summaryrefslogtreecommitdiff
path: root/nuttx/arch/arm/src/armv7-a/arm_head.S
blob: fdd139b360e3a86c7aabe2bb92fef74bb62c532a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/****************************************************************************
 * arch/arm/src/armv7-a/arm_head.S
 *
 *   Copyright (C) 2013 Gregory Nutt. All rights reserved.
 *   Author: Gregory Nutt <gnutt@nuttx.org>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name NuttX nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/****************************************************************************
 * Included Files
 ****************************************************************************/

#include <nuttx/config.h>

#ifdef CONFIG_PAGING
#  include <nuttx/page.h>
#  include "pg_macros.h"
#endif

#include "arm.h"
#include "cp15.h"
#include "sctlr.h"
#include "mmu.h"
#include "chip.h"

/**********************************************************************************
 * Configuration
 **********************************************************************************/

#undef ALIGNMENT_TRAP
#undef CPU_DCACHE_WRITETHROUGH
#undef CPU_CACHE_ROUND_ROBIN
#undef CPU_DCACHE_DISABLE
#undef CPU_ICACHE_DISABLE

/* There are three operational memory configurations:
 *
 * 1. We execute in place in FLASH (CONFIG_BOOT_RUNFROMFLASH=y).  In this case
 *    the boot logic must:
 *
 *    - Configure SDRAM, 
 *    - Initialize the .data section in RAM, and
 *    - Clear .bss section
 */

#ifdef CONFIG_BOOT_RUNFROMFLASH
#  error "Configuration not implemented"
#  define DO_SDRAM_INIT 1

  /* Check for the identity mapping:  For this configuration, this would be
   * the case where the virtual beginning of FLASH is the same as the physical
   * beginning of FLASH.
   */

#  if !defined(CONFIG_FLASH_START) || !defined(CONFIG_FLASH_VSTART)
#    error "CONFIG_FLASH_START or CONFIG_FLASH_VSTART is not defined"
#  endif

#  if CONFIG_FLASH_START == CONFIG_FLASH_VSTART
#    define CONFIG_IDENTITY_TEXTMAP 1
#  endif

/* 2. We boot in FLASH but copy ourselves to DRAM from better performance.
 *    (CONFIG_BOOT_RUNFROMFLASH=n && CONFIG_BOOT_COPYTORAM=y).  In this case
 *    the boot logic must:
 *
 *    - Configure SDRAM, 
 *    - Copy ourself to DRAM (after mapping it), and
 *    - Clear .bss section
 *
 *   In this case, we assume that the logic within this file executes from FLASH.
 */

#elif defined(CONFIG_BOOT_COPYTORAM)
#  error "configuration not implemented
#  define DO_SDRAM_INIT 1

  /* Check for the identity mapping:  For this configuration, this would be
   * the case where the virtual beginning of FLASH is the same as the physical
   * beginning of FLASH.
   */

#  if !defined(CONFIG_FLASH_START) || !defined(CONFIG_FLASH_VSTART)
#    error "CONFIG_FLASH_START or CONFIG_FLASH_VSTART is not defined"
#  endif

#  if CONFIG_FLASH_START == CONFIG_FLASH_VSTART
#    define CONFIG_IDENTITY_TEXTMAP 1
#  endif

/* 3. There is bootloader that copies us to DRAM (but probably not to the beginning)
 *    (CONFIG_BOOT_RUNFROMFLASH=n && CONFIG_BOOT_COPYTORAM=n). In this case SDRAM
 *    was initialized by the boot loader, and this boot logic must: 
 *
 *    - Clear .bss section
 */

#else

  /* Check for the identity mapping:  For this configuration, this would be
   * the case where the virtual beginning of RAM is the same as the physical
   * beginning of RAM.
   */

#  if !defined(CONFIG_DRAM_START) || !defined(CONFIG_DRAM_VSTART)
#    error "CONFIG_DRAM_START or CONFIG_DRAM_VSTART is not defined"
#  endif

#  if CONFIG_DRAM_START == CONFIG_DRAM_VSTART
#    define CONFIG_IDENTITY_TEXTMAP 1
#  endif

#endif

/* For each page table offset, the following provide (1) the physical address of
 * the start of the page table and (2) the number of page table entries in the
 * first page table.
 *
 * Coarse: PG_L1_PADDRMASK=0xfffffc00
 *         NPAGE1=(256 -((a) & 0x000003ff) >> 2) NPAGE1=1-256
 * Fine:   PG_L1_PADDRMASK=0xfffff000
 *         NPAGE1=(1024 -((a) & 0x00000fff) >> 2) NPAGE1=1-1024
 */

#ifdef CONFIG_PAGING
#  define PG_L2_TEXT_PBASE     (PG_L2_TEXT_PADDR & PG_L1_PADDRMASK)
#  define PG_L2_TEXT_NPAGE1    (PTE_NPAGES - ((PG_L2_TEXT_PADDR & ~PG_L1_PADDRMASK) >> 2))
#  define PG_L2_PGTABLE_PBASE  (PG_L2_PGTABLE_PADDR & PG_L1_PADDRMASK)
#  define PG_L2_PGTABLE_NPAGE1 (PTE_NPAGES - ((PG_L2_PGTABLE_PADDR & ~PG_L1_PADDRMASK) >> 2))
#  define PG_L2_DATA_PBASE     (PG_L2_DATA_PADDR & PG_L1_PADDRMASK)
#  define PG_L2_DATA_NPAGE1    (PTE_NPAGES - ((PG_L2_DATA_PADDR & ~PG_L1_PADDRMASK) >> 2))
#endif

/****************************************************************************
 * Definitions
 ****************************************************************************/

/* RX_NSECTIONS determines the number of 1Mb sections to map for the
 * Read/eXecute address region.  This is based on CONFIG_DRAM_SIZE.  For most
 * ARMv7-A architectures, CONFIG_DRAM_SIZE describes the size of installed SDRAM.
 * But for other architectures, this might refer to the size of FLASH or
 * SRAM regions. (bad choice of naming).
 */

#define RX_NSECTIONS ((CONFIG_DRAM_SIZE+0x000fffff) >> 20)

/****************************************************************************
 * Assembly Macros
 ****************************************************************************/

/* The ARMv7-A L1 page table can be placed at the beginning or at the end of
 * the RAM space.  This decision is based on the placement of the vector
 * area: If the vectors are place in low memory at address 0x0000 0000, then
 * the page table is placed in high memory; if the vectors are placed in
 * high memory at address 0xfff0 0000, then the page table is locating at
 * the beginning of RAM.
 *
 * For the special case where (1) the program executes out of RAM, and (2)
 * the page is located at the beginning of RAM (i.e., the high vector case),
 * then the following macro can easily find the physical address of the
 * section that includes the first part of the text region:  Since the page
 * table is closely related to the NuttX base address in this case, we can
 * convert the page table base address to the base address of the section
 * containing both.
 */

/* REVISIT:  This works now of the low vector case only because the RAM
 * sizes that we have been dealing with are less then 1MB so that both the
 * page table and the vector table are in the same 1MB RAM block.  But
 * this will certainly break later. Hence, the annoying warning.
 */

#ifdef CONFIG_ARCH_LOWVECTORS
#  warning "REVISIT"
#endif

//#ifndef CONFIG_ARCH_LOWVECTORS
	.macro	mksection, section, pgtable
	bic		\section, \pgtable, #0x000ff000
	.endm
//#endif

/* This macro will modify r0, r1, r2 and r14 */

#ifdef CONFIG_DEBUG
	.macro	showprogress, code
	mov		r0, #\code
	bl		up_lowputc
	.endm
#else
	.macro	showprogress, code
	.endm
#endif

/****************************************************************************
 * Name: __start
 ****************************************************************************/

	.text
	.global	__start
	.type	__start, #function

__start:
	/* Make sure that we are in SVC mode with all IRQs disabled */

	mov		r0, #(PSR_MODE_SVC | PSR_I_BIT | PSR_F_BIT)
	msr		cpsr_c, r0

	/* Initialize DRAM using a macro provided by board-specific logic.
	 * 
	 * This must be done in two cases:
	 * 1. CONFIG_BOOT_RUNFROMFLASH.  The system is running from FLASH
	 * 2. CONFIG_BOOT_COPYTORAM.  The system booted from FLASH but
	 *    will copy itself to SDRAM.
	 */

#ifdef DO_SDRAM_INIT
	config_sdram
#endif

	/* Clear the 16K level 1 page table */

	ldr		r4, .LCppgtable			/* r4=phys. page table */
#ifndef CONFIG_ARCH_ROMPGTABLE
	mov		r0, r4
	mov		r1, #0
	add		r2, r0, #PGTABLE_SIZE
.Lpgtableclear:
	str		r1, [r0], #4
	str		r1, [r0], #4
	str		r1, [r0], #4
	str		r1, [r0], #4
	teq		r0, r2
	bne		.Lpgtableclear

	/* Create identity mapping for first MB of the .text section to support
	 * this startup logic executing out of the physical address space.  This
	 * identity mapping will be removed by .Lvstart (see below).  Of course,
	 * we would only do this if the physical-virtual mapping is not already
	 * the identity mapping.
	 */

#ifndef CONFIG_IDENTITY_TEXTMAP
	mksection r0, r4				/* r0=phys. base section */
	ldr		r1, .LCmmuflags			/* FLGS=MMU_MEMFLAGS */
	add		r3, r1, r0				/* r3=flags + base */
	str		r3, [r4, r0, lsr #18]	/* identity mapping */
#endif

#ifdef CONFIG_PAGING

	/* Map the read-only .text region in place.  This must be done
	 * before the MMU is enabled and the virtual addressing takes
	 * effect.  First populate the L1 table for the locked and paged
	 * text regions.
	 *
	 * We could probably make the the pg_l1span and pg_l2map macros into
	 * call-able subroutines, but we would have to be carefully during
	 * this phase while we are operating in a physical address space.
	 *
	 * NOTE: That the value of r5 (L1 table base address) must be
	 * preserved through the following.
	 */

	adr	r0, .Ltxtspan
	ldmia	r0, {r0, r1, r2, r3, r5}
 	pg_l1span r0, r1, r2, r3, r5, r6
 
	/* Then populate the L2 table for the locked text region only. */

	adr		r0, .Ltxtmap
	ldmia	r0, {r0, r1, r2, r3}
 	pg_l2map r0, r1, r2, r3, r5

	/* Make sure that the page table is itself mapped and and read/write-able.
	 * First, populate the L1 table:
	 */

	adr		r0, .Lptabspan
	ldmia	r0, {r0, r1, r2, r3, r5}
 	pg_l1span r0, r1, r2, r3, r5, r6

	/* Then populate the L2 table. */

	adr		r0, .Lptabmap
	ldmia	r0, {r0, r1, r2, r3}
 	pg_l2map r0, r1, r2, r3, r5

#else /* CONFIG_PAGING */

	/* Create a virtual single section mapping for the first MB of the .text
	 * address space. Now, we have the first 1MB mapping to both phyical and
	 * virtual addresses.  The rest of the .text mapping will be completed in
	 * .Lvstart once we have moved the physical mapping out of the way.
	 *
	 * Here we expect to have:
	 * r4 = Address of the base of the L1 table
	 */

	ldr		r2, .LCvpgtable			/* r2=virt. page table */
	mksection r0, r2				/* r0=virt. base section */
	str		r3, [r4, r0, lsr #18]	/* identity mapping */

	/* NOTE: No .data/.bss access should be attempted.  This temporary mapping
	 * can only be assumed to cover the initial .text region.
	 */

#endif /* CONFIG_PAGING */
#endif /* CONFIG_ARCH_ROMPGTABLE */

	/* The following logic will set up the ARMv7-A for normal operation.
	 *
	 * Here we expect to have:
	 *   r4 = Address of the base of the L1 table
	 */

	/* Invalidate caches and TLBs.
	 *
	 * NOTE: "The ARMv7 Virtual Memory System Architecture (VMSA) does not
	 * support a CP15 operation to invalidate the entire data cache. ...
	 * In normal usage the only time the entire data cache has to be
	 * invalidated is on reset."
	 *
	 * REVISIT:  This could be an issue if NuttX is every started in a
	 * context where the DCache could be dirty.
	 */

	mov		r0, #0
	mcr		CP15_ICIALLUIS(r0)	/* Invalidate entire instruction cache Inner Shareable */

	/* Load the page table address.
	 *
	 * NOTES:
	 * - Here we assume that the page table address is aligned to at least
	 *   least a 16KB boundary (bits 0-13 are zero).  No masking is provided
	 *   to protect against an unaligned page table address.
	 * - The Cortex-A5 has two page table address registers, TTBR0 and 1.
	 *   Only TTBR0 is used in this implementation but both are initialized.
	 *
	 * Here we expect to have:
	 *   r0 = Zero
	 *   r4 = Address of the base of the L1 table
	 */

	mcr		CP15_TTBR0(r4)
	mcr		CP15_TTBR1(r4)

	/* Clear the TTB control register (TTBCR) to indicate that we are using
	 * TTBR0.  r0 still holds the value of zero.
	 */

	mcr		CP15_TTBCR(r0)

	/* Enable DCache write-through if so configured.
	 *
	 * The Cortex-A5 MPCore data cache only supports a write-back policy.
	 */

#ifdef CPU_DCACHE_WRITETHROUGH
#endif 

	/* Enable the MMU and caches
	 * lr = Resume at .Lvstart with the MMU enabled
	 */

	ldr		lr, .LCvstart			/* Abs. virtual address */

	/* Configure the domain access register (see mmu.h) */

	mov		r0, #0x1f				/* Domains 0, 1 = client */
	mcr		CP15_DACR(r0)			/* Load domain access register */

	/* Configure the system control register (see sctrl.h) */

	mrc		CP15_SCTLR(r0)			/* Get control register */

	/* Clear bits to reset values.  This is only necessary in situations like, for
	 * example, we get here via a bootloader and the control register is in some
	 * unknown state.
	 *
	 *   SCTLR_A    Bit 1:  Strict alignment disabled (reset value)
	 *   SCTLR_C    Bit 2:  DCache disabled (reset value)
	 *
	 *   SCTLR_SW   Bit 10: SWP/SWPB not enabled (reset value)
	 *   SCTLR_I    Bit 12: ICache disabled (reset value)
	 *   SCTLR_V    Bit 13: Assume low vectors (reset value)
	 *   SCTLR_RR   Bit 14: The Cortex-A5 processor only supports a fixed random
	 *                      replacement strategy.
	 *   SCTLR_HA   Bit 17: Not supported by A5
	 *
	 *   SCTLR_EE   Bit 25: Little endian (reset value).
	 *   SCTLR_TRE  Bit 28: No memory region remapping (reset value)
	 *   SCTLR_AFE  Bit 29: Full, legacy access permissions behavior (reset value).
	 *   SCTLR_TE   Bit 30: All exceptions handled in ARM state (reset value).
	 */

	bic		r0, r0, #(SCTLR_A  | SCTLR_C)
	bic		r0, r0, #(SCTLR_SW | SCTLR_I   | SCTLR_V   | SCTLR_RR | SCTLR_HA)
	bic		r0, r0, #(SCTLR_EE | SCTLR_TRE | SCTLR_AFE | SCTLR_TE)

	/* Set bits to enable the MMU
	 *
	 *   SCTLR_M     Bit 0:  Enable the MMU
	 *   SCTLR_Z     Bit 11: Program flow prediction control always enabled on A5
	 */

	orr		r0, r0, #(SCTLR_M /* | SCTLR_Z */)
	
	/* Position vectors to 0xffff0000 if so configured.
	 *
	 *   SCTLR_V    Bit 13: High vectors
	 */

#ifndef CONFIG_ARCH_LOWVECTORS
	orr		r0, r0, #(SCTLR_V)
#endif

	/* CR_RR - Round Robin cache replacement
	 *
	 *   SCTLR_RR   Bit 14: The Cortex-A5 processor only supports a fixed random
	 *                      replacement strategy.
	 */

#ifndef CPU_CACHE_ROUND_ROBIN
#endif

	/* CR_C - Dcache enable
	 *
	 *   SCTLR_C    Bit 2:  DCache enable
	 */

#ifndef CPU_DCACHE_DISABLE
	orr		r0, r0, #(SCTLR_C)
#endif

	/* CR_C - Icache enable
	 *
	 *   SCTLR_I    Bit 12: ICache enable
	 */

#ifndef CPU_ICACHE_DISABLE
	orr		r0, r0, #(SCTLR_I)
#endif

	/* CR_A - Alignment abort enable
	 *
	 *   SCTLR_A    Bit 1:  Strict alignment enabled
	 */

#ifdef ALIGNMENT_TRAP
	orr		r0, r0, #(SCTLR_A)
#endif

	/* Then write the configured control register */

	mcr		CP15_SCTLR(r0)			/* Write control reg */

	/* Read the Main ID register.  This will be available in R1 after
	 * MMU trampoline (not currently used)
	 */

	mrc		CP15_MIDR(r1)			/* Read main id reg */
	mov		r1, r1					/* Null-avoiding nop */
	mov		r1, r1					/* Null-avoiding nop */

	/* And "jump" to .Lvstart in the newly mapped virtual address space */

	mov		pc, lr

/****************************************************************************
 * PC_Relative Data
 ****************************************************************************/

	/* Most addresses are virtual address */
	
	.type	.LCvstart, %object
.LCvstart:
	.long	.Lvstart

#ifndef CONFIG_ARCH_ROMPGTABLE
	.type	.LCmmuflags, %object
.LCmmuflags:
	.long	MMU_MEMFLAGS			/* MMU flags for memory sections */
#endif

	.type	.LCppgtable, %object
.LCppgtable:
	.long	PGTABLE_BASE_PADDR		/* Physical start of page table */

#ifndef CONFIG_ARCH_ROMPGTABLE
	.type	.LCvpgtable, %object
.LCvpgtable:
	.long	PGTABLE_BASE_VADDR		/* Virtual start of page table */
#endif

#ifdef CONFIG_PAGING

.Ltxtspan:
	.long	PG_L1_TEXT_PADDR		/* Physical address in the L1 table */
	.long	PG_L2_TEXT_PBASE		/* Physical address of the start of the L2 page table */
	.long	PG_TEXT_NVPAGES			/* Total (virtual) text pages to be mapped */
	.long	PG_L2_TEXT_NPAGE1		/* The number of text pages in the first page table */
	.long	MMU_L1_TEXTFLAGS		/* L1 MMU flags to use */

.Ltxtmap:
	.long	PG_L2_LOCKED_PADDR		/* Physical address in the L2 table */
	.long	PG_LOCKED_PBASE			/* Physical address of locked base memory */
	.long	CONFIG_PAGING_NLOCKED	/* Number of pages in the locked region */
	.long	MMU_L2_TEXTFLAGS		/* L2 MMU flags to use */

.Lptabspan:
	.long	PG_L1_PGTABLE_PADDR		/* Physical address in the L1 table */
	.long	PG_L2_PGTABLE_PBASE		/* Physical address of the start of the L2 page table */
	.long	PG_PGTABLE_NPAGES		/* Total mapped page table pages */
	.long	PG_L2_PGTABLE_NPAGE1	/* The number of text pages in the first page table */
	.long	MMU_L1_PGTABFLAGS		/* L1 MMU flags to use */

.Lptabmap:
	.long	PG_L2_PGTABLE_PADDR		/* Physical address in the L2 table */
	.long	PGTABLE_BASE_PADDR		/* Physical address of the page table memory */
	.long	PG_PGTABLE_NPAGES		/* Total mapped page table pages */
	.long	MMU_L2_PGTABFLAGS		/* L2 MMU flags to use */

#endif /* CONFIG_PAGING */
	.size	__start, .-__start

/****************************************************************************
 * Name: .Lvstart
 ***************************************************************************/

/* The following is executed after the MMU has been enabled. This uses
 * absolute addresses; this is not position independent.
 */
	.align	5
	.local	.Lvstart
	.type	.Lvstart, %function
.Lvstart:

	/* Remove the temporary mapping (if one was made).  The following assumes
	 * that the total RAM size is > 1Mb and extends that initial mapping to
	 * cover additinal RAM sections.
	 */


#ifndef CONFIG_ARCH_ROMPGTABLE
#ifndef CONFIG_IDENTITY_TEXTMAP
	ldr		r4, .LCvpgtable			/* r4=virtual page table */
	ldr		r1, .LCppgtable			/* r1=phys. page table */
	mksection r3, r1				/* r2=phys. base addr */
	mov		r0, #0					/* flags + base = 0 */
	str		r0, [r4, r3, lsr #18]	/* Undo identity mapping */
#endif

#if defined(CONFIG_PAGING)
	/* Populate the L1 table for the data region */

	adr		r0, .Ldataspan
	ldmia	r0, {r0, r1, r2, r3, r4}
 	pg_l1span r0, r1, r2, r3, r4, r5

	/* Populate the L2 table for the data region */

	adr		r0, .Ldatamap
	ldmia	r0, {r0, r1, r2, r3}
 	pg_l2map r0, r1, r2, r3, r4

#elif defined(CONFIG_BOOT_RUNFROMFLASH)
#  error "Logic not implemented"
#else
	/* Now setup the pagetables for our normal SDRAM mappings mapped region.
	 * We round NUTTX_START_VADDR down to the nearest megabyte boundary.
	 */

	ldr		r1, .LCmmuflags			/* FLGS=MMU_MEMFLAGS */
	add		r3, r3, r1				/* r3=flags + base */

	add		r0, r4, #(NUTTX_START_VADDR & 0xff000000) >> 18
	bic		r2, r3, #0x00f00000
	str		r2, [r0]

	add		r0, r0, #(NUTTX_START_VADDR & 0x00f00000) >> 18
	str		r3, [r0], #4

	/* Now map the remaining RX_NSECTIONS-1 sections of the executable
	 * memory region.
	 */

	.rept	RX_NSECTIONS-1
	add		r3, r3, #SECTION_SIZE
	str		r3, [r0], #4
	.endr

	/* If we are executing from RAM with a fixed page configuration, then
	 * we can assume that the above contiguous mapping included all of the
	 * .text, .data, .bss, heap, etc. But if we are executing from FLASH,
	 * then the RAM area is probably in a separate physical address region
	 * and will require a separate mapping.  Or, if we are supporting on-demand
	 * paging of the .text region, then the RAM-based .data/.bss/heap section
	 * will still probably be located in a separate (virtual) address region.
	 */

#endif /* CONFIG_PAGING */
#endif /* CONFIG_ARCH_ROMPGTABLE */

	/* Zero BSS and set up the stack pointer */

	adr		r0, .Linitparms
	ldmia	r0, {r0, r1, sp}

	/* Clear the frame pointer and .bss */

	mov     fp, #0

.Lbssinit:	
	cmp		r0, r1				/* Clear up to _bss_end_ */
	strcc	fp, [r0],#4
	bcc		.Lbssinit

	/* If the .data section is in a separate, unitialized address space,
	 * then we will also need to copy the initial values of of the .data
	 * section from the .text region into that .data region.  This would
	 * be the case if we are executing from FLASH and the .data section
	 * lies in a different physical address region OR if we are support
	 * on-demand paging and the .data section lies in a different virtual
	 * address region.
	 */

#if defined(CONFIG_BOOT_RUNFROMFLASH) || defined(CONFIG_PAGING)
	adr		r3, .Ldatainit
	ldmia	r3, {r0, r1, r2}

1:	ldmia	r0!, {r3 - r10}
	stmia	r1!, {r3 - r10}
	cmp		r1, r2
	blt		1b
#endif

	/* Perform early C-level, platform-specific initialization */

	bl		up_boot

	/* Finally branch to the OS entry point */

	mov	lr, #0
	b		os_start

	/* Text-section constants:
	 *
	 *   _sbss is the start of the BSS region (see ld.script)
	 *   _ebss is the end of the BSS regsion (see ld.script)
	 *
	 * The idle task stack starts at the end of BSS and is of size
	 * CONFIG_IDLETHREAD_STACKSIZE.  The heap continues from there until the
	 * end of memory.  See g_idle_topstack below.
	 */

.Linitparms:
	.long	_sbss
	.long	_ebss
	.long	_ebss+CONFIG_IDLETHREAD_STACKSIZE-4

#ifdef CONFIG_PAGING

.Ldataspan:
	.long	PG_L1_DATA_VADDR	/* Virtual address in the L1 table */
	.long	PG_L2_DATA_PBASE	/* Physical address of the start of the L2 page table */
	.long	PG_DATA_NPAGES		/* Number of pages in the data region */
	.long	PG_L2_DATA_NPAGE1	/* The number of text pages in the first page table */
	.long	MMU_L1_DATAFLAGS	/* L1 MMU flags to use */

.Ldatamap:
	.long	PG_L2_DATA_VADDR	/* Virtual address in the L2 table */
	.long	PG_DATA_PBASE		/* Physical address of data memory  */
	.long	PG_DATA_NPAGES		/* Number of pages in the data region */
	.long	MMU_L2_DATAFLAGS	/* L2 MMU flags to use */

#endif /* CONFIG_PAGING */

#if defined(CONFIG_BOOT_RUNFROMFLASH) || defined(CONFIG_PAGING)
.Ldatainit:
	.long	_eronly			/* Where .data defaults are stored in FLASH */
	.long	_sdata			/* Where .data needs to reside in SDRAM */
	.long	_edata
#endif
	.size	.Lvstart, .-.Lvstart

	 /* Data section variables */

	/* This global variable is unsigned long g_idle_topstack and is
	 * exported from here only because of its coupling to .Linitparms
	 * above.
	 */

	.data
	.align	4
	.globl	g_idle_topstack
	.type	g_idle_topstack, object
g_idle_topstack:
	.long	_ebss+CONFIG_IDLETHREAD_STACKSIZE
	.size	g_idle_topstack, .-g_idle_topstack
	.end