summaryrefslogtreecommitdiff
path: root/nuttx/Documentation/NuttxPortingGuide.html
blob: 1cab777e7ee32fc72e61df09219681a6a9af8478 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
<html>
<head>
<title>NuttX Porting Guide</title>
<meta name="author" content="Gregory Nutt">
</head>

<body background="backgd.gif">
<hr><hr>
<table width ="100%">
  <tr align="center" bgcolor="#e4e4e4">
    <td>
      <h1><big><font color="#3c34ec">
        <i>NuttX RTOS Porting Guide</i>
      </font></big></h1>
      <p>Last Updated: February 27, 2015</p>
    </td>
  </tr>
</table>
<hr><hr>

<table width ="100%">
  <tr bgcolor="#e4e4e4">
    <td>
  <h1>Table of Contents</h1>
    </td>
  </tr>
</table>

<ul>
  <a href="#Introduction">1.0 Introduction</a><br>
  <a href="#DirectoryStructure">2.0 Directory Structure</a>
  <ul>
    <a href="#DirStructDocumentation">2.1 Documentation</a></br>
    <a href="#DirStructArch">2.2 arch/</a>
    <ul>
      <a href="#archdirectorystructure">2.2.1 Subdirectory Structure</a><br>
      <a href="#summaryofarchfiles">2.2.2 Summary of Files</a><br>
      <a href="#supportedarchitectures">2.2.3 Supported Architectures</a>
    </ul>
    <a href="#DirStructBinFmt">2.3 binfmt/</a><br>
    <a href="#DirStructConfigs">2.4 configs/</a>
    <ul>
      <a href="#configsdirectorystructure">2.4.1 Subdirectory Structure</a><br>
      <a href="#summaryofconfigfiles">2.4.2 Summary of Files</a>
      <ul>
        <a href="#boardlogic">2.4.2.1 Board Specific Logic</a><br>
        <a href="#boardconfigsubdirs">2.4.2.2 Board Specific Configuration Sub-Directories</a>
      </ul>
      <a href="#supportedboards">2.4.3 Supported Boards</a><br>
      <a href="#newboardconfig">2.4.4 Adding a New Board Configuration</a>
    </ul>
    <a href="#DirStructDrivers">2.5 nuttx/drivers/</a><br>
    <a href="#DirStructFs">2.6 nuttx/fs/</a><br>
    <a href="#DirStructGraphics">2.7 nuttx/graphics/</a><br>
    <a href="#DirStructInclude">2.8 nuttx/include/</a><br>
    <a href="#DirStructLib">2.9 nuttx/libc/</a><br>
    <a href="#DirStructLibXX">2.10 nuttx/libxx/</a><br>
    <a href="#DirStructMm">2.11 nuttx/mm/</a><br>
    <a href="#DirStructNet">2.12 nuttx/net</a><br>
    <a href="#DirStructSched">2.13 nuttx/sched/</a><br>
    <a href="#DirStructSyscall">2.14 nuttx/syscall/</a><br>
    <a href="#DirStructTools">2.15 nuttx/tools/</a><br>
    <a href="#topmakefile">2.16 nuttx/Makefile</a><br>
    <a href="#DirStructNetUtils">2.17 apps/netutils</a><br>
    <a href="#DirStructNshLib">2.18 apps/nshlib</a><br>
    <a href="#DirStructExamples">2.19 apps/examples/</a>
  </ul>
  <a href="#configandbuild">3.0 Configuring and Building</a>
  <ul>
    <a href="#configuringnuttx">3.1 Configuring NuttX</a><br>
    <a href="#buildingnuttx">3.2 Building NuttX</a>
  </ul>
  <a href="#ArchAPIs">4.0 Architecture APIs</a>
  <ul>
    <a href="#naming">4.1 Naming and Header File Conventions</a><br>
    <a href="#imports">4.2 APIs Exported by Architecture-Specific Logic to NuttX</a>
    <ul>
      <a href="#upinitialize">4.2.1 <code>up_initialize()</code></a><br>
      <a href="#upidle">4.2.2 <code>up_idle()</code></a><br>
      <a href="#upinitialstate">4.2.3 <code>up_initial_state()</code></a><br>
      <a href="#upcreatestack">4.2.4 <code>up_create_stack()</code></a><br>
      <a href="#upusestack">4.2.5 <code>up_use_stack()</code></a><br>
      <a href="#upstackframe">4.2.6 <code>up_stack_frame()</code></a><br>
      <a href="#upreleasestack">4.2.7 <code>up_release_stack()</code></a><br>
      <a href="#upunblocktask">4.2.8 <code>up_unblock_task()</code></a><br>
      <a href="#upblocktask">4.2.9 <code>up_block_task()</code></a><br>
      <a href="#upreleasepending">4.2.10 <code>up_release_pending()</code></a><br>
      <a href="#upreprioritizertr">4.2.11 <code>up_reprioritize_rtr()</code></a><br>
      <a href="#_exit">4.2.12 <code>_exit()</code></a><br>
      <a href="#upassert">4.2.13 <code>up_assert()</code></a><br>
      <a href="#upschedulesigaction">4.2.14 <code>up_schedule_sigaction()</code></a><br>
      <a href="#upallocateheap">4.2.15 <code>up_allocate_heap()</code></a><br>
      <a href="#upinterruptcontext">4.2.16 <code>up_interrupt_context()</code></a><br>
      <a href="#updisableirq">4.2.17 <code>up_disable_irq()</code></a><br>
      <a href="#upenableirq">4.2.18 <code>up_enable_irq()</code></a><br>
      <a href="#upprioritizeirq">4.2.19 <code>up_prioritize_irq()</code></a></br>
      <a href="#upputc">4.2.20 <code>up_putc()</code></a></br>
    </ul>
    <a href="#systemtime">4.3 System Time and Clock</a>
    <ul>
      <a href="#basictimer">4.3.1 Basic System Timer</a></br>
      <a href="#timerhw">4.3.2 Hardware</a></br>
      <a href="#systcktime">4.3.3 System Tick and Time</a></br>
      <a href="#tickless">4.3.4 Tickless OS</a><br>
      <a href="#Watchdogs">4.3.5 Watchdog Timer Interfaces</a>
    </ul>
    <a href="#workqueues">4.4 Work Queues</a>
    <ul>
      <a href="#wqclasses">4.4.1 Classes of Work Queues</a>
      <ul>
        <a href="#hpwork">4.4.1.1 High Priority Kernel Work queue</a><br>
        <a href="#lpwork">4.4.1.2 Low Priority Kernel Work Queue</a><br>
        <a href="#usrwork">4.4.1.3 User-Mode Work Queue</a>
      </ul>
      <a href="#cmnwqifs">4.4.2 Common Work Queue Interfaces</a>
      <ul>
        <a href="#wqids">4.4.2.1 Work Queue IDs</a><br>
        <a href="#wqiftypes">4.4.2.2 Work Queue Interface Types</a><br>
        <a href="#wqintfs">4.4.2.3 Work Queue Interfaces</a>
        <ul>
          <a href="#workqueue">4.4.2.3.1 <code>work_queue()</code></a><br>
          <a href="#workcancel">4.4.2.3.2 <code>work_cancel()</code></a><br>
          <a href="#worksignal">4.4.2.3.3 <code>work_signal()</code></a><br>
          <a href="#workavailable">4.4.2.3.4 <code>work_available()</code></a><br>
          <a href="#workusrstart">4.4.2.3.5 <code>work_usrstart()</code></a><br>
          <a href="#lpworkboostpriority">4.4.2.3.6 <code>lpwork_boostpriority()</code></a><br>
          <a href="#lpworkrestorepriority">4.4.2.3.7 <code>lpwork_restorepriority()</code></a>
        </ul>
      </ul>
    </ul>
    <a href="#addrenv">4.5 Address Environments</a>
    <ul>
      <a href="#up_addrenv_create">4.5.1 <code>up_addrenv_create()</code></a></br>
      <a href="#up_addrenv_destroy">4.5.2 <code>up_addrenv_destroy()</code></a></br>
      <a href="#up_addrenv_vtext">4.5.3 <code>up_addrenv_vtext()</code></a></br>
      <a href="#up_addrenv_vdata">4.5.4 <code>up_addrenv_vdata()</code></a></br>
      <a href="#up_addrenv_heapsize">4.5.5 <code>up_addrenv_heapsize()</code></a></br>
      <a href="#up_addrenv_select">4.5.6 <code>up_addrenv_select()</code></a></br>
      <a href="#up_addrenv_restore">4.5.7 <code>up_addrenv_restore()</code></a></br>
      <a href="#up_addrenv_clone">4.5.8 <code>up_addrenv_clone()</code></a></br>
      <a href="#up_addrenv_attach">4.5.9 <code>up_addrenv_attach()</code></a></br>
      <a href="#up_addrenv_detach">4.5.10 <code>up_addrenv_detach()</code></a></br>
      <a href="#up_addrenv_ustackalloc">4.5.11 <code>up_addrenv_ustackalloc()</code></a></br>
      <a href="#up_addrenv_ustackfree">4.5.12 <code>up_addrenv_ustackfree()</code></a></br>
      <a href="#up_addrenv_vustack">4.5.13 <code>up_addrenv_vustack()</code></a></br>
      <a href="#up_addrenv_ustackselect">4.5.14 <code>up_addrenv_ustackselect()</code></a></br>
      <a href="#up_addrenv_kstackalloc">4.5.15 <code>up_addrenv_kstackalloc()</code></a></br>
      <a href="#up_addrenv_kstackfree">4.5.16 <code>up_addrenv_kstackfree()</code></a>
    </ul>
    <a href="#exports">4.6 APIs Exported by NuttX to Architecture-Specific Logic</a>
    <ul>
      <a href="#osstart">4.6.1 <code>os_start()</code></a><br>
      <a href="#listmgmt">4.6.2 OS List Management APIs</a><br>
      <a href="#schedprocesstimer">4.6.3 <code>sched_process_timer()</code></a><br>
      <a href="#schedtimerexpiration">4.6.4 <code>sched_timer_expiration()</code></a></br>
      <a href="#schedalarmexpiration">4.6.5 <code>sched_alarm_expiration()</code></a></br>
      <a href="#irqdispatch">4.6.6 <code>irq_dispatch()</code></a>
    </ul>
    <a href="#shm">4.7 Shared Memory</a>
    <ul>
      <a href="#upshmat">4.7.1 <code>up_shmat()</code></a><br>
      <a href="#upshmdt">4.7.2 <code>up_shmdt()</code></a><br>
    </ul>
    <a href="#demandpaging">4.8 On-Demand Paging</a><br>
    <a href="#ledsupport">4.9 LED Support</a>
    <ul>
      <a href="#ledheaders">4.9.1 Header Files</a><br>
      <a href="#leddefinitions">4.9.2 LED Definitions</a><br>
      <a href="#ledapis">4.9.3 Common LED interfaces</a>
    </ul>
  </ul>
  <a href="#NxFileSystem">5.0 NuttX File System</a><br>
  <a href="#DeviceDrivers">6.0 NuttX Device Drivers</a>
  <ul>
    <a href="#chardrivers">6.1 Character Device Drivers</a><br>
    <ul>
       <a href="#serialdrivers">6.1.1 Serial Device Drivers</a><br>
       <a href="#tscdrivers">6.1.2 Touchscreen Device Drivers</a><br>
       <a href="#analogdrivers">6.1.3 Analog (ADC/DAC) Drivers</a><br>
       <a href="#pwmdrivers">6.1.4 PWM Drivers</a><br>
       <a href="#candrivers">6.1.5 CAN Drivers</a><br>
       <a href="#quadencoder">6.1.6 Quadrature Encoder Drivers</a><br>
       <a href="#timerdriver">6.1.7 Timer Drivers</a><br>
       <a href="#rtcriver">6.1.8 RTC Drivers</a><br>
       <a href="#wdogdriver">6.1.9 Watchdog Timer Drivers</a><br>
       <a href="#kbddriver">6.1.10 Keyboard/Keypad Drivers</a><br>
    </ul>
    <a href="#blockdrivers">6.2 Block Device Drivers</a><br>
    <a href="#specdrivers">6.3 Specialized Device Drivers</a>
    <ul>
       <a href="#ethdrivers">6.3.1 Ethernet Device Drivers</a><br>
       <a href="#spidrivers">6.3.2 SPI Device Drivers</a><br>
       <a href="#i2cdrivers">6.3.3 I2C Device Drivers</a><br>
       <a href="#fbdrivers">6.3.4 Frame Buffer Drivers</a><br>
       <a href="#lcddrivers">6.3.5 LCD Drivers</a><br>
       <a href="#mtddrivers">6.3.6 Memory Technology Device Drivers</a><br>
       <a href="#sdiodrivers">6.3.7 SDIO Device Drivers</a><br>
       <a href="#usbhostdrivers">6.3.8 USB Host-Side Drivers</a><br>
       <a href="#usbdevdrivers">6.3.9 USB Device-Side Drivers</a><br>
    </ul>
    <a href="#pwrmgmt">6.4 Power Management</a>
    <ul>
       <a href="#pmoverview">6.4.1 Overview</a><br>
       <a href="#pminterfaces">6.4.2 Interfaces</a><br>
       <a href="#pmcallbacks">6.4.3 Callbacks</a>
    </ul>
  </ul>
  <a href="#apndxconfigs">Appendix A: NuttX Configuration Settings</a><br>
  <a href="#apndxtrademarks">Appendix B:  Trademarks</a>
</ul>

<table width ="100%">
  <tr bgcolor="#e4e4e4">
    <td>
      <h1>1.0 <a name="Introduction">Introduction</a></h1>
    </td>
  </tr>
</table>

<p><b>Overview</b>
  This document provides and overview of the NuttX build and configuration
  logic and provides hints for the incorporation of new processor/board architectures
  into the build.
</p>
<p>
  See also <code>arch/README.txt</code> and <code>configs/README.txt</code>.
</p>

<table width ="100%">
  <tr bgcolor="#e4e4e4">
    <td>
      <h1>2.0 <a name="DirectoryStructure">Directory Structure</a></h1>
    </td>
  </tr>
</table>

<p>
  <b>Directory Structure</b>.
  The general directly layout for NuttX is very similar to the directory structure
  of the Linux kernel -- at least at the most superficial layers.
  At the top level is the main makefile and a series of sub-directories identified
  below and discussed in the following paragraphs:
</p>
<ul><pre>
.
|- nuttx
|   |-- <a href="#topmakefile">Makefile</a>
|   |-- Kconfig
|   |-- <a href="#DirStructDocumentation">Documentation</a>
|   |   `-- <i>(documentation files)</i>/
|   |-- <a href="#DirStructArch">arch</a>/
|   |   |-- Kconfig
|   |   |-- <i>&lt;arch-name&gt;</i>/
|   |   |   |-- include/
|   |   |   |   |--<i>&lt;chip-name&gt;</i>/
|   |   |   |   |  `-- <i>(chip-specific header files)</i>
|   |   |   |   |--<i>&lt;other-chips&gt;</i>/
|   |   |   |   `-- <i>(architecture-specific header files)</i>
|   |   |   `-- src/
|   |   |       |--<i>&lt;chip-name&gt;</i>/
|   |   |       |  `-- <i>(chip-specific source files)</i>
|   |   |       |--<i>&lt;other-chips&gt;</i>/
|   |   |       `-- <i>(architecture-specific source files)</i>
|   |   `-- <i>&lt;other-architecture directories&gt;</i>/
|   |-- <a href="#DirStructBinFmt">binfmt</a>/
|   |   |-- Makefile
|   |   |-- Kconfig
|   |   |-- <i>(binfmt-specific sub-directories)</i>/
|   |   |   `-- <i>(binfmt-specific source files)</i>
|   |   `-- <i>(common binfmt source files)</i>
|   |-- <a href="#DirStructConfigs">configs</a>/
|   |   |-- <i>&lt;board-name&gt;</i>/
|   |   |   |-- include/
|   |   |   |   `-- <i>(other board-specific header files)</i>
|   |   |   |-- src/
|   |   |   |   `-- <i>(board-specific source files)</i>
|   |   |   |---<i>&lt;config-name&gt;</i>/
|   |   |   |   `-- <i>(board configuration-specific source files)</i>
|   |   |   `---<i>(other configuration sub-directories for this board)</i>/
|   |   `-- <i>&lt;(other board directories)&gt;</i>/
|   |-- <a href="#DirStructDrivers">drivers</a>/
|   |   |-- Makefile
|   |   |-- Kconfig
|   |   |-- <i>(driver-specific sub-directories)/</i>
|   |   |   `-- <i>(driver-specific source files)</i>
|   |   `-- <i>(common driver source files)</i>
|   |-- <a href="#DirStructFs">fs</a>/
|   |   |-- Makefile
|   |   |-- Kconfig
|   |   |-- <i>(file system-specific sub-directories)</i>/
|   |   |   `-- <i>(file system-specific source files)</i>
|   |   `-- <i>(common file system source files)</i>
|   |-- <a href="#DirStructGraphics">graphics</a>/
|   |   |-- Makefile
|   |   |-- Kconfig
|   |   |-- <i>(feature-specific sub-directories)</i>/
|   |   |   `-- <i>(feature-specific source files library source files)</i>
|   |   `-- <i>(common graphics-related source files)</i>
|   |-- <a href="#DirStructInclude">include</a>/
|   |   |-- <i>(standard header files)</i>
|   |   |-- <i>(standard include sub-directories)</i>
|   |   |   `-- <i>(more standard header files)</i>
|   |   |-- <i>(non-standard include sub-directories)</i>
|   |       `-- <i>(non-standard header files)</i>
|   |-- <a href="#DirStructLib">libc</a>/
|   |   |-- Makefile
|   |   |-- Kconfig
|   |   `-- <i>(libc source files)</i>
|   |-- <a href="#DirStructLibXX">libxx</a>/
|   |   |-- Makefile
|   |   |-- Kconfig
|   |   `-- <i>(libxx management source files)</i>
|   |-- <a href="#DirStructMm">mm</a>/
|   |   |-- Makefile
|   |   |-- Kconfig
|   |   `-- <i>(memory management source files)</i>
|   |-- <a href="#DirStructNet">net</a>/
|   |   |-- Makefile
|   |   |-- Kconfig
|   |   |-- arp/
|   |   |   `-- <i>(ARP source files)</i>
|   |   |-- devif/
|   |   |   `-- <i>(Ethernet device interface source files)</i>
|   |   |-- icmp/
|   |   |   `-- <i>(ICMP source files)</i>
|   |   |-- igmp/
|   |   |   `-- <i>(IGMP source files)</i>
|   |   |-- iob/
|   |   |   `-- <i>(I/O buffering source files)</i>
|   |   |-- ipv6/
|   |   |   `-- <i>(IPv6 source files)</i>
|   |   |-- netdev/
|   |   |   `-- <i>(Socket device interface source files)</i>
|   |   |-- pkt/
|   |   |   `-- <i>(Packet socket source files)</i>
|   |   |-- route/
|   |   |   `-- <i>(Routing table source files)</i>
|   |   |-- socket/
|   |   |   `-- <i>(BSD socket source files)</i>
|   |   |-- tcp/
|   |   |   `-- <i>(TCP source files)</i>
|   |   |-- udp/
|   |   |   `-- <i>(UDP source files)</i>
|   |   `-- utils/
|   |       `-- <i>(Miscellaneous, utility source files)</i>
|   |-- <a href="#DirStructSched">sched</a>/
|   |   |-- Makefile
|   |   |-- Kconfig
|   |   `-- <i>(sched source files)</i>
|   |-- <a href="#DirStructSysCall">syscall</a>/
|   |   |-- Makefile
|   |   |-- Kconfig
|   |   `-- <i>(syscall source files)</i>
|   `-- <a href="#DirStructTools">tools</a>/
|       `-- <i>(miscellaneous scripts and programs)</i>
`- apps
    |-- <a href="#DirStructNetUtils">netutils</a>/
    |   |-- Makefile
    |   |-- Kconfig
    |   |-- <i>(network feature sub-directories)</i>/
    |   |   `-- <i>(network feature source files)</i>
    |   `-- <i>(netutils common files)</i>
    |--  <a href="#DirStructNshLib">nshlib</a>/
    |   |-- Makefile
    |   |-- Kconfig
    |   `-- <i>NuttShell (NSH) files</i>
    |-- <i>(Board-specific applications)</i>/
    |   |-- Makefile
    |   |-- Kconfig
    |   |-- <i>(Board-specific application sub-directories)</i>/
    |   |   `-- <i>(Board-specific application source files)</i>
    |   `-- <i>(Board-specific common files)</i>
    `-- <a href="#DirStructExamples">examples</a>/
        `-- <i>(example)</i>/
            |-- Makefile
            |-- Kconfig
            `-- <i>(example source files)</i>
</pre></ul>

<p>
  <b>Configuration Files</b>.
  The NuttX configuration consists of:
</p>
<ul>
  <li>
    <i>Processor architecture specific files</i>.
    These are the files contained in the <code>arch/</code><i>&lt;arch-name&gt;</i><code>/</code> directory
    and are discussed in a paragraph <a href="#archdirectorystructure">below</a>.
  </li>
  <li>
    <i>Chip/SoC specific files</i>.
    Each processor processor architecture is embedded in chip or <i>System-on-a-Chip</i> (SoC) architecture.
    The full chip architecture includes the processor architecture plus chip-specific interrupt logic,
    clocking logic, general purpose I/O (GIO) logic, and specialized, internal peripherals (such as UARTs, USB, etc.).
    <p>
      These chip-specific files are contained within chip-specific sub-directories in the
      <code>arch/</code><i>&lt;arch-name&gt;</i><code>/</code> directory and are selected via
      the <code>CONFIG_ARCH_name</code> selection.
    </p>
  </li>
  <li>
    <i>Board specific configurations</i>.
    In order to be usable, the chip must be contained in a board environment.
    The board configuration defines additional properties of the board including such things as
    peripheral LEDs, external peripherals (such as network, USB, etc.).
    <p>
      These board-specific configuration files can be found in the
      <code>configs/</code><i>&lt;board-name&gt;</i><code>/</code> sub-directories and are discussed
      in a paragraph <a href="#configsdirectorystructure">below</a>.
    </p>
  </li>
</ul>

<h2>2.1 <a name="DirStructDocumentation">Documentation</a></h2>

<p>
  General documentation for the NuttX OS resides in this directory.
</p>

<h2>2.2 <a name="DirStructArch">nuttx/arch</a></h2>

<h3><a name="archdirectorystructure">2.2.1 Subdirectory Structure</a></h3>
<p>
  This directory contains several sub-directories, each containing
  architecture-specific logic.
  The task of porting NuttX to a new processor consists of
  add a new subdirectory under <code>arch/</code> containing logic specific
  to the new architecture.
  The complete board port in is defined by the architecture-specific code in this
  directory (plus the board-specific configurations in the <code>config/</code>
  subdirectory).
  Each architecture must provide a subdirectory, <i>&lt;arch-name&gt;</i>
  under <code>arch/</code> with the following characteristics:
</p>
<ul><pre>
<i>&lt;arch-name&gt;</i>/
|-- include/
|   |--<i>&lt;chip-name&gt;</i>/
|   |  `-- <i>(chip-specific header files)</i>
|   |--<i>&lt;other-chips&gt;</i>/
|   |-- arch.h
|   |-- irq.h
|   |-- types.h
|   |-- limits.h
|   `-- syscall.h
`-- src/
    |--<i>&lt;chip-name&gt;</i>/
    |  `-- <i>(chip-specific source files)</i>
    |--<i>&lt;other-chips&gt;</i>/
    |-- Makefile
    `-- <i>(architecture-specific source files)</i>
</pre></ul>

<h3><a name="summaryofarchfiles">2.2.2 Summary of Files</a></h3>
<ul>
  <li>
    <code>include/</code><i>&lt;chip-name&gt;</i><code>/</code>
    This sub-directory contains chip-specific header files.
  </li>
  <li>
    <code>include/arch.h</code>:
    This is a hook for any architecture specific definitions that may
    be needed by the system.  It is included by <code>include/nuttx/arch.h</code>.
  </li>
  <li>
    <code>include/types.h</code>:
    This provides architecture/toolchain-specific definitions for
    standard types.  This file should <code>typedef</code>:
    <ul><code>
      _int8_t, _uint8_t, _int16_t, _uint16_t, _int32_t, _uint32_t_t
    </code></ul>
    <p>and if the architecture supports 24- or 64-bit integers</p>
    <ul><code>
      _int24_t, _uint24_t, int64_t, uint64_t
    </code></ul>
    <p>
      NOTE that these type names have a leading underscore character.  This
      file will be included(indirectly) by include/stdint.h and typedef'ed to
      the final name without the underscore character.  This roundabout way of
      doings things allows the stdint.h to be removed from the include/
      directory in the event that the user prefers to use the definitions
      provided by their toolchain header files
    </p>
    <p>
      And finally
    </p>
    <ul><code>
      irqstate_t
    </code></ul>
    <p>
      Must be defined to the be the size required to hold the interrupt
     enable/disable state.
    </p>
    <p>
      This file will be included by include/sys/types.h and be made
      available to all files.
    </p>
  </li>
  <li>
    <code>include/irq.h</code>:
    This file needs to define some architecture specific functions (usually
    inline if the compiler supports inlining) and some structures.  These include:
    <ul>
      <li>
        <code>struct xcptcontext</code>:
        This structures represents the saved context of a thread.
      </li>
      <li>
        <code>irqstate_t irqsave(void)</code>:
        Used to disable all interrupts.
      </li>
      <li>
        <code>void irqrestore(irqstate_t flags)</code>:
        Used to restore interrupt enables to the same state as before <code>irqsave()</code> was called.
      </li>
    </ul>
    <p>
      This file must also define <code>NR_IRQS</code>, the total number of IRQs supported
       by the board.
    </p>
  </li>
  <li>
    <code>include/syscall.h</code>:
    This file needs to define some architecture specific functions (usually
    inline if the compiler supports inlining) to support software interrupts
    or <i>syscall</i>s that can be used all from user-mode applications into
    kernel-mode NuttX functions.
    This directory must always be provided to prevent compilation errors.
    However, it need only contain valid function declarations if the architecture
    supports the <code>CONFIG_BUILD_PROTECTED</code> or <code>CONFIG_BUILD_KERNEL</code>configurations.
    <ul>
      <li>
        <code>uintptr_t sys_call0(unsigned int nbr)</code>:
        <code>nbr</code> is one of the system call numbers that can be found in <code>include/sys/syscall.h</code>.
        This function will perform a system call with no (additional) parameters.
      </li>
      <li>
        <code>uintptr_t sys_call1(unsigned int nbr, uintptr_t parm1)</code>:
        <code>nbr</code> is one of the system call numbers that can be found in <code>include/sys/syscall.h</code>.
        This function will perform a system call with one (additional) parameter.
      </li>
      <li>
        <code>uintptr_t sys_call2(unsigned int nbr, uintptr_t parm1, uintptr_t parm2)</code>:
        <code>nbr</code> is one of the system call numbers that can be found in <code>include/sys/syscall.h</code>.
        This function will perform a system call with two (additional) parameters.
      </li>
      <li>
        <code>uintptr_t sys_call3(unsigned int nbr, uintptr_t parm1, uintptr_t parm2, uintptr_t parm3)</code>:
        <code>nbr</code> is one of the system call numbers that can be found in <code>include/sys/syscall.h</code>.
        This function will perform a system call with three (additional) parameters.
      </li>
      <li>
        <code>uintptr_t sys_call4(unsigned int nbr, uintptr_t parm1, uintptr_t parm2, uintptr_t parm3, uintptr_t parm4)</code>:
        <code>nbr</code> is one of the system call numbers that can be found in <code>include/sys/syscall.h</code>.
        This function will perform a system call with four (additional) parameters.
      </li>
      <li>
        <code>uintptr_t sys_call5(unsigned int nbr, uintptr_t parm1, uintptr_t parm2, uintptr_t parm3, uintptr_t parm4, uintptr_t parm5)</code>:
        <code>nbr</code> is one of the system call numbers that can be found in <code>include/sys/syscall.h</code>.
        This function will perform a system call with five (additional) parameters.
      </li>
      <li>
        <code>uintptr_t sys_call6(unsigned int nbr, uintptr_t parm1, uintptr_t parm2, uintptr_t parm3, uintptr_t parm4, uintptr_t parm5, uintptr_t parm6)</code>:
        <code>nbr</code> is one of the system call numbers that can be found in <code>include/sys/syscall.h</code>.
        This function will perform a system call with six (additional) parameters.
      </li>
    </ul>
    <p>
      This file must also define <code>NR_IRQS</code>, the total number of IRQs supported
       by the board.
    </p>
  </li>
  <li>
    <code>src/</code><i>&lt;chip-name&gt;</i><code>/</code>
    This sub-directory contains chip-specific source files.
  </li>
  <li>
    <code>src/Makefile</code>:
    This makefile will be executed to build the targets <code>src/libup.a</code> and
    <code>src/up_head.o</code>.  The <code>up_head.o</code> file holds the entry point into the system
    (power-on reset entry point, for example).  It will be used in
    the final link with <code>libup.a</code> and other system archives to generate the
    final executable.
  </li>
  <li>
    <i>(architecture-specific source files)</i>.
    The file <code>include/nuttx/arch.h</code> identifies all of the APIs that must
    be provided by the architecture specific logic.  (It also includes
    <code>arch/</code><i>&lt;arch-name&gt;</i><code>/arch.h</code> as described above).
  </li>
</ul>

<h3><a name="supportedarchitectures">2.2.3 Supported Architectures</a></h3>
<p>
   <b>Architecture- and Chip-Specific Directories</b>.
   All processor architecture-specific directories are maintained in sub-directories of
   the <code>arch/</code> directory.
   Different chips or SoC's may implement the same processor core.
   Chip-specific logic can be found in sub-directories under the architecture
   directory.
   Current architecture/chip directories are summarized below:
</p>
<ul>
  <li><code>arch/sim</code>:
    A user-mode port of NuttX to the x86 Linux platform is available.
    The purpose of this port is primarily to support OS feature development.
    This port does not support interrupts or a real timer (and hence no
    round robin scheduler)  Otherwise, it is complete.
  </li>
  <p>NOTE: This target will not run on Cygwin probably for many reasons but
    first off because it uses some of the same symbols as does cygwind.dll.
  </p>

  <li><code>arch/arm</code>:
    This directory holds common ARM architectures.  At present, this includes
    the following subdirectories:
    <ul>
      <li><code>arch/arm/include</code> and <code>arch/arm/src/common</code>:
          Common ARM logic.
      </li>

      <li><code>arch/arm/include/c5471</code> and <code>arch/arm/src/c5471</code>:
        TI TMS320C5471 (also called TMS320DM180 or just C5471).
        NuttX operates on the ARM7 of this dual core processor.
        This port is complete, verified, and included in the NuttX release 0.1.1.
      </li>

      <li><code>arch/arm/include/dm320</code> and <code>arch/arm/src/dm320</code>:
        TI TMS320DM320 (also called just DM320).
        NuttX operates on the ARM9EJS of this dual core processor.
        This port complete, verified, and included in the NuttX release 0.2.1.
      </li>

      <li><code>arch/arm/include/lpc214x</code> and <code>arch/arm/src/lpc214x</code>:
        These directories provide support for NXP LPC214x family of
        processors.
        STATUS: This port boots and passes the OS test (apps/examples/ostest).
        The port is complete and verified.  As of NuttX 0.3.17, the port includes:
        timer interrupts, serial console, USB driver, and SPI-based MMC/SD card
        support.  A verified NuttShell configuration is also available.
      </li>

    </ul>
  </li>

  <li><code>configs/mcu123-lpc214x</code>:
    The mcu123.com lpc214x development board.
    This is a work in progress.
  </li>

  <li><code>arch/z16f</code>:
    Zilog z16f Microcontroller.
    This port uses the Zilog z16f2800100zcog Development Kit.
    This port was released with nuttx-0.3.7.
  </li>

    <li><code>arch/z80</code>:
    This directory holds 8-bit ZiLOG architectures.  At present, this includes the
    Zilog z80, ez80Acclaim! and z8Encore! Microcontrollers.
    <ul>
      <li><code>arch/z80/include</code> and <code>arch/z80/src/common</code>:
          Common logic.
      </li>

      <li><code>arch/z80/include/z80</code> and <code>arch/z80/src/z80</code>:
        The Z80 port was released in nuttx-0.3.6 has been verified using only a
        z80 instruction simulator.
        The set simulator  can be found in the NuttX GIT at
        http://sourceforge.net/p/nuttx/git/ci/master/tree/misc/sims/z80sim.
        This port also uses the SDCC toolchain (http://sdcc.sourceforge.net/")
        (verified with version 2.6.0 and 2.7.0).
      </li>

      <li><code>arch/z80/include/ez80</code> and <code>arch/z80/src/ez80</code>:
        The ez80Acclaim! port uses the ZiLOG ez80f0910200kitg development kit, eZ80F091 part,
        with the Zilog ZDS-II Windows command line tools.
        The development environment is Cygwin under WinXP.
        This is a work in progress.  Verified ez80 support will be announced in a future NuttX release.
      </li>

      <li><code>arch/z80/include/z8</code> and <code>arch/z80/src/z8</code>:
        The Z8Encore! port uses either the ZiLOG z8encore000zco development kit, Z8F6403 part,
        or the z8f64200100kit development kit, Z8F6423 part with the Zilog ZDS-II Windows command line
        tools.  The development environment is Cygwin under WinXP.
        The initial release, verified only on the ZDS-II ez8 simulator, was released in nuttx-0.3.9.
      </li>
    </ul>
    </li>
</ul>

<p>
  <b>Deprecated Architecture Directories</b>.
  The following architecture directories are deprecated.  They have been
  replaced by the logic in <code>arm/arm</code> and will deleted when
  <code>arch/arm</code> is fully verified.
</p>
<ul>
  <li><code>arch/c5471</code>:
    Replaced with <code>arch/arm/include/c5471</code> and
    <code>arch/arm/src/c5471</code>.
  </li>

  <li><code>arch/dm320</code>:
    Replaced with <code>arch/arm/include/dm320</code> and
    <code>arch/arm/src/dm320</code>.
  </li>
</ul>
<p>
  Other ports for the for the TI TMS320DM270 and for MIPS are in various states
  of progress
</p>

<h2>2.3 <a name="DirStructBinFmt">nuttx/binfmt</a></h2>

<p>
  The <code>binfmt/</code> subdirectory contains logic for loading binaries in the file
  system into memory in a form that can be used to execute them.
</p>

<h2>2.4 <a name="DirStructConfigs">nuttx/configs</a></h2>
<p>
  The <code>configs/</code> subdirectory contains configuration data for each board.
  These board-specific configurations plus the architecture-specific configurations in
  the <code>arch/</code> subdirectory complete define a customized port of NuttX.
</p>

<h3><a name="configsdirectorystructure">2.4.1 Subdirectory Structure</a></h3>
<p>
  The configs directory contains board specific configuration files.  Each board must
  provide a subdirectory &lt;board-name&gt; under <code>configs/</code> with the following characteristics:
</p>
<ul><pre>
<i>&lt;board-name&gt;</i>
|-- Kconfig
|-- include/
|   |-- board.h
|   `-- <i>(board-specific header files)</i>
|-- src/
|   |-- Makefile
|   `-- <i>(board-specific source files)</i>
|-- <i>&lt;config1-dir&gt;</i>
|   |-- Make.defs
|   |-- defconfig
|   `-- setenv.sh
|-- <i>&lt;config2-dir&gt;</i>
|   |-- Make.defs
|   |-- defconfig
|   `-- setenv.sh
|   ...
`-- <i>(other board-specific configuration sub-directories)</i>/
</pre></ul>

<h3><a name="summaryofconfigfiles">2.4.2 Summary of Files</a></h3>
<h4><a name="boardlogic">2.4.2.1 Board Specific Logic</a></h4>
<ul>
  <li>
    <code>include/</code>:
    This directory contains board specific header files.
    This directory will be linked as <code>include/arch/board</code> at configuration time
    and can be included via <code>#include &lt;arch/board/header.h&gt;</code>.
    These header file can only be included by files in <code>arch/</code><i>&lt;arch-name&gt;</i><code>/include/</code>
    and <code>arch/</code><i>&lt;arch-name&gt;</i><code>/src/</code>.
  </li>
  <li>
    <code>src/</code>:
    This directory contains board specific drivers.
    This directory will be linked as <config>arch/</code><i>&lt;arch-name&gt;</i><code>/src/board</code> at configuration
    time and will be integrated into the build system.
  </li>
  <li>
    <code>src/Makefile</code>:
    This makefile will be invoked to build the board specific drivers.
    It must support the following targets:  <code>libext$(LIBEXT)</code>, <code>clean</code>, and <code>distclean</code>.
  </li>
</ul>
<h4><a name="boardconfigsubdirs">2.4.2.2 Board Specific Configuration Sub-Directories</a></h4>
<p>
  The <code>configs/</code><i>&lt;board-name&gt;</i><code>/</code> sub-directory holds all of the
  files that are necessary to configure NuttX for the particular board.
  A board may have various different configurations using the common source files.
  Each board configuration is described by three files:  <code>Make.defs</code>, <code>defconfig</code>, and <code>setenv.sh</code>.
  Typically, each set of configuration files is retained in a separate configuration sub-directory
  (<i>&lt;config1-dir&gt;</i>, <i>&lt;config2-dir&gt;</i>, .. in the above diagram).

  The procedure for configuring NuttX is described <a href="#configuringnuttx">below</a>,
  This paragraph will describe the contents of these configuration files.
</p>
<ul>
  <li>
    <code>Make.defs</code>: This makefile fragment provides architecture and
    tool-specific build options.  It will be included by all other
    makefiles in the build (once it is installed).  This make fragment
    should define:
    <ul>
      <li>Tools: <code>CC</code>, <code>LD</code>, <code>AR</code>, <code>NM</code>, <code>OBJCOPY</code>, <code>OBJDUMP</code></li>
      <li>Tool options: <code>CFLAGS</code>, <code>LDFLAGS</code></li>
    </ul>
    <p>
      When this makefile fragment runs, it will be passed <code>TOPDIR</code> which
      is the path to the root directory of the build.  This makefile
      fragment should include:
    </p>
    <ul>
      <li><code>$(TOPDIR)/.config </code> : Nuttx configuration</li>
      <li><code>$(TOPDIR)/tools/Config.mk</code>  : Common definitions</li>
    </ul>
    <p>
      Definitions in the <code>Make.defs</code> file probably depend on some of the
      settings in the .<code>config</code> file.  For example, the <code>CFLAGS</code> will most likely be
      different if <code>CONFIG_DEBUG=y</code>.
    </p>
    <p>
      The included <code>tools/Config.mk</code> file contains additional definitions that may
      be overridden in the architecture-specific Make.defs file as necessary:
    </p>
    <ul>
      <li><code>COMPILE</code>, <code>ASSEMBLE</code>, <code>ARCHIVE</code>, <code>CLEAN</code>, and <code>MKDEP</code> macros</li>
    </ul>
  </li>
  <li>
    <p>
      <code>defconfig</code>: This is a configuration file similar to the Linux
      configuration file.  In contains variable/value pairs like:
    </p>
    <ul>
      <li><code>CONFIG_VARIABLE</code>=value</li>
    </ul>
    <p>
      This configuration file will be used at build time:
    </p>
    <p><ol>
      <li>As a makefile fragment included in other makefiles, and</li>
      <li>to generate <code>include/nuttx/config.h</code> which is included by
          most C files in the system.</li>
    </ol></p>
  </li>
  <li>
    <p>
      <code>setenv.sh</code>: This is a script that can be included that will be installed at
      the top level of the directory structure and can be sourced to set any
      necessary environment variables.
      You will most likely have to customize the default <code>setenv.sh</code> script in order
      for it to work correctly in your environment.
    </p>
  </li>
</ul>

<h3><a name="supportedboards">2.4.3 Supported Boards</a></h3>
<p>
  All of the specific boards supported by NuttX are identified below.
  These are the specific <i>&lt;board-name&gt;</i>'s that may be used to configure NuttX
  as described <a href="#configuringnuttx">below</a>.
</p>
<ul>
  <li><code>configs/avr32dev1</code>:
    This is a port of NuttX to the Atmel AVR32DEV1 board.  That board is
    based on the Atmel AT32UC3B0256 MCU and uses a specially patched
    version of the GNU toolchain:  The patches provide support for the
    AVR32 family.  That patched GNU toolchain is available only from the
    Atmel website.  STATUS: This port is functional but very basic.  There
    are configurations for NSH and the OS test.
  </li>

  <li><code>configs/c5471evm</code>:
    This is a port to the Spectrum Digital C5471 evaluation board.  The
    C5471 is a dual core processor from TI with an ARM7TDMI general purpose
    processor and a c54 DSP.  It is also known as TMS320DA180 or just DA180.
    NuttX runs on the ARM core and is built with with a GNU arm-nuttx-elf toolchain
    under Linux or Cygwin. This port is complete and verified.
  </li>

  <li><code>configs/demo9s12ne64</code>:
    Freescale DMO9S12NE64 board based on the MC9S12NE64 hcs12 cpu.  This
    port uses the m9s12x GCC toolchain.  STATUS:  (Still) under development; it
    is code complete but has not yet been verified.
  </li>

  <li><code>configs/ea3131</code>:
    Embedded Artists EA3131 Development bard.  This board is based on the
    an NXP LPC3131 MCU. This OS is built with the arm-nuttx-elf toolchain.
    STATUS:  This port is complete and mature.
  </li>

  <li><code>configs/eagle100</code>:
    Micromint Eagle-100 Development board.  This board is based on the
    an ARM Cortex-M3 MCU, the Luminary LM3S6918. This OS is built with the
    arm-nuttx-elf toolchain.  STATUS:  This port is complete and mature.
  </li>

  <li><code>configs/ez80f0910200kitg</code>
    ez80Acclaim! Microcontroller.  This port use the Zilog ez80f0910200kitg
    development kit, eZ80F091 part, and the Zilog ZDS-II Windows command line
    tools.  The development environment is Cygwin under WinXP.
  </li>

  <li><code>configs/ez80f910200zco</code>:
    ez80Acclaim! Microcontroller.  This port use the Zilog ez80f0910200zco
    development kit, eZ80F091 part, and the Zilog ZDS-II Windows command line
    tools.  The development environment is Cygwin under WinXP.
  </li>

  <li><code>configs/lm3s6965-ek</code>:
    Stellaris LM3S6965 Evaluation Kit.  This board is based on the
    an ARM Cortex-M3 MCU, the Luminary/TI LM3S6965. This OS is built with the
    arm-nuttx-elf toolchain.  STATUS:  This port is complete and mature.
  </li>

  <li><code>configs/lm3s8962-ek</code>:
    Stellaris LMS38962 Evaluation Kit. STATUS: contributed.
  </li>

  <li><code>configs/lpcxpresso-lpc1768</code>:
    Embedded Artists base board with NXP LPCExpresso LPC1768.  This board
    is based on the NXP LPC1768.  The Code Red toolchain is used by default.
  </li>

  <li><code>configs/mbed</code>:
    The configurations in this directory support the mbed board (http://mbed.org)
    that features the NXP LPC1768 microcontroller. This OS is also built
    with the arm-nuttx-elf toolchain.  STATUS:  Contributed.
  </li>

  <li><code>configs/mcu123-lpc214x</code>:
    This port is for the NXP LPC2148 as provided on the mcu123.com
    lpc214x development board.
    This OS is also built with the arm-nuttx-elf toolchain* under Linux or Cygwin.
    The port supports serial, timer0, spi, and usb.
  </li>

  <li><code>configs/mirtoo</code>:
    This is the port to the DTX1-4000L &quot;Mirtoo&quot; module.
    This module uses MicroChipPIC32MX250F128D.
    See the <a href="http://www.dimitech.com/">Dimitech</a> website for further information.
  </li>

  <li><code>configs/mx1ads</code>:
    This is a port to the Motorola MX1ADS development board.  That board
    is based on the Freescale i.MX1 processor.  The i.MX1 is an ARM920T.
    STATUS:  This port is nearly code complete but was never fully
    integrated due to tool-related issues.
  </li>

  <li><code>configs/ne64badge</code>:
    Future Electronics Group NE64 /PoE Badge board based on the
    MC9S12NE64 hcs12 cpu.  This port uses the m9s12x GCC toolchain.
    STATUS:  The port is code-complete but was never fully tested.
  </li>

  <li><code>configs/ntosd-dm320</code>:
    This port uses the Neuros OSD with a GNU arm-nuttx-elf toolchain* under Linux or Cygwin.
    See <a href="http://wiki.neurostechnology.com/index.php/Developer_Welcome">Neuros Wiki</a>
    for further information.
    NuttX operates on the ARM9EJS of this dual core processor.
    STATUS: This port is code complete, verified, and included in the
    NuttX 0.2.1 release.
  </li>

  <li><code>configs/nucleus2g</code>:
    This port uses the Nucleus 2G board (with Babel CAN board).
    This board features an NXP LPC1768 processor.
    See the <a href="http://www.2g-eng.com/">2G Engineering</a> website for more information about the Nucleus 2G.
  </li>

  <li><code>configs/olimex-lpc1766stk</code>:
    This port uses the Olimex LPC1766-STK board and a GNU GCC toolchain under
    Linux or Cygwin.  STATUS: Complete and mature.
  </li>

  <li><code>configs/olimex-lpc2378</code>:
    This port uses the Olimex-lpc2378 board and a GNU arm-nuttx-elf toolchain under
    Linux or Cygwin.  STATUS: ostest and NSH configurations available.
  </li>

  <li><code>configs/olimex-strp711</code>:
    This port uses the Olimex STR-P711 board arm-nuttx-elf toolchain* under Linux or Cygwin.
    See the <a href="http://www.olimex.com/dev/str-p711.html">Olimex</a> web site
    for further information.
    STATUS: Configurations for the basic OS test and NSH are complete and verified.
  </li>

  <li><code>configs/pcblogic-pic32mx</code>:
    This is the port of NuttX to the PIC32MX board from PCB Logic Design Co.
    This board features the MicroChip PIC32MX460F512L.
    The board is a very simple -- little more than a carrier for the PIC32
    MCU plus voltage regulation, debug interface, and an OTG connector.
    STATUS:  Code complete but testing has been stalled due to tool related problems
    (PICkit 2 does not work with the PIC32).
  </li>

  <li><code>configs/qemu-i486</code>:
    Port of NuttX to QEMU in i486 mode.  This port will also run on real i486
    hardware (Google the Bifferboard).
  </li>

  <li><code>configs/rgmp</code>:
    RGMP stands for RTOS and GPOS on Multi-Processor.  RGMP is a project for
    running GPOS and RTOS simultaneously on multi-processor platforms. You can
    port your favorite RTOS to RGMP together with an unmodified Linux to form a
    hybrid operating system. This makes your application able to use both RTOS
    and GPOS features.
    See the <a href="http://rgmp.sourceforge.net/wiki/index.php/Main_Page">RGMP Wiki</a> for further information about RGMP.
  </li>

  <li><code>configs/sam3u-ek</code>:
    The port of NuttX to the Atmel SAM3U-EK development board.
  </li>

  <li><code>configs/skp16c26</code>:
    Renesas M16C processor on the Renesas SKP16C26 StarterKit.  This port
    uses the GNU m32c toolchain.  STATUS:  The port is complete but untested
    due to issues with compiler internal errors.
  </li>

  <li><code>configs/stm3210e-eval</code>:
    STMicro STM3210E-EVAL development board based on the STMicro STM32F103ZET6
    microcontroller (ARM Cortex-M3).  This port uses the GNU Cortex-M3
    toolchain.
  </li>

  <li><code>configs/sim</code>:
    A user-mode port of NuttX to the x86 Linux platform is available.
    The purpose of this port is primarily to support OS feature development.
    This port does not support interrupts or a real timer (and hence no
    round robin scheduler)  Otherwise, it is complete.
  </li>

  <li><code>configs/us7032evb1</code>:
    This is a port of the Hitachi SH-1 on the Hitachi SH-1/US7032EVB1 board.
    STATUS:  This port is available as of release 0.3.18 of NuttX.  The port is basically
    complete and many examples run correctly.  However, there are remaining instabilities
    that make the port un-usable.  The nature of these is not understood; the behavior is
    that certain SH-1 instructions stop working as advertised.  This could be a silicon
    problem, some pipeline issue that is not handled properly by the gcc 3.4.5 toolchain
    (which has very limited SH-1 support to begin with), or perhaps with the CMON debugger.
    At any rate, I have exhausted all of the energy that I am willing to put into this cool
    old processor for the time being.
  </li>

  <li><code>configs/vsn</code>:
    ISOTEL NetClamps VSN V1.2 ready2go sensor network platform based on the
    STMicro STM32F103RET6.  Contributed by Uros Platise.
    See the <a href="http://isotel.eu/NetClamps/">Isotel</a> web site for further information
    about the NetClamps board.
  </li>

  <li><code>configs/xtrs</code>:
    TRS80 Model 3.  This port uses a vintage computer based on the Z80.
    An emulator for this computer is available to run TRS80 programs on a
    Linux platform (http://www.tim-mann.org/xtrs.html).
  </li>

  <li><code>configs/z16f2800100zcog</code>
    z16f Microcontroller.
    This port use the Zilog z16f2800100zcog development kit and the
    Zilog ZDS-II Windows command line tools.
    The development environment is Cygwin under WinXP.
  </li>

  <li><code>configs/z80sim</code>:
    z80 Microcontroller.  This port uses a Z80 instruction set simulator.
    That simulator can be found in the NuttX GIT
    <a href="http://sourceforge.net/p/nuttx/git/ci/master/tree/misc/sims/z80sim">here</a>.
    This port also the <a href="http://sdcc.sourceforge.net/">SDCC</a> toolchain
    under Linux or Cygwin(verified with version 2.6.0).
  </li>

  <li><code>configs/z8encore000zco</code>
    z8Encore! Microcontroller.  This port use the Zilog z8encore000zco
    development kit, Z8F6403 part, and the Zilog ZDS-II Windows command line
    tools.  The development environment is Cygwin under WinXP.
  </li>

  <li><code>configs/z8encore000zco</code>
    z8Encore! Microcontroller.  This port use the Zilog z8f64200100kit
    development kit, Z8F6423 part, and the Zilog ZDS-II Windows command line
    tools.  The development environment is Cygwin under WinXP.
  </li>

  <li><code>configs/z8f64200100kit</code>:
    z8Encore! Microcontroller.  This port use the Zilog z8f64200100kit
    development kit, Z8F6423 part, and the Zilog ZDS-II Windows command line
    tools.  The development environment is Cygwin under WinXP.
  </li>
</ul>

<p><small><blockquote>
  * A customized version of the <a href="http://www.buildroot.org">buildroot</a>
  is available to build these toolchains under Linux or Cygwin.
</blockquote></small></p>

<h3><a name="newboardconfig">2.4.4 Adding a New Board Configuration</a></h3>
<p>
  Okay, so you have created a new board configuration directory.
  Now, how do you hook this board into the configuration system so that you can select with <code>make menuconfig</code>?
</p>
<p>
  You will need modify the file <code>configs/Kconfig</code>.
  Let's look at the STM32F4-Discovery configuration in the <code>Kconfig</code> file and see how we would add a new board directory to the configuration.
  For this configuration let's say that you new board resides in the directory <code>configs/myboard</code>;
  It uses an MCU selected with <code>CONFIG_ARCH_CHIP_MYMCU</code>; and you want the board to be selected with <code>CONFIG_ARCH_BOARD_MYBOARD</code>.
  Then here is how you can clone the STM32F4-Discovery configuration in <code>configs/Kconfig</code> to support your new board configuration.
</p>
<p>
  In <code>configs/Kconfig</code> for the stm32f4-discovery, you will see a configuration definition like this:
<p>
<ul><pre>
config ARCH_BOARD_STM32F4_DISCOVERY
    bool "STMicro STM32F4-Discovery board"
    depends on ARCH_CHIP_STM32F407VG
    select ARCH_HAVE_LEDS
    select ARCH_HAVE_BUTTONS
    select ARCH_HAVE_IRQBUTTONS
    ---help---
        STMicro STM32F4-Discovery board based on the STMicro STM32F407VGT6 MCU.
</pre></ul>
<p>
  The above selects the STM32F4-Discovery board.
  The <code>select</code> lines say that the board has both LEDs and buttons and that the board can generate interrupts from the button presses.
  You can just copy the above configuration definition to a new location (notice that they the configurations are in alphabetical order).
  Then you should edit the configuration to support your board.
  The final configuration definition might look something like:
</p>
<ul><pre>
config ARCH_BOARD_MYBOARD
    bool "My very own board configuration"
    depends on ARCH_CHIP_MYMCU
    select ARCH_HAVE_LEDS
    select ARCH_HAVE_BUTTONS
    select ARCH_HAVE_IRQBUTTONS
    ---help---
        This options selects the board configuration for my very own board
        based on the MYMCU processor.
</pre></ul>
<p>
  Later in the <code>configs/Kconfig</code> file, you will see a long, long string configuration with lots of defaults like this:
</p>
<ul><pre>
config ARCH_BOARD
    string
    default "amber"               if ARCH_BOARD_AMBER
    default "avr32dev1"           if ARCH_BOARD_AVR32DEV1
    default "c5471evm"            if ARCH_BOARD_C5471EVM
...
    default "stm32f4discovery"    if ARCH_BOARD_STM32F4_DISCOVERY
...
</pre></ul>
<p>
  This logic will assign string value to a configuration variable called <code>CONFIG_ARCH_BOARD</code> that will name the directory where the board-specific files reside.
  In our case, these files reside in <code>configs/myboard</code> and we add the following to the long list of defaults (again in alphabetical order):
</p>
<ul><pre>
    default "myboar"              if ARCH_BOARD_MYBOARD
</pre></ul>
<p>
  Now the build system knows where to find your board configuration!
</p>
<p>
  And finally, add something like this near the bottom of <code>configs/myboard</code>:
</p>
<ul><pre>
if ARCH_BOARD_MYBOARD
source "configs/myboard/Kconfig"
endif
</pre></ul>
<p>
  This includes additional, board-specific configuration variable definitions in <code>configs/myboard/Kconfig</code>.
</p>

<h2>2.5 <a name="DirStructDrivers">nuttx/drivers</a></h2>

<p>
  This directory holds architecture-independent device drivers.
</p>
<ul><pre>
drivers/
|-- Kconfig
|-- Makefile
|-- analog/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common ADC and DAC driver source files)</i>
|-- bch/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(bch driver source files)</i>
|-- input/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common touchscreen and keypad driver source files)</i>
|-- lcd/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common LCD driver source files)</i>
|-- mmcsd/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common MMC/SD card driver source files)</i>
|-- mtd/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common memory technology device driver source files)</i>
|-- net/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common network driver source files)</i>
|-- sensors/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common sensor driver source files)</i>
|-- serial/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Files for the Calypso SERCOMM driver)</i>
|-- serial/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common front-end character drivers for chip-specific UARTs)</i>
|-- usbdev/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common USB device driver source files)</i>
|-- usbhost/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common USB host driver source files)</i>
|-- wireless/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Common wireless driver source files)</i>
`-- <i>(Various common driver source files)</i>
</pre></ul>

<h2>2.6 <a name="DirStructFs">nuttx/fs</a></h2>

<p>
  This directory contains the NuttX file system.
  This file system is described <a href="#NxFileSystem">below</a>.
</p>
<ul><pre>
fs/
|-- Kconfig
|-- Makefile
|-- fat/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(FAT file system source files)</i>
|-- mmap/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(RAM-based file mapping source files)</i>
|-- nfs/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(NFS client file system source files)</i>
|-- nxffs/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(NuttX Flash File System (NXFFS) source files)</i>
|-- romfs/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(ROMFS file system source files)</i>
 `-- <i>(common file system source files)</i>
</pre></ul>

<h2>2.7 <a name="DirStructGraphics">nuttx/graphics</a></h2>

<p>
  This directory contains files for graphics/video support under NuttX.
</p>
<ul><pre>
graphics/
|-- Kconfig
|-- Makefile
|-- nxbe/
|   |-- Make.defs
|   `-- <i>(NuttX graphics back-end (NXBE) source files)</i>
|-- nxfont/
|   |-- Make.defs
|   `-- <i>(NuttX graphics font-related (NXFONT) source files)</i>
|-- nxglib/
|   |-- Make.defs
|   `-- <i>(NuttX graphics library (NXGL) source files)</i>
|-- nxmu/
|   |-- Make.defs
|   `-- <i>(NuttX graphics multi-user (NXMU) server source files)</i>
|-- nxsu/
|   |-- Make.defs
|   `-- <i>(NuttX graphics single-user (NXSU) source files)</i>
`-- <i>(common file system source files)</i>
</pre></ul>

<h2>2.8 <a name="DirStructInclude">nuttx/include</a></h2>
<p>
  This directory holds NuttX header files.
  Standard header files file retained in can be included in the <i>normal</i> fashion:
</p>
<ul>
  <code>include &lt;stdio.h&gt;</code><br>
  <code>include &lt;sys/types.h&gt;</code><br>
  etc.
</ul>
<p>
  Directory structure:
</p>
<ul><pre>
include/
|-- <i>(standard header files)</i>
|-- arpa/
|   `-- <i>(Standard header files)</i>
|-- cxx/
|   `-- <i>(C++ standard header files)</i>
|-- netinet/
|   `-- <i>(Standard header files)</i>
|-- nuttx/
|   |-analog/
|   |  `-- <i>(Analog driver header files)</i>
|   |-audio/
|   |  `-- <i>(Audio driver header files)</i>
|   |-binfmt/
|   |  `-- <i>(Binary format header files)</i>
|   |-fs/
|   |  `-- <i>(File System header files)</i>
|   |-input/
|   |  `-- <i>(Input device driver header files)</i>
|   |-lcd/
|   |  `-- <i>(LCD driver header files)</i>
|   |-mtd/
|   |  `-- <i>(Memory technology device header files)</i>
|   |-serial/
|   |  `-- <i>(Serial driver header files)</i>
|   |-net/
|   |  `-- <i>(Networking header files)</i>
|   |-nx/
|   |  `-- <i>(NX graphics header files)</i>
|   |-power/
|   |  `-- <i>(Power management header files)</i>
|   |-sensors/
|   |  `-- <i>(Sensor device driver header files)</i>
|   |-sercomm/
|   |  `-- <i>(SERCOMM driver header files)</i>
|   |-serial/
|   |  `-- <i>(Serial driver header files)</i>
|   |-spi/
|   |  `-- <i>(SPI driver header files)</i>
|   |-syslog/
|   |  `-- <i>(SYSLOG header files)</i>
|   |-usb/
|   |  `-- <i>(USB driver header files)</i>
|   `-wireless/
|      `-- <i>(Wireless device driver header files)</i>
`- sys/
    `-- <i>(More standard header files)</i>
</per></ul>

<h2>2.9 <a name="DirStructLib">nuttx/libc</a></h2>
<p>
  This directory holds a collection of standard libc-like functions with custom
  interfaces into NuttX.
</p>
<p>
  Normally the logic in this file builds to a single library (<code>libc.a</code>).
  However, if NuttX is built as a separately compiled kernel (with <code>CONFIG_BUILD_PROTECTED=y</code> or <code>CONFIG_BUILD_KERNEL=y</code>), then the contents of this directory are built as two libraries:
  One for use by user programs (<code>libuc.a</code>) and one for use only within the &lt;kernel&gt; space (<code>libkc.a</code>).
</p>
<p>
  These user/kernel space libraries (along with the sycalls of <a href="#DirStructSyscall"><code>nuttx/syscall</code></a>) are needed to support the two differing protection domains.
</p>
<p>
  Directory structure:
</p>
<ul><pre>
libc/
|-- libgen/
|   `-- <i>(Implementation of functions from libgen.h)</i>
|-- math/
|   `-- <i>(Implementation of functions from fixedmath.h)</i>
|-- misc/
|   `-- <i>(Implementation of miscellaneous library functions)</i>
|-- mqueue/
|   `-- <i>(Implementation of some functions from mqueue.h)</i>
|-- net/
|   `-- <i>(Implementation of network-related library functions)</i>
|-- queue/
|   `-- <i>(Implementation of functions from queue.h)</i>
|-- sched/
|   `-- <i>(Implementation of some functions from sched.h)</i>
|-- semaphore/
|   `-- <i>(Implementation of some functions from semaphore.h)</i>
|-- signal/
|   `-- <i>(Implementation of some functions from signal.h)</i>
|-- stdio/
|   `-- <i>(Implementation of functions from stdio.h)</i>
|-- stdlib/
|   `-- <i>(Implementation of functions from stdlib.h)</i>
|-- string/
|   `-- <i>(Implementation of functions from string.h)</i>
|-- time/
|   `-- <i>(Implementation of some functions from time.h)</i>
`-- unistd/
    `-- <i>(Implementation of some functions from unistd.h)</i>
</per></ul>

<h2>2.10 <a name="DirStructLibXX">nuttx/libxx</a></h2>
<p>
  This directory holds a tiny, minimal standard std C++ that can be used to
  build some, simple C++ applications in NuttX.
</p>

<h2>2.11 <a name="DirStructMm">nuttx/mm</a></h2>
<p>
  This is the NuttX memory manager.
</p>

<h2>2.12 <a name="DirStructNet">nuttx/net</a></h2>
<p>
  This directory contains the implementation of the NuttX networking layer including internal socket APIs.
</P>

<h2>2.13 <a name="DirStructSched">nuttx/sched</a></h2>
<p>
  The files forming core of the NuttX RTOS reside here.
</p>

<h2>2.14 <a name="DirStructSyscall">nuttx/syscall</a></h2>
<p>
  If NuttX is built as a separately compiled kernel (with <code>CONFIG_BUILD_PROTECTED=y</code> or <code>CONFIG_BUILD_KERNEL=y</code>),
  then the contents of this directory are built.
  This directory holds a syscall interface that can be used for communication
  between user-mode applications and the kernel-mode RTOS.
</p>

<h2>2.15 <a name="DirStructTools">nuttx/tools</a></h2>
<p>
  This directory holds a collection of tools and scripts to simplify
  configuring, building and maintaining NuttX.
</p>
<ul><pre>
tools/
|-- Makefile.host
|-- Makefile.export
|-- README.txt
|-- configure.sh / configure.bat
|-- cfgparser.c
|-- cfgparser.h
|-- copydir.sh / copydir.bat
|-- define.sh / define.bat
|-- incdir.sh / indir.bat
|-- indent.sh
|-- link.sh / link.bat
|-- mkconfig.c
|-- mkdeps.sh / mkdeps.bat
|-- mkexport.sh
|-- mkimage.sh
|-- mknulldeps.sh
|-- mkromfsimg.sh
|-- mksyscall.c
|-- mkversion.c
|-- unlink.sh / unlink.bat
|-- version.sh
`-- zipme.sh
</pre></ul>

<p>
  Refer to the README file in the <code>tools</code> directory for more information about the individual files.
  Some of these tools are discussed below as well in the discussion of <a href="#configandbuild">configuring and building</a> NuttX.
</p>

<h2>2.16 <a name="topmakefile">nuttx/Makefile</a></h2>
<p>
  The top-level <code>Makefile</code> in the <code>${TOPDIR}</code> directory contains all of the top-level control
  logic to build NuttX.
  Use of this <code>Makefile</code> to build NuttX is described <a href="#buildingnuttx">below</a>.
</p>

<h2>2.17 <a name="DirStructNetUtils">apps/netutils</a></h2>
<p>
  This directory contains most of the network applications.
  Some of these are original with NuttX (like tftpc and dhcpd) and others were leveraged from the uIP-1.0 apps directory.
  As the uIP apps/README says, these applications &quot;are not all heavily tested.&quot;
</p>
<ul><pre>
netutils/
|-- Kconfig
|-- Makefile
|-- dhcdp/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(DHCP client source files)</i>
|-- dhcpd/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(DHCP server source files)</i>
|-- ftpc/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(FTP client source files)</i>
|-- ftpd/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(FTP server source files)</i>
|-- resolv/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(resolv source files)</i>
|-- resolv/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(resolv source files)</i>
|-- smtp/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(smtp source files)</i>
|-- telnetd/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(Telnet client source files)</i>
|-- tftpc/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(TFTP client source files)</i>
|-- thttpd/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(thttpd HTTP server source files)</i>
|-- netlib/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(netlib source files)</i>
|-- weblclient/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(webclient source files)</i>
|-- webserver/
|   |-- Kconfig
|   |-- Make.defs
|   `-- <i>(uIP webserver source files)</i>
`-- <i>(netutils common files)</i>
</pre></ul>

<h2>2.18 <a name="DirStructNshLib">apps/nshlib</a></h2>
<p>
  This directory contains for the core of the NuttShell (NSH) application.
</p>

<h2>2.19 <a name="DirStructExamples">apps/examples</a></h2>
<p>
  Example and test programs to build against.
</p>

<table width ="100%">
  <tr bgcolor="#e4e4e4">
    <td>
      <h1>3.0 <a name="configandbuild">Configuring and Building</a></h1>
    </td>
  </tr>
</table>

<h2><a name="configuringnuttx">3.1 Configuring NuttX</a></h2>
<p>
  <b>Manual Configuration</b>.
  Configuring NuttX requires only copying the
  <a href="#boardconfigsubdirs">board-specific configuration files</a> into the top level directory which appears in the make files as the make variable, <code>${TOPDIR}</code>.
  This could be done manually as follows:
</p>
<ul>
  <li>Copy <code>configs/</code><i>&lt;board-name&gt;</i><code>/[</code><i>&lt;config-dir&gt;</i><code>/]Make.defs</code> to <code>${TOPDIR}/Make.defs</code>,<li>
  <li>Copy <code>configs/</code><i>&lt;board-name&gt;</i><code>/[</code><i>&lt;config-dir&gt;</i><code>/]setenv.sh</code> to <code>${TOPDIR}/setenv.sh</code>, and</li>
  <li>Copy <code>configs/</code><i>&lt;board-name&gt;</i><code>/[</code><i>&lt;config-dir&gt;</i><code>/]defconfig</code> to <code>${TOPDIR}/.config</code></li>
</ul>

<p>
  Where <i>&lt;board-name&gt;</i> is the name of one of the sub-directories of the
  NuttX <a href="#DirStructConfigs"><code>configs/</code></a> directory.
  This sub-directory name corresponds to one of the supported boards
  identified <a href="#supportedboards">above</a>.
  &lt;config-dir&gt; is the optional, specific configuration directory for the board.
  And &lt;app-dir&gt; is the location of the optional application directory.
</p>
<p>
  <b>Automated Configuration</b>.
  There is a script that automates these steps.  The following steps will
  accomplish the same configuration:
</p>
<ul><pre>
  cd tools
  ./configure.sh <i>&lt;board-name&gt;</i>[/<i>&lt;config-dir&gt;</i>]
</pre></ul>

<p>
  There is an alternative Windows batch file, <code>configure.bat</code>,  that can be used instead of <code>configure.sh</code> in the windows native environment like:
</p>
<ul><pre>
  cd tools
  configure.bat <i>&lt;board-name&gt;</i>[\<i>&lt;config-dir&gt;</i>]
</pre></ul>
<p>
  See <code>tools/README.txt</code> for more information about these scripts.
</p>

<p>
  If your application directory is not in the standard location (<code>../apps</code> or <code>../apps-&lt;version&gt</code>),
  then you should also specify the location of the application directory on the command line like:
</p>
<ul><pre>
  cd tools
  ./configure.sh -a &lt;app-dir&gt; <i>&lt;board-name&gt;</i>[/<i>&lt;config-dir&gt;</i>]
</pre></ul>

<p>
  <b>Version Files</b>.
  The NuttX build expects to find a version file located in the top-level NuttX build directory.
  That version file is called <code>.version</code>.
  The correct version file is installed in each versioned NuttX released.
  However, if you are working from an GIT snapshot, then there will be no version file.
  If there is no version file, the top-level <code>Makefile</code> will create a dummy <code>.version</code> file on the first make.
  This dummy version file will contain all zeroes for version information.
  If that is not what you want, they you should run the <code>version.sh</code> script to create a better <code>.version</code> file.
</p>

<p>
  You can get help information from the <code>version.sh</code> script using the <code>-h</code> option.
  For example:
</p>
<ul><pre>
$ tools/version.sh -h
tools/version.sh is a tool for generation of proper version files for the NuttX build

USAGE: tools/version.sh [-d|-h] [-b build] -v &lt;major.minor&gt; &lt;outfile-path&gt;

Where:
        -d
                Enable script debug
        -h
                show this help message and exit
        -v &lt;major.minor&gt;
                The NuttX version number expressed a major and minor number separated
                by a period
        &lt;outfile-path&gt;
                The full path to the version file to be created
</pre></ul>

<p>
  As an example, the following command will generate a version file for version 6.1 using the current GIT revision number:
</p>
<ul><pre>
tools/version.h -v 6.1 .version
</pre></ul>

<p>
  The <code>.version</code> file is also used during the build process to create a C header file at <code>include/nuttx/version.h</code> that contains the same version information.
  That version file may be used by your C applications for, as an example, reporting version information.
</p>

<p>
  <b>Additional Configuration Steps</b>.
  The remainder of configuration steps will be performed by <a href="#topmakefile"><code>${TOPDIR}/Makefile</code></a>
  the first time the system is built as described below.
</p>

<h2><a name="buildingnuttx">3.2 Building NuttX</a></h2>
<p>
  <b>Building NuttX</b>.
   Once NuttX has been configured as described <a href="#configuringnuttx">above</a>, it may be built as follows:
</p>
<ul><pre>
cd ${TOPDIR}
source ./setenv.sh
make
</pre></ul>
<p>
  The <code>${TOPDIR}</code> directory holds:
</p>
<ul>
  <li>The top level <a href="#topmakefile"><code>Makefile</code></a> that controls the NuttX build.
</ul>
<p>
  That directory also holds:
</p>
<ul>
  <li>The makefile fragment <a href="#boardconfigsubdirs"><code>.config</code></a> that describes the current configuration.</li>
  <li>The makefile fragment <a href="#boardconfigsubdirs"><code>Make.defs</code></a> that provides customized build targets, and</li>
  <li>The shell script <a href="#boardconfigsubdirs"><code>setenv.sh</code></a> that sets up the configuration environment for the build.</li>
</ul>
<p>
The <a href="#boardconfigsubdirs"><code>setenv.sh</code></a> contains Linux/Cygwin environmental settings that are needed for the build.
The specific environmental definitions are unique for each board but should include, as a minimum, updates to the <code>PATH</code> variable to include the full path to the architecture-specific toolchain identified in <a href="#boardconfigsubdirs"><code>Make.defs</code></a>.
The <a href="#boardconfigsubdirs"><code>setenv.sh</code></a> only needs to be source'ed at the beginning of a session.
The system can be re-made subsequently by just typing <code>make</code>.
</p>
<p>
  <b>First Time Make.</b>
  Additional configuration actions will be taken the first time that system is built.
  These additional steps include:
</p>
<ul>
  <li>Auto-generating the file <code>include/nuttx/config.h</code> using the <code>${TOPDIR}/.config</code> file.</li>
  <li>Auto-generating the file  <code>${TOPDIR}/.version</code> with version 0.0 if one does not exist.</li>
  <li>Auto-generating the file <code>include/nuttx/version.h</code> using the <code>${TOPDIR}/.version</code> file.</li>
  <li>Creating a link to <code>${TOPDIR}/arch/</code><i>&lt;arch-name&gt;</i><code>/include</code> at <code>${TOPDIR}/include/arch</code>.</li>
  <li>Creating a link to <code>${TOPDIR}/configs/</code><i>&lt;board-name&gt;</i><code>/include</code> at <code>${TOPDIR}/include/arch/board</code>.</li>
  <li>Creating a link to <code>${TOPDIR}/configs/</code><i>&lt;board-name&gt;</i><code>/src</code> at <code>${TOPDIR}/arch/</code><i>&lt;arch-name&gt;</i><code>/src/board</code></li>
  <li>Creating a link to <code>${APPDIR}/include</code> at <code>${TOPDIR}/include/apps</code></li>
  <li>Creating make dependencies.
</ul>

<table width ="100%">
  <tr bgcolor="#e4e4e4">
    <td>
      <h1>4.0 <a name="ArchAPIs">Architecture APIs</a></h1>
    </td>
  </tr>
</table>

<p>
  The file <code>include/nuttx/arch.h</code> identifies by prototype all of the APIs that must
  be provided by the architecture specific logic.
  The internal OS APIs that architecture-specific logic must
  interface with also also identified in <code>include/nuttx/arch.h</code> or in
  other header files.
</p>

<h2><a name="naming">4.1 Naming and Header File Conventions</a></h2>

<ul>
  <li>
    <p>
      <b>Common Microprocessor Interfaces</b>.
      Any interface that is common to all microprocessors should be prefixed with <code>up_</code> and prototyped in <code>include/nuttx/arch.h</code>.
      The definitions in that header file provide the common interface between NuttX and the architecture-specific implementation in <code>arch/</code>.
    </p>
    <blockquote><small>
      <code>up_</code> is supposed to stand for microprocessor; the <code>u</code> is like the Greek letter micron: <i></i>.    So it would be <code>�P</code> which is a common shortening of the word microprocessor.  I don't like that name very much.  I wish I would have used a more obvious prefix like <code>arch_</code> instead -- then I would not have to answer this question so often.
    </small></blockquote>
  </li>
  <li>
    <p>
      <b>Microprocessor-Specific Interfaces</b>.
      An interface which is unique to a certain microprocessor should be prefixed with the name of the microprocessor, for example <code>stm32_</code>, and be prototyped in some header file in the <code>arch/</code> directories.
    </p>
    <p>
      There is also a <code>arch/<architecture>/include/<chip>/chip.h</code> header file that can be used to communicate other microprocessor-specific information between the board logic and even application logic.
      Application logic may, for example, need to know specific capabilities of the chip.
      Prototypes in that <code>chip.h</code> header file should follow the microprocessor-specific naming convention.
    </p>
  </li>
  <li>
    <p>
      <b>Common Board Interfaces</b>.
      Any interface that is common to all boards should be prefixed with <code>board_</code> and should also be prototyped in <code>include/nuttx/arch.h</code>.
      These <code>board_</code> definitions provide the interface between the board-level logic and the architecture-specific logic.
    </p>
    <p>
      There is also a <code>configs/<board>/include/board.h</code> header file that can be used to communicate other board-specific information between the architecture logic and even application logic.
      Any definitions which are common between a single architecture and several boards should go in this <code>board.h</code> header file;
      <code>include/nuttx/arch.h</code>is reserved for board-related definitions common to all architectures.
    </p>
  <li>
    <p>
      <b>Board-Specific Interfaces</b>.
      Any interface which is unique to a board should be prefixed with the board name, for example <code>stm32f4discovery_</code>.
      Sometimes the board name is too long so <code>stm32_</code> would be okay too.
      These should be prototyped in <code>configs/<board>/src/<board>.h</code> and should not be used outside of that directory since board-specific definitions have no meaning outside of the board directory.
  </li>
</ul>

<h2><a name="imports">4.2 APIs Exported by Architecture-Specific Logic to NuttX</a></h2>
<h3><a name="upinitialize">4.2.1 <code>up_initialize()</code></a></h3>

<p><b>Function Prototype</b>: <code>void up_initialize(void);</code></p>

<p><b>Description</b>.
  <code>up_initialize()</code> will be called once during OS
  initialization after the basic OS services have been
  initialized.  The architecture specific details of
  initializing the OS will be handled here.  Such things as
  setting up interrupt service routines, starting the
  clock, and registering <a href="#DeviceDrivers">device drivers</a> are some of the
  things that are different for each processor and hardware
  platform.
</p>
<p>
  <code>up_initialize()</code> is called after the OS initialized but
  before the init process has been started and before the
  libraries have been initialized.  OS services and driver
  services are available.
</p>

<h3><a name="upidle">4.2.2 <code>up_idle()</code></a></h3>
<p><b>Function Prototype</b>: <code>void up_idle(void);</code></p>

<p><b>Description</b>.
  <code>up_idle()</code> is the logic that will be executed
  when their is no other ready-to-run task.  This is processor
  idle time and will continue until some interrupt occurs to
  cause a context switch from the idle task.
</p>
<p>
  Processing in this state may be processor-specific. e.g.,
  this is where power management operations might be performed.
</p>

<h3><a name="upinitialstate">4.2.3 <code>up_initial_state()</code></a></h3>
<p><b>Function Prototype</b>: <code>void up_initial_state(FAR struct tcb_s *tcb);</code></p>

<p><b>Description</b>.
  A new thread is being started and a new TCB has been created.
  This function is called to initialize the processor specific portions of the new TCB.
</p>
<p>
  This function must setup the initial architecture registers and/or stack so that execution
  will begin at tcb->start on the next context switch.
</p>
<p>
  This function may also need to set up processor registers so that the new thread executes
  with the correct privileges.
  If <code>CONFIG_BUILD_PROTECTED</code> or <code>CONFIG_BUILD_KERNEL</code> have been selected in the NuttX configuration, then special initialization may need to be performed depending on the task type specified in the TCB's flags field:
  Kernel threads will require kernel-mode privileges;
  User tasks and pthreads should have only user-mode privileges.
  If neither <code>CONFIG_BUILD_PROTECTED</code> nor <code>CONFIG_BUILD_KERNEL</code> have been selected, then all threads should have kernel-mode privileges.
</p>

<h3><a name="upcreatestack">4.2.4 <code>up_create_stack()</code></a></h3>
<p><b>Function Prototype</b>: <code>STATUS up_create_stack(FAR struct tcb_s *tcb, size_t stack_size, uint8_t ttype);</code></p>

<p><b>Description</b>.
  Allocate a stack for a new thread and setup up stack-related information in the TCB.
</p>
<p>
  The following TCB fields must be initialized:
</p>
<ul>
  <li><code>adj_stack_size</code>: Stack size after adjustment for hardware,
    processor, etc.  This value is retained only for debug
    purposes.</li>
  <li><code>stack_alloc_ptr</code>: Pointer to allocated stack</li>
  <li><code>adj_stack_ptr</code>: Adjusted <code>stack_alloc_ptr</code> for HW.  The
    initial value of the stack pointer.
</ul>

<p><b>Input Parameters</b>:</p>
<ul>
  <li>
    <p>
      <code>tcb</code>: The TCB of new task.
    </p>
  </li>
  <li>
    <p>
      <code>stack_size</code>:  The requested stack size.  At least this much must be allocated.
    </p>
  </li>
  <li>
    <p>
      <code>ttype</code>:  The thread type.
      This may be one of following (defined in <code>include/nuttx/sched.h</code>):
    </p>
    <ul>
      <li><code>TCB_FLAG_TTYPE_TASK</code>: Normal user task</li>
      <li><code>TCB_FLAG_TTYPE_PTHREAD</code>: User pthread</li>
      <li><code>TCB_FLAG_TTYPE_KERNEL</code>: Kernel thread</li>
    </ul>
    <p>
      This thread type is normally available in the flags field of the TCB, however, there are certain contexts where the TCB may not be fully initialized when up_create_stack is called.
    </p>
    <p>
      If <code>CONFIG_BUILD_PROTECTED</code> or <code>CONFIG_BUILD_KERNEL</code> are defined, then this thread type may affect how the stack is allocated.  For example, kernel thread stacks should be allocated from protected kernel memory.  Stacks for user tasks and threads must come from memory that is accessible to user code.
    </p>
  </li>
</ul>

<h3><a name="upusestack">4.2.5 <code>up_use_stack()</code></a></h3>
<p><b>Function Prototype</b>:
  <code>STATUS up_use_stack(FAR struct tcb_s *tcb, FAR void *stack, size_t stack_size);</code>
</p>

<p><b>Description</b>.
  Setup up stack-related information in the TCB using pre-allocated stack memory.
  This function is called only from <code>task_init()</code> when a task or kernel thread is started (never for pthreads).
</p>
<p>
  The following TCB fields must be initialized:
</p>
<ul>
  <li><code>adj_stack_size</code>: Stack size after adjustment for hardware,
    processor, etc.  This value is retained only for debug
    purposes.</li>
  <li><code>stack_alloc_ptr</code>: Pointer to allocated stack</li>
  <li><code>adj_stack_ptr</code>: Adjusted <code>stack_alloc_ptr</code> for HW.  The
    initial value of the stack pointer.
</ul>

<p><b>Input Parameters:</b></p>
<ul>
  <li>
    <code>tcb</code>: The TCB of new task.
  </li>
  <li>
    <code>stack_size</code>:  The allocated stack size.
  </li>
</ul>
<p>
  NOTE:  Unlike <code>up_stack_create()</code> and <code>up_stack_release</code>, this function does not require the task type (<code>ttype</code>) parameter.
  The TCB flags will always be set to provide the task type to <code>up_use_stack()</code> if the information needs that information.
</p>


<h3><a name="upstackframe">4.2.6 <code>up_stack_frame()</code></a></h3>
<p><b>Function Prototype</b>: <code>FAR void *up_stack_frame(FAR struct tcb_s *tcb, size_t frame_size);</code></p>

<p>
  <b>Description</b>.
  Allocate a stack frame in the TCB's stack to hold thread-specific data.
  This function may be called any time after <code>up_create_stack()</code> or <code>up_use_stack()</code> have been called but before the task has been started.
</p>
<p>
  Thread data may be kept in the stack (instead of in the TCB) if it is accessed by the user code directly.
  This includes such things as <code>argv[]</code>.
  The stack memory is guaranteed to be in the same protection domain as the thread.
</p>
<p>
  The following TCB fields will be re-initialized:
</p>
<ul>
  <li>
    <code>adj_stack_size</code>: Stack size after removal of the stack frame from the stack.
  </li>
  <li>
    <code>adj_stack_ptr</code>: Adjusted initial stack pointer after the frame has been removed from the stack.
    This will still be the initial value of the stack pointer when the task is started.
  </li>
</ul>
<p><b>Input Parameters:</b></p>
<ul>
  <li>
    <p>
      <code>tcb</code>:
      The TCB of new task.
    </p>
  </li>
  <li>
    <p>
      <code>frame_size</code>:
      The size of the stack frame to allocate.
    </p>
  </li>
</ul>
<p>
  <b>Returned Value:</b>
   A pointer to bottom of the allocated stack frame.
   NULL will be returned on any failures.
   The alignment of the returned value is the same as the alignment of the stack itself
</p>

<h3><a name="upreleasestack">4.2.7 <code>up_release_stack()</code></a></h3>
<p><b>Function Prototype</b>: <code>void up_release_stack(FAR struct tcb_s *dtcb);</code></p>

<p><b>Description</b>.
  A task has been stopped.
  Free all stack related resources retained int the defunct TCB.
</p>
<p><b>Input Parameters:</b></p>
<ul>
  <li>
    <p>
      <code>dtcb</code>:
      The TCB containing information about the stack to be released.
    </p>
  </li>
  <li>
    <p>
      <code>ttype</code>:  The thread type.
      This may be one of following (defined in <code>include/nuttx/sched.h</code>):
    </p>
    <ul>
      <li><code>TCB_FLAG_TTYPE_TASK</code>: Normal user task</li>
      <li><code>TCB_FLAG_TTYPE_PTHREAD</code>: User pthread</li>
      <li><code>TCB_FLAG_TTYPE_KERNEL</code>: Kernel thread</li>
    </ul>
    <p>
      This thread type is normally available in the flags field of the TCB, however, there are certain error recovery contexts where the TCB may not be fully initialized when up_release_stack is called.
    </p>
    <p>
      If <code>CONFIG_BUILD_PROTECTED</code> or <code>CONFIG_BUILD_KERNEL</code> are defined, then this thread type may affect how the stack is freed.
      For example, kernel thread stacks may have been allocated from protected kernel memory.
      Stacks for user tasks and threads must have come from memory that is accessible to user
    </p>
  </li>
</ul>

<h3><a name="upunblocktask">4.2.8 <code>up_unblock_task()</code></a></h3>
<p><b>Function Prototype</b>: <code>void up_unblock_task(FAR struct tcb_s *tcb);</code></p>

<p><b>Description</b>.
  A task is currently in an inactive task list
  but has been prepped to execute.  Move the TCB to the
  ready-to-run list, restore its context, and start execution.
</p>
<p>
  This function is called only from the NuttX scheduling
  logic.  Interrupts will always be disabled when this
  function is called.
</p>

<p><b>Input Parameters</b>:
<ul>
  <li><code>tcb</code>: Refers to the tcb to be unblocked.  This tcb is
    in one of the waiting tasks lists.  It must be moved to
    the ready-to-run list and, if it is the highest priority
    ready to run tasks, executed.
  </li>
</ul>

<h3><a name="upblocktask">4.2.9 <code>up_block_task()</code></a></h3>
<p><b>Function Prototype</b>: <code>void up_block_task(FAR struct tcb_s *tcb, tstate_t task_state);</code></p>

<p><b>Description</b>.
  The currently executing task at the head of
  the ready to run list must be stopped.  Save its context
  and move it to the inactive list specified by task_state.

  This function is called only from the NuttX scheduling
  logic.  Interrupts will always be disabled when this
  function is called.

<p><b>Input Parameters:</b></p>
<ul>
  <li><code>tcb</code>: Refers to a task in the ready-to-run list (normally
    the task at the head of the list).  It most be
    stopped, its context saved and moved into one of the
    waiting task lists.  It it was the task at the head
    of the ready-to-run list, then a context to the new
    ready to run task must be performed.
  </li>
  <li><code>task_state</code>: Specifies which waiting task list should be
    hold the blocked task TCB.
  </li>
</ul>

<h3><a name="upreleasepending">4.2.10 <code>up_release_pending()</code></a></h3>
<p><b>Function Prototype</b>: <code>void up_release_pending(void);</code></p>

<p><b>Description</b>.
  When tasks become ready-to-run but cannot run because pre-emption
  is disabled, they are placed into a pending task list.
  This function releases and makes ready-to-run all of the tasks that have
  collected in the pending task list.  This can cause a
  context switch if a new task is placed at the head of
  the ready to run list.
</p>
<p>
  This function is called only from the NuttX scheduling logic when
  pre-emption is re-enabled.  Interrupts will always be disabled when this
  function is called.
</p>

<h3><a name="upreprioritizertr">4.2.11 <code>up_reprioritize_rtr()</code></a></h3>
<p><b>Function Prototype</b>: <code>void up_reprioritize_rtr(FAR struct tcb_s *tcb, uint8_t priority);</code></p>

<p><b>Description</b>.
  Called when the priority of a running or
  ready-to-run task changes and the reprioritization will
  cause a context switch.  Two cases:
</p>
<ol>
  <li>
    The priority of the currently running task drops and the next
    task in the ready to run list has priority.
  </li>
  <li>
    An idle, ready to run task's priority has been raised above the
    the priority of the current, running task and it now has the
    priority.
  </li>
</ol>
<p>
  This function is called only from the NuttX scheduling
  logic.  Interrupts will always be disabled when this
  function is called.
</p>

<p><b>Input Parameters:</b></p>
<ul>
  <li>
    <code>tcb</code>: The TCB of the task that has been reprioritized
  </li>
  <li>
    <code>priority</code>: The new task priority
  </li>
</ul>

<h3><a name="_exit">4.2.12 <code>_exit()</code></a></h3>
<p><b>Function Prototype</b>: <code>void _exit(int status) noreturn_function;</code></p>

<p><b>Description</b>.
  This function causes the currently executing task to cease
  to exist.  This is a special case of task_delete().
</p>
<p>
  Unlike other UP APIs, this function may be called
  directly from user programs in various states.  The
  implementation of this function should disable interrupts
  before performing scheduling operations.
</p>

<h3><a name="upassert">4.2.13 <code>up_assert()</code></a></h3>
<p><b>Function Prototype</b>:<br>
  <code>void up_assert(FAR const uint8_t *filename, int linenum);</code>
</p>

<p><b>Description</b>.
  Assertions may be handled in an architecture-specific way.
</p>

<h3><a name="upschedulesigaction">4.2.14 <code>up_schedule_sigaction()</code></a></h3>
<p><b>Function Prototype</b>:
  <code>void up_schedule_sigaction(FAR struct tcb_s *tcb, sig_deliver_t sigdeliver);</code>
</p>

<p><b>Description</b>.
  This function is called by the OS when one or more
  signal handling actions have been queued for execution.
  The architecture specific code must configure things so
  that the 'sigdeliver' callback is executed on the thread
  specified by 'tcb' as soon as possible.
</p>
<p>
  This function may be called from interrupt handling logic.
</p>
<p>
  This operation should not cause the task to be unblocked
  nor should it cause any immediate execution of sigdeliver.
  Typically, a few cases need to be considered:
</p>
<ol>
  <li>
    This function may be called from an interrupt handler
    During interrupt processing, all xcptcontext structures
    should be valid for all tasks.  That structure should
    be modified to invoke sigdeliver() either on return
    from (this) interrupt or on some subsequent context
    switch to the recipient task.
  </li>
  <li>
    If not in an interrupt handler and the tcb is NOT
    the currently executing task, then again just modify
    the saved xcptcontext structure for the recipient
    task so it will invoke sigdeliver when that task is
    later resumed.
  </li>
  <li>
    If not in an interrupt handler and the tcb IS the
    currently executing task -- just call the signal
    handler now.
  </li>
</ol>
<p>
  This API is <i>NOT</i> required if <code>CONFIG_DISABLE_SIGNALS</code>
  is defined.
</p>

<h3><a name="upallocateheap">4.2.15 <code>up_allocate_heap()</code></a></h3>
<p><b>Function Prototype</b>: <code>void up_allocate_heap(FAR void **heap_start, size_t *heap_size);</code></p>

<p><b>Description</b>.
  This function will be called to dynamically set aside the heap region.
</p>
<p>
  For the kernel build (<code>CONFIG_BUILD_PROTECTED=y</code> or <code>CONFIG_BUILD_KERNEL=y</code>) with both kernel- and user-space heaps (<code>CONFIG_MM_KERNEL_HEAP=y</code>), this function provides the size of the unprotected, user-space heap.
  If a protected kernel-space heap is provided, the kernel heap must be allocated (and protected) by an analogous <code>up_allocate_kheap()</code>.
</p>

<h3><a name="upinterruptcontext">4.2.16 <code>up_interrupt_context()</code></a></h3>
<p><b>Function Prototype</b>: <code>bool up_interrupt_context(void)</code></p>

<p><b>Description</b>.
  Return true if we are currently executing in the interrupt handler context.
</p>

<h3><a name="updisableirq">4.2.17 <code>up_disable_irq()</code></a></h3>
<p><b>Function Prototype</b>:</p>
<ul><pre>
#ifndef CONFIG_ARCH_NOINTC
  void up_disable_irq(int irq);
#endif
</pre></ul>

<p><b>Description</b>.
  Disable the IRQ specified by 'irq'
  On many architectures, there are three levels of interrupt enabling: (1)
  at the global level, (2) at the level of the interrupt controller,
  and (3) at the device level.  In order to receive interrupts, they
  must be enabled at all three levels.
</p>
<p>
  This function implements enabling of the device specified by 'irq'
  at the interrupt controller level if supported by the architecture
  (irqsave() supports the global level, the device level is hardware
  specific).
<p>
  If the architecture does not support <code>up_disable_irq</code>,
  <code>CONFIG_ARCH_NOINTC</code> should be defined in the NuttX configuration file.
  Since this API cannot be supported on all architectures, it should be
  avoided in common implementations where possible.
</p>

<h3><a name="upenableirq">4.2.18 <code>up_enable_irq()</code></a></h3>
<p><b>Function Prototype</b>:</p>
<ul><pre>
#ifndef CONFIG_ARCH_NOINTC
  void up_enable_irq(int irq);
#endif
</pre></ul>

<p><b>Description</b>.
  This function implements disabling of the device specified by 'irq'
  at the interrupt controller level if supported by the architecture
  (irqrestore() supports the global level, the device level is hardware
  specific).
</p>
<p>
  If the architecture does not support <code>up_disable_irq</code>,
  <code>CONFIG_ARCH_NOINTC</code> should be defined in the NuttX configuration file.
  Since this API cannot be supported on all architectures, it should be
  avoided in common implementations where possible.
</p>

<h3><a name="upprioritizeirq">4.2.19 <code>up_prioritize_irq()</code></a></h3>
<p><b>Function Prototype</b>:</p>
<ul><pre>
#ifdef CONFIG_ARCH_IRQPRIO
  void up_enable_irq(int irq);
#endif
</pre></ul>
<p><b>Description</b>.
  Set the priority of an IRQ.
</p>
<p>
  If the architecture supports <code>up_enable_irq</code>,
  <code>CONFIG_ARCH_IRQPRIO</code> should be defined in the NuttX configuration file.
  Since this API cannot be supported on all architectures, it should be
  avoided in common implementations where possible.
</p>

<h3><a name="upputc">4.2.20 <code>up_putc()</code></a></h3>

<p><b>Function Prototype</b>: <code>int up_putc(int ch);</code></p>
<p><b>Description</b>.
  This is a debug interface exported by the architecture-specific logic.
  Output one character on the console
</p>

<h2><a name="systemtime">4.3 System Time and Clock</a></h2>

<h3><a name="basictimer">4.3.1 Basic System Timer</a></h3>

<p><b>System Timer</b>
  In most implementations, system time is provided by a timer interrupt.
  That timer interrupt runs at rate determined by <code>CONFIG_USEC_PER_TICKS</code> (default 10000 microseconds or 100Hz.  If <code>CONFIG_SCHED_TICKLESS</code> is selected, the default is 100 microseconds).
  The timer generates an interrupt each <code>CONFIG_USEC_PER_TICKS</code> microseconds and increments a counter called <code>g_system_timer</code>.
  <code>g_system_timer</code> then provides a time-base for calculating <i>up-time</i> and elapsed time intervals in units of <code>CONFIG_USEC_PER_TICKS</code>.
  The range of <code>g_system_timer</code> is, by default, 32-bits.
  However, if the MCU supports type <code>long long</code> and <code>CONFIG_SYSTEM_TIME16</code> is selected,
  a 64-bit system timer will be supported instead.
</p>
<p><b>System Timer Accuracy</b>
  On many system, the exact timer interval specified by <code>CONFIG_USEC_PER_TICKS</code> cannot be achieved due to limitations in frequencies or in dividers.
  As a result, the time interval specified by <code>CONFIG_USEC_PER_TICKS</code> may only be approximate and there may be small errors in the apparent <i>up-time</i> time.
  These small errors, however, will accumulate over time and after a long period of time may have an unacceptably large error in the apparent <i>up-time</i> of the MCU.
</p>
  If the timer tick period generated by the hardware is not exactly <code>CONFIG_USEC_PER_TICKS</code> <i>and</i> if there you require accurate up-time for the MCU, then there are measures that you can take:
</p>
<ul>
  <li>
    Perhaps you can adjust <code>CONFIG_USEC_PER_TICKS</code> to a different value so that an exactly <code>CONFIG_USEC_PER_TICKS</code> can be realized.
  </li>
  <li>
    Or you can use a technique known as <i>Delta-Sigma Modulation</i>. (Suggested by Uros Platise).  Consider the example below.
  </li>
</ul>

<p><b>Delta-Sigma Modulation Example</b>.
  Consider this case:  The system timer is a count-up timer driven at 32.768KHz.
  There are dividers that can be used, but a divider of one yields the highest accuracy.
  This counter counts up until the count equals a match value, then a timer interrupt is generated.
  The desire frequency is 100Hz (<code>CONFIG_USEC_PER_TICKS</code> is 10000).
</p>
<p>
  This exact frequency of 100Hz cannot be obtained in this case.
  In order to obtain that exact frequency a match value of 327.68 would have to be provided.
  The closest integer value is 328 but the ideal match value is between 327 and 328.
  The closest value, 328, would yield an actual timer frequency of 99.9Hz!
  That will may cause significant timing errors in certain usages.
</p>
<p>
  Use of Delta-Sigma Modulation can eliminate this error in the long run.
  Consider this example implementation:
</p>
<ol>
  <li>
    Initially an accumulator is zero an the match value is programmed to 328:
<ul><pre>
accumulator = 0;
match = 328;
</pre></ul>
  </li>
  <li>
    On each timer interrupt, accumulator is updated with difference that, in this reflects, 100* the error in interval that just passed.
    So on the first timer interrupt, the accumulator would be updated like:
<ul><pre>
if (match == 328)
  {
    accumulator += 32; // 100*(328 - 327.68)
  }
else
  {
    accumulator -= 68; // (100*(327 - 327.68)
  }
</pre></ul>
  </li>
  <li>
     And on that same timer interrupt a new match value would be programmed:
<ul><pre>
if (accumulator < 0)
  {
    match = 328;
  }
else
  {
    match = 327;
  }
</pre></ul>
</ol>
<p>
  In this way, the timer interval is controlled from interrupt-to-interrupt to produce an average frequency of exactly 100Hz.
</p>

<h3><a name="timerhw">4.3.2 Hardware</a></h3>
<p>
  To enable hardware module use the following configuration options:
<p>
<ul><dl>
  <dt><code>CONFIG_RTC</code>
  <dd>Enables general support for a hardware RTC.
      Specific architectures may require other specific settings.
  <dt><code>CONFIG_RTC_DATETIME</code>
  <dd>There are two general types of RTC:  (1) A simple battery backed counter that keeps the time when power
     is down, and (2) A full date / time RTC the provides the date and time information, often in BCD format.
     If <code>CONFIG_RTC_DATETIME</code> is selected, it specifies this second kind of RTC.
     In this case, the RTC is used to &quot;seed&quot;" the normal NuttX timer and the NuttX system timer
     provides for higher resolution time.
  <dt><code>CONFIG_RTC_HIRES</code>
  <dd>If <code>CONFIG_RTC_DATETIME</code> not selected, then the simple, battery backed counter is used.
      There are two different implementations of such simple counters based on the time resolution of the counter:
      The typical RTC keeps time to resolution of 1 second, usually supporting a 32-bit <code>time_t</code> value.
      In this case, the RTC is used to &quot;seed&quot; the normal NuttX timer and the NuttX timer provides for higher resolution time.
      If <code>CONFIG_RTC_HIRES</code> is enabled in the NuttX configuration, then the RTC provides higher resolution time and completely replaces the system timer for purpose of date and time.
  <dt><code>CONFIG_RTC_FREQUENCY</code>
  <dd>If <code>CONFIG_RTC_HIRES</code> is defined, then the frequency of the high resolution RTC must be provided.
      If <code>CONFIG_RTC_HIRES</code> is not defined, <code>CONFIG_RTC_FREQUENCY</code> is assumed to be one.
  <dt><code>CONFIG_RTC_ALARM</code>
  <dd>Enable if the RTC hardware supports setting of an alarm.
    A callback function will be executed when the alarm goes off
</dl></ul>
<p>
  which requires the following base functions to read and set time:
</p>
<ul>
  <li><code>up_rtcinitialize()</code>.
     Initialize the hardware RTC per the selected configuration.
     This function is called once during the OS initialization sequence
  </li>
  <li><code>up_rtc_time()</code>.
    Get the current time in seconds.  This is similar to the standard <code>time()</code> function.
    This interface is only required if the low-resolution RTC/counter hardware implementation selected.
    It is only used by the RTOS during initialization to set up the system time when <code>CONFIG_RTC</code> is set
    but neither <code>CONFIG_RTC_HIRES</code> nor <code>CONFIG_RTC_DATETIME</code> are set.
  </li>
  <li><code>up_rtc_gettime()</code>.
    Get the current time from the high resolution RTC clock/counter.
    This interface is only supported by the high-resolution RTC/counter hardware implementation.
    It is used to replace the system timer (<code>g_system_tick</code>).
  </li>
  <li><code>up_rtc_settime()</code>.
    Set the RTC to the provided time.
    All RTC implementations must be able to set their time based on a standard timespec.
  </li>
</ul>

<h3><a name="systcktime">4.3.3 System Tick and Time</a></h3>
<p>
  The system tick is represented by::
</p>
<ul>
  <li><code>g_system_timer</code></li>
</ul>
<p>
  Running at rate of system base timer, used for time-slicing, and so forth.
</p>
<p>
  If hardware RTC is present (<code>CONFIG_RTC</code>) and and high-resolution timing
  is enabled (<code>CONFIG_RTC_HIRES</code>), then after successful
  initialization variables are overridden by calls to <code>up_rtc_gettime()</code> which is
  running continuously even in power-down modes.
</p>
<p>
  In the case of <code>CONFIG_RTC_HIRES</code> is set the <code>g_system_timer</code>
  keeps counting at rate of a system timer, which however, is disabled in power-down mode.
  By comparing this time and RTC (actual time) one may determine the actual system active time.
  To retrieve that variable use:
</p>

<h3><a name="tickless">4.3.4 Tickless OS</a></h3>
<h4><a name="tickoverview">4.3.4.1 Tickless Overview</a></h4>

<p>
  <b>Default System Timer</b>.
  By default, a NuttX configuration uses a periodic timer interrupt that drives all system timing. The timer is provided by architecture-specific code that calls into NuttX at a rate controlled by <code>CONFIG_USEC_PER_TICK</code>. The default value of <code>CONFIG_USEC_PER_TICK</code> is 10000 microseconds which corresponds to a timer interrupt rate of 100 Hz.
</p>
<p>
  On each timer interrupt, NuttX does these things:
<p>
<ul>
  <li>Increments a counter. This counter is the system time and has a resolution of <code>CONFIG_USEC_PER_TICK</code> microseconds.
  <li>Checks if it is time to perform time-slice operations on tasks that have select round-robin scheduling.
  <li>Checks for expiration of timed events.
</ul>
<p>
  What is wrong with this default system timer? Nothing really. It is reliable and uses only a small fraction of the CPU band width. But we can do better. Some limitations of default system timer are, in increasing order of importance:
</p>
<ul>
  <li>
    <b>Overhead</b>:
    Although the CPU usage of the system timer interrupt at 100Hz is really very low, it is still mostly wasted processing time. One most timer interrupts, there is really nothing that needs be done other than incrementing the counter.
  </li>
  <li>
    <b>Resolution</b>:
    Resolution of all system timing is also determined by <code>CONFIG_USEC_PER_TICK</code>. So nothing that be time with resolution finer than 10 milliseconds be default. To increase this resolution, <code>CONFIG_USEC_PER_TICK</code> an be reduced. However, then the system timer interrupts use more of the CPU bandwidth processing useless interrupts.
  </li>
  <li>
    <b>Power Usage</b>:
    But the biggest issue is power usage. When the system is IDLE, it enters a light, low-power mode (for ARMs, this mode is entered with the <code>wfi</code> or <code>wfe</code> instructions for example). But each interrupt awakens the system from this low power mode. Therefore, higher rates of interrupts cause greater power consumption.
  </li>
</ul>
<p>
  <b><i>Tickless OS</i></b>.
  The so-called <i>Tickless OS</i> provides one solution to issue. The basic concept here is that the periodic, timer interrupt is eliminated and replaced with a one-shot, interval timer. It becomes event driven instead of polled: The default system timer is a polled design. On each interrupt, the NuttX logic checks if it needs to do anything and, if so, it does it.
</p>
<p>
  Using an interval timer, one can anticipate when the next interesting OS event will occur, program the interval time and wait for it to fire. When the interval time fires, then the scheduled activity is performed.
</p>

<h4><a name="tickplatform">4.3.4.2 Tickless Platform Support</a></h4>

In order to use the Tickless OS, one must provide special support from the platform-specific code. Just as with the default system timer, the platform-specific code must provide the timer resources to support the OS behavior.

Currently these timer resources are only provided on a few platforms. An example implementation is for the simulation is at <code>nuttx/arch/sim/src/up_tickless.c</code>.  There is another example for the Atmel SAMA5 at <code>nuttx/arch/arm/src/sama5/sam_tickless.c</code>.  These paragraphs will explain how to provide the Tickless OS support to any platform.

<h4><a name="tickconfig">4.3.4.3 Tickless Configuration Options</a></h4>
<ul>
  <li>
    <p>
      <b><code>CONFIG_ARCH_HAVE_TICKLESS</code></b>:
      If the platform provides support for the <i>Tickless OS</i>, then this setting should be selected in the <code>Kconfig</code> file for the board. Here is what the selection looks in the <code>arch/Kconfig</code> file for the simulated platform:
    </p>
<ul><pre>
config ARCH_SIM
   bool "Simulation"
   select ARCH_HAVE_TICKLESS
   ---help---
       Linux/Cywgin user-mode simulation.
</pre></ul>
    <p>
      When the simulation platform is selected, <code>ARCH_HAVE_TICKLESS</code> is automatically selected, informing the configuration system that <i>Tickless OS</i> options can be selected.
    </p>
  </li>
  <li>
    <p>
      <b><code>CONFIG_SCHED_TICKLESS</code></b>:
      If <code>CONFIG_ARCH_HAVE_TICKLESS</code> is selected, then it will enable the Tickless OS features in NuttX.
    </p>
  </li>
  <li>
    <p>
      <b><code>CONFIG_SCHED_TICKLESS_ALARM</code></b>:
      The tickless option can be supported either via a simple interval timer (plus elapsed time) or via an alarm.  The interval timer allows programming events to occur after an interval.  With the alarm, you can set a time in the future and get an event when that alarm goes off.  This option selects the use of an alarm.
    </p>
    <p>
      The advantage of an alarm is that it avoids some small timing errors; the advantage of the use of the interval timer is that the hardware requirement may be less.
    </p>
  </li>
  <li>
    <p>
      <b><code>CONFIG_USEC_PER_TICK</code></b>:
      This option is not unique to <i>Tickless OS</i> operation, but changes its relevance when the <i>Tickless OS</i> is selected.
      In the default configuration where system time is provided by a periodic timer interrupt, the default system timer is configure the timer for 100Hz or <code>CONFIG_USEC_PER_TICK=10000</code>. If <code>CONFIG_SCHED_TICKLESS</code> is selected, then there are no system timer interrupt. In this case, <code>CONFIG_USEC_PER_TICK</code> does not control any timer rates. Rather, it only determines the resolution of time reported by <code>clock_systimer()</code> and the resolution of times that can be set for certain delays including watchdog timers and delayed work.
    </p>
    <p>
      In this case there is still a trade-off: It is better to have the <code>CONFIG_USEC_PER_TICK</code> as low as possible for higher timing resolution. However, the the time is currently held in <code>unsigned int</code>. On some systems, this may be 16-bits in width but on most contemporary systems it will be 32-bits. In either case, smaller values of <code>CONFIG_USEC_PER_TICK</code> will reduce the range of values that delays that can be represented. So the trade-off is between range and resolution (you could also modify the code to use a 64-bit value if you really want both).
    </p>
    <p>
      The default, 100 microseconds, will provide for a range of delays up to 120 hours.
    </p>
    <p>
      This value should never be less than the underlying resolution of the timer. Errors may ensue.
    </p>
  </li>
</ul>

<h4><a name="tickconfig">4.3.4.4 Tickless Imported Intefaces</a></h4>
<p>
  The interfaces that must be provided by the platform specified code are defined in <code>include/nuttx/arch.h</code>, listed below, and summarized in the following paragraphs:
</p>
<ul>
  <li>
    <a href="#uptimerinit"><code>up_timer_initialize()</code></a>:
    Initializes the timer facilities.  Called early in the intialization sequence (by <code>up_intialize()</code>).
  </li>
  <li>
    <a href="#uptimergettime"><code>up_timer_gettime()</code></a>:
    Returns the current time from the platform specific time source.
  </li>
</ul>
<p>
  The tickless option can be supported either via a simple interval timer (plus elapsed time) or via an alarm.  The interval timer allows programming events to occur after an interval.  With the alarm, you can set a time in* the future and get an event when that alarm goes off.
</p>
<p>
  If <code>CONFIG_SCHED_TICKLESS_ALARM</code> is defined, then the platform code must provide the following:
<p>
<ul>
  <li>
    <a href="#upalarmcancel"><code>up_alarm_cancel()</code></a>:
    Cancels the alarm.
  </li>
  <li>
    <a href="#upalarmstart"><code>up_alarm_start()</code></a>:
    Enables (or re-enables) the alaram.
  </li>
</ul>
<p>
  If <code>CONFIG_SCHED_TICKLESS_ALARM</code> is <i>not</i>defined, then the platform code must provide the following verify similar functions:
<p>
<ul>
  <li>
    <a href="#uptimercancel"><code>up_timer_cancel()</code></a>:
    Cancels the interval timer.
  </li>
  <li>
    <a href="#uptimerstart"><code>up_timer_start()</code></a>:
    Starts (or re-starts) the interval timer.
  </li>
</ul>
<p>
  Note that a platform-specific implementation would probably require two hardware timers: (1) A interval timer to satisfy the requirements of <a href="#uptimerstart"><code>up_timer_start()</code></a> and <a href="#uptimercancel"><code>up_timer_cancel()</code></a>, and a (2) a counter to handle the requirement of <a href="#uptimergettime"><code>up_timer_gettime()</code></a>.  Ideally, both timers would run at the rate determined by <code>CONFIG_USEC_PER_TICK</code> (and certainly never slower than that rate).
</p>
<p>
  Since timers are a limited resource, the use of two timers could be an issue on some systems.
  The job could be done with a single timer if, for example, the single timer were kept in a free-running at all times. Some timer/counters have the capability to generate a compare interrupt when the timer matches a comparison value but also to continue counting without stopping. If your hardware supports such counters, one might used the <code>CONFIG_SCHED_TICKLESS_ALARM</code> option and be able to simply set the comparison count at the value of the free running timer <i>PLUS</i> the desired delay. Then you could have both with a single timer: An alarm and a free-running counter with the same timer!
</p>
<p>
  In addition to these imported interfaces, the RTOS will export the following interfaces for use by the platform-specific interval timer implementation:
</p>
<ul>
  <li>
    <a href="#schedalarmexpiration"><code>sched_alarm_expiration()</code></a>. Called by the platform-specific logic when the alarm expires.
  </li>
  <li>
    <a href="#schedtimerexpiration"><code>sched_timer_expiration()</code></a>. Called by the platform-specific logic when the interval time expires.
  </li>
</ul>

<h5><a name="uptimerinit">4.3.4.4.1 <code>up_timer_initialize()</code></a></h5>
<p><b>Function Prototype</b>:</p>
<ul><pre>
#include &lt;nuttx/arch.h&gt;
void up_timer_initialize(void);
</ul>
<p><b>Description</b>:</p>
<ul>
  Initializes all platform-specific timer facilities. This function is called early in the initialization sequence by <code>up_intialize()</code>. On return, the current up-time should be available from <code>up_timer_gettime()</code> and the interval timer is ready for use (but not actively timing).
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  None
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>
<p><b>Assumptions</b>:</p>
<ul>
  Called early in the initialization sequence before any special concurrency protections are required.
</ul>

<h5><a name="uptimergettime">4.3.4.4.2 <code>up_timer_gettime()</code></a></h5>
<p><b>Function Prototype</b>:<p>
<ul><pre>
#include &lt;nuttx/arch.h&gt;
int up_timer_gettime(FAR struct timespec *ts);
</ul>
<p><b>Description</b>:</p>
  Return the elapsed time since power-up (or, more correctly, since <code>up_timer_initialize()</code> was called). This function is functionally equivalent to <code>clock_gettime()</code> for the clock ID <code>CLOCK_MONOTONIC</code>. This function provides the basis for reporting the current time and also is used to eliminate error build-up from small errors in interval time calculations.
<ul>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>ts</code>: Provides the location in which to return the up-time..
</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>
<p><b>Assumptions</b>:</p>
<ul>
  Called from the the normal tasking context. The implementation must provide whatever mutual exclusion is necessary for correct operation. This can include disabling interrupts in order to assure atomic register operations.
</ul>

<h5><a name="upalarmcancel">4.3.4.4.3 <code>up_alarm_cancel()</code></a></h5>
<p><b>Function Prototype</b>:<p>
<ul><pre>
#include &lt;nuttx/arch.h&gt;
int up_alarm_cancel(FAR struct timespec *ts);
</ul>
<p><b>Description</b>:</p>
  Cancel the alarm and return the time of cancellation of the alarm. These two steps need to be as nearly atomic as possible. <code>sched_timer_expiration()</code> will not be called unless the alarm is restarted with <code>up_alarm_start()</code>. If, as a race condition, the alarm has already expired when this function is called, then time returned is the current time.
<ul>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>ts</code>: Location to return the expiration time.  The current time should be returned if the timer is not active.    <code>ts</code> may be <code>NULL</code> in which case the time is not returned</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>
<p><b>Assumptions</b>:</p>
<ul>
  May be called from interrupt level handling or from the normal tasking level. iterrupts may need to be disabled internally to assure non-reentrancy.
</ul>

<h5><a name="upalarmstart">4.3.4.4.4 <code>up_alarm_start()</code></a></h5>
<p><b>Function Prototype</b>:<p>
<ul><pre>
#include &lt;nuttx/arch.h&gt;
int up_alarm_start(FAR const struct timespec *ts);
</ul>
<p><b>Description</b>:</p>
  Start the alarm. <code>sched_timer_expiration()</code> will be called when the alarm occurs (unless <code>up_alaram_cancel</code> is called to stop it).
<ul>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>ts</code>: The time in the future at the alarm is expected to occur.  When the alarm occurs the timer logic will call <code>sched_timer_expiration()</code>.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>
<p><b>Assumptions</b>:</p>
<ul>
  May be called from interrupt level handling or from the normal tasking level. Interrupts may need to be disabled internally to assure non-reentrancy.
</ul>

<h5><a name="uptimercancel">4.3.4.4.5 <code>up_timer_cancel()</code></a></h5>
<p><b>Function Prototype</b>:<p>
<ul><pre>
#include &lt;nuttx/arch.h&gt;
int up_timer_cancel(FAR struct timespec *ts);
</ul>
<p><b>Description</b>:</p>
  Cancel the interval timer and return the time remaining on the timer. These two steps need to be as nearly atomic as possible. <code>sched_timer_expiration()</code> will not be called unless the timer is restarted with <code>up_timer_start()</code>. If, as a race condition, the timer has already expired when this function is called, then that pending interrupt must be cleared so that <code>sched_timer_expiration()</code> is not called spuriously and the remaining time of zero should be returned.
<ul>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>ts</code>: Location to return the remaining time. Zero should be returned if the timer is not active.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>
<p><b>Assumptions</b>:</p>
<ul>
  May be called from interrupt level handling or from the normal tasking level. iterrupts may need to be disabled internally to assure non-reentrancy.
</ul>

<h5><a name="uptimerstart">4.3.4.4.6 <code>up_timer_start()</code></a></h5>
<p><b>Function Prototype</b>:<p>
<ul><pre>
#include &lt;nuttx/arch.h&gt;
int up_timer_start(FAR const struct timespec *ts);
</ul>
<p><b>Description</b>:</p>
  Start the interval timer. <code>sched_timer_expiration()</code> will be called at the completion of the timeout (unless <code>up_timer_cancel()</code> is called to stop the timing).
<ul>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>ts</code>: Provides the time interval until <code>sched_timer_expiration()</code> is called.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>
<p><b>Assumptions</b>:</p>
<ul>
  May be called from interrupt level handling or from the normal tasking level. Interrupts may need to be disabled internally to assure non-reentrancy.
</ul>

<h3><a name="Watchdogs">4.3.5 Watchdog Timer Interfaces</a></h3>
<p>
  NuttX provides a general watchdog timer facility.
  This facility allows the NuttX user to specify a watchdog timer function
  that will run after a specified delay.
  The watchdog timer function will run in the context of the timer interrupt handler.
  Because of this, a limited number of NuttX interfaces are available to he watchdog timer function.
  However, the watchdog timer function may use <code>mq_send()</code>, <code>sigqueue()</code>,
  or <code>kill()</code> to communicate with NuttX tasks.
</p>
<ul>
  <li><a href="#wdcreate">4.3.5.1 wd_create/wd_static</a></li>
  <li><a href="#wddelete">4.3.5.2 wd_delete</a></li>
  <li><a href="#wdstart">4.3.5.3 wd_start</a></li>
  <li><a href="#wdcancel">4.3.5.4 wd_cancel</a></li>
  <li><a href="#wdgettime">4.3.5.5 wd_gettime</a></li>
</ul>

<h4><a name="wdcreate">4.3.5.1 wd_create/wd_static</a></h4>

<p>
<b>Function Prototype:</b>
<pre>
    #include &lt;nuttx/wdog.h&gt;
    WDOG_ID wd_create(void);
    void wd_static(FAR struct wdog_s *wdog);
</pre>

<p>
<b>Description:</b> The <code>wd_create()</code> function will create a timer by allocating the appropriate resources for the watchdog.  The <code>wd_create()</code> function returns a pointer to a fully initialized, dynamically allocated <code>struct wdog_s</code> instance (which is <code>typedef</code>'ed as <code>WDOG_ID</code>);
</p>
<p>
<code>wd_static()</code> performs the equivalent initialization of a statically allocated <code>struct wdog_s</code> instance.  No allocation is performed in this case.  The initializer definition, <code>WDOG_INITIALIZER</code> is also available for initialization of static instances of <code>struct wdog_s</code>.  NOTE: <code>wd_static()</code> is also implemented as a macro definition.
</p>
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Value:</b>
<ul>
<li>Pointer to watchdog that may be used as a handle in subsequent NuttX calls (i.e., the watchdog ID), or NULL if insufficient resources are available to create the watchdogs.
</ul>

<p>
<b>Assumptions/Limitations:</b>
<p>
<b>  POSIX  Compatibility:</b> This is a NON-POSIX interface.
VxWorks provides the following comparable interface:
<pre>
    WDOG_ID wdCreate (void);
</pre>

<p>
Differences from the VxWorks interface include:
<ul>
<li>The number of available watchdogs is fixed (configured at
initialization time).
</ul>

<h4><a name="wddelete">4.3.5.2 wd_delete</a></h4>

<p>
<b>Function Prototype:</b>
<pre>
    #include &lt;nuttx/wdog.h&gt;
    int wd_delete(WDOG_ID wdog);
</pre>

<p>
<b>Description:</b> The wd_delete function will deallocate a watchdog timer previously allocated via <code>wd_create()</code>. The watchdog timer will be removed from the timer queue if has been started.
<p>
<p>
This function need not be called for statically allocated timers (but it is not harmful to do so).
</p>
<b>Input Parameters:</b>
<ul>
<li><code>wdog</code>. The watchdog ID to delete. This is actually a
pointer to a watchdog structure.
</ul>

<p>
<b>Returned Value:</b>
<ul>
<li>OK or ERROR
</ul>

<p>
<b>Assumptions/Limitations:</b> It is the responsibility of the
caller to assure that the watchdog is inactive before deleting
it.
<p>
<b>POSIX  Compatibility:</b> This is a NON-POSIX interface.
VxWorks provides the following comparable interface:
<pre>
    STATUS wdDelete (WDOG_ID wdog);
</pre>

<p>
Differences from the VxWorks interface include:
<ul>
<li>Does not make any checks to see if the watchdog is being used
before deallocating it (i.e., never returns ERROR).
</ul>

<h4><a name="wdstart">4.3.5.3 wd_start</a></h4>

<p>
<b>Function Prototype:</b>
<pre>
    #include &lt;nuttx/wdog.h&gt;
    int wd_start(WDOG_ID wdog, int delay, wdentry_t wdentry,
                 int argc, ....);
</pre>

<p>
<b>Description:</b> This function adds a watchdog to the timer
queue. The specified watchdog function will be called from the
interrupt level after the specified number of ticks has elapsed.
Watchdog timers may be started from the interrupt level.
<p>
Watchdog times execute in the context of the timer interrupt handler.
<p>
Watchdog timers execute only once.
<p>
To replace either the timeout delay or the function to be executed,
call wd_start again with the same wdog; only the most recent
wd_start() on a given watchdog ID has any effect.
<p>
<b>Input Parameters:</b>
<ul>
<li><code>wdog</code>. Watchdog ID
<li><code>delay</code>. Delay count in clock ticks
<li><code>wdentry</code>. Function to call on timeout
<li><code>argc</code>.  The number of uint32_t parameters to pass to wdentry.
<li><code>...</code>. uint32_t size parameters to pass to wdentry
</ul>

<p>
<b>Returned Value:</b>
<ul>
<li>OK or ERROR
</ul>

<p>
<b>Assumptions/Limitations:</b> The watchdog routine runs in the
context of the timer interrupt handler and is subject to all ISR
restrictions.
<p>
<b>POSIX  Compatibility:</b> This is a NON-POSIX interface.
VxWorks provides the following comparable interface:
<pre>
    STATUS wdStart (WDOG_ID wdog, int delay, FUNCPTR wdentry, int parameter);
</pre>

<p>
Differences from the VxWorks interface include:
<ul>
<li>The present implementation supports multiple parameters passed
to wdentry; VxWorks supports only a single parameter.  The maximum
number of parameters is determined by
</ul>

<h4><a name="wdcancel">4.3.5.4 wd_cancel</a></h4>
<p>
<b>Function Prototype:</b>
<pre>
    #include &lt;nuttx/wdog.h&gt;
    int wd_cancel(WDOG_ID wdog);
</pre>

<p>
<b>Description:</b> This function cancels a currently running
watchdog timer. Watchdog timers may be canceled from the interrupt
level.
<p>
<b>Input Parameters:</b>
<ul>
<li><code>wdog</code>. ID of the watchdog to cancel.
</ul>

<p>
<b>Returned Value:</b>
<ul>
<li>OK or ERROR
</ul>

<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX  Compatibility:</b> This is a NON-POSIX interface.
VxWorks provides the following comparable interface:
<pre>
    STATUS wdCancel (WDOG_ID wdog);
</pre>

<h3><a name="wdgettime">4.3.5.5 wd_gettime</a></h3>
<p>
  <b>Function Prototype:</b>
</p>
<pre>
    #include &lt;nuttx/wdog.h&gt;
    Sint wd_gettime(WDOG_ID wdog);
</pre>
<p>
  <b>Description:</b>
   This function returns the time remaining before the specified watchdog expires.
</p>
<p>
  <b>Input Parameters:</b>
  <ul>
    <li><code>wdog</code>. Identifies the watchdog that the request is for.</li>
  </ul>
</p>
<p>
  <b>Returned Value:</b>
  The time in system ticks remaining until the watchdog time expires.  Zero
  means either that wdog is not valid or that the wdog has already expired.
</p>

<h2><a name="workqueues">4.4 Work Queues</a></h2>
<p><b>Work Queues</b>.
  NuttX provides <i>work queues</i>.  Work queues are threads the service a queue of work items to be performed.  There are useful for off-loading work to a different threading context, for delayed processing, or for serializing activities.
</p>

<h3><a name="wqclasses">4.4.1 Classes of Work Queues</a></h3>

<p><b>Classes of Work Queues</b>.
  There are three different classes of work queues, each with different properties and intended usage.  These class of work queues along with the the common work queue interface are described in the following paragraphs.
</p>

<h4><a name="hpwork">4.4.1.1 High Priority Kernel Work queue</a></h4>

<p><b>High Priority Kernel Work queue</b>.
  The dedicated high-priority work queue is intended to handle delayed processing from interrupt handlers.  This work queue is required for some drivers but, if there are no complaints, can be safely disabled.  The high priority worker thread also performs garbage collection -- completing any delayed memory deallocations from interrupt handlers.  If the high-priority worker thread is disabled, then that clean up will be performed either by (1) the low-priority worker thread, if enabled, and if not (2) the IDLE thread instead (which runs at the lowest of priority and may not be appropriate if memory reclamation is of high priority)
</p>
<p><b>Device Driver Bottom Half</b>.
  The higher priority worker thread is intended to serve as the <i>bottom half</i> for device drivers.  As a consequence it must run at a very high, fixed priority rivalling the priority of the interrupt handler itself.  Typically, the high priority work queue should be the highest priority thread in your system (the default priority is 224).
</p>
<p><b>Compared to the Low Priority Kernel Work Queue</b>.
  For less critical, lower priority, application oriented worker thread support, consider enabling the lower priority work queue.  The lower priority work queue runs at a lower priority, of course, but has the added advantage that it supports <i>priority inheritance</i> (if <config> CONFIG_PRIORITY_INHERITANCE</code> is also selected):  The priority of the lower priority worker thread can then be adjusted to match the highest priority client.
</p>
<p>
  <b>Configuration Options</b>.
</p>
<ul>
  <li><code>CONFIG_SCHED_HPWORK</code>.
    Enables the hight prioirity work queue.
  </li>
  <li><code>CONFIG_SCHED_HPWORKPRIORITY</code>.
    The execution priority of the high-priority worker thread.  Default: 224
  </li>
  <li><code>CONFIG_SCHED_HPWORKPERIOD</code>.
    How often the worker thread re-checks for work in units of microseconds.  This work period is really only necessary if the the high priority thread is performing periodic garbage collection.  The worker thread will be awakened immediately with it is queued work to be done.  If the high priority worker thread is performing garbage collection, then the default is 50*1000 (50 MS).  Otherwise, if the lower priority worker thread is performing garbage collection, the default is 100*1000.
  <li><code>CONFIG_SCHED_HPWORKSTACKSIZE</code>.
    The stack size allocated for the worker thread in bytes.  Default: 2048.
  </li>
</ul>
<p>
  <b>Common Configuration Options</b>.
  These options apply to all work queues:
</p>
<ul>
  <li><code>CONFIG_SIG_SIGWORK</code>
    The signal number that will be used to wake-up the worker thread.  This same signal is used with the   Default: 17
  </li>
</ul>

<h4><a name="lpwork">4.4.1.2 Low Priority Kernel Work Queue</a></h4>
<p>
  <b>Low Priority Kernel Work Queue</b>.
  This lower priority work queue is better suited for more extended, application oriented processing such as file system clean-up, memory garbage collection and asynchronous I/O operations.
</p>
<p>
  <b>Compared to the High Priority Work Queue</b>.
  The lower priority work queue runs at a lower priority than the high priority work queue, of course, and so is inapproperiate to serve as a driver <i>bottom half</i>.  The lower priority work queue has the other advantages, however, that make it better suited for some tasks:
</p>
<ul>
  <li>
    <p><b>Priority Inheritance</b>.
      The lower priority worker thread(s) support <i>priority inheritance</i> (if <config> CONFIG_PRIORITY_INHERITANCE</code> is also selected):  The priority of the lower priority worker thread can then be adjusted to match the highest priority client.
    </p>
    <blockquote>
      <b>NOTE:</b> This priority inheritance feature is not automatic.  The lower priority worker thread will always a fixed priority unless additional logic implements that calls <code>lpwork_boostpriority()</code> to raise the priority of the lower priority worker thread (typically called before scheduling the work) and then calls the matching <code>lpwork_restorepriority()</code> when the work is completed (typically called within the work handler at the completion of the work). Currently, only the NuttX asynchronous I/O logic uses this dynamic prioritization feature.
    </blockquote>
    <p>
      The higher priority worker thread, on the other hand, is intended to serve as the <i>bottom half</i> for device drivers.  As a consequence must run at a very high, fixed priority.  Typically, it should be the highest priority thread in your system.
    </p>
  </li>
  <li>
    <p>
      <b>Thread Pool</b>.
      The low-priority work queue can be configured to support multiple, low-priority threads.  This is essentially a <i>thread pool</i> that provides multi-threaded servicing of the low-priority work thread.  This breaks the strict serialization of the &quot;queue&quot; (and hence, the low-priority work queue is no longer a queue at all).
    </p>
    <p>
      Multiple worker threads are required to support, for example, I/O operations that stall waiting for input.  If there is only a single thread, then the entire low-priority queue processing would stall in such cases. Such behavior is necessary to support asynchronous I/O, AIO, for example.
    </p>
  </li>
</ul>
<p>
  <b>Configuration Options</b>.
</p>
<ul>
  <li><code>CONFIG_SCHED_LPWORK</code>.
    If CONFIG_SCHED_LPWORK is selected then a lower-priority work queue will be enabled.
  </li>
  <li><code>CONFIG_SCHED_LPNTHREADS</code>.
    The number of thread in the low-priority queue's thread pool.  Default: 1
  </li>
  <li><code>CONFIG_SCHED_LPWORKPRIORITY</code>.
    The minimum execution priority of the lower priority worker thread.  The priority of the all worker threads start at this priority.  If priority inheritance is in effect, the priority may be boosted from this level.  Default: 50.
  </li>
  <li><code>CONFIG_SCHED_LPWORKPRIOMAX</code>.
    The maximum execution priority of the lower priority worker thread.  Lower priority worker threads will be started at <code>CONFIG_SCHED_LPWORKPRIORITY</code> but their priority may be boosted due to priority inheritance.  The boosted priority of the low priority worker thread will not, however, ever exceed<code>CONFIG_SCHED_LPWORKPRIOMAX</code>.  This limit would be necessary, for example, if the higher priority worker thread were to defer work to the lower priority thread.  Clearly, in such a case, you would want to limit the maximum priority of the lower priority work thread.  Default: 176.
  </li>
  <li><code>CONFIG_SCHED_LPWORKPERIOD</code>.
    How often the lower priority worker thread checks for garbage collection in units of microseconds.  Default: 50*1000 (50 MS).
  </li>
  <li><code>CONFIG_SCHED_LPWORKSTACKSIZE</code>.
    The stack size allocated for the lower priority worker thread.  Default: 2048.
  </li>
</ul>

<h4><a name="usrwork">4.4.1.3 User-Mode Work Queue</a></h4>
<p>
  <b>Work Queue Accessibility</b>.
  The high- and low-priority worker threads are kernel-mode threads.  In the normal, <i>flat</i> NuttX build, these work queues are are useful to application code and may be shared.  However, in the NuttX protected and kernel build modes, kernel mode code is isolated and cannot be accessed from user-mode code.
</p>
<p>
  <b>User-Mode Work Queue</b>.
  if either <code>CONFIG_BUILD_PROTECTED</code> or <code>CONFIG_BUILD_KERNEL</code> are selected, then the option to enable a special user-mode work queue is enable.  The interface to the user-mode work queue is identical to the interface to the kernel-mode work queues and the user-mode work queue is functionally equivalent to the high priority work queue.  It differs in that its implementation does not depend on internal, kernel-space facilities.
</p>
<p>
  <b>Configuration Options</b>.
</p>
<ul>
  <li><code>CONFIG_LIB_USRWORK</code>.
    If CONFIG_LIB_USRWORK is also defined then the user-mode work queue will be enabled.
  <li><code>CONFIG_LIB_USRWORKPRIORITY</code>.
    The execution priority of the user-mode priority worker thread.  Default: 100
  <li><code>CONFIG_LIB_USRWORKPERIOD</code>
    How often the lower priority worker thread is awakened in units of microseconds.  Default: 100*1000 (100 MS).
  <li><code>CONFIG_LIB_USRWORKSTACKSIZE</code>.
    The stack size allocated for the lower priority worker thread.  Default: 2048.
</ul>

<h3><a name="cmnwqifs">4.4.2 Common Work Queue Interfaces</a></h3>
<h4><a name="wqids">4.4.2.1 Work Queue IDs</a></h4>

<p>
  <b>Work queue IDs</b>.
  All work queues use the identical interface functions (at least identical in terms of the function <i>signature</i>).  The first parameter passed to the work queue interface function identifies the work queue:
</p>
<p>
  <b>Kernel-Mode Work Queue IDs:</b>
<p>
<ul>
  <li>
    <code>HPWORK</code>.
    This ID of the high priority work queue that should only be used for hi-priority, time-critical, driver bottom-half functions.
  </li>
  <li>
    <code>LPWORK</code>.
    This is the ID of the low priority work queue that can be used for any purpose.  if <code>CONFIG_SCHED_LPWORK</code> is not defined, then there is only one kernel work queue and <code>LPWORK</code> is equal to <code>HPWORK</code>.
  </li>
</ul>
<p>
  <b>User-Mode Work Queue IDs:</b>
<p>
<ul>
  <li>
    <code>USRWORK</code>.
    This is the ID of the user-mode work queue that can be used for any purpose by applications.  In a flat build, <code>LPWORK</code> is equal to <code>LPWORK</code> so that user applications will use the lower priority work queue (if there is one).
  </li>
</ul>

<h4><a name="wqiftypes">4.4.2.2 Work Queue Interface Types</a></h4>

<ul>
  <li>
    <code>typedef void (*worker_t)(FAR void *arg);</code>
    Defines the type of the work callback.
  </li>
  <li>
    <code>struct work_s</code>.
    Defines one entry in the work queue.  This is a client-allocated structure.  Work queue clients should not reference any field in this structure since they are subjec to change.  The user only needs this structure in order to declare instances of the work structure.  Handling of all fields is performed by the work queue interfaces described below.
  </li>
</ul>

<h4><a name="wqintfs">4.4.2.3 Work Queue Interfaces</a></h4>
<h5><a name="workqueue">4.4.2.3.1 <code>work_queue()</code></a></h5>
<p>
  <b>Function Prototype</b>:
  <ul><pre>
#include &lt;nuttx/wqueue.h&gt;
int work_queue(int qid, FAR struct work_s *work, worker_t worker,
               FAR void *arg, uint32_t delay);
</pre></ul>
</p>
<p>
  <b>Description</b>.
  Queue work to be performed at a later time.  All queued work will be performed on the worker thread of execution (not the caller's).
</p>
<p>
  The work structure is allocated by caller, but completely managed by the work queue logic.  The caller should never modify the contents of the work queue structure; the caller should not call  <code>work_queue()</code> again until either (1) the previous work has been performed and removed from the queue, or (2) <code>work_cancel()</code> has been called to cancel the work and remove it from the work queue.
</p>
<p>
  <b>Input Parameters</b>:
</p>
<ul>
  <li>
    <p>
      <code>qid</code>:
      The work queue ID.
    </p>
  </li>
  <li>
    <p>
      <code>work</code>:
      The work structure to queue
    </p>
  </li>
  <li>
    <p>
      <code>worker</code>:
      The worker callback to be invoked.  The callback will invoked on the worker thread of execution.
    </p>
  </li>
  <li>
    <p>
      <code>arg</code>:
      The argument that will be passed to the worker callback function when it is invoked.
    </p>
  </li>
  <li>
    <p>
      <code>delay</code>:
      Delay (in system clock ticks) from the time queue until the worker is invoked. Zero means to perform the work immediately.
    </p>
  </li>
</ul>
<p>
  <b>Returned Value</b>:
</p>
<ul>
  <p>
     Zero is returned on success; a negated <code>errno</code> is returned on failure.
  </p>
</ul>

<h5><a name="workcancel">4.4.2.3.2 <code>work_cancel()</code></a></h5>
<p>
  <b>Function Prototype</b>:
#include &lt;nuttx/wqueue.h&gt;
int work_cancel(int qid, FAR struct work_s *work);
  <ul><pre>
</pre></ul>
</p>
<p>
  <b>Description</b>.
  Cancel previously queued work.  This removes work from the work queue.  After work has been cancelled, it may be re-queue by calling <code>work_queue()</code> again.
</p>
<p>
  <b>Input Parameters</b>:
</p>
<ul>
  <li>
    <p>
      <code>qid</code>:
      The work queue ID.
    </p>
  </li>
  <li>
    <p>
      <code>work</code>:
      The previously queue work structure to cancel.
    </p>
  </li>
</ul>
<p>
  <b>Returned Value</b>:
</p>
<ul>
  <p>
     Zero is returned on success; a negated <code>errno</code> is returned on failure.
  </p>
  <ul>
    <li><code>ENOENT</code>: There is no such work queued.</li>
    <li><code>EINVAL</code>: An invalid work queue was specified.</li>
  </ul>
</ul>

<h5><a name="worksignal">4.4.2.3.3 <code>work_signal()</code></a></h5>
<p>
  <b>Function Prototype</b>:
#include &lt;nuttx/wqueue.h&gt;
int work_signal(int qid);
  <ul><pre>
</pre></ul>
</p>
<p>
  <b>Description</b>.
  Signal the worker thread to process the work queue now.  This function is used internally by the work logic but could also be used by the user to force an immediate re-assessment of pending work.
</p>
<p>
  <b>Input Parameters</b>:
</p>
<ul>
  <li>
    <p>
      <code>qid</code>:
      The work queue ID.
    </p>
</ul>
<p>
  <b>Returned Value</b>:
</p>
<ul>
  <p>
     Zero is returned on success; a negated <code>errno</code> is returned on failure.
  </p>
</ul>

<h5><a name="workavailable">4.4.2.3.4 <code>work_available()</code></a></h5>
<p>
  <b>Function Prototype</b>:
  <ul><pre>
#include &lt;nuttx/wqueue.h&gt;
bool work_available(FAR struct work_s *work);
</pre></ul>
</p>
<p>
  <b>Description</b>.
</p>
<p>
  <b>Input Parameters</b>:
  Check if the work structure is available.
</p>
<ul>
  <li>
    <p>
      <code>work</code>:
      The work queue structure to check.
    </p>
</ul>
<p>
  <b>Returned Value</b>:
</p>
<ul>
  <p>
  <code>true</code> if available; false if <code>busy</code> (i.e., there is still pending work).
  </p>
</ul>

<h5><a name="workusrstart">4.4.2.3.5 <code>work_usrstart()</code></a></h5>
<p>
  <b>Function Prototype</b>:
  <ul><pre>
#include &lt;nuttx/config.h&gt;
#include &lt;nuttx/wqueue.h&gt;
#if defined(CONFIG_LIB_USRWORK) && !defined(__KERNEL__)
int work_usrstart(void);
#endif
</pre></ul>
</p>
<p>
  <b>Description</b>.
  The function is only available as a user interface in the kernel-mode build.  In the flat build, there is no user-mode work queue; in the protected mode, the user-mode work queue will automatically be started by the OS start-up code.  But in the kernel mode, each user process will be required to start is own, private instance of the user-mode work thread using this interface.
</p>
<p>
  <b>Input Parameters</b>: None
</p>
<p>
  <b>Returned Value</b>:
</p>
<ul>
  <p>
     The task ID of the worker thread is returned on success.  A negated <code>errno</code> value is returned on failure.
  </p>
</ul>

<h5><a name="lpworkboostpriority">4.4.2.3.6 <code>lpwork_boostpriority()</code></a></h5>
<p>
  <b>Function Prototype</b>:
  <ul><pre>
#include &lt;nuttx/config.h&gt;
#include &lt;nuttx/wqueue.h&gt;
#if defined(CONFIG_SCHED_LPWORK) && defined(CONFIG_PRIORITY_INHERITANCE)
void lpwork_boostpriority(uint8_t reqprio);
#endif
</pre></ul>
</p>
<p>
  <b>Description</b>.
  Called by the work queue client to assure that the priority of the low-priority worker thread is at least at the requested level, <code>reqprio</code>.  This function would normally be called just before calling <code>work_queue()</code>.
</p>
<p>
  <b>Input Parameters</b>:
</p>
<ul>
  <li>
    <p>
      <code>reqprio</code>:
      Requested minimum worker thread priority.
    </p>
  </li>
</ul>
<p>
  <b>Returned Value</b>: None
</p>

<h5><a name="lpworkrestorepriority">4.4.2.3.7 <code>lpwork_restorepriority()</code></a></h5>
<p>
  <b>Function Prototype</b>:
  <ul><pre>
#include &lt;nuttx/config.h&gt;
#include &lt;nuttx/wqueue.h&gt;
#if defined(CONFIG_SCHED_LPWORK) && defined(CONFIG_PRIORITY_INHERITANCE)
void lpwork_restorepriority(uint8_t reqprio);
#endif
</pre></ul>
</p>
<p>
  <b>Description</b>.
  This function is called to restore the priority after it was previously boosted.  This is often done by client logic on the worker thread when the scheduled work completes.  It will check if we need to drop the priority of the worker thread.
</p>
<p>
  <b>Input Parameters</b>:
</p>
<ul>
  <li>
    <p>
      <code>reqprio</code>:
      Previously requested minimum worker thread priority to be &quot;unboosted&quot;.
    </p>
  </li>
</ul>
<p>
  <b>Returned Value</b>: None
</p>

<h2><a name="addrenv">4.5 Address Environments</a></h2>
<p>
  CPUs that support memory management units (MMUs) may provide <i>address environments</i> within which tasks and their child threads execute.
  The configuration indicates the CPUs ability to support address environments by setting the configuration variable <code>CONFIG_ARCH_HAVE_ADDRENV=y</code>.
  That will enable the selection of the actual address evironment support which is indicated by the selection of the configuration variable  <code>CONFIG_ARCH_ADDRENV=y</code>.
  These address environments are created only when tasks are created via <code>exec()</code> or <code>exec_module()</code> (see <code>include/nuttx/binfmt/binfmt.h</code>).
</p>
<p>
  When <code>CONFIG_ARCH_ADDRENV=y</code> is set in the board configuration, the CPU-specific logic must provide a set of interfaces as defined in the header file <code>include/nuttx/arch.h</code>.
  These interfaces are listed below and described in detail in the following paragraphs.
</p>
<p>
  The CPU-specific logic must provide two categories in interfaces:
</p>
<ol>
  <li>
    <p>
      <b>Binary Loader Support</b>.
      These are low-level interfaces used in <code>binfmt/</code> to instantiate tasks with address environments.
      These interfaces all operate on type <code>group_addrenv_t</code> which is an abstract representation of a task group's address environment and the type must be defined in<code>arch/arch.h</code> if <code>CONFIG_ARCH_ADDRENV</code> is defined. These low-level interfaces include:
    </p>
    <ul>
      <li>
        <a href="#up_addrenv_create">4.5.1 <code>up_addrenv_create()</code></a>:
        Create an address environment.
      </li>
      <li>
        <a href="#up_addrenv_destroy">4.5.2 <code>up_addrenv_destroy()</code></a>:
        Destroy an address environment.
      </li>
      <li>
        <a href="#up_addrenv_vtext">4.5.3 <code>up_addrenv_vtext()</code></a>:
        Returns the virtual base address of the <code>.text</code> address environment.
      </li>
      <li>
        <a href="#up_addrenv_vdata">4.5.4 <code>up_addrenv_vdata()</code></a>:
        Returns the virtual base address of the <code>.bss</code>/<code>.data</code> address environment.
      </li>
      <li>
        <a href="#up_addrenv_heapsize">4.5.5 <code>up_addrenv_heapsize()</code></a>:
       Return the initial heap size.
      </li>
      <li>
        <a href="#up_addrenv_select">4.5.6 <code>up_addrenv_select()</code></a>:
        Instantiate an address environment.
      </li>
      <li>
        <a href="#up_addrenv_restore">4.5.7 <code>up_addrenv_restore()</code></a>:
        Restore an address environment.
      </li>
      <li>
        <a href="#up_addrenv_clone">4.5.8 <code>up_addrenv_clone()</code></a>:
        Copy an address environment from one location to another.
      </li>
    </ul>
  </li>
  <li>
    <p>
      <b>Tasking Support</b>.
      Other interfaces must be provided to support higher-level interfaces used by the NuttX tasking logic.
      These interfaces are used by the functions in <code>sched/</code> and all operate on the task group which as been assigned an address environment by <code>up_addrenv_clone()</code>.
    </p>
    <ul>
      <li>
        <a href="#up_addrenv_attach">4.5.9 <code>up_addrenv_attach()</code></a>:
        Clone the group address environment assigned to a new thread.
        This operation is done when a pthread is created that share's the same address environment.
      </li>
      <li>
        <a href="#up_addrenv_detach">4.5.10 <code>up_addrenv_detach()</code></a>:
        Release the thread's reference to a group address environment when a task/thread exits.
      </li>
    </ul>
  </li>
  <li>
    <p>
      <b>Dynamic Stack Support</b>.
      <code>CONFIG_ARCH_STACK_DYNAMIC=y</code> indicates that the user process stack resides in its own address space.
      This option is also <i>required</i> if <code> CONFIG_BUILD_KERNEL</code> and <code>CONFIG_LIBC_EXECFUNCS</code> are selected.
      Why?
      Because the caller's stack must be preserved in its own address space when we instantiate the environment of the new process in order to initialize it.
    </p>
    <p>
      <b>NOTE:</b> The naming of the <code>CONFIG_ARCH_STACK_DYNAMIC</code> selection implies that dynamic stack allocation is supported.
      Certainly this option must be set if dynamic stack allocation is supported by a platform.
      But the more general meaning of this configuration environment is simply that the stack has its own address space.
    </p>
    <p>
      If <code>CONFIG_ARCH_STACK_DYNAMIC=y</code> is selected then the platform specific code must export these additional interfaces:
    </p>
    <ul>
      <li>
        <a href="#up_addrenv_ustackalloc">4.5.11 <code>up_addrenv_ustackalloc()</code></a>:
        Create a stack address environment
      </li>
      <li>
        <a href="#up_addrenv_ustackfree">4.5.12 <code>up_addrenv_ustackfree()</code></a>:
        Destroy a stack address environment.
      </li>
      <li>
        <a href="#up_addrenv_vustack">4.5.13 <code>up_addrenv_vustack()</code></a>:
        Returns the virtual base address of the stack
      </li>
      <li>
        <a href="#up_addrenv_ustackselect">4.5.14 <code>up_addrenv_ustackselect()</code></a>:
        Instantiate a stack address environment
      </li>
    </ul>
  </li>
  <li>
    <p>
      If <code>CONFIG_ARCH_KERNEL_STACK</code> is selected, then each user process will have two stacks:  (1) a large (and possibly dynamic) user stack and (2) a smaller kernel stack.  However, this option is <i>required</i> if both <code>CONFIG_BUILD_KERNEL</code> and <code>CONFIG_LIBC_EXECFUNCS</code> are selected.  Why?  Because when we instantiate and initialize the address environment of the new user process, we will temporarily lose the address environment of the old user process, including its stack contents.  The kernel C logic will crash immediately with no valid stack in place.
    </p>
    <p>
      If <code>CONFIG_ARCH_KERNEL_STACK=y</code> is selected then the platform specific code must export these additional interfaces:
    </p>
    <ul>   
      <li>
        <a href="#up_addrenv_kstackalloc">4.5.15 <code>up_addrenv_kstackalloc()</code></a>:
        Allocate the process kernel stack.
      </li>
        <a href="#up_addrenv_kstackfree">4.5.16 <code>up_addrenv_kstackfree()</code></a>:
        Free the process kernel stack.
      </li>
    </ul>
  </li>
</ol>

<h3><a name="up_addrenv_create">4.5.1 <code>up_addrenv_create()</code></a></h3>
<p><b>Function Prototype</b>:</p>
<ul>
  <code>int up_addrenv_create(size_t textsize, size_t datasize, size_t heapsize, FAR group_addrenv_t *addrenv);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  This function is called when a new task is created in order to instantiate an address environment for the new task group.
  <code>up_addrenv_create()</code> is essentially the allocator of the physical memory for the new task.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>textsize</code>: The size (in bytes) of the <code>.text</code> address environment needed by the task.  This region may be read/execute only.</li>
  <li><code>datasize</code>: The size (in bytes) of the <code>.bss/.data</code> address environment needed by the task.   This region may be read/write only.</li>
  <li><code>heapsize</code>: The initial size (in bytes) of the heap address environment needed by the task.  This region may be read/write only.</li>
  <li><code>addrenv</code>: The location to return the representation of the task address environment.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_destroy">4.5.2 <code>up_addrenv_destroy()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_destroy(group_addrenv_t *addrenv);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  This function is called when a final thread leaves the task group and the task group is destroyed.  This function then destroys the defunct address environment, releasing the underlying physical memory allocated by <code>up_addrenv_create()</code>.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>addrenv</code>: The representation of the task address environment previously returned by <code>up_addrenv_create()</code>.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_vtext">4.5.3 <code>up_addrenv_vtext()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_vtext(FAR group_addrenv_t addrenv, FAR void **vtext);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  Return the virtual <code>.text</code> address associated with the newly create address environment.
  This function is used by the binary loaders in order get an address that can be used to initialize the new task.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>addrenv</code>: The representation of the task address environment previously returned by <code>up_addrenv_create()</code>.</li>
  <li><code>vtext</code>: The location to return the virtual address.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_vdata">4.5.4 <code>up_addrenv_vdata()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_vdata(FAR group_addrenv_t *addrenv, size_t textsize, FAR void **vdata);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  Return the virtual <code>.text</code> address associated with the newly create address environment.
  This function is used by the binary loaders in order get an address that can be used to initialize the new task.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>addrenv</code>: The representation of the task address environment previously returned by <code>up_addrenv_create()</code>.</li>
  <li><code>textsize</code>: For some implementations, the text and data will be saved in the same memory region (read/write/execute) and, in this case, the virtual address of the data just lies at this offset into the common region.</li>
  <li><code>vdata</code>: The location to return the virtual address.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_heapsize">4.5.5 <code>up_addrenv_heapsize()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>ssize_t up_addrenv_heapsize(FAR const group_addrenv_t *addrenv);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  Return the initial heap allocation size.
  That is the amount of memory allocated by <code>up_addrenv_create()</code> when the heap memory region was first created.
  This may or may not differ from the <code>heapsize</code> parameter that was passed to <code>up_addrenv_create()</code>.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>addrenv</code>: The representation of the task address environment previously returned by <code>up_addrenv_create()</code>.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  The initial heap size allocated is returned on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_select">4.5.6 <code>up_addrenv_select()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_select(group_addrenv_t *addrenv, save_addrenv_t *oldenv);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  After an address environment has been established for a task (via <code>up_addrenv_create())</code>, this function may be called to to instantiate that address environment in the virtual address space.
  This might be necessary, for example, to load the code for the task from a file or to access address environment private data.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>addrenv</code>: The representation of the task address environment previously returned by <code>up_addrenv_create()</code>.</li>
  <li><code>oldenv</code>:
    The address environment that was in place before <code>up_addrenv_select()</code> was called.
    This may be used with <code>up_addrenv_restore()</code> to restore the original  address environment that was in place before <code>up_addrenv_select()</code> was called.
    Note that this may be a task agnostic, platform-specific representation that may or may not be different from <code>group_addrenv_t</code>.
  </li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_restore">4.5.7 <code>up_addrenv_restore()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_restore(save_addrenv_t oldenv);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  After an address environment has been temporarily instantiated by <code>up_addrenv_select</code>,
  this function may be called to to restore the original address environment.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>oldenv</code>: The platform-specific representation of the address environment previously returned by <code>up_addrenv_select()</code>.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_clone">4.5.8 <code>up_addrenv_clone()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_clone(FAR const task_group_s *src, FAR struct task_group_s *dest);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  Duplicate an address environment.  This does not copy the underlying memory, only the representation that can be used to instantiate that memory as an address environment.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>src</code>: The address environment to be copied.</li>
  <li><code>dest</code>: The location to receive the copied address environment.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_attach">4.5.9 <code>up_addrenv_attach()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_attach(FAR struct task_group_s *group, FAR struct tcb_s *tcb);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  <p>
  This function is called from the core scheduler logic when a thread is created that needs to share the address environment of its task group.
  In this case, the group's address environment may need to be &quot;cloned&quot; for the child thread.
  </p>
  <p>
  NOTE: In most platforms, nothing will need to be done in this case.
  Simply being a member of the group that has the address environment may be sufficient.
  </p>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>group</code>: The task group to which the new thread belongs.</li>
  <li><code>ctcb</code>: The TCB of the thread needing the address environment.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_detach">4.5.10 <code>up_addrenv_detach()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_detach(FAR struct task_group_s *group, FAR struct task_group_s *tcb);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  This function is called when a task or thread exits in order to release its reference to an address environment.  The address environment, however, should persist until up_addrenv_destroy() is called when the task group is itself destroyed.  Any resources unique to this thread  may be destroyed now.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>group</code>: The group to which the thread belonged.</li>
  <li><code>tcb</code>: The TCB of the task or thread whose the address environment will be released.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_ustackalloc">4.5.11 <code>up_addrenv_ustackalloc()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_ustackalloc(FAR struct tcb_s *tcb, size_t stacksize);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
<p>
  This function is called when a new thread is created in order to instantiate an address environment for the new thread's stack.
  <code>up_addrenv_ustackalloc()</code> is essentially the allocator of the physical memory for the new task's stack.
</p>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>tcb</code>: The TCB of the thread that requires the stack address environment.</li>
  <li><code>stacksize</code>: The size (in bytes) of the initial stack address environment needed by the task.  This region may be read/write only.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_up_addrenv_ustackfreeattach">4.5.12 <code>up_addrenv_ustackfree()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_ustackfree(FAR struct tcb_s *tcb);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  <p>
    This function is called when any thread exits.
    This function then destroys the defunct address environment for the thread's stack, releasing the underlying physical memory.
  </p>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>tcb</code>: The TCB of the thread that no longer requires the stack address environment.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_vustack">4.5.13 <code>up_addrenv_vustack()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_vustack(FAR const struct tcb_s *tcb, FAR void **vstack);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  <p>
    Return the virtual address associated with the newly create stack address environment.
  </p>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>tcb</code>:The TCB of the thread with the stack address environment of interest. </li>
  <li><code>vstack</code>: The location to return the stack virtual base address.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_ustackselect">4.5.14 <code>up_addrenv_ustackselect()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_ustackselect(FAR const struct tcb_s *tcb);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  <P>
    After an address environment has been established for a task's stack (via <code>up_addrenv_ustackalloc()</code>.
    This function may be called to instantiate that address environment in the virtual address space.
    This is a necessary step before each context switch to the newly created thread (including the initial thread startup).
  </p>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>tcb</code>: The TCB of the thread with the stack address environment to be instantiated.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_kstackalloc">4.5.15 <code>up_addrenv_kstackalloc()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_kstackalloc(FAR struct tcb_s *tcb);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  <p>
    This function is called when a new thread is created to allocate the new thread's kernel stack.
    This function may be called for certain terminating threads which have no kernel stack.
    It must be tolerant of that case.
  </p>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li><code>tcb</code>: The TCB of the thread that requires the kernel stack.</li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h3><a name="up_addrenv_kstackfree">4.5.16 <code>up_addrenv_kstackfree()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul>
  <code>int up_addrenv_kstackfree(FAR struct tcb_s *tcb);</code>
</ul>
<p><b>Description</b>:</p>
<ul>
  <p>
    This function is called when any thread exits.  This function frees the kernel stack.
  </p>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li>
    <code>tcb</code>: The TCB of the thread that no longer requires the kernel stack.
  </li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) on success; a negated <code>errno</code> value on failure.
</ul>

<h2><a name="exports">4.6 APIs Exported by NuttX to Architecture-Specific Logic</a></h2>
<p>
  These are standard interfaces that are exported by the OS
  for use by the architecture specific logic.
</p>

<h3><a name="osstart">4.6.1 <code>os_start()</code></a></h3>
<p>
  <b><i>To be provided</i></b>
</p>

<h3><a name="listmgmt">4.6.2 OS List Management APIs</a></h3></h3>
<p>
  <b><i>To be provided</i></b>
</p>

<h3><a name="schedprocesstimer">4.6.3 <code>sched_process_timer()</code></a></h3>
<p><b>Function Prototype</b>: <code>void sched_process_timer(void);</code></p>

<p><b>Description</b>.
  This function handles system timer events.
  The timer interrupt logic itself is implemented in the
  architecture specific code, but must call the following OS
  function periodically -- the calling interval must be
  <code>MSEC_PER_TICK</code>.
</p>

<h3><a name="schedtimerexpiration">4.6.4 <code>sched_timer_expiration()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul><pre>
#include &lt;nuttx/arch.h&gt;
void sched_timer_expiration(void);
</ul>
<p><b>Description</b>:</p>
  Description: if <code>CONFIG_SCHED_TICKLESS</code> is defined, then this function is provided by the RTOS base code and called from platform-specific code when the interval timer used to implemented the tick-less OS expires.
<ul>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  None
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  None
</ul>
<p><b>Assumptions</b>:</p>
<ul>
  Base code implementation assumes that this function is called from interrupt handling logic with interrupts disabled.
</ul>

<h3><a name="schedalarmexpiration">4.6.5 <code>sched_alaram_expiration()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul><pre>
#include &lt;nuttx/arch.h&gt;
void sched_timer_expiration(void);
</ul>
<p><b>Description</b>:</p>
  Description: if <code>CONFIG_SCHED_TICKLESS</code> is defined, then this function is provided by the RTOS base code and called from platform-specific code when the interval timer used to implemented the tick-less OS expires.
<ul>
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  None
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  None
</ul>
<p><b>Assumptions</b>:</p>
<ul>
  Base code implementation assumes that this function is called from interrupt handling logic with interrupts disabled.
</ul>

<h3><a name="irqdispatch">4.6.6 <code>irq_dispatch()</code></a></h3>
<p><b>Function Prototype</b>: <code>void irq_dispatch(int irq, FAR void *context);</code></p>

<p><b>Description</b>.
  This function must be called from the architecture-
  specific logic in order to display an interrupt to
  the appropriate, registered handling logic.
</p>

<h2><a name="shm">4.7 Shared Memory</a></h2>
<p>
  Shared memory interfaces are only available with the NuttX kernel build (<code>CONFIG_BUILD_KERNEL=y</code>).
  These interfaces support user memory regions that can be shared between multiple user processes.
  The user interfaces are provided in the standard header file <code>include/sys/shm.h></code>.
  All logic to support shared memory is implemented within the NuttX kernel with the exception of two low-level functions that are require to configure the platform-specific MMU resources.
  Those interfaces are described below:
</p>

<h3><a name="upshmat">4.7.1 <code>up_shmat()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul><pre>
#include &lt;nuttx/arch.h&gt;
#ifdef CONFIG_MM_SHM
int up_shmat(FAR uintptr_t *pages, unsigned int npages, uintptr_t vaddr);
#endif
</ul>
<p><b>Description</b>:</p>
<ul>
  Attach, i.e, map, on shared memory region to a user virtual address.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li>
    <code>pages</code>: A pointer to the first element in a array of physical address, each corresponding to one page of memory.
  </li>
  <li>
    <code>npages</code>: The number of pages in the list of physical pages to be mapped.
  </li>
  <li>
    <code>vaddr</code>: The virtual address corresponding to the beginning of the (contiguous) virtual address region.
  </li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) is returned on success; a negated <code>errno</code> value is returned on failure.
</ul>

<h3><a name="upshmdt">4.7.2 <code>up_shmdt()</code></a></h3>
<p><b>Function Prototype</b>:<p>
<ul><pre>
#include &lt;nuttx/arch.h&gt;
#ifdef CONFIG_MM_SHM
int up_shmdt(uintptr_t vaddr, unsigned int npages);
#endif
</ul>
<p><b>Description</b>:</p>
<ul>
  Detach, i.e, unmap, on shared memory region from a user virtual address.
</ul>
<p><b>Input Parameters</b>:</p>
<ul>
  <li>
    <code>vaddr</code>: The virtual address corresponding to the beginning of the (contiguous) virtual address region.
  </li>
  <li>
    <code>npages</code>: T The number of pages to be unmapped.
  </li>
</ul>
<p><b>Returned Value</b>:</p>
<ul>
  Zero (<code>OK</code>) is returned on success; a negated <code>errno</code> value is returned on failure.
</ul>

<h2><a name="demandpaging">4.8 On-Demand Paging</a></h2>
<p>
  The NuttX On-Demand Paging feature permits embedded MCUs with some limited RAM space to execute large programs from some non-random access media.
  If the platform meets certain requirements, then NuttX can provide on-demand paging:
  It can copy .text from the large program in non-volatile media into RAM as needed to execute a huge program from the small RAM.
  Design and porting issues for this feature are discussed in a separate document.
  Please see the <a href="NuttXDemandPaging.html">NuttX Demand Paging</a> design document for further information.
</p>

<h2><a name="ledsupport">4.9 LED Support</a></h2>

<p>
  A board architecture may or may not have LEDs.
  If the board does have LEDs, then most architectures provide similar LED support that is enabled when <code>CONFIG_ARCH_LEDS</code>
  is selected in the NuttX configuration file.
  This LED support is part of architecture-specific logic and is not managed by the core NuttX logic.
  However, the support provided by each architecture is sufficiently similar that it can be documented here.
</p>

<h3><a name="ledheaders">4.9.1 Header Files</a></h3>

<p>
  LED-related definitions are provided in two header files:
  <ul>
    <li>
       LED definitions are provided for each board in the <code>board.h</code> that resides
       in the <code><i>&lt;board-name&gt;</i>/include/board.h</code> file (which is also
       linked to <code>include/arch/board/board.h</code> when the RTOS is configured).
       Those definitions are discussed <a href="#leddefinitions">below</a>.
    </li>
    <li>
       The board-specific logic provides unique instances of the LED interfaces.
       This is because the implementation of LED support may be very different
       on different boards.
       Prototypes for these board-specific implementations are, however, provided
       in architecture-common header files.
       That header file is usually at <code><i>&lt;arch-name&gt;</i>/src/common/up_internal.h</code>,
       but could be at other locations in particular architectures.
       These prototypes are discussed <a href="#ledapis">below</a>.
    </li>
  </ul>
</p>

<h3><a name="leddefinitions">4.9.2 LED Definitions</a></h3>

<p>
   The implementation of LED support is very specific to a board architecture.
   Some boards have several LEDS, others have only one or two.
   Some have none.
   Others LED matrices and show alphanumeric data, etc.
   The NuttX logic does not refer to specific LEDS, rather, it refers to an event to be shown on the LEDS
   in whatever manner is appropriate for the board;
   the way that this event is presented depends upon the hardware available on the board.
</p>
<p>
   The model used by NuttX is that the board can show 8 events defined as follows in <code><i>&lt;board-name&gt;</i>/include/board.h</code>:
</p>
<ul><pre>
#define LED_STARTED       ??
#define LED_HEAPALLOCATE  ??
#define LED_IRQSENABLED   ??
#define LED_STACKCREATED  ??
#define LED_INIRQ         ??
#define LED_SIGNAL        ??
#define LED_ASSERTION     ??
#define LED_PANIC         ??
</pre></ul>
<p>
  The specific value assigned to each pre-processor variable can be whatever makes the implementation easiest for the board logic.
  The <i>meaning</i> associated with each definition is as follows:
</p>
<ul>
  <li>
    <code>LED_STARTED</code> is the value that describes the setting of the LEDs when the LED logic is first initialized.
    This LED value is set but never cleared.
  </li>
  <li>
    <code>LED_HEAPALLOCATE</code> indicates that the NuttX heap has been configured.
    This is an important place in the boot sequence because if the memory is configured wrong, it will probably crash leaving this LED setting.
    This LED value is set but never cleared.
  </li>
  <li>
    <code>LED_IRQSENABLED</code> indicates that interrupts have been enabled.
    Again, during bring-up (or if there are hardware problems), it is very likely that the system may crash just when interrupts are enabled, leaving this setting on the LEDs.
    This LED value is set but never cleared.
  </li>
  <li>
    <code>LED_STACKCREATED</code> is set each time a new stack is created.
    If set, it means that the system attempted to start at least one new thread.
    This LED value is set but never cleared.
  </li>
  <li>
    <code>LED_INIRQ</code> is set and cleared on entry and exit from each interrupt.
    If interrupts are working okay, this LED will have a dull glow.
  </li>
  <li>
    <code>LED_SIGNAL</code> is set and cleared on entry and exit from a signal handler.
    Signal handlers are tricky so this is especially useful during bring-up or a new architecture.
  </li>
  <li>
    <code>LED_ASSERTION</code> is set if an assertion occurs.
  </li>
  <li>
    <code>LED_PANIC</code> will blink at around 1Hz if the system panics and hangs.
  </li>
</ul>

<h3><a name="ledapis">4.9.3 Common LED interfaces</a></h3>

<p>
  The <code>include/nuttx/board.h</code> has declarations like:
</p>
<ul><pre>
#ifdef CONFIG_ARCH_LEDS
void board_led_initialize(void);
void board_led_on(int led);
void board_led_off(int led);
#else
# define board_led_initialize()
# define board_led_on(led)
# define board_led_off(led)
#endif
</pre></ul>
<p>
   Where:
<p>
<ul>
  <li>
    <code>void board_led_initialize(void)</code> is called early in power-up initialization to initialize the LED hardware.
  </li>
  <li>
    <code>board_led_on(int led)</code> is called to instantiate the LED presentation of the event.
    The <code>led</code> argument is one of the definitions provided in <code><i>&lt;board-name&gt;</i>/include/board.h</code>.
  </li>
  <li>
    <code>board_led_off(int led</code>is called to terminate the LED presentation of the event.
    The <code>led</code> argument is one of the definitions provided in <code><i>&lt;board-name&gt;</i>/include/board.h</code>.
    Note that only <code>LED_INIRQ</code>, <code>LED_SIGNAL</code>, <code>LED_ASSERTION</code>, and <code>LED_PANIC</code>
    indications are terminated.
  </li>
</ul>

<table width ="100%">
  <tr bgcolor="#e4e4e4">
    <td>
      <h1><a name="NxFileSystem">5.0 NuttX File System</a></h1>
    </td>
  </tr>
</table>

<p><b>Overview</b>.
  NuttX includes an optional, scalable file system.
  This file-system may be omitted altogether; NuttX does not depend on the presence
  of any file system.
</p>

<p><b>Pseudo Root File System</b>.
  Or, a simple <i>in-memory</i>, <i>pseudo</i> file system can be enabled.
  This simple file system can be enabled setting the CONFIG_NFILE_DESCRIPTORS
  option to a non-zero value (see <a href="#apndxconfigs">Appendix A</a>).
  This is an <i>in-memory</i> file system because it does not require any
  storage medium or block driver support.
  Rather, file system contents are generated on-the-fly as referenced via
  standard file system operations (open, close, read, write, etc.).
  In this sense, the file system is <i>pseudo</i> file system (in the
  same sense that the Linux <code>/proc</code> file system is also
  referred to as a pseudo file system).
</p>

<p>
  Any user supplied data or logic can be accessed via the pseudo-file system.
  Built in support is provided for character and block <a href="#DeviceDrivers">drivers</a> in the
  <code>/dev</code> pseudo file system directory.
</p>

<p><b>Mounted File Systems</b>
  The simple in-memory file system can be extended my mounting block
  devices that provide access to true file systems backed up via some
  mass storage device.
  NuttX supports the standard <code>mount()</code> command that allows
  a block driver to be bound to a mountpoint within the pseudo file system
  and to a file system.
  At present, NuttX supports the standard VFAT and ROMFS file systems,
  a special, wear-leveling NuttX FLASH File System (NXFFS),
  as well as a Network File System client (NFS version 3, UDP).
</p>

<p><b>Comparison to Linux</b>
  From a programming perspective, the NuttX file system appears very similar
  to a Linux file system.
  However, there is a fundamental difference:
  The NuttX root file system is a pseudo file system and true file systems may be
  mounted in the pseudo file system.
  In the typical Linux installation by comparison, the Linux root file system
  is a true file system and pseudo file systems may be mounted in the true,
  root file system.
  The approach selected by NuttX is intended to support greater scalability
  from the very tiny platform to the moderate platform.
</p>

<table width ="100%">
  <tr bgcolor="#e4e4e4">
    <td>
      <h1><a name="DeviceDrivers">6.0 NuttX Device Drivers</a></h1>
    </td>
  </tr>
</table>

<p>
  NuttX supports a variety of device drivers including:
  <ul>
    <li><i>Character</i> Device Drivers,</li>
    <li><i>Block</i> Device Drivers, and</li>
    <li>Other <i>Specialized</i> Drivers.</li>
  </ul>
  These different device driver types are discussed in the following paragraphs.
  Note: device driver support requires that the <i>in-memory</i>, <i>pseudo</i> file system
  is enabled by setting the CONFIG_NFILE_DESCRIPTORS in the NuttX configuration file to a
  non-zero value.
</p>

<h2><a name="chardrivers">6.1 Character Device Drivers</a></h2>

<p>
  Character device drivers have these properties:
</p>
<ul>
  <li>
    <p>
    <b><code>include/nuttx/fs/fs.h</code></b>.
    All structures and APIs needed to work with character drivers are provided in this header file.
    </p>
  </li>
  <li>
    <p>
    <b><code>struct file_operations</code></b>.
    Each character device driver must implement an instance of <code>struct file_operations</code>.
    That structure defines a call table with the following methods:
    <ul>
     <p><code>int open(FAR struct file *filep);</code><br>
     <code>int close(FAR struct file *filep);</code><br>
     <code>ssize_t read(FAR struct file *filep, FAR char *buffer, size_t buflen);</code><br>
     <code>ssize_t write(FAR struct file *filep, FAR const char *buffer, size_t buflen);</code><br>
     <code>off_t seek(FAR struct file *filep, off_t offset, int whence);</code><br>
     <code>int ioctl(FAR struct file *filep, int cmd, unsigned long arg);</code><br>
     <code>int poll(FAR struct file *filep, struct pollfd *fds, bool setup);</code></p>
    </ul>
    </p>
  </li>
  <li>
    <p>
    <b><code>int register_driver(const char *path, const struct file_operations *fops, mode_t mode, void *priv);</code></b>.
    Each character driver registers itself by calling <code>register_driver()</code>, passing it the
    <code>path</code> where it will appear in the <a href="#NxFileSystem">pseudo-file-system</a> and it's
    initialized instance of <code>struct file_operations</code>.
    </p>
  </li>
  <li>
    <p>
    <b>User Access</b>.
    After it has been registered, the character driver can be accessed by user code using the standard
    <a href="NuttxUserGuide.html#driveroperations">driver operations</a> including
    <code>open()</code>, <code>close()</code>, <code>read()</code>, <code>write()</code>, etc.
    </p>
  </li>
  <li>
    <p>
    <b>Specialized Character Drivers</b>.
    Within the common character driver framework, there are different specific varieties of <i>specialized</i> character drivers.
    The unique requirements of the underlying device hardware often mandates some customization of the character driver.
    These customizations tend to take the form of:
    </p>
    <ul>
      <li>
        Device-specific <code>ioctl()</code> commands used to performed specialized operations on the device.
        These <code>ioctl()</code> will be documented in header files under <code>include/nuttx</code> that detail the specific device interface.
      </li>
      <li>
        Specialized I/O formats.
        Some devices will require that <code>read()</code> and/or <code>write()</code> operations use data conforming to a specific format, rather than a plain stream of bytes.
        These specialized I/O formats will be documented in header files under <code>include/nuttx</code> that detail the specific device interface.
        The typical representation of the I/O format will be a C structure definition.
      </li>
    </ul>
    <p>
    The specialized character drivers support by NuttX are documented in the following paragraphs.
    </p>
  </li>
  <li>
    <p>
    <b>Examples</b>:
    <code>drivers/dev_null.c</code>, <code>drivers/fifo.c</code>, <code>drivers/serial.c</code>, etc.
    </p>
 </li>
</ul>

<h3><a name="serialdrivers">6.1.1 Serial Device Drivers</a></h3>

<ul>
  <li>
    <p>
    <b><code>include/nuttx/serial/serial.h</code></b>.
    All structures and APIs needed to work with serial drivers are provided in this header file.
    </p>
  </li>
  <li>
    <p>
    <b><code>struct uart_ops_s</code></b>.
    Each serial device driver must implement an instance of <code>struct uart_ops_s</code>.
    That structure defines a call table with the following methods:
    <ul>
     <p><code>int setup(FAR struct uart_dev_s *dev);</code><br>
     <code>void shutdown(FAR struct uart_dev_s *dev);</code><br>
     <code>int attach(FAR struct uart_dev_s *dev);</code><br>
     <code>void detach(FAR struct uart_dev_s *dev);</code><br>
     <code>int ioctl(FAR struct file *filep, int cmd, unsigned long arg);</code><br>
     <code>int receive(FAR struct uart_dev_s *dev, unsigned int *status);</code><br>
     <code>void rxint(FAR struct uart_dev_s *dev, bool enable);</code><br>
     <code>bool rxavailable(FAR struct uart_dev_s *dev);</code><br>
     <code>#ifdef CONFIG_SERIAL_IFLOWCONTROL</code><br>
     <code>bool rxflowcontrol(FAR struct uart_dev_s *dev, unsigned int nbuffered, bool upper);</code><br>
     <code>#endif</code><br>
     <code>void send(FAR struct uart_dev_s *dev, int ch);</code><br>
     <code>void txint(FAR struct uart_dev_s *dev, bool enable);</code><br>
     <code>bool txready(FAR struct uart_dev_s *dev);</code><br>
     <code>bool txempty(FAR struct uart_dev_s *dev);</code></p>
    </ul>
    </p>
  </li>
  <li>
    <p>
    <b><code>int uart_register(FAR const char *path, FAR uart_dev_t *dev);</code></b>.
    A serial driver may register itself by calling <code>uart_register()</code>, passing it the
    <code>path</code> where it will appear in the <a href="#NxFileSystem">pseudo-file-system</a> and it's
    initialized instance of <code>struct uart_ops_s</code>.
    By convention, serial device drivers are registered at paths like <code>/dev/ttyS0</code>, <code>/dev/ttyS1</code>, etc.
    See the <code>uart_register()</code> implementation in <code>drivers/serial.c</code>.
    </p>
  </li>
  <li>
    <p>
    <b>User Access</b>.
    Serial drivers are, ultimately, normal <a href="#chardrivers">character drivers</a> and are accessed as other character drivers.
    </p>
  </li>
  <li>
    <p>
    <b>Examples</b>:
    <code>arch/arm/src/chip/lm_serial.c</code>, <code>arch/arm/src/lpc214x/lpc214x_serial.c</code>, <code>arch/z16/src/z16f/z16f_serial.c</code>, etc.
    </p>
  </li>
</ul>

<h3><a name="tscdrivers">6.1.1 Touchscreen Device Drivers</a></h3>

<p>
  NuttX supports a two-part touchscreen driver architecture.
</p>
<ol>
  <li>
    An &quot;upper half&quot;, generic driver that provides the common touchscreen interface to application level code, and
  </li>
  <li>
    A &quot;lower half&quot;, platform-specific driver that implements the low-level touchscreen controls to implement the touchscreen functionality.
  </li>
</ol>
<p>
  Files supporting the touchscreen controller (TSC) driver can be found in the following locations:
</p>
<ul>
  <li><b>Interface Definition</b>.
    The header files for NuttX touchscreen drivers reside in the <code>include/nuttx/include/input</code> directory.
    The interface between the touchscreen controller &quot;upper half&quot; and &quot;lower half&quot; drivers are <i>not</i> common, but vary from controller-to-controller.
    Because of this, each touchscreen driver has its own unique header file that describes the &quot;upper half&quot;/&quot;lower half&quot; interface in that directory.
    The application level interface to each touchscreen driver, on the other hand, <i>is</i> the same for each touchscreen driver and is described <code>include/nuttx/include/input/touchscreen.h</code>.
    The touchscreen driver uses a standard character driver framework but read operations return specially formatted data.
  </li>
  <li><b>&quot;Upper Half&quot; Driver</b>.
    The controller-specific, &quot;upper half&quot; touchscreen drivers reside in the directory <code>drivers/input</code>.
  </li>
  <li><b>&quot;Lower Half&quot; Drivers</b>.
    Platform-specific touchscreen drivers reside in either: (1) The <code>arch/</code><i>&lt;architecture&gt;</i><code>/src/</code><i>&lt;chip&gt;</i> directory for the processor architectures that have build in touchscreen controllers or (2) the <code>configs/</code><i>&lt;board&gt;</i><code>/src/</code> directory for boards that use an external touchscreen controller chip.
  </li>
</ul>

<h3><a name="analogdrivers">6.1.2 Analog (ADC/DAC) Drivers</a></h3>
<p>
  The NuttX analog drivers are split into two parts:
</p>
<ol>
  <li>
    An &quot;upper half&quot;, generic driver that provides the common analog interface to application level code, and
  </li>
  <li>
    A &quot;lower half&quot;, platform-specific driver that implements the low-level controls to implement the analog functionality.
  </li>
</ol>
<ul>
  <li>
    General header files for the NuttX analog drivers reside in <code>include/nuttx/analog/</code>.
    These header files includes both the application level interface to the analog driver as well as the interface between the &quot;upper half&quot; and &quot;lower half&quot; drivers.
  </li>
  <li>
    Common analog logic and share-able analog drivers reside in the <code>drivers/analog/</code>.
  </li>
  <li>
    Platform-specific drivers reside in <code>arch/</code><i>&lt;architecture&gt;</i><code>/src/</code><i>&lt;chip&gt;</i> directory for the specific processor <i>&lt;architecture&gt;</i> and for the specific <i>&lt;chip&gt;</i> analog peripheral devices.
  </li>
</ul>

<h4><a name="adcdrivers">6.1.3.1 ADC Drivers</a></h4>
<ul>
  <li>
    <code>include/nuttx/analog/adc.h</code>.
    All structures and APIs needed to work with ADC drivers are provided in this header file.
    This header file includes:
    <ol>
      <li>
        Structures and interface descriptions needed to develop a low-level,
        architecture-specific, ADC driver.
      </li>
      <li>
        To register the ADC driver with a common ADC character driver.
      </li>
      <li>
        Interfaces needed for interfacing user programs with the common ADC character driver.
      </li>
    </ol>
  </li>
  <li>
    <code>drivers/analog/adc.c</code>.
    The implementation of the common ADC character driver.
  </li>
</ul>

<h4><a name="dacdrivers">6.1.3.2 DAC Drivers</a></h4>
<ul>
  <li>
    <code>include/nuttx/analog/dac.h</code>.
    All structures and APIs needed to work with DAC drivers are provided in this header file.
    This header file includes:
    <ol>
      <li>
        Structures and interface descriptions needed to develop a low-level,
        architecture-specific, DAC driver.
      </li>
      <li>
        To register the DAC driver with a common DAC character driver.
      </li>
      <li>
        Interfaces needed for interfacing user programs with the common DAC character driver.
      </li>
    </ol>
  </li>
  <li>
    <code>drivers/analog/dac.c</code>.
    The implementation of the common DAC character driver.
  </li>
</ul>

<h3><a name="pwmdrivers">6.1.4 PWM Drivers</a></h3>
<p>
  For the purposes of this driver, a PWM device is any device that generates periodic output pulses of controlled frequency and pulse width.
  Such a device might be used, for example, to perform pulse-width modulated output or frequency/pulse-count modulated output
  (such as might be needed to control a stepper motor).
</p>
<p>
  The NuttX PWM driver is split into two parts:
</p>
<ol>
  <li>
    An &quot;upper half&quot;, generic driver that provides the common PWM interface to application level code, and
  </li>
  <li>
    A &quot;lower half&quot;, platform-specific driver that implements the low-level timer controls to implement the PWM functionality.
  </li>
</ol>
<p>
  Files supporting PWM can be found in the following locations:
</p>
<ul>
  <li><b>Interface Definition</b>.
    The header file for the NuttX PWM driver reside at <code>include/nuttx/pwm.h</code>.
    This header file includes both the application level interface to the PWM driver as well as the interface between the &quot;upper half&quot; and &quot;lower half&quot; drivers.
    The PWM module uses a standard character driver framework.
    However, since the PWM driver is a devices control interface and not a data transfer interface,
    the majority of the functionality available to the application is implemented in driver ioctl calls.
  </li>
  <li><b>&quot;Upper Half&quot; Driver</b>.
    The generic, &quot;upper half&quot; PWM driver resides at <code>drivers/pwm.c</code>.
  </li>
  <li><b>&quot;Lower Half&quot; Drivers</b>.
    Platform-specific PWM drivers reside in <code>arch/</code><i>&lt;architecture&gt;</i><code>/src/</code><i>&lt;chip&gt;</i> directory for the specific processor <i>&lt;architecture&gt;</i> and for the specific <i>&lt;chip&gt;</i> PWM peripheral devices.
  </li>
</ul>

<h3><a name="candrivers">6.1.5 CAN Drivers</a></h3>
<p>
  NuttX supports only a very low-level CAN driver.
  This driver supports only the data exchange and does not include any high-level CAN protocol.
  The NuttX CAN driver is split into two parts:
</p>
<ol>
  <li>
    An &quot;upper half&quot;, generic driver that provides the common CAN interface to application level code, and
  </li>
  <li>
    A &quot;lower half&quot;, platform-specific driver that implements the low-level timer controls to implement the CAN functionality.
  </li>
</ol>
<p>
  Files supporting CAN can be found in the following locations:
</p>
<ul>
  <li><b>Interface Definition</b>.
    The header file for the NuttX CAN driver reside at <code>include/nuttx/can.h</code>.
    This header file includes both the application level interface to the CAN driver as well as the interface between the &quot;upper half&quot; and &quot;lower half&quot; drivers.
    The CAN module uses a standard character driver framework.
  </li>
  <li><b>&quot;Upper Half&quot; Driver</b>.
    The generic, &quot;upper half&quot; CAN driver resides at <code>drivers/can.c</code>.
  </li>
  <li><b>&quot;Lower Half&quot; Drivers</b>.
    Platform-specific CAN drivers reside in <code>arch/</code><i>&lt;architecture&gt;</i><code>/src/</code><i>&lt;chip&gt;</i> directory for the specific processor <i>&lt;architecture&gt;</i> and for the specific <i>&lt;chip&gt;</i> CAN peripheral devices.
  </li>
</ul>

<h3><a name="quadencoder">6.1.6 Quadrature Encoder Drivers</a></h3>
<p>
  NuttX supports a low-level, two-part Quadrature Encoder driver.
</p>
<ol>
  <li>
    An &quot;upper half&quot;, generic driver that provides the common Quadrature Encoder interface to application level code, and
  </li>
  <li>
    A &quot;lower half&quot;, platform-specific driver that implements the low-level timer controls to implement the Quadrature Encoder functionality.
  </li>
</ol>
<p>
  Files supporting the Quadrature Encoder can be found in the following locations:
</p>
<ul>
  <li><b>Interface Definition</b>.
    The header file for the NuttX Quadrature Encoder driver reside at <code>include/nuttx/sensors/qencoder.h</code>.
    This header file includes both the application level interface to the Quadrature Encoder driver as well as the interface between the &quot;upper half&quot; and &quot;lower half&quot; drivers.
    The Quadrature Encoder module uses a standard character driver framework.
  </li>
  <li><b>&quot;Upper Half&quot; Driver</b>.
    The generic, &quot;upper half&quot; Quadrature Encoder driver resides at <code>drivers/sensors/qencoder.c</code>.
  </li>
  <li><b>&quot;Lower Half&quot; Drivers</b>.
    Platform-specific Quadrature Encoder drivers reside in <code>arch/</code><i>&lt;architecture&gt;</i><code>/src/</code><i>&lt;chip&gt;</i> directory for the specific processor <i>&lt;architecture&gt;</i> and for the specific <i>&lt;chip&gt;</i> Quadrature Encoder peripheral devices.
  </li>
</ul>

<h3><a name="timerdriver">6.1.7 Timer Drivers</a></h3>
<p>
  NuttX supports a low-level, two-part timer driver.
</p>
<ol>
  <li>
    An &quot;upper half&quot;, generic driver that provides the common timer interface to application level code, and
  </li>
  <li>
    A &quot;lower half&quot;, platform-specific driver that implements the low-level timer controls to implement the timer functionality.
  </li>
</ol>
<p>
  Files supporting the timer driver can be found in the following locations:
</p>
<ul>
  <li><b>Interface Definition</b>.
    The header file for the NuttX timer driver reside at <code>include/nuttx/timer.h</code>.
    This header file includes both the application level interface to the timer driver as well as the interface between the &quot;upper half&quot; and &quot;lower half&quot; drivers.
    The timer driver uses a standard character driver framework.
  </li>
  <li><b>&quot;Upper Half&quot; Driver</b>.
    The generic, &quot;upper half&quot; timer driver resides at <code>drivers/timers/timer.c</code>.
  </li>
  <li><b>&quot;Lower Half&quot; Drivers</b>.
    Platform-specific timer drivers reside in <code>arch/</code><i>&lt;architecture&gt;</i><code>/src/</code><i>&lt;chip&gt;</i> directory for the specific processor <i>&lt;architecture&gt;</i> and for the specific <i>&lt;chip&gt;</i> timer peripheral devices.
  </li>
</ul>

<h3><a name="rtcriver">6.1.8 RTC Drivers</a></h3>
<p>
  NuttX supports a low-level, two-part RealTime Clock (RTC) driver.
</p>
<ol>
  <li>
    An &quot;upper half&quot;, generic driver that provides the common RTC interface to application level code, and
  </li>
  <li>
    A &quot;lower half&quot;, platform-specific driver that implements the low-level timer controls to implement the RTC functionality.
  </li>
</ol>
<p>
  Files supporting the RTC driver can be found in the following locations:
</p>
<ul>
  <li><b>Interface Definition</b>.
    The header file for the NuttX RTC driver reside at <code>include/nuttx/rtc.h</code>.
    This header file includes both the application level interface to the RTC driver as well as the interface between the &quot;upper half&quot; and &quot;lower half&quot; drivers.
    The RTC driver uses a standard character driver framework.
  </li>
  <li><b>&quot;Upper Half&quot; Driver</b>.
    The generic, &quot;upper half&quot; RTC driver resides at <code>drivers/timers/rtc.c</code>.
  </li>
  <li><b>&quot;Lower Half&quot; Drivers</b>.
    Platform-specific RTC drivers reside in <code>arch/</code><i>&lt;architecture&gt;</i><code>/src/</code><i>&lt;chip&gt;</i> directory for the specific processor <i>&lt;architecture&gt;</i> and for the specific <i>&lt;chip&gt;</i> RTC peripheral devices.
  </li>
</ul>

<h3><a name="wdogdriver">6.1.9 Watchdog Timer Drivers</a></h3>
<p>
  NuttX supports a low-level, two-part watchdog timer driver.
</p>
<ol>
  <li>
    An &quot;upper half&quot;, generic driver that provides the common watchdog timer interface to application level code, and
  </li>
  <li>
    A &quot;lower half&quot;, platform-specific driver that implements the low-level timer controls to implement the watchdog timer functionality.
  </li>
</ol>
<p>
  Files supporting the watchdog timer driver can be found in the following locations:
</p>
<ul>
  <li><b>Interface Definition</b>.
    The header file for the NuttX watchdog timer driver reside at <code>include/nuttx/watchdog.h</code>.
    This header file includes both the application level interface to the watchdog timer driver as well as the interface between the &quot;upper half&quot; and &quot;lower half&quot; drivers.
    The watchdog timer driver uses a standard character driver framework.
  </li>
  <li><b>&quot;Upper Half&quot; Driver</b>.
    The generic, &quot;upper half&quot; watchdog timer driver resides at <code>drivers/timers/watchdog.c</code>.
  </li>
  <li><b>&quot;Lower Half&quot; Drivers</b>.
    Platform-specific watchdog timer drivers reside in <code>arch/</code><i>&lt;architecture&gt;</i><code>/src/</code><i>&lt;chip&gt;</i> directory for the specific processor <i>&lt;architecture&gt;</i> and for the specific <i>&lt;chip&gt;</i> watchdog timer peripheral devices.
  </li>
</ul>

<h3><a name="kbddriver">6.1.10 Keyboard/Keypad Drivers</a></h3>
<p>
  <b>Keypads vs. Keyboards</b>
  Keyboards and keypads are really the same devices for NuttX.
  A keypad is thought of as simply a keyboard with fewer keys.
</p>
<p>
  <b>Special Commands</b>.
  In NuttX, a keyboard/keypad driver is simply a character driver that may have an (optional) encoding/decoding layer on the data returned by the character driver.
  A keyboard may return simple text data (alphabetic, numeric, and punctuation) or control characters (enter,  control-C, etc.) when a key is pressed.
  We can think about this the &quot;normal&quot; keyboard data stream.
  However, in addition, most keyboards support actions that cannot be represented as text or control data.
  Such actions include things like cursor controls (home, up arrow, page down, etc.), editing functions (insert, delete, etc.), volume controls, (mute, volume up, etc.) and other special functions.
  In this case, some special encoding may be required to multiplex the normal text data and special command key press data streams.
</p>
<p>
  <b>Key Press and Release Events</b>
  Sometimes the time that a key is released is needed by applications as well.
  Thus, in addition to normal and special key press events, it may also be necessary to encode normal and special key release events.
</p>
<p>
  <b>Encoding/Decoding</b> Layer</b>.
  An optional encoding/decoding layer can be used with the basic character driver to encode the keyboard events into the text data stream.
  The function interfaces that comprise that encoding/decoding layer are defined in the header file <code>include/nuttx/input/kbd_code.h</code>.
  These functions provide an matched set of (a) driver encoding interfaces, and (b) application decoding interfaces.
</p>
<ol>
  <li>
    <p>
      <b>Driver Encoding Interfaces</b>.
      These are interfaces used by the keyboard/keypad driver to encode keyboard events and data.
    </p>
    <ul>
      <li>
        <p>
          <b><code>kbd_press()</code></b>
        </p>
        <p><b>Function Prototype:</b></p>
          <ul><pre>
#include &lt;nuttx/streams.h&gt;
#include &lt;nuttx/input/kbd_codec.h&gt;
void kbd_press(int ch, FAR struct lib_outstream_s *stream);
</pre></ul>
        <p><b>Description:</b></p>
        <ul>
          Indicates a normal key press event.
          Put one byte of normal keyboard  data into the output stream.
        </ul>
        <p><b>Input Parameters:</b></p>
        <ul>
          <li>
            <code>ch</code>:  The character to be added to the output stream.
          </li>
          <li>
            <code>stream</code>:  An instance of <code>lib_outstream_s</code> to perform the actual low-level put operation.
          </li>
        </ul>
        <p><b>Returned Value:</b></p>
        <ul>
          None.
        </ul>
      </li>
      <li>
        <p>
          <b><code>kbd_release()</code></b>
        </p>
        <p><b>Function Prototype:</b></p>
          <ul><pre>
#include &lt;nuttx/streams.h&gt;
#include &lt;nuttx/input/kbd_codec.h&gt;
void kbd_release(uint8_t ch, FAR struct lib_outstream_s *stream);
</pre></ul>
        <p><b>Description:</b></p>
        <ul>
          Encode the release of a normal key.
        </ul>
        <p><b>Input Parameters:</b></p>
        <ul>
          <li>
            <code>ch</code>:  The character associated with the key that was released.
          </li>
          <li>
            <code>stream</code>:  An instance of <code>lib_outstream_s</code> to perform the actual low-level put operation.
          </li>
        </ul>
        <p><b>Returned Value:</b></p>
        <ul>
          None.
        </ul>
      </li>
      <li>
        <p>
          <b><code>kbd_specpress()</code></b>
        </p>
        <p><b>Function Prototype:</b></p>
          <ul><pre>
#include &lt;nuttx/streams.h&gt;
#include &lt;nuttx/input/kbd_codec.h&gt;
void kbd_specpress(enum kbd_keycode_e keycode, FAR struct lib_outstream_s *stream);
</pre></ul>
        <p><b>Description:</b></p>
        <ul>
           Denotes a special key press event.
           Put one special keyboard command into the output stream.
         </ul>
        <p><b>Input Parameters:</b></p>
        <ul>
          <li>
            <code>keycode</code>:  The command to be added to the output stream.
            The enumeration <code>enum kbd_keycode_e keycode</code> identifies all commands known to the system.
          </li>
          <li>
            <code>stream</code>:  An instance of <code>lib_outstream_s</code> to perform the actual low-level put operation.
          </li>
        </ul>
        <p><b>Returned Value:</b></p>
        <ul>
          None.
        </ul>
      </li>
      <li>
        <p>
          <b><code>kbd_specrel()</code></b>
        </p>
        <p><b>Function Prototype:</b></p>
          <ul><pre>
#include &lt;nuttx/streams.h&gt;
#include &lt;nuttx/input/kbd_codec.h&gt;
void kbd_specrel(enum kbd_keycode_e keycode, FAR struct lib_outstream_s *stream);
</pre></ul>
        <p><b>Description:</b></p>
        <ul>
           Denotes a special key release event.
           Put one special keyboard command into the output stream.
         </ul>
        <p><b>Input Parameters:</b></p>
        <ul>
          <li>
            <code>keycode</code>:  The command to be added to the output stream.
            The enumeration <code>enum kbd_keycode_e keycode</code> identifies all commands known to the system.
          </li>
          <li>
            <code>stream</code>:  An instance of <code>lib_outstream_s</code> to perform the actual low-level put operation.
          </li>
        </ul>
        <p><b>Returned Value:</b></p>
        <ul>
          None.
        </ul>
      </li>
    </ul>
  </li>
  <li>
    <p>
      <b>Application Decoding Interfaces</b>.
      These are user interfaces to decode the values returned by the keyboard/keypad driver.
    </p>
    <ul>
      <li>
        <p>
          <b><code>kbd_decode()</code></b>
        </p>
        <p><b>Function Prototype:</b></p>
          <ul><pre>
#include &lt;nuttx/streams.h&gt;
#include &lt;nuttx/input/kbd_codec.h&gt;
int kbd_decode(FAR struct lib_instream_s *stream, FAR struct kbd_getstate_s *state, FAR uint8_t *pch);
</pre></ul>
        <p><b>Description:</b></p>
        <ul>
           Get one byte of data or special command from the driver provided input buffer.
        </ul>
        <p><b>Input Parameters:</b></p>
        <ul>
          <li>
            <code>stream</code>:  An instance of <code>lib_instream_s</code> to perform the actual low-level get operation.
          </li>
          <li>
            <code>pch</code>:  The location to save the returned value.
            This may be either a normal, character code or a special command (i.e., a value from <code>enum kbd_getstate_s</code>.
          </li>
          <li>
            <code>state</code>:  A user provided buffer to support parsing.
            This structure should be cleared the first time that <code>kbd_decode()</code> is called.
          </li>
        </ul>
        <p><b>Returned Value:</b></p>
        <ul>
          <li>
            <b><code>KBD_PRESS</code> (0)</b>:
            Indicates the successful receipt of normal, keyboard data.
            This corresponds to a keypress event.
            The returned value in <code>pch</code> is a simple byte of text or control data.
          </li>
          <li>
            <b><code>KBD_RELEASE</code> (1)</b>:
            Indicates a key release event.
            The returned value in <code>pch</code> is the byte of text or control data corresponding to the released key.
          </li>
          <li>
            <b><code>KBD_SPECPRESS</code> (2)</b>:
             Indicates the successful receipt of a special keyboard command.
             The returned value in <code>pch</code> is a value from <code>enum kbd_getstate_s</code>.
          </li>
          <li>
            <b><code>KBD_SPECREL</code> (3)</b>:
            Indicates a special command key release event.
             The returned value in <code>pch</code> is a value from <code>enum kbd_getstate_s</code>.
          </li>
          <li>
            <b><code>KBD_ERROR</code> (<code>EOF</code>)</b>:
            An error has getting the next character (reported by the <code>stream</code>).
            Normally indicates the end of file.
          </li>
        </ul>
      </li>
    </ul>
  </li>
</ol>
<p>
  <b>I/O Streams</b>.
  Notice the use of the abstract I/O streams in these interfaces.
  These stream interfaces are defined in <code>include/nuttx/streams.h</code>.
</p>

<h2><a name="blockdrivers">6.2 Block Device Drivers</a></h2>

<p>
  Block device drivers have these properties:
</p>
<ul>
  <li>
    <p>
    <b><code>include/nuttx/fs/fs.h</code></b>.
    All structures and APIs needed to work with block drivers are provided in this header file.
    </p>
  </li>
  <li>
    <p>
    <b><code>struct block_operations</code></b>.
    Each block device driver must implement an instance of <code>struct block_operations</code>.
    That structure defines a call table with the following methods:
    <ul>
     <p><code>int open(FAR struct inode *inode);</code><br>
     <code>int close(FAR struct inode *inode);</code><br>
     <code>ssize_t read(FAR struct inode *inode, FAR unsigned char *buffer, size_t start_sector, unsigned int nsectors);</code><br>
     <code>ssize_t write(FAR struct inode *inode, FAR const unsigned char *buffer, size_t start_sector, unsigned int nsectors);</code><br>
     <code>int geometry(FAR struct inode *inode, FAR struct geometry *geometry);</code><br>
     <code>int ioctl(FAR struct inode *inode, int cmd, unsigned long arg);</code></p>
    </ul>
    </p>
  </li>
  <li>
    <p>
    <b><code>int register_blockdriver(const char *path, const struct block_operations *bops, mode_t mode, void *priv);</code></b>.
    Each block driver registers itself by calling <code>register_blockdriver()</code>, passing it the
    <code>path</code> where it will appear in the <a href="#NxFileSystem">pseudo-file-system</a> and it's
    initialized instance of <code>struct block_operations</code>.
    </p>
  </li>
  <li>
    <p>
    <b>User Access</b>.
    Users do not normally access block drivers directly, rather, they access block drivers
    indirectly through the <code>mount()</code> API.
    The <code>mount()</code> API binds a block driver instance with a file system and with a mountpoint.
    Then the user may use the block driver to access the file system on the underlying media.
    <i>Example</i>: See the <code>cmd_mount()</code> implementation in <code>apps/nshlib/nsh_fscmds.c</code>.
    </p>
  </li>
  <li>
    <p>
    <b>Accessing a Character Driver as a Block Device</b>.
    See the loop device at <code>drivers/loop.c</code>.
    <i>Example</i>: See the <code>cmd_losetup()</code> implementation in <code>apps/nshlib/nsh_fscmds.c</code>.
    </p>
  </li>
  <li>
    <p>
    <b>Accessing a Block Driver as Character Device</b>.
    See the Block-to-Character (BCH) conversion logic in <code>drivers/bch/</code>.
    <i>Example</i>: See the <code>cmd_dd()</code> implementation in <code>apps/nshlib/nsh_ddcmd.c</code>.
    </p>
  </li>
  <li>
    <p>
    <b>Examples</b>.
    <code>drivers/loop.c</code>, <code>drivers/mmcsd/mmcsd_spi.c</code>, <code>drivers/ramdisk.c</code>, etc.
    </p>
  </li>
</ul>

<h2><a name="specdrivers">6.3 Specialized Device Drivers</a></h2>

<p>
  All device drivers that are accessible to application logic are either:  (1) Character device drivers that can be accessed via the standard driver operations (<code>open()</code>, <code>close()</code>, <code>read()</code>, <code>write()</code>, etc.), or (2) block drivers that can be accessing only as part of mounting a file system or other special use cases as described in the preceding paragraph.
</p>
<p>
  In addition to this, there are also specialized &quot;drivers&quot; that can be used only within the OS logic itself and are not accessible to application logic.  These specialized drivers are discussed in the following paragraphs.
</p>

<h3><a name="ethdrivers">6.3.1 Ethernet Device Drivers</a></h3>

<ul>
  <li>
    <p>
    <b><code>include/nuttx/net/netdev.h</code></b>.
    All structures and APIs needed to work with Ethernet drivers are provided in this header file.
    The structure <code>struct net_driver_s</code> defines the interface and is passed to uIP via
    <code>netdev_register()</code>.
    </p>
  </li>
  <li>
    <p>
    <b><code>int netdev_register(FAR struct net_driver_s *dev, enum net_lltype_e lltype);</code></b>.
    Each Ethernet driver registers itself by calling <code>netdev_register()</code>.
    </p>
  </li>
  <li>
    <p>
    <b>Examples</b>:
    <code>drivers/net/dm90x0.c</code>, <code>arch/drivers/arm/src/c5471/c5471_ethernet.c</code>, <code>arch/z80/src/ez80/ez80_emac.c</code>, etc.
    </p>
  </li>
</ul>

<h3><a name="spidrivers">6.3.2 SPI Device Drivers</a></h3>

<ul>
  <li>
    <p>
    <b><code>include/nuttx/spi/spi.h</code></b>.
    All structures and APIs needed to work with SPI drivers are provided in this header file.
    </p>
  </li>
  <li>
    <p>
    <b><code>struct spi_ops_s</code></b>.
    Each SPI device driver must implement an instance of <code>struct spi_ops_s</code>.
    That structure defines a call table with the following methods:
    <ul>
     <p><code>void lock(FAR struct spi_dev_s *dev);</code></p>
     <p><code>void select(FAR struct spi_dev_s *dev, enum spi_dev_e devid, bool selected);</code><br>
     <code>uint32_t setfrequency(FAR struct spi_dev_s *dev, uint32_t frequency);</code><br>
     <code>void setmode(FAR struct spi_dev_s *dev, enum spi_mode_e mode);</code><br>
     <code>void setbits(FAR struct spi_dev_s *dev, int nbits);</code><br>
     <code>uint8_t status(FAR struct spi_dev_s *dev, enum spi_dev_e devid);</code><br>
     <code>uint16_t send(FAR struct spi_dev_s *dev, uint16_t wd);</code><br>
     <code>void exchange(FAR struct spi_dev_s *dev, FAR const void *txbuffer, FAR void *rxbuffer, size_t nwords);</code><br>
     <p><code>int registercallback(FAR struct spi_dev_s *dev, mediachange_t callback, void *arg);</code></p>
    </ul>
    </p>
  <li>
    <p>
      <b>Binding SPI Drivers</b>.
      SPI drivers are not normally directly accessed by user code, but are usually bound to another,
      higher level device driver.
      See for example, <code>int mmcsd_spislotinitialize(int minor, int slotno, FAR struct spi_dev_s *spi)</code> in <code>drivers/mmcsd/mmcsd_spi.c</code>.
      In general, the binding sequence is:
    </p>
    <p>
      <ol>
        <li>Get an instance of <code>struct spi_dev_s</code> from the hardware-specific SPI device driver, and </li>
        <li>Provide that instance to the initialization method of the higher level device driver.</li>
      </ol>
    </p>
  </li>
  <li>
    <p>
      <b>Examples</b>:
      <code>drivers/loop.c</code>, <code>drivers/mmcsd/mmcsd_spi.c</code>, <code>drivers/ramdisk.c</code>, etc.
    </p>
  </li>
</ul>

<h3><a name="i2cdrivers">6.3.3 I2C Device Drivers</a></h3>

<ul>
  <li>
    <p>
    <b><code>include/nuttx/i2c/i2c.h</code></b>.
    All structures and APIs needed to work with I2C drivers are provided in this header file.
    </p>
  </li>
  <li>
    <p>
    <b><code>struct i2c_ops_s</code></b>.
    Each I2C device driver must implement an instance of <code>struct i2c_ops_s</code>.
    That structure defines a call table with the following methods:
    <ul>
     <p><code>uint32_t setfrequency(FAR struct i2c_dev_s *dev, uint32_t frequency);</code><br>
     <code>int setaddress(FAR struct i2c_dev_s *dev, int addr, int nbits);</code><br>
     <code>int write(FAR struct i2c_dev_s *dev, const uint8_t *buffer, int buflen);</code><br>
     <code>int read(FAR struct i2c_dev_s *dev, uint8_t *buffer, int buflen);</code></p>
    </p>
  </ul>
  <li>
    <p>
      <b>Binding I2C Drivers</b>.
      I2C drivers are not normally directly accessed by user code, but are usually bound to another,
      higher level device driver.
      In general, the binding sequence is:
    </p>
    <p>
      <ol>
        <li>Get an instance of <code>struct i2c_dev_s</code> from the hardware-specific I2C device driver, and </li>
        <li>Provide that instance to the initialization method of the higher level device driver.</li>
      </ol>
    </p>
  </li>
  <li>
    <p>
      <b>Examples</b>:
      <code>arch/z80/src/ez80/ez80_i2c.c</code>, <code>arch/z80/src/z8/z8_i2c.c</code>, etc.
    </p>
  </li>
</ul>

<h3><a name="fbdrivers">6.3.4 Frame Buffer Drivers</a></h3>

<ul>
  <li>
    <p>
      <b><code>include/nuttx/video/fb.h</code></b>.
      All structures and APIs needed to work with frame buffer drivers are provided in this header file.
    </p>
  </li>
  <li>
    <p>
      <b><code>struct fb_vtable_s</code></b>.
      Each frame buffer device driver must implement an instance of <code>struct fb_vtable_s</code>.
      That structure defines a call table with the following methods:
    </p>
    <p>
      Get information about the video controller configuration and the configuration of each color plane.
    </p>
    <ul>
     <p><code>int (*getvideoinfo)(FAR struct fb_vtable_s *vtable, FAR struct fb_videoinfo_s *vinfo);</code><br>
     <code>int (*getplaneinfo)(FAR struct fb_vtable_s *vtable, int planeno, FAR struct fb_planeinfo_s *pinfo);</code></p>
    </ul>
    <p>
      The following are provided only if the video hardware supports RGB color mapping:
    </p>
    <ul>
     <p><code>int (*getcmap)(FAR struct fb_vtable_s *vtable, FAR struct fb_cmap_s *cmap);</code><br>
     <code>int (*putcmap)(FAR struct fb_vtable_s *vtable, FAR const struct fb_cmap_s *cmap);</code></p>
    </ul>
    <p>
      The following are provided only if the video hardware supports a hardware cursor:
    </p>
    <ul>
     <p><code>int (*getcursor)(FAR struct fb_vtable_s *vtable, FAR struct fb_cursorattrib_s *attrib);</code><br>
     <code>int (*setcursor)(FAR struct fb_vtable_s *vtable, FAR struct fb_setcursor_s *settings);</code></p>
    </ul>
  </li>
  <li>
    <p>
      <b>Binding Frame Buffer Drivers</b>.
      Frame buffer drivers are not normally directly accessed by user code, but are usually bound to another,
      higher level device driver.
      In general, the binding sequence is:
    </p>
    <p>
      <ol>
        <li>Get an instance of <code>struct fb_vtable_s</code> from the hardware-specific frame buffer device driver, and </li>
        <li>Provide that instance to the initialization method of the higher level device driver.</li>
      </ol>
    </p>
  </li>
  <li>
    <p>
      <b>Examples</b>:
      <code>arch/sim/src/up_framebuffer.c</code>.
      See also the usage of the frame buffer driver in the <code>graphics/</code> directory.
    </p>
  </li>
</ul>

<h3><a name="lcddrivers">6.3.5 LCD Drivers</a></h3>

<ul>
  <li>
    <p>
      <b><code>include/nuttx/lcd/lcd.h</code></b>.
      Structures and APIs needed to work with LCD drivers are provided in this header file.
      This header file also depends on some of the same definitions used for the frame buffer driver as provided in <code>include/nuttx/video/fb.h</code>.
    </p>
  </li>
  <li>
    <p>
      <b><code>struct lcd_dev_s</code></b>.
      Each LCD device driver must implement an instance of <code>struct lcd_dev_s</code>.
      That structure defines a call table with the following methods:
    </p>
    <p>
      Get information about the LCD video controller configuration and the configuration of each LCD color plane.
    </p>
    <ul>
    <p>
       <code>int (*getvideoinfo)(FAR struct lcd_dev_s *dev, FAR struct fb_videoinfo_s *vinfo);</code><br>
       <code>int (*getplaneinfo)(FAR struct lcd_dev_s *dev, unsigned int planeno, FAR struct lcd_planeinfo_s *pinfo);</code>
     </p>
    </ul>
    <p>
      The following are provided only if the video hardware supports RGB color mapping:
    </p>
    <ul>
     <p>
       <code>int (*getcmap)(FAR struct lcd_dev_s *dev, FAR struct fb_cmap_s *cmap);</code><br>
       <code>int (*putcmap)(FAR struct lcd_dev_s *dev, FAR const struct fb_cmap_s *cmap);</code>
     </p>
    </ul>
    <p>
      The following are provided only if the video hardware supports a hardware cursor:
    </p>
    <ul>
     <p>
       <code>int (*getcursor)(FAR struct lcd_dev_s *dev, FAR struct fb_cursorattrib_s *attrib);</code><br>
       <code>int (*setcursor)(FAR struct lcd_dev_s *dev, FAR struct fb_setcursor_s *settings)</code>
     </p>
    </ul>
    <p>
      Get the LCD panel power status (0: full off - <code>CONFIG_LCD_MAXPOWER</code>: full on).
      On backlit LCDs, this setting may correspond to the backlight setting.
    </p>
    <ul>
     <p>
       <code>int (*getpower)(struct lcd_dev_s *dev);</code>
     </p>
    </ul>
    <p>
      Enable/disable LCD panel power (0: full off - <code>CONFIG_LCD_MAXPOWER</code>: full on).
      On backlit LCDs, this setting may correspond to the backlight setting.
    </p>
    <ul>
     <p>
       <code>int (*setpower)(struct lcd_dev_s *dev, int power);</code>
     </p>
    </ul>
    <p>
      Get the current contrast setting (0-CONFIG_LCD_MAXCONTRAST) */
    </p>
    <ul>
     <p>
       <code>int (*getcontrast)(struct lcd_dev_s *dev);</code>
     </p>
    </ul>
    <p>
      Set LCD panel contrast (0-CONFIG_LCD_MAXCONTRAST)
    </p>
    <ul>
     <p>
       <code>int (*setcontrast)(struct lcd_dev_s *dev, unsigned int contrast);</code>
     </p>
    </ul>
  </p>
  <li>
    <p>
      <b>Binding LCD Drivers</b>.
      LCD drivers are not normally directly accessed by user code, but are usually bound to another,
      higher level device driver.
      In general, the binding sequence is:
    </p>
    <p>
      <ol>
        <li>Get an instance of <code>struct lcd_dev_s</code> from the hardware-specific LCD device driver, and </li>
        <li>Provide that instance to the initialization method of the higher level device driver.</li>
      </ol>
    </p>
  </li>
  <li>
    <p>
      <b>Examples</b>:
      <code>drivers/lcd/nokia6100.c</code>, <code>drivers/lcd/p14201.c</code>, <code>configs/sam3u-ek/src/up_lcd.c.</code>
      See also the usage of the LCD driver in the <code>graphics/</code> directory.
    </p>
  </li>
</ul>

<h3><a name="mtddrivers">6.3.6 Memory Technology Device Drivers</a></h3>

<ul>
  <li>
    <p>
      <b><code>include/nuttx/mtd/mtd.h</code></b>.
      All structures and APIs needed to work with MTD drivers are provided in this header file.
    </p>
  </li>
  <li>
    <p>
      <b><code>struct mtd_dev_s</code></b>.
      Each MTD device driver must implement an instance of <code>struct mtd_dev_s</code>.
      That structure defines a call table with the following methods:
    </p>
    <p>
      Erase the specified erase blocks (units are erase blocks):
    </p>
    <ul>
     <p><code>int (*erase)(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks);</code></p>
    </ul>
    <p>
      Read/write from the specified read/write blocks:
    </p>
    <ul>
     <p><code>ssize_t (*bread)(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buffer);</code><br>
     <code>ssize_t (*bwrite)(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer);</code></p>
    </ul>
    <p>
      Some devices may support byte oriented reads (optional).
      Most MTD devices are inherently block oriented so byte-oriented accesses are not supported.
      It is recommended that low-level drivers not support read() if it requires buffering.
    </p>
    <ul>
     <p><code>ssize_t (*read)(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer);</code></p>
    </ul>
    <p>
      Some devices may also support byte oriented writes (optional).
      Most MTD devices are inherently block oriented so byte-oriented accesses are not supported.
      It is recommended that low-level drivers not support read() if it requires buffering.
      This interface is only available if <code>CONFIG_MTD_BYTE_WRITE</code> is defined.
    </p>
    <ul>
     <p><code>ssize_t (*write)(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer);</code></p>
    </ul>
    <p>
      Support other, less frequently used commands:
    </p>
    <ul>
      <li><code>MTDIOC_GEOMETRY</code>:  Get MTD geometry</li>
      <li><code>MTDIOC_XIPBASE:</code>: Convert block to physical address for eXecute-In-Place</li>
      <li><code>MTDIOC_BULKERASE</code>: Erase the entire device</li>
    </ul>
    <p>
      is provided via a single <code>ioctl</code> method (see <code>include/nuttx/fs/ioctl.h</code>):
    </p>
    <ul>
     <p><code>int (*ioctl)(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg);</code></p>
    </ul>
  </li>
  <li>
    <p>
      <b>Binding MTD Drivers</b>.
      MTD drivers are not normally directly accessed by user code, but are usually bound to another,
      higher level device driver.
      In general, the binding sequence is:
    </p>
    <p>
      <ol>
        <li>Get an instance of <code>struct mtd_dev_s</code> from the hardware-specific MTD device driver, and </li>
        <li>Provide that instance to the initialization method of the higher level device driver.</li>
      </ol>
    </p>
  </li>
  <li>
    <p>
      <b>Examples</b>:
      <code>drivers/mtd/m25px.c</code> and <code>drivers/mtd/ftl.c</code>
    </p>
  </li>
</ul>

<h3><a name="sdiodrivers">6.3.7 SDIO Device Drivers</a></h3>

<ul>
  <li>
    <p>
      <b><code>include/nuttx/sdio.h</code></b>.
      All structures and APIs needed to work with SDIO drivers are provided in this header file.
    </p>
  </li>
  <li>
    <p>
      <b><code>struct sdio_dev_s</code></b>.
      Each SDIO device driver must implement an instance of <code>struct sdio_dev_s</code>.
      That structure defines a call table with the following methods:
    </p>
    <p>
      Mutual exclusion:
    </p>
    <ul>
      <p>
        <code>#ifdef CONFIG_SDIO_MUXBUS</code><br>
        <code>  int (*lock)(FAR struct sdio_dev_s *dev, bool lock);</code><br>
        <code>#endif</code>
      </p>
    </ul>
    <p>
      Initialization/setup:
    </p>
    <ul>
     <p><code>void (*reset)(FAR struct sdio_dev_s *dev);</code><br>
     <code>uint8_t (*status)(FAR struct sdio_dev_s *dev);</code><br>
     <code>void (*widebus)(FAR struct sdio_dev_s *dev, bool enable);</code><br>
     <code>void (*clock)(FAR struct sdio_dev_s *dev, enum sdio_clock_e rate);</code><br>
     <code>int (*attach)(FAR struct sdio_dev_s *dev);</code><br>
    </ul>
    <p>
      Command/Status/Data Transfer:
    </p>
    <ul>
     <p><code>int (*sendcmd)(FAR struct sdio_dev_s *dev, uint32_t cmd, uint32_t arg);</code><br>
     <code>int (*recvsetup)(FAR struct sdio_dev_s *dev, FAR uint8_t *buffer, size_t nbytes);</code><br>
     <code>int (*sendsetup)(FAR struct sdio_dev_s *dev, FAR const uint8_t *buffer, size_t nbytes);</code><br>
     <code>int (*cancel)(FAR struct sdio_dev_s *dev);</code><br>
     <code>int (*waitresponse)(FAR struct sdio_dev_s *dev, uint32_t cmd);</code><br>
     <code>int (*recvR1)(FAR struct sdio_dev_s *dev, uint32_t cmd, uint32_t *R1);</code><br>
     <code>int (*recvR2)(FAR struct sdio_dev_s *dev, uint32_t cmd, uint32_t R2[4]);</code><br>
     <code>int (*recvR3)(FAR struct sdio_dev_s *dev, uint32_t cmd, uint32_t *R3);</code><br>
     <code>int (*recvR4)(FAR struct sdio_dev_s *dev, uint32_t cmd, uint32_t *R4);</code><br>
     <code>int (*recvR5)(FAR struct sdio_dev_s *dev, uint32_t cmd, uint32_t *R5);</code><br>
     <code>int (*recvR6)(FAR struct sdio_dev_s *dev, uint32_t cmd, uint32_t *R6);</code><br>
     <code>int (*recvR7)(FAR struct sdio_dev_s *dev, uint32_t cmd, uint32_t *R7);</code></p>
    </ul>
    <p>
      Event/Callback support:
    </p>
    <ul>
     <p><code>void (*waitenable)(FAR struct sdio_dev_s *dev, sdio_eventset_t eventset);</code><br>
     <code>sdio_eventset_t (*eventwait)(FAR struct sdio_dev_s *dev, uint32_t timeout);</code><br>
     <code>void (*callbackenable)(FAR struct sdio_dev_s *dev, sdio_eventset_t eventset);</code><br>
     <code>int (*registercallback)(FAR struct sdio_dev_s *dev, worker_t callback, void *arg);</code></p>
    </ul>
    <p>
      DMA support:
    </p>
    <ul>
     <p><code>bool (*dmasupported)(FAR struct sdio_dev_s *dev);</code><br>
     <code>int (*dmarecvsetup)(FAR struct sdio_dev_s *dev, FAR uint8_t *buffer, size_t buflen);</code><br>
     <code>int (*dmasendsetup)(FAR struct sdio_dev_s *dev, FAR const uint8_t *buffer,  size_t buflen);</code></p>
    </ul>
  </li>
  <li>
    <p>
      <b>Binding SDIO Drivers</b>.
      SDIO drivers are not normally directly accessed by user code, but are usually bound to another,
      higher level device driver.
      In general, the binding sequence is:
    </p>
    <p>
      <ol>
        <li>Get an instance of <code>struct sdio_dev_s</code> from the hardware-specific SDIO device driver, and </li>
        <li>Provide that instance to the initialization method of the higher level device driver.</li>
      </ol>
    </p>
  </li>
  <li>
    <p>
      <b>Examples</b>:
      <code>arch/arm/src/stm32/stm32_sdio.c</code> and <code>drivers/mmcsd/mmcsd_sdio.c</code>
    </p>
  </li>
</ul>

<h3><a name="usbhostdrivers">6.3.8 USB Host-Side Drivers</a></h3>

<ul>
  <li>
    <p>
      <b><code>include/nuttx/usb/usbhost.h</code></b>.
      All structures and APIs needed to work with USB host-side drivers are provided in this header file.
    </p>
  </li>
  <li>
    <p>
      <b><code>struct usbhost_driver_s</code> and <code>struct usbhost_connection_s</code></b>.
      Each USB host controller driver must implement an instance of <code>struct usbhost_driver_s</code> and <code>struct usbhost_connection_s</code>:
      <code>struct usbhost_driver_s</code> provides the interface between the USB host driver and the USB class driver;
      <code>struct usbhost_connection_s</code> provides the interface between the USB host driver and platform-specific connection management and device enumeration logic.
      These structures are defined in <code>include/nuttx/usb/usbhost.h</code>.
    </p>
    <p>
      <b>Examples</b>:
      <code>arch/arm/src/lpc17xx/lpc17_usbhost.c</code>,
      <code>arch/arm/src/stm32/stm32_otgfshost.c</code>,
      <code>arch/arm/src/sama5/sam_ohci.c</code>, and
      <code>arch/arm/src/sama5/sam_ehci.c</code>.
    </p>
  </li>
  <li>
    <p>
      <b><code>struct usbhost_class_s</code></b>.
      Each USB host class driver must implement an instance of <code>struct usbhost_class_s</code>.
      This structure is also defined in <code>include/nuttx/usb/usbhost.h</code>.
    </p>
    <p>
      <b>Examples</b>:
      <code>drivers/usbhost/usbhost_storage.c</code>
    </p>
  </li>
  <li>
    <p>
      <b>USB Host Class Driver Registry</b>.
      The NuttX USB host infrastructure includes a <i>registry</i>.
      During its initialization, each USB host class driver must call the interface, <code>usbhost_registerclass()</code>
      in order add its interface to the registry.
      Later, when a USB device is connected, the USB host controller will look up the USB host class driver that is needed to support the connected device in this registry.
    </p>
    <p>
      <b>Examples</b>:
      <code>drivers/usbhost/usbhost_registry.c</code>, <code>drivers/usbhost/usbhost_registerclass.c</code>, and <code>drivers/usbhost/usbhost_findclass.c</code>,
    </p>
  </li>
  <li>
    <p>
      <b>Detection and Enumeration of Connected Devices</b>.
      Each USB host device controller supports two methods that are used to detect and enumeration newly connected devices
      (and also detect disconnected devices):
    </p>
    <p>
      <ul>
        <li>
          <p>
            <code>int (*wait)(FAR struct usbhost_connection_s *drvr, FAR const bool *connected);</code>
          </p>
          <p>
            Wait for a device to be connected or disconnected.
          </p>
        </li>
        <li>
          <p>
            <code>int (*enumerate)(FAR struct usbhost_connection_s *drvr, int rhpndx);</code>
          </p>
          <p>
            Enumerate the device connected to a root hub port.
            As part of this enumeration process, the driver will
            (1) get the device's configuration descriptor,
            (2) extract the class ID info from the configuration descriptor,
            (3) call <code>usbhost_findclass(</code>) to find the class that supports this device,
            (4) call the <code>create()</code> method on the <code>struct usbhost_registry_s interface</code> to get a class instance, and
            finally (5) call the <code>connect()</code> method of the <code>struct usbhost_class_s</code> interface.
            After that, the class is in charge of the sequence of operations.
          </p>
      </ul>
    </p>
  </li>
  <li>
    <p>
      <b>Binding USB Host-Side Drivers</b>.
      USB host-side controller drivers are not normally directly accessed by user code,
      but are usually bound to another, higher level USB host class driver.
      The class driver exports the standard NuttX device interface so that the connected USB device can be accessed just as with other, similar, on-board devices.
      For example, the USB host mass storage class driver (<code>drivers/usbhost/usbhost_storage.c</code>) will register a standard, NuttX block driver interface (like <code>/dev/sda</code>)
      that can be used to mount a file system just as with any other other block driver instance.
      In general, the binding sequence is:
    </p>
    <p>
      <ol>
        <li>
          <p>
            Each USB host class driver includes an initialization entry point that is called from the
            application at initialization time.
            This driver calls <code>usbhost_registerclass()</code> during this initialization in order to makes itself available in the event the device that it supports is connected.
          </p>
          <p>
            <b>Examples</b>:
            The function <code>usbhost_storageinit()</code> in the file <code>drivers/usbhost/usbhost_storage.c</code>
          </p>
        </li>
        <li>
          <p>
            Each application must include a <i>waiter</i> thread thread that (1) calls the USB host controller driver's <code>wait()</code> to detect the connection of a device, and then
            (2) call the USB host controller driver's <code>enumerate</code> method to bind the registered USB host class driver to the USB host controller driver.
          </p>
          <p>
            <b>Examples</b>:
            The function <code>nsh_waiter()</code> in the file <code>configs/nucleus2g/src/up_nsh.c</code> and
            the function <code>nsh_waiter()</code> in the file <code>configs/olimex-lpc1766stk/src/up_nsh.c</code>.
          </p>
        </li>
        <li>
          <p>
            As part of its operation during the binding operation, the USB host class driver will register an instances of a standard NuttX driver under the <code>/dev</code> directory.
            To repeat the above example, the USB host mass storage class driver (<code>drivers/usbhost/usbhost_storage.c</code>) will register a standard, NuttX block driver interface (like <code>/dev/sda</code>)
            that can be used to mount a file system just as with any other other block driver instance.
          </p>
          <p>
            <b>Examples</b>:
            See the call to <code>register_blockdriver()</code> in the function <code>usbhost_initvolume()</code> in the file <code>drivers/usbhost/usbhost_storage.c</code>.
          </p>
        </li>
      </ol>
    </p>
  </li>
</ul>

<h3><a name="usbdevdrivers">6.3.9 USB Device-Side Drivers</a></h3>

<ul>
  <li>
    <p>
      <b><code>include/nuttx/usb/usbdev.h</code></b>.
      All structures and APIs needed to work with USB device-side drivers are provided in this header file.
    </p>
  </li>
  <li>
    <p>
      <b><code>include/nuttx/usb/usbdev_trace.h</code></b>.
      Declarations needed to work with the NuttX USB device driver trace capability.
      That USB trace capability is detailed in <a href="UsbTrace.html">separate document</a>.
    </p>
  </li>
  <li>
    <p>
      <b><code>struct usbdev_s</code></b>.
      Each USB device controller driver must implement an instance of <code>struct usbdev_s</code>.
      This structure is defined in <code>include/nuttx/usb/usbdev.h</code>.
    </p>
    <p>
      <b>Examples</b>:
      <code>arch/arm/src/dm320/dm320_usbdev.c</code>, <code>arch/arm/src/lpc17xx/lpc17_usbdev.c</code>,
      <code>arch/arm/src/lpc214x/lpc214x_usbdev.c</code>, <code>arch/arm/src/lpc313x/lpc313x_usbdev.c</code>, and
       <code>arch/arm/src/stm32/stm32_usbdev.c</code>.
    </p>
  </li>
  <li>
    <p>
      <b><code>struct usbdevclass_driver_s</code></b>.
      Each USB device class driver must implement an instance of <code>struct usbdevclass_driver_s</code>.
      This structure is also defined in <code>include/nuttx/usb/usbdev.h</code>.
    </p>
    <p>
      <b>Examples</b>:
      <code>drivers/usbdev/pl2303.c</code> and <code>drivers/usbdev/usbmsc.c</code>
    </p>
  </li>
  <li>
    <p>
      <b>Binding USB Device-Side Drivers</b>.
      USB device-side controller drivers are not normally directly accessed by user code,
      but are usually bound to another, higher level USB device class driver.
      The class driver is then configured to export the USB device functionality.
      In general, the binding sequence is:
    </p>
    <p>
      <ol>
        <li>
          <p>
            Each USB device class driver includes an initialization entry point that is called from the
            application at initialization time.
          </p>
          <p>
            <b>Examples</b>:
            The function <code>usbdev_serialinitialize()</code> in the file <code>drivers/usbdev/pl2303.c</code> and
            the function <code></code> in the file <code>drivers/usbdev/usbmsc.c</code>
          </p>
        </li>
        <li>
          <p>
            These initialization functions called the driver API, <code>usbdev_register()</code>.
            This driver function will <i>bind</i> the USB class driver to the USB device controller driver,
            completing the initialization.
          </p>
        </li>
      </ol>
    </p>
  </li>
</ul>

<h2><a name="pwrmgmt">6.4 Power Management</a></h2>

<h3><a name="pmoverview">6.4.1 Overview</a></h3>
<p>
  NuttX supports a simple power management (PM) sub-system.  This sub-system:
</p>
<ul>
  <li>
    <p>
      Monitors driver activity, and
    </p>
  </li>
  <li>
    <p>
      Provides hooks to place drivers (and the whole system) into reduce power
      modes of operation.
    </p>
  </li>
</ul>
<p>
  <center><img src="pm.png"></center>
</p>
<p>
  The PM sub-system integrates the MCU idle loop with a collection of device drivers to support:
</p>
<ul>
  <li>
    <p>
      Reports of relevant driver or other system activity.
    </p>
  </li>
  <li>
    <p>
      Registration and callback mechanism to interface with individual device drivers.
    </p>
  </li>
  <li>
    <p>
      IDLE time polling of overall driver activity.
    </p>
  </li>
  <li>
    <p>
      Coordinated, global, system-wide transitions to lower power usage states.
    </p>
  </li>
</ul>
<p>
  Various &quot;sleep&quot; and low power consumption states have various names and are sometimes used in conflicting ways.
  In the NuttX PM logic, we will use the following terminology:
</p>
<dl>
  <dt><code>NORMAL</code>
  <dd>The normal, full power operating mode.
  <dt><code>IDLE</code>
  <dd>This is still basically normal operational mode, the system is,
      however, <code>IDLE</code> and some simple simple steps to reduce power
      consumption provided that they do not interfere with normal
      Operation.  Simply dimming the a backlight might be an example
      somethat that would be done when the system is idle.
  <dt><code>STANDBY</code>
  <dd>Standby is a lower power consumption mode that may involve more
      extensive power management steps such has disabling clocking or
      setting the processor into reduced power consumption modes. In
      this state, the system should still be able to resume normal
      activity almost immediately.
  <dt><code>SLEEP</code>
  <dd>The lowest power consumption mode.  The most drastic power
      reduction measures possible should be taken in this state. It
      may require some time to get back to normal operation from
      <code>SLEEP</code> (some MCUs may even require going through reset).
</dl>
<p>
  These various states are represented with type <code>enum pm_state_e</code> in <code>include/nuttx/power/pm.h</code>.
</p>

<h3><a name="pminterfaces">6.4.2 Interfaces</a></h3>
<p>
  All PM interfaces are declared in the file <code>include/nuttx/power/pm.h</code>.
</p>

<h4><a name="pminitialize">6.4.2.1 <code>pm_initialize()</code></a></h4>
<p><b>Function Prototype:</b></p>
<ul><pre>
#include &lt;nuttx/power/pm.h&gt;
void pm_initialize(void);
</pre></ul>
<p><b>Description:</b>
This function is called by MCU-specific one-time at power on reset in order to initialize the power management capabilities.
This function must be called <i>very</i> early in the initialization sequence <i>before</i> any other device drivers are initialize (since they may attempt to register with the power management subsystem).
</p>
<p><b>Input Parameters:</b>
None
</p>
<p><b>Returned Value:</b>
None
</p>

<h4><a name="pmregister">6.4.2.2 <code>pm_register()</code></a></h4>
<p><b>Function Prototype:</b></p>
<ul><pre>
#include &lt;nuttx/power/pm.h&gt;
int pm_register(FAR struct pm_callback_s *callbacks);
</pre></ul>
<p><b>Description:</b>
  This function is called by a device driver in order to register to receive power management event callbacks.
  Refer to the <a href="#pmcallbacks">PM Callback</a> section for more details.
</p>
<p><b>Input Parameters:</b>
 <dl>
   <dt><code>callbacks</code>
   <dd>An instance of <code>struct pm_callback_s</code> providing the driver callback functions.
 </dl>
</p>
<p><b>Returned Value:</b>
Zero (<code>OK</code>) on success; otherwise a negated <code>errno</code> value is returned.
</p>

<h4><a name="pmactivity">6.4.2.3 <code>pm_activity()</code></a></h4>
<p><b>Function Prototype:</b></p>
<ul><pre>
#include &lt;nuttx/power/pm.h&gt;
void pm_activity(int priority);
</pre></ul>
<p><b>Description:</b>
 This function is called by a device driver to indicate that it is performing meaningful activities (non-idle).
 This increment an activity count and/or will restart a idle timer and prevent entering reduced power states.
</p>
<p><b>Input Parameters:</b>
 <dl>
   <dt><code>priority</code>
   <dd>
     Activity priority, range 0-9.
     Larger values correspond to higher priorities.
     Higher priority activity can prevent the system from entering reduced power states for a longer period of time.
     As an example, a button press might be higher priority activity because it means that the user is actively interacting with the device.
 </dl>
</p>
<p><b>Returned Value:</b>
  None
</p>
<p><b>Assumptions:</b>
  This function may be called from an interrupt handler (this is the ONLY PM function that may be called from an interrupt handler!).
</p>

<h4><a name="pmcheckstate">6.4.2.4 <code>pm_checkstate()</code></a></h4>
<p><b>Function Prototype:</b></p>
<ul><pre>
#include &lt;nuttx/power/pm.h&gt;
enum pm_state_e pm_checkstate(void);
</pre></ul>
<p><b>Description:</b>
  This function is called from the MCU-specific IDLE loop to monitor the power management conditions.
  This function returns the &quot;recommended&quot; power management state based on the PM configuration and activity reported in the last sampling periods.
  The power management state is not automatically changed, however.
  The IDLE loop must call <code>pm_changestate()</code> in order to make the state change.
</p>
<p>
  These two steps are separated because the platform-specific IDLE loop may have additional situational information that is not available to the PM sub-system.
  For example, the IDLE loop may know that the battery charge level is very low and may force lower power states even if there is activity.
</p>
<p>
  NOTE: That these two steps are separated in time and, hence, the IDLE loop could be suspended for a long period of time between calling <code>pm_checkstate()</code> and <code>pm_changestate()</code>.
  The IDLE loop may need to make these calls atomic by either disabling interrupts until the state change is completed.
</p>
<p><b>Input Parameters:</b>
  None
</p>
<p><b>Returned Value:</b>
  The recommended power management state.
</p>

<h4><a name="pmchangestate">6.4.2.5 <code>pm_changestate()</code></a></h4>
<p><b>Function Prototype:</b></p>
<ul><pre>
#include &lt;nuttx/power/pm.h&gt;
 int pm_changestate(enum pm_state_e newstate);
</pre></ul>
<p><b>Description:</b>
  This function is used by platform-specific power management logic.
  It will announce the power management power management state change to all drivers that have registered for power management event callbacks.
</p>
<p><b>Input Parameters:</b>
 <dl>
   <dt><code>newstate</code>
   <dd>Identifies the new PM state
 </dl>
</p>
<p><b>Returned Value:</b>
  0 (<code>OK</code>) means that the callback function for all registered drivers returned <code>OK</code> (meaning that they accept the state change).
  Non-zero means that one of the drivers refused the state change.
  In this case, the system will revert to the preceding state.
</p>
<p><b>Assumptions:</b>
   It is assumed that interrupts are disabled when this function is called.
   This function is probably called from the IDLE loop... the lowest priority task in the system.
   Changing driver power management states may result in renewed system activity and, as a result, can
   suspend the IDLE thread before it completes the entire state change unless interrupts are disabled throughout the state change.
</p>

<h3><a name="pmcallbacks">6.4.3 Callbacks</a></h3>
<p>
  The <code>struct pm_callback_s</code> includes the pointers to the driver callback functions.
  This structure is defined <code>include/nuttx/power/pm.h</code>.
  These callback functions can be used to provide power management information to the driver.
</p>

<h4><a name="pmprepare">6.4.3.1 <code>prepare()</code></a></h4>
<p><b>Function Prototype:</b></p>
<ul><pre>
int (*prepare)(FAR struct pm_callback_s *cb, enum pm_state_e pmstate);
</pre></ul>
<p><b>Description:</b>
   Request the driver to prepare for a new power state.
   This is a warning that the system is about to enter into a new power state.
   The driver should begin whatever operations that may be required to enter power state.
   The driver may abort the state change mode by returning a non-zero value from the callback function.
</p>
<p><b>Input Parameters:</b>
 <dl>
   <dt><code>cb</code>
   <dd>Returned to the driver.
   The driver version of the callback structure may include additional, driver-specific state data at the end of the structure.
   <dt><code>pmstate</code>
   <dd>Identifies the new PM state
 </dl>
</p>
<p><b>Returned Value:</b>
   Zero (<code>OK</code>) means the event was successfully processed and that the driver is prepared for the PM state change.
   Non-zero means that the driver is not prepared to perform the tasks needed achieve this power setting and will cause the state change to be aborted.
   NOTE:  The <code>prepare()</code> method will also be called when reverting from lower back to higher power consumption modes (say because another driver refused a lower power state change).
   Drivers are not permitted to return non-zero values when reverting back to higher power
   consumption modes!
</p>

<h4><a name="pmnotify">6.4.3.1 <code>notify()</code></a></h4>
<p><b>Function Prototype:</b></p>
<ul><pre>
#include &lt;nuttx/power/pm.h&gt;
void (*notify)(FAR struct pm_callback_s *cb, enum pm_state_e pmstate);
</pre></ul>
<p><b>Description:</b>
  Notify the driver of new power state.
  This callback is called after all drivers have had the opportunity to prepare for the new power  state.
</p>
<p><b>Input Parameters:</b>
 <dl>
   <dt><code>cb</code>
   <dd>Returned to the driver.
   The driver version of the callback structure may include additional, driver-specific state data at the end of the structure.
   <dt><code>pmstate</code>
   <dd>Identifies the new PM state
 </dl>
</p>
<p><b>Returned Value:</b>
  None.
  The driver already agreed to transition to the low power consumption state when when it returned <code>OK</code> to the <code>prepare()</code> call.
</p>

<table width ="100%">
  <tr bgcolor="#e4e4e4">
    <td>
      <h1><a name="apndxconfigs">Appendix A:  NuttX Configuration Settings</a></h1>
    </td>
  </tr>
</table>

<p>
  At one time, this section provided a list of all NuttX configuration variables.
  However, NuttX has since converted to use the <a href="http://ymorin.is-a-geek.org/projects/kconfig-frontends">kconfig-frontends</a> tools.
  Now, the NuttX configuration is determined by a self-documenting set of <code>Kconfig</code> files.
</p>
<p>
  The current NuttX configuration variables are also documented in separate, auto-generated configuration variable document.
  That configuration variable document is generated using the <code>kconfig2html</code> tool that can be found in the <code>nuttx/tools</code> directory.
  That tool analyzes the NuttX Kconfig files and generates excruciatingly boring HTML document.
</p>
<p>
  The latest boring configuration variable documentation can be regenerated at any time using that tool or, more appropriately, the wrapper script at <code>nuttx/tools/mkconfigvars.sh</code>.
  That script will generate the file <code>nuttx/Documentation/NuttXConfigVariables.html</code>.
<p>
  The version of <code>NuttXConfigVariables.html</code> for the last released version of NuttX can also be found <a href="http://nuttx.org/Documentation/NuttXConfigVariables.html">online</a>.
</p>

<table width ="100%">
  <tr bgcolor="#e4e4e4">
    <td>
      <h1><a name="apndxtrademarks">Appendix B:  Trademarks</a></h1>
    </td>
  </tr>
</table>

  <li>ARM, ARM7 ARM7TDMI, ARM9, ARM920T, ARM926EJS, Cortex-M3 are trademarks of Advanced RISC Machines, Limited.</li>
  <li>Cygwin is a trademark of Red Hat, Incorporated.</li>
  <li>Linux is a registered trademark of Linus Torvalds.</li>
  <li>Eagle-100 is a trademark of <a href=" http://www.micromint.com/">Micromint USA, LLC</a>.
  <li>LPC2148 is a trademark of NXP Semiconductors.</li>
  <li>TI is a trade name of Texas Instruments Incorporated.</li>
  <li>UNIX is a registered trademark of The Open Group.</li>
  <li>VxWorks is a registered trademark of Wind River Systems, Incorporated.</li>
  <li>ZDS, ZNEO, Z16F, Z80, and Zilog are a registered trademark of Zilog, Inc.</li>

<p>
  NOTE: NuttX is <i>not</i> licensed to use the POSIX trademark.  NuttX uses the POSIX
  standard as a development guideline only.
</p>

</body>
</html>