count) {
			// We have completed all sides, move on
			break;
		}
		
		/* inform user which orientations are still needed */
		char pendingStr[256];
		pendingStr[0] = 0;
		
		for (unsigned int cur_orientation=0; cur_orientation<detect_orientation_side_count; cur_orientation++) {
			if (!side_data_collected[cur_orientation]) {
				strcat(pendingStr, " ");
				strcat(pendingStr, detect_orientation_str((enum detect_orientation_return)cur_orientation));
			}
		}
		mavlink_and_console_log_info(mavlink_fd, "[cal] pending:%s", pendingStr);
		
		mavlink_and_console_log_info(mavlink_fd, "[cal] hold vehicle still on a pending side");
		enum detect_orientation_return orient = detect_orientation(mavlink_fd, cancel_sub, sub_accel, lenient_still_position);
		
		if (orient == DETECT_ORIENTATION_ERROR) {
			orientation_failures++;
			mavlink_and_console_log_info(mavlink_fd, "[cal] detected motion, hold still...");
			continue;
		}
		
		/* inform user about already handled side */
		if (side_data_collected[orient]) {
			orientation_failures++;
			mavlink_and_console_log_info(mavlink_fd, "[cal] %s side completed or not needed", detect_orientation_str(orient));
			mavlink_and_console_log_info(mavlink_fd, "[cal] rotate to a pending side");
			continue;
		}
		
		mavlink_and_console_log_info(mavlink_fd, CAL_QGC_ORIENTATION_DETECTED_MSG, detect_orientation_str(orient));
		orientation_failures = 0;
		
		// Call worker routine
		result = calibration_worker(orient, cancel_sub, worker_data);
		if (result != calibrate_return_ok ) {
			break;
		}
		
		mavlink_and_console_log_info(mavlink_fd, CAL_QGC_SIDE_DONE_MSG, detect_orientation_str(orient));
		
		// Note that this side is complete
		side_data_collected[orient] = true;
		tune_neutral(true);
		usleep(500000);
	}
	
	if (sub_accel >= 0) {
		close(sub_accel);
	}
	
	return result;
}

int calibrate_cancel_subscribe(void)
{
	return orb_subscribe(ORB_ID(vehicle_command));
}

void calibrate_cancel_unsubscribe(int cmd_sub)
{
	orb_unsubscribe(cmd_sub);
}

static void calibrate_answer_command(int mavlink_fd, struct vehicle_command_s &cmd, enum VEHICLE_CMD_RESULT result)
{
	switch (result) {
		case VEHICLE_CMD_RESULT_ACCEPTED:
			tune_positive(true);
			break;
			
		case VEHICLE_CMD_RESULT_DENIED:
			mavlink_log_critical(mavlink_fd, "command denied during calibration: %u", cmd.command);
			tune_negative(true);
			break;
			
		default:
			break;
	}
}

bool calibrate_cancel_check(int mavlink_fd, int cancel_sub)
{
	struct pollfd fds[1];
	fds[0].fd = cancel_sub;
	fds[0].events = POLLIN;

	if (poll(&fds[0], 1, 0) > 0) {
		struct vehicle_command_s cmd;
		memset(&cmd, 0, sizeof(cmd));
		
		orb_copy(ORB_ID(vehicle_command), cancel_sub, &cmd);
		
		if (cmd.command == VEHICLE_CMD_PREFLIGHT_CALIBRATION &&
		    (int)cmd.param1 == 0 &&
		    (int)cmd.param2 == 0 &&
		    (int)cmd.param3 == 0 &&
		    (int)cmd.param4 == 0 &&
		    (int)cmd.param5 == 0 &&
		    (int)cmd.param6 == 0) {
			calibrate_answer_command(mavlink_fd, cmd, VEHICLE_CMD_RESULT_ACCEPTED);
			mavlink_log_critical(mavlink_fd, CAL_QGC_CANCELLED_MSG);
			return true;
		} else {
			calibrate_answer_command(mavlink_fd, cmd, VEHICLE_CMD_RESULT_DENIED);
		}
	}
	
	return false;
}