aboutsummaryrefslogtreecommitdiff
path: root/src/ProtocolBuffers/CodedOutputStream.cs
diff options
context:
space:
mode:
authorJon Skeet <skeet@pobox.com>2008-10-22 13:30:34 +0100
committerJon Skeet <skeet@pobox.com>2008-10-22 13:30:34 +0100
commit6803686bc06c4d96afd9bd2637f7b37a58596699 (patch)
tree4b21c563f4cd4e399fbc0b253bc2f15e822eae88 /src/ProtocolBuffers/CodedOutputStream.cs
parentf0589506c96600dcd01319b9d1929d87505f3daa (diff)
downloadprotobuf-6803686bc06c4d96afd9bd2637f7b37a58596699.tar.gz
protobuf-6803686bc06c4d96afd9bd2637f7b37a58596699.tar.bz2
protobuf-6803686bc06c4d96afd9bd2637f7b37a58596699.zip
First cut at new layout
Diffstat (limited to 'src/ProtocolBuffers/CodedOutputStream.cs')
-rw-r--r--src/ProtocolBuffers/CodedOutputStream.cs765
1 files changed, 765 insertions, 0 deletions
diff --git a/src/ProtocolBuffers/CodedOutputStream.cs b/src/ProtocolBuffers/CodedOutputStream.cs
new file mode 100644
index 00000000..0abfa39a
--- /dev/null
+++ b/src/ProtocolBuffers/CodedOutputStream.cs
@@ -0,0 +1,765 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc.
+// http://code.google.com/p/protobuf/
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+using System;
+using System.IO;
+using System.Text;
+using Google.ProtocolBuffers.Descriptors;
+
+namespace Google.ProtocolBuffers {
+
+ /// <summary>
+ /// Encodes and writes protocol message fields.
+ /// </summary>
+ /// <remarks>
+ /// This class contains two kinds of methods: methods that write specific
+ /// protocol message constructs and field types (e.g. WriteTag and
+ /// WriteInt32) and methods that write low-level values (e.g.
+ /// WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
+ /// messages, you should use the former methods, but if you are writing some
+ /// other format of your own design, use the latter. The names of the former
+ /// methods are taken from the protocol buffer type names, not .NET types.
+ /// (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)
+ /// </remarks>
+ public sealed class CodedOutputStream {
+ /// <summary>
+ /// The buffer size used by CreateInstance(Stream).
+ /// </summary>
+ public static readonly int DefaultBufferSize = 4096;
+
+ private readonly byte[] buffer;
+ private readonly int limit;
+ private int position;
+ private readonly Stream output;
+
+ #region Construction
+ private CodedOutputStream(byte[] buffer, int offset, int length) {
+ this.output = null;
+ this.buffer = buffer;
+ this.position = offset;
+ this.limit = offset + length;
+ }
+
+ private CodedOutputStream(Stream output, byte[] buffer) {
+ this.output = output;
+ this.buffer = buffer;
+ this.position = 0;
+ this.limit = buffer.Length;
+ }
+
+ /// <summary>
+ /// Creates a new CodedOutputStream which write to the given stream.
+ /// </summary>
+ public static CodedOutputStream CreateInstance(Stream output) {
+ return CreateInstance(output, DefaultBufferSize);
+ }
+
+ /// <summary>
+ /// Creates a new CodedOutputStream which write to the given stream and uses
+ /// the specified buffer size.
+ /// </summary>
+ public static CodedOutputStream CreateInstance(Stream output, int bufferSize) {
+ return new CodedOutputStream(output, new byte[bufferSize]);
+ }
+
+ /// <summary>
+ /// Creates a new CodedOutputStream that writes directly to the given
+ /// byte array. If more bytes are written than fit in the array,
+ /// OutOfSpaceException will be thrown.
+ /// </summary>
+ public static CodedOutputStream CreateInstance(byte[] flatArray) {
+ return CreateInstance(flatArray, 0, flatArray.Length);
+ }
+
+ /// <summary>
+ /// Creates a new CodedOutputStream that writes directly to the given
+ /// byte array slice. If more bytes are written than fit in the array,
+ /// OutOfSpaceException will be thrown.
+ /// </summary>
+ public static CodedOutputStream CreateInstance(byte[] flatArray, int offset, int length) {
+ return new CodedOutputStream(flatArray, offset, length);
+ }
+ #endregion
+
+ #region Writing of tags etc
+ /// <summary>
+ /// Writes a double field value, including tag, to the stream.
+ /// </summary>
+ public void WriteDouble(int fieldNumber, double value) {
+ // TODO(jonskeet): Test this on different endiannesses
+ WriteTag(fieldNumber, WireFormat.WireType.Fixed64);
+ WriteRawLittleEndian64((ulong)BitConverter.DoubleToInt64Bits(value));
+ }
+
+ /// <summary>
+ /// Writes a float field value, including tag, to the stream.
+ /// </summary>
+ public void WriteFloat(int fieldNumber, float value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Fixed32);
+ // TODO(jonskeet): Test this on different endiannesses
+ byte[] rawBytes = BitConverter.GetBytes(value);
+ uint asInteger = BitConverter.ToUInt32(rawBytes, 0);
+ WriteRawLittleEndian32(asInteger);
+ }
+
+ /// <summary>
+ /// Writes a uint64 field value, including tag, to the stream.
+ /// </summary>
+ public void WriteUInt64(int fieldNumber, ulong value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Varint);
+ WriteRawVarint64(value);
+ }
+
+ /// <summary>
+ /// Writes an int64 field value, including tag, to the stream.
+ /// </summary>
+ public void WriteInt64(int fieldNumber, long value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Varint);
+ WriteRawVarint64((ulong)value);
+ }
+
+ /// <summary>
+ /// Writes an int32 field value, including tag, to the stream.
+ /// </summary>
+ public void WriteInt32(int fieldNumber, int value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Varint);
+ if (value >= 0) {
+ WriteRawVarint32((uint)value);
+ } else {
+ // Must sign-extend.
+ WriteRawVarint64((ulong)value);
+ }
+ }
+
+ /// <summary>
+ /// Writes a fixed64 field value, including tag, to the stream.
+ /// </summary>
+ public void WriteFixed64(int fieldNumber, ulong value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Fixed64);
+ WriteRawLittleEndian64(value);
+ }
+
+ /// <summary>
+ /// Writes a fixed32 field value, including tag, to the stream.
+ /// </summary>
+ public void WriteFixed32(int fieldNumber, uint value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Fixed32);
+ WriteRawLittleEndian32(value);
+ }
+
+ /// <summary>
+ /// Writes a bool field value, including tag, to the stream.
+ /// </summary>
+ public void WriteBool(int fieldNumber, bool value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Varint);
+ WriteRawByte(value ? (byte)1 : (byte)0);
+ }
+
+ /// <summary>
+ /// Writes a string field value, including tag, to the stream.
+ /// </summary>
+ public void WriteString(int fieldNumber, string value) {
+ WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
+ // Optimise the case where we have enough space to write
+ // the string directly to the buffer, which should be common.
+ int length = Encoding.UTF8.GetByteCount(value);
+ WriteRawVarint32((uint) length);
+ if (limit - position >= length) {
+ Encoding.UTF8.GetBytes(value, 0, value.Length, buffer, position);
+ position += length;
+ } else {
+ byte[] bytes = Encoding.UTF8.GetBytes(value);
+ WriteRawBytes(bytes);
+ }
+ }
+
+ /// <summary>
+ /// Writes a group field value, including tag, to the stream.
+ /// </summary>
+ public void WriteGroup(int fieldNumber, IMessage value) {
+ WriteTag(fieldNumber, WireFormat.WireType.StartGroup);
+ value.WriteTo(this);
+ WriteTag(fieldNumber, WireFormat.WireType.EndGroup);
+ }
+
+ public void WriteUnknownGroup(int fieldNumber, UnknownFieldSet value) {
+ WriteTag(fieldNumber, WireFormat.WireType.StartGroup);
+ value.WriteTo(this);
+ WriteTag(fieldNumber, WireFormat.WireType.EndGroup);
+ }
+
+ public void WriteMessage(int fieldNumber, IMessage value) {
+ WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
+ WriteRawVarint32((uint)value.SerializedSize);
+ value.WriteTo(this);
+ }
+
+ public void WriteBytes(int fieldNumber, ByteString value) {
+ // TODO(jonskeet): Optimise this! (No need to copy the bytes twice.)
+ WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
+ byte[] bytes = value.ToByteArray();
+ WriteRawVarint32((uint)bytes.Length);
+ WriteRawBytes(bytes);
+ }
+
+ public void WriteUInt32(int fieldNumber, uint value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Varint);
+ WriteRawVarint32(value);
+ }
+
+ public void WriteEnum(int fieldNumber, int value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Varint);
+ WriteRawVarint32((uint)value);
+ }
+
+ public void WriteSFixed32(int fieldNumber, int value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Fixed32);
+ WriteRawLittleEndian32((uint)value);
+ }
+
+ public void WriteSFixed64(int fieldNumber, long value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Fixed64);
+ WriteRawLittleEndian64((ulong)value);
+ }
+
+ public void WriteSInt32(int fieldNumber, int value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Varint);
+ WriteRawVarint32(EncodeZigZag32(value));
+ }
+
+ public void WriteSInt64(int fieldNumber, long value) {
+ WriteTag(fieldNumber, WireFormat.WireType.Varint);
+ WriteRawVarint64(EncodeZigZag64(value));
+ }
+
+ public void WriteMessageSetExtension(int fieldNumber, IMessage value) {
+ WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.StartGroup);
+ WriteUInt32(WireFormat.MessageSetField.TypeID, (uint)fieldNumber);
+ WriteMessage(WireFormat.MessageSetField.Message, value);
+ WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.EndGroup);
+ }
+
+ public void WriteRawMessageSetExtension(int fieldNumber, ByteString value) {
+ WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.StartGroup);
+ WriteUInt32(WireFormat.MessageSetField.TypeID, (uint)fieldNumber);
+ WriteBytes(WireFormat.MessageSetField.Message, value);
+ WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.EndGroup);
+ }
+
+ public void WriteField(FieldType fieldType, int fieldNumber, object value) {
+ switch (fieldType) {
+ case FieldType.Double: WriteDouble(fieldNumber, (double)value); break;
+ case FieldType.Float: WriteFloat(fieldNumber, (float)value); break;
+ case FieldType.Int64: WriteInt64(fieldNumber, (long)value); break;
+ case FieldType.UInt64: WriteUInt64(fieldNumber, (ulong)value); break;
+ case FieldType.Int32: WriteInt32(fieldNumber, (int)value); break;
+ case FieldType.Fixed64: WriteFixed64(fieldNumber, (ulong)value); break;
+ case FieldType.Fixed32: WriteFixed32(fieldNumber, (uint)value); break;
+ case FieldType.Bool: WriteBool(fieldNumber, (bool)value); break;
+ case FieldType.String: WriteString(fieldNumber, (string)value); break;
+ case FieldType.Group: WriteGroup(fieldNumber, (IMessage)value); break;
+ case FieldType.Message: WriteMessage(fieldNumber, (IMessage)value); break;
+ case FieldType.Bytes: WriteBytes(fieldNumber, (ByteString)value); break;
+ case FieldType.UInt32: WriteUInt32(fieldNumber, (uint)value); break;
+ case FieldType.SFixed32: WriteSFixed32(fieldNumber, (int)value); break;
+ case FieldType.SFixed64: WriteSFixed64(fieldNumber, (long)value); break;
+ case FieldType.SInt32: WriteSInt32(fieldNumber, (int)value); break;
+ case FieldType.SInt64: WriteSInt64(fieldNumber, (long)value); break;
+ case FieldType.Enum: WriteEnum(fieldNumber, ((EnumValueDescriptor)value).Number);
+ break;
+ }
+ }
+
+ #endregion
+
+ #region Underlying writing primitives
+ /// <summary>
+ /// Encodes and writes a tag.
+ /// </summary>
+ public void WriteTag(int fieldNumber, WireFormat.WireType type) {
+ WriteRawVarint32(WireFormat.MakeTag(fieldNumber, type));
+ }
+
+ private void SlowWriteRawVarint32(uint value) {
+ while (true) {
+ if ((value & ~0x7F) == 0) {
+ WriteRawByte(value);
+ return;
+ } else {
+ WriteRawByte((value & 0x7F) | 0x80);
+ value >>= 7;
+ }
+ }
+ }
+
+ /// <summary>
+ /// Writes a 32 bit value as a varint. The fast route is taken when
+ /// there's enough buffer space left to whizz through without checking
+ /// for each byte; otherwise, we resort to calling WriteRawByte each time.
+ /// </summary>
+ public void WriteRawVarint32(uint value) {
+ if (position + 5 > limit) {
+ SlowWriteRawVarint32(value);
+ return;
+ }
+
+ while (true) {
+ if ((value & ~0x7F) == 0) {
+ buffer[position++] = (byte) value;
+ return;
+ } else {
+ buffer[position++] = (byte)((value & 0x7F) | 0x80);
+ value >>= 7;
+ }
+ }
+ }
+
+ public void WriteRawVarint64(ulong value) {
+ while (true) {
+ if ((value & ~0x7FUL) == 0) {
+ WriteRawByte((uint)value);
+ return;
+ } else {
+ WriteRawByte(((uint)value & 0x7F) | 0x80);
+ value >>= 7;
+ }
+ }
+ }
+
+ public void WriteRawLittleEndian32(uint value) {
+ WriteRawByte((byte)value);
+ WriteRawByte((byte)(value >> 8));
+ WriteRawByte((byte)(value >> 16));
+ WriteRawByte((byte)(value >> 24));
+ }
+
+ public void WriteRawLittleEndian64(ulong value) {
+ WriteRawByte((byte)value);
+ WriteRawByte((byte)(value >> 8));
+ WriteRawByte((byte)(value >> 16));
+ WriteRawByte((byte)(value >> 24));
+ WriteRawByte((byte)(value >> 32));
+ WriteRawByte((byte)(value >> 40));
+ WriteRawByte((byte)(value >> 48));
+ WriteRawByte((byte)(value >> 56));
+ }
+
+ public void WriteRawByte(byte value) {
+ if (position == limit) {
+ RefreshBuffer();
+ }
+
+ buffer[position++] = value;
+ }
+
+ public void WriteRawByte(uint value) {
+ WriteRawByte((byte)value);
+ }
+
+ /// <summary>
+ /// Writes out an array of bytes.
+ /// </summary>
+ public void WriteRawBytes(byte[] value) {
+ WriteRawBytes(value, 0, value.Length);
+ }
+
+ /// <summary>
+ /// Writes out part of an array of bytes.
+ /// </summary>
+ public void WriteRawBytes(byte[] value, int offset, int length) {
+ if (limit - position >= length) {
+ Array.Copy(value, offset, buffer, position, length);
+ // We have room in the current buffer.
+ position += length;
+ } else {
+ // Write extends past current buffer. Fill the rest of this buffer and
+ // flush.
+ int bytesWritten = limit - position;
+ Array.Copy(value, offset, buffer, position, bytesWritten);
+ offset += bytesWritten;
+ length -= bytesWritten;
+ position = limit;
+ RefreshBuffer();
+
+ // Now deal with the rest.
+ // Since we have an output stream, this is our buffer
+ // and buffer offset == 0
+ if (length <= limit) {
+ // Fits in new buffer.
+ Array.Copy(value, offset, buffer, 0, length);
+ position = length;
+ } else {
+ // Write is very big. Let's do it all at once.
+ output.Write(value, offset, length);
+ }
+ }
+ }
+ #endregion
+
+ #region Size computations
+
+ const int LittleEndian64Size = 8;
+ const int LittleEndian32Size = 4;
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// double field, including the tag.
+ /// </summary>
+ public static int ComputeDoubleSize(int fieldNumber, double value) {
+ return ComputeTagSize(fieldNumber) + LittleEndian64Size;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// float field, including the tag.
+ /// </summary>
+ public static int ComputeFloatSize(int fieldNumber, float value) {
+ return ComputeTagSize(fieldNumber) + LittleEndian32Size;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// uint64 field, including the tag.
+ /// </summary>
+ public static int ComputeUInt64Size(int fieldNumber, ulong value) {
+ return ComputeTagSize(fieldNumber) + ComputeRawVarint64Size(value);
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode an
+ /// int64 field, including the tag.
+ /// </summary>
+ public static int ComputeInt64Size(int fieldNumber, long value) {
+ return ComputeTagSize(fieldNumber) + ComputeRawVarint64Size((ulong)value);
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode an
+ /// int32 field, including the tag.
+ /// </summary>
+ public static int ComputeInt32Size(int fieldNumber, int value) {
+ if (value >= 0) {
+ return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size((uint)value);
+ } else {
+ // Must sign-extend.
+ return ComputeTagSize(fieldNumber) + 10;
+ }
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// fixed64 field, including the tag.
+ /// </summary>
+ public static int ComputeFixed64Size(int fieldNumber, ulong value) {
+ return ComputeTagSize(fieldNumber) + LittleEndian64Size;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// fixed32 field, including the tag.
+ /// </summary>
+ public static int ComputeFixed32Size(int fieldNumber, uint value) {
+ return ComputeTagSize(fieldNumber) + LittleEndian32Size;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// bool field, including the tag.
+ /// </summary>
+ public static int ComputeBoolSize(int fieldNumber, bool value) {
+ return ComputeTagSize(fieldNumber) + 1;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// string field, including the tag.
+ /// </summary>
+ public static int ComputeStringSize(int fieldNumber, String value) {
+ int byteArraySize = Encoding.UTF8.GetByteCount(value);
+ return ComputeTagSize(fieldNumber) +
+ ComputeRawVarint32Size((uint)byteArraySize) +
+ byteArraySize;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// group field, including the tag.
+ /// </summary>
+ public static int ComputeGroupSize(int fieldNumber, IMessage value) {
+ return ComputeTagSize(fieldNumber) * 2 + value.SerializedSize;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// group field represented by an UnknownFieldSet, including the tag.
+ /// </summary>
+ public static int ComputeUnknownGroupSize(int fieldNumber,
+ UnknownFieldSet value) {
+ return ComputeTagSize(fieldNumber) * 2 + value.SerializedSize;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode an
+ /// embedded message field, including the tag.
+ /// </summary>
+ public static int ComputeMessageSize(int fieldNumber, IMessage value) {
+ int size = value.SerializedSize;
+ return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size((uint)size) + size;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// bytes field, including the tag.
+ /// </summary>
+ public static int ComputeBytesSize(int fieldNumber, ByteString value) {
+ return ComputeTagSize(fieldNumber) +
+ ComputeRawVarint32Size((uint)value.Length) +
+ value.Length;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// uint32 field, including the tag.
+ /// </summary>
+ public static int ComputeUInt32Size(int fieldNumber, uint value) {
+ return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size(value);
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// enum field, including the tag. The caller is responsible for
+ /// converting the enum value to its numeric value.
+ /// </summary>
+ public static int ComputeEnumSize(int fieldNumber, int value) {
+ return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size((uint)value);
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode an
+ /// sfixed32 field, including the tag.
+ /// </summary>
+ public static int ComputeSFixed32Size(int fieldNumber, int value) {
+ return ComputeTagSize(fieldNumber) + LittleEndian32Size;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode an
+ /// sfixed64 field, including the tag.
+ /// </summary>
+ public static int ComputeSFixed64Size(int fieldNumber, long value) {
+ return ComputeTagSize(fieldNumber) + LittleEndian64Size;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode an
+ /// sint32 field, including the tag.
+ /// </summary>
+ public static int ComputeSInt32Size(int fieldNumber, int value) {
+ return ComputeTagSize(fieldNumber) +
+ ComputeRawVarint32Size(EncodeZigZag32(value));
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode an
+ /// sint64 field, including the tag.
+ /// </summary>
+ public static int ComputeSInt64Size(int fieldNumber, long value) {
+ return ComputeTagSize(fieldNumber) +
+ ComputeRawVarint64Size(EncodeZigZag64(value));
+ }
+
+ /*
+ * Compute the number of bytes that would be needed to encode a
+ * MessageSet extension to the stream. For historical reasons,
+ * the wire format differs from normal fields.
+ */
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a
+ /// MessageSet extension to the stream. For historical reasons,
+ /// the wire format differs from normal fields.
+ /// </summary>
+ public static int ComputeMessageSetExtensionSize(int fieldNumber, IMessage value) {
+ return ComputeTagSize(WireFormat.MessageSetField.Item) * 2 +
+ ComputeUInt32Size(WireFormat.MessageSetField.TypeID, (uint) fieldNumber) +
+ ComputeMessageSize(WireFormat.MessageSetField.Message, value);
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode an
+ /// unparsed MessageSet extension field to the stream. For
+ /// historical reasons, the wire format differs from normal fields.
+ /// </summary>
+ public static int ComputeRawMessageSetExtensionSize(int fieldNumber, ByteString value) {
+ return ComputeTagSize(WireFormat.MessageSetField.Item) * 2 +
+ ComputeUInt32Size(WireFormat.MessageSetField.TypeID, (uint) fieldNumber) +
+ ComputeBytesSize(WireFormat.MessageSetField.Message, value);
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a varint.
+ /// </summary>
+ public static int ComputeRawVarint32Size(uint value) {
+ if ((value & (0xffffffff << 7)) == 0) return 1;
+ if ((value & (0xffffffff << 14)) == 0) return 2;
+ if ((value & (0xffffffff << 21)) == 0) return 3;
+ if ((value & (0xffffffff << 28)) == 0) return 4;
+ return 5;
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a varint.
+ /// </summary>
+ public static int ComputeRawVarint64Size(ulong value) {
+ if ((value & (0xffffffffffffffffL << 7)) == 0) return 1;
+ if ((value & (0xffffffffffffffffL << 14)) == 0) return 2;
+ if ((value & (0xffffffffffffffffL << 21)) == 0) return 3;
+ if ((value & (0xffffffffffffffffL << 28)) == 0) return 4;
+ if ((value & (0xffffffffffffffffL << 35)) == 0) return 5;
+ if ((value & (0xffffffffffffffffL << 42)) == 0) return 6;
+ if ((value & (0xffffffffffffffffL << 49)) == 0) return 7;
+ if ((value & (0xffffffffffffffffL << 56)) == 0) return 8;
+ if ((value & (0xffffffffffffffffL << 63)) == 0) return 9;
+ return 10;
+ }
+
+
+ /*
+ * Compute the number of bytes that would be needed to encode a
+ * field of arbitrary type, including tag, to the stream.
+ *
+ * @param type The field's type.
+ * @param number The field's number.
+ * @param value Object representing the field's value. Must be of the exact
+ * type which would be returned by
+ * {@link Message#getField(FieldDescriptor)} for
+ * this field.
+ */
+ public static int ComputeFieldSize(FieldType fieldType, int fieldNumber, Object value) {
+ switch (fieldType) {
+ case FieldType.Double: return ComputeDoubleSize(fieldNumber, (double)value);
+ case FieldType.Float: return ComputeFloatSize(fieldNumber, (float)value);
+ case FieldType.Int64: return ComputeInt64Size(fieldNumber, (long)value);
+ case FieldType.UInt64: return ComputeUInt64Size(fieldNumber, (ulong)value);
+ case FieldType.Int32: return ComputeInt32Size(fieldNumber, (int)value);
+ case FieldType.Fixed64: return ComputeFixed64Size(fieldNumber, (ulong)value);
+ case FieldType.Fixed32: return ComputeFixed32Size(fieldNumber, (uint)value);
+ case FieldType.Bool: return ComputeBoolSize(fieldNumber, (bool)value);
+ case FieldType.String: return ComputeStringSize(fieldNumber, (string)value);
+ case FieldType.Group: return ComputeGroupSize(fieldNumber, (IMessage)value);
+ case FieldType.Message: return ComputeMessageSize(fieldNumber, (IMessage)value);
+ case FieldType.Bytes: return ComputeBytesSize(fieldNumber, (ByteString)value);
+ case FieldType.UInt32: return ComputeUInt32Size(fieldNumber, (uint)value);
+ case FieldType.SFixed32: return ComputeSFixed32Size(fieldNumber, (int)value);
+ case FieldType.SFixed64: return ComputeSFixed64Size(fieldNumber, (long)value);
+ case FieldType.SInt32: return ComputeSInt32Size(fieldNumber, (int)value);
+ case FieldType.SInt64: return ComputeSInt64Size(fieldNumber, (long)value);
+ case FieldType.Enum: return ComputeEnumSize(fieldNumber, ((EnumValueDescriptor)value).Number);
+ default:
+ throw new ArgumentOutOfRangeException("Invalid field type " + fieldType);
+ }
+ }
+
+ /// <summary>
+ /// Compute the number of bytes that would be needed to encode a tag.
+ /// </summary>
+ public static int ComputeTagSize(int fieldNumber) {
+ return ComputeRawVarint32Size(WireFormat.MakeTag(fieldNumber, 0));
+ }
+ #endregion
+
+ /// <summary>
+ /// Encode a 32-bit value with ZigZag encoding.
+ /// </summary>
+ /// <remarks>
+ /// ZigZag encodes signed integers into values that can be efficiently
+ /// encoded with varint. (Otherwise, negative values must be
+ /// sign-extended to 64 bits to be varint encoded, thus always taking
+ /// 10 bytes on the wire.)
+ /// </remarks>
+ public static uint EncodeZigZag32(int n) {
+ // Note: the right-shift must be arithmetic
+ return (uint)((n << 1) ^ (n >> 31));
+ }
+
+ /// <summary>
+ /// Encode a 64-bit value with ZigZag encoding.
+ /// </summary>
+ /// <remarks>
+ /// ZigZag encodes signed integers into values that can be efficiently
+ /// encoded with varint. (Otherwise, negative values must be
+ /// sign-extended to 64 bits to be varint encoded, thus always taking
+ /// 10 bytes on the wire.)
+ /// </remarks>
+ public static ulong EncodeZigZag64(long n) {
+ return (ulong)((n << 1) ^ (n >> 63));
+ }
+
+ private void RefreshBuffer() {
+ if (output == null) {
+ // We're writing to a single buffer.
+ throw new OutOfSpaceException();
+ }
+
+ // Since we have an output stream, this is our buffer
+ // and buffer offset == 0
+ output.Write(buffer, 0, position);
+ position = 0;
+ }
+
+ /// <summary>
+ /// Indicates that a CodedOutputStream wrapping a flat byte array
+ /// ran out of space.
+ /// </summary>
+ public sealed class OutOfSpaceException : IOException {
+ internal OutOfSpaceException()
+ : base("CodedOutputStream was writing to a flat byte array and ran out of space.") {
+ }
+ }
+
+ public void Flush() {
+ if (output != null) {
+ RefreshBuffer();
+ }
+ }
+
+ /// <summary>
+ /// Verifies that SpaceLeft returns zero. It's common to create a byte array
+ /// that is exactly big enough to hold a message, then write to it with
+ /// a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
+ /// the message was actually as big as expected, which can help bugs.
+ /// </summary>
+ public void CheckNoSpaceLeft() {
+ if (SpaceLeft != 0) {
+ throw new InvalidOperationException("Did not write as much data as expected.");
+ }
+ }
+
+ /// <summary>
+ /// If writing to a flat array, returns the space left in the array. Otherwise,
+ /// throws an InvalidOperationException.
+ /// </summary>
+ public int SpaceLeft {
+ get {
+ if (output == null) {
+ return limit - position;
+ } else {
+ throw new InvalidOperationException(
+ "SpaceLeft can only be called on CodedOutputStreams that are " +
+ "writing to a flat array.");
+ }
+ }
+ }
+ }
+} \ No newline at end of file