aboutsummaryrefslogtreecommitdiff
path: root/src/google/protobuf/stubs/common.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/google/protobuf/stubs/common.h')
-rw-r--r--src/google/protobuf/stubs/common.h1061
1 files changed, 0 insertions, 1061 deletions
diff --git a/src/google/protobuf/stubs/common.h b/src/google/protobuf/stubs/common.h
deleted file mode 100644
index 89070d63..00000000
--- a/src/google/protobuf/stubs/common.h
+++ /dev/null
@@ -1,1061 +0,0 @@
-// Protocol Buffers - Google's data interchange format
-// Copyright 2008 Google Inc.
-// http://code.google.com/p/protobuf/
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// Author: kenton@google.com (Kenton Varda) and others
-//
-// Contains basic types and utilities used by the rest of the library.
-
-#ifndef GOOGLE_PROTOBUF_COMMON_H__
-#define GOOGLE_PROTOBUF_COMMON_H__
-
-#include <assert.h>
-#include <stdlib.h>
-#include <cstddef>
-#include <string>
-#include <string.h>
-#ifndef _MSC_VER
-#include <stdint.h>
-#endif
-
-namespace std {}
-
-namespace google {
-namespace protobuf {
-
-using namespace std; // Don't do this at home, kids.
-
-#undef GOOGLE_DISALLOW_EVIL_CONSTRUCTORS
-#define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName) \
- TypeName(const TypeName&); \
- void operator=(const TypeName&)
-
-#ifdef _MSC_VER
- #ifdef LIBPROTOBUF_EXPORTS
- #define LIBPROTOBUF_EXPORT __declspec(dllexport)
- #else
- #define LIBPROTOBUF_EXPORT __declspec(dllimport)
- #endif
- #ifdef LIBPROTOC_EXPORTS
- #define LIBPROTOC_EXPORT __declspec(dllexport)
- #else
- #define LIBPROTOC_EXPORT __declspec(dllimport)
- #endif
-#else
- #define LIBPROTOBUF_EXPORT
- #define LIBPROTOC_EXPORT
-#endif
-
-namespace internal {
-
-// Some of these constants are macros rather than const ints so that they can
-// be used in #if directives.
-
-// The current version, represented as a single integer to make comparison
-// easier: major * 10^6 + minor * 10^3 + micro
-#define GOOGLE_PROTOBUF_VERSION 2000001
-
-// The minimum library version which works with the current version of the
-// headers.
-#define GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION 2000001
-
-// The minimum header version which works with the current version of
-// the library. This constant should only be used by protoc's C++ code
-// generator.
-static const int kMinHeaderVersionForLibrary = 2000001;
-
-// The minimum protoc version which works with the current version of the
-// headers.
-#define GOOGLE_PROTOBUF_MIN_PROTOC_VERSION 2000001
-
-// The minimum header version which works with the current version of
-// protoc. This constant should only be used in VerifyVersion().
-static const int kMinHeaderVersionForProtoc = 2000001;
-
-// Verifies that the headers and libraries are compatible. Use the macro
-// below to call this.
-void LIBPROTOBUF_EXPORT VerifyVersion(int headerVersion, int minLibraryVersion,
- const char* filename);
-
-// Converts a numeric version number to a string.
-string LIBPROTOBUF_EXPORT VersionString(int version);
-
-} // namespace internal
-
-// Place this macro in your main() function (or somewhere before you attempt
-// to use the protobuf library) to verify that the version you link against
-// matches the headers you compiled against. If a version mismatch is
-// detected, the process will abort.
-#define GOOGLE_PROTOBUF_VERIFY_VERSION \
- ::google::protobuf::internal::VerifyVersion( \
- GOOGLE_PROTOBUF_VERSION, GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION, \
- __FILE__)
-
-// ===================================================================
-// from google3/base/port.h
-
-typedef unsigned int uint;
-
-#ifdef _MSC_VER
-typedef __int8 int8;
-typedef __int16 int16;
-typedef __int32 int32;
-typedef __int64 int64;
-
-typedef unsigned __int8 uint8;
-typedef unsigned __int16 uint16;
-typedef unsigned __int32 uint32;
-typedef unsigned __int64 uint64;
-#else
-typedef int8_t int8;
-typedef int16_t int16;
-typedef int32_t int32;
-typedef int64_t int64;
-
-typedef uint8_t uint8;
-typedef uint16_t uint16;
-typedef uint32_t uint32;
-typedef uint64_t uint64;
-#endif
-
-// long long macros to be used because gcc and vc++ use different suffixes,
-// and different size specifiers in format strings
-#undef GOOGLE_LONGLONG
-#undef GOOGLE_ULONGLONG
-#undef GOOGLE_LL_FORMAT
-
-#ifdef _MSC_VER
-#define GOOGLE_LONGLONG(x) x##I64
-#define GOOGLE_ULONGLONG(x) x##UI64
-#define GOOGLE_LL_FORMAT "I64" // As in printf("%I64d", ...)
-#else
-#define GOOGLE_LONGLONG(x) x##LL
-#define GOOGLE_ULONGLONG(x) x##ULL
-#define GOOGLE_LL_FORMAT "ll" // As in "%lld". Note that "q" is poor form also.
-#endif
-
-static const int32 kint32max = 0x7FFFFFFF;
-static const int32 kint32min = -kint32max - 1;
-static const int64 kint64max = GOOGLE_LONGLONG(0x7FFFFFFFFFFFFFFF);
-static const int64 kint64min = -kint64max - 1;
-static const uint32 kuint32max = 0xFFFFFFFFu;
-static const uint64 kuint64max = GOOGLE_ULONGLONG(0xFFFFFFFFFFFFFFFF);
-
-#undef GOOGLE_ATTRIBUTE_ALWAYS_INLINE
-#if defined(__GNUC__) && (__GNUC__ > 3 ||(__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
-// For functions we want to force inline.
-// Introduced in gcc 3.1.
-#define GOOGLE_ATTRIBUTE_ALWAYS_INLINE __attribute__ ((always_inline))
-#else
-// Other compilers will have to figure it out for themselves.
-#define GOOGLE_ATTRIBUTE_ALWAYS_INLINE
-#endif
-
-// ===================================================================
-// from google3/base/basictypes.h
-
-// The GOOGLE_ARRAYSIZE(arr) macro returns the # of elements in an array arr.
-// The expression is a compile-time constant, and therefore can be
-// used in defining new arrays, for example.
-//
-// GOOGLE_ARRAYSIZE catches a few type errors. If you see a compiler error
-//
-// "warning: division by zero in ..."
-//
-// when using GOOGLE_ARRAYSIZE, you are (wrongfully) giving it a pointer.
-// You should only use GOOGLE_ARRAYSIZE on statically allocated arrays.
-//
-// The following comments are on the implementation details, and can
-// be ignored by the users.
-//
-// ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in
-// the array) and sizeof(*(arr)) (the # of bytes in one array
-// element). If the former is divisible by the latter, perhaps arr is
-// indeed an array, in which case the division result is the # of
-// elements in the array. Otherwise, arr cannot possibly be an array,
-// and we generate a compiler error to prevent the code from
-// compiling.
-//
-// Since the size of bool is implementation-defined, we need to cast
-// !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
-// result has type size_t.
-//
-// This macro is not perfect as it wrongfully accepts certain
-// pointers, namely where the pointer size is divisible by the pointee
-// size. Since all our code has to go through a 32-bit compiler,
-// where a pointer is 4 bytes, this means all pointers to a type whose
-// size is 3 or greater than 4 will be (righteously) rejected.
-//
-// Kudos to Jorg Brown for this simple and elegant implementation.
-
-#undef GOOGLE_ARRAYSIZE
-#define GOOGLE_ARRAYSIZE(a) \
- ((sizeof(a) / sizeof(*(a))) / \
- static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
-
-namespace internal {
-
-// Use implicit_cast as a safe version of static_cast or const_cast
-// for upcasting in the type hierarchy (i.e. casting a pointer to Foo
-// to a pointer to SuperclassOfFoo or casting a pointer to Foo to
-// a const pointer to Foo).
-// When you use implicit_cast, the compiler checks that the cast is safe.
-// Such explicit implicit_casts are necessary in surprisingly many
-// situations where C++ demands an exact type match instead of an
-// argument type convertable to a target type.
-//
-// The From type can be inferred, so the preferred syntax for using
-// implicit_cast is the same as for static_cast etc.:
-//
-// implicit_cast<ToType>(expr)
-//
-// implicit_cast would have been part of the C++ standard library,
-// but the proposal was submitted too late. It will probably make
-// its way into the language in the future.
-template<typename To, typename From>
-inline To implicit_cast(From const &f) {
- return f;
-}
-
-// When you upcast (that is, cast a pointer from type Foo to type
-// SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts
-// always succeed. When you downcast (that is, cast a pointer from
-// type Foo to type SubclassOfFoo), static_cast<> isn't safe, because
-// how do you know the pointer is really of type SubclassOfFoo? It
-// could be a bare Foo, or of type DifferentSubclassOfFoo. Thus,
-// when you downcast, you should use this macro. In debug mode, we
-// use dynamic_cast<> to double-check the downcast is legal (we die
-// if it's not). In normal mode, we do the efficient static_cast<>
-// instead. Thus, it's important to test in debug mode to make sure
-// the cast is legal!
-// This is the only place in the code we should use dynamic_cast<>.
-// In particular, you SHOULDN'T be using dynamic_cast<> in order to
-// do RTTI (eg code like this:
-// if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo);
-// if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo);
-// You should design the code some other way not to need this.
-
-template<typename To, typename From> // use like this: down_cast<T*>(foo);
-inline To down_cast(From* f) { // so we only accept pointers
- // Ensures that To is a sub-type of From *. This test is here only
- // for compile-time type checking, and has no overhead in an
- // optimized build at run-time, as it will be optimized away
- // completely.
- if (false) {
- implicit_cast<From*, To>(0);
- }
-
- assert(f == NULL || dynamic_cast<To>(f) != NULL); // RTTI: debug mode only!
- return static_cast<To>(f);
-}
-
-} // namespace internal
-
-// We made these internal so that they would show up as such in the docs,
-// but we don't want to stick "internal::" in front of them everywhere.
-using internal::implicit_cast;
-using internal::down_cast;
-
-// The COMPILE_ASSERT macro can be used to verify that a compile time
-// expression is true. For example, you could use it to verify the
-// size of a static array:
-//
-// COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES,
-// content_type_names_incorrect_size);
-//
-// or to make sure a struct is smaller than a certain size:
-//
-// COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
-//
-// The second argument to the macro is the name of the variable. If
-// the expression is false, most compilers will issue a warning/error
-// containing the name of the variable.
-
-namespace internal {
-
-template <bool>
-struct CompileAssert {
-};
-
-} // namespace internal
-
-#undef GOOGLE_COMPILE_ASSERT
-#define GOOGLE_COMPILE_ASSERT(expr, msg) \
- typedef ::google::protobuf::internal::CompileAssert<(bool(expr))> \
- msg[bool(expr) ? 1 : -1]
-
-// Implementation details of COMPILE_ASSERT:
-//
-// - COMPILE_ASSERT works by defining an array type that has -1
-// elements (and thus is invalid) when the expression is false.
-//
-// - The simpler definition
-//
-// #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
-//
-// does not work, as gcc supports variable-length arrays whose sizes
-// are determined at run-time (this is gcc's extension and not part
-// of the C++ standard). As a result, gcc fails to reject the
-// following code with the simple definition:
-//
-// int foo;
-// COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
-// // not a compile-time constant.
-//
-// - By using the type CompileAssert<(bool(expr))>, we ensures that
-// expr is a compile-time constant. (Template arguments must be
-// determined at compile-time.)
-//
-// - The outter parentheses in CompileAssert<(bool(expr))> are necessary
-// to work around a bug in gcc 3.4.4 and 4.0.1. If we had written
-//
-// CompileAssert<bool(expr)>
-//
-// instead, these compilers will refuse to compile
-//
-// COMPILE_ASSERT(5 > 0, some_message);
-//
-// (They seem to think the ">" in "5 > 0" marks the end of the
-// template argument list.)
-//
-// - The array size is (bool(expr) ? 1 : -1), instead of simply
-//
-// ((expr) ? 1 : -1).
-//
-// This is to avoid running into a bug in MS VC 7.1, which
-// causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
-
-// ===================================================================
-// from google3/base/scoped_ptr.h
-
-namespace internal {
-
-// This is an implementation designed to match the anticipated future TR2
-// implementation of the scoped_ptr class, and its closely-related brethren,
-// scoped_array, scoped_ptr_malloc, and make_scoped_ptr.
-
-template <class C> class scoped_ptr;
-template <class C> class scoped_array;
-
-// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
-// automatically deletes the pointer it holds (if any).
-// That is, scoped_ptr<T> owns the T object that it points to.
-// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
-//
-// The size of a scoped_ptr is small:
-// sizeof(scoped_ptr<C>) == sizeof(C*)
-template <class C>
-class scoped_ptr {
- public:
-
- // The element type
- typedef C element_type;
-
- // Constructor. Defaults to intializing with NULL.
- // There is no way to create an uninitialized scoped_ptr.
- // The input parameter must be allocated with new.
- explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
-
- // Destructor. If there is a C object, delete it.
- // We don't need to test ptr_ == NULL because C++ does that for us.
- ~scoped_ptr() {
- enum { type_must_be_complete = sizeof(C) };
- delete ptr_;
- }
-
- // Reset. Deletes the current owned object, if any.
- // Then takes ownership of a new object, if given.
- // this->reset(this->get()) works.
- void reset(C* p = NULL) {
- if (p != ptr_) {
- enum { type_must_be_complete = sizeof(C) };
- delete ptr_;
- ptr_ = p;
- }
- }
-
- // Accessors to get the owned object.
- // operator* and operator-> will assert() if there is no current object.
- C& operator*() const {
- assert(ptr_ != NULL);
- return *ptr_;
- }
- C* operator->() const {
- assert(ptr_ != NULL);
- return ptr_;
- }
- C* get() const { return ptr_; }
-
- // Comparison operators.
- // These return whether two scoped_ptr refer to the same object, not just to
- // two different but equal objects.
- bool operator==(C* p) const { return ptr_ == p; }
- bool operator!=(C* p) const { return ptr_ != p; }
-
- // Swap two scoped pointers.
- void swap(scoped_ptr& p2) {
- C* tmp = ptr_;
- ptr_ = p2.ptr_;
- p2.ptr_ = tmp;
- }
-
- // Release a pointer.
- // The return value is the current pointer held by this object.
- // If this object holds a NULL pointer, the return value is NULL.
- // After this operation, this object will hold a NULL pointer,
- // and will not own the object any more.
- C* release() {
- C* retVal = ptr_;
- ptr_ = NULL;
- return retVal;
- }
-
- private:
- C* ptr_;
-
- // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't
- // make sense, and if C2 == C, it still doesn't make sense because you should
- // never have the same object owned by two different scoped_ptrs.
- template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
- template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
-
- // Disallow evil constructors
- scoped_ptr(const scoped_ptr&);
- void operator=(const scoped_ptr&);
-};
-
-// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
-// with new [] and the destructor deletes objects with delete [].
-//
-// As with scoped_ptr<C>, a scoped_array<C> either points to an object
-// or is NULL. A scoped_array<C> owns the object that it points to.
-//
-// Size: sizeof(scoped_array<C>) == sizeof(C*)
-template <class C>
-class scoped_array {
- public:
-
- // The element type
- typedef C element_type;
-
- // Constructor. Defaults to intializing with NULL.
- // There is no way to create an uninitialized scoped_array.
- // The input parameter must be allocated with new [].
- explicit scoped_array(C* p = NULL) : array_(p) { }
-
- // Destructor. If there is a C object, delete it.
- // We don't need to test ptr_ == NULL because C++ does that for us.
- ~scoped_array() {
- enum { type_must_be_complete = sizeof(C) };
- delete[] array_;
- }
-
- // Reset. Deletes the current owned object, if any.
- // Then takes ownership of a new object, if given.
- // this->reset(this->get()) works.
- void reset(C* p = NULL) {
- if (p != array_) {
- enum { type_must_be_complete = sizeof(C) };
- delete[] array_;
- array_ = p;
- }
- }
-
- // Get one element of the current object.
- // Will assert() if there is no current object, or index i is negative.
- C& operator[](std::ptrdiff_t i) const {
- assert(i >= 0);
- assert(array_ != NULL);
- return array_[i];
- }
-
- // Get a pointer to the zeroth element of the current object.
- // If there is no current object, return NULL.
- C* get() const {
- return array_;
- }
-
- // Comparison operators.
- // These return whether two scoped_array refer to the same object, not just to
- // two different but equal objects.
- bool operator==(C* p) const { return array_ == p; }
- bool operator!=(C* p) const { return array_ != p; }
-
- // Swap two scoped arrays.
- void swap(scoped_array& p2) {
- C* tmp = array_;
- array_ = p2.array_;
- p2.array_ = tmp;
- }
-
- // Release an array.
- // The return value is the current pointer held by this object.
- // If this object holds a NULL pointer, the return value is NULL.
- // After this operation, this object will hold a NULL pointer,
- // and will not own the object any more.
- C* release() {
- C* retVal = array_;
- array_ = NULL;
- return retVal;
- }
-
- private:
- C* array_;
-
- // Forbid comparison of different scoped_array types.
- template <class C2> bool operator==(scoped_array<C2> const& p2) const;
- template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
-
- // Disallow evil constructors
- scoped_array(const scoped_array&);
- void operator=(const scoped_array&);
-};
-
-} // namespace internal
-
-// We made these internal so that they would show up as such in the docs,
-// but we don't want to stick "internal::" in front of them everywhere.
-using internal::scoped_ptr;
-using internal::scoped_array;
-
-// ===================================================================
-// emulates google3/base/logging.h
-
-enum LogLevel {
- LOGLEVEL_INFO, // Informational. This is never actually used by
- // libprotobuf.
- LOGLEVEL_WARNING, // Warns about issues that, although not technically a
- // problem now, could cause problems in the future. For
- // example, a // warning will be printed when parsing a
- // message that is near the message size limit.
- LOGLEVEL_ERROR, // An error occurred which should never happen during
- // normal use.
- LOGLEVEL_FATAL, // An error occurred from which the library cannot
- // recover. This usually indicates a programming error
- // in the code which calls the library, especially when
- // compiled in debug mode.
-
-#ifdef NDEBUG
- LOGLEVEL_DFATAL = LOGLEVEL_ERROR
-#else
- LOGLEVEL_DFATAL = LOGLEVEL_FATAL
-#endif
-};
-
-namespace internal {
-
-class LogFinisher;
-
-class LIBPROTOBUF_EXPORT LogMessage {
- public:
- LogMessage(LogLevel level, const char* filename, int line);
- ~LogMessage();
-
- LogMessage& operator<<(const string& value);
- LogMessage& operator<<(const char* value);
- LogMessage& operator<<(char value);
- LogMessage& operator<<(int value);
- LogMessage& operator<<(uint value);
- LogMessage& operator<<(double value);
-
- private:
- friend class LogFinisher;
- void Finish();
-
- LogLevel level_;
- const char* filename_;
- int line_;
- string message_;
-};
-
-// Used to make the entire "LOG(BLAH) << etc." expression have a void return
-// type and print a newline after each message.
-class LIBPROTOBUF_EXPORT LogFinisher {
- public:
- void operator=(LogMessage& other);
-};
-
-} // namespace internal
-
-// Undef everything in case we're being mixed with some other Google library
-// which already defined them itself. Presumably all Google libraries will
-// support the same syntax for these so it should not be a big deal if they
-// end up using our definitions instead.
-#undef GOOGLE_LOG
-#undef GOOGLE_LOG_IF
-
-#undef GOOGLE_CHECK
-#undef GOOGLE_CHECK_EQ
-#undef GOOGLE_CHECK_NE
-#undef GOOGLE_CHECK_LT
-#undef GOOGLE_CHECK_LE
-#undef GOOGLE_CHECK_GT
-#undef GOOGLE_CHECK_GE
-
-#undef GOOGLE_DLOG
-#undef GOOGLE_DCHECK
-#undef GOOGLE_DCHECK_EQ
-#undef GOOGLE_DCHECK_NE
-#undef GOOGLE_DCHECK_LT
-#undef GOOGLE_DCHECK_LE
-#undef GOOGLE_DCHECK_GT
-#undef GOOGLE_DCHECK_GE
-
-#define GOOGLE_LOG(LEVEL) \
- ::google::protobuf::internal::LogFinisher() = \
- ::google::protobuf::internal::LogMessage( \
- ::google::protobuf::LOGLEVEL_##LEVEL, __FILE__, __LINE__)
-#define GOOGLE_LOG_IF(LEVEL, CONDITION) \
- !(CONDITION) ? (void)0 : GOOGLE_LOG(LEVEL)
-
-#define GOOGLE_CHECK(EXPRESSION) \
- GOOGLE_LOG_IF(FATAL, !(EXPRESSION)) << "CHECK failed: " #EXPRESSION ": "
-#define GOOGLE_CHECK_EQ(A, B) GOOGLE_CHECK(A == B)
-#define GOOGLE_CHECK_NE(A, B) GOOGLE_CHECK(A != B)
-#define GOOGLE_CHECK_LT(A, B) GOOGLE_CHECK(A < B)
-#define GOOGLE_CHECK_LE(A, B) GOOGLE_CHECK(A <= B)
-#define GOOGLE_CHECK_GT(A, B) GOOGLE_CHECK(A > B)
-#define GOOGLE_CHECK_GE(A, B) GOOGLE_CHECK(A >= B)
-
-#ifdef NDEBUG
-
-#define GOOGLE_DLOG GOOGLE_LOG_IF(false, INFO)
-
-#define GOOGLE_DCHECK(EXPRESSION) while(false) GOOGLE_CHECK(EXPRESSION)
-#define GOOGLE_DCHECK_EQ(A, B) GOOGLE_DCHECK(A == B)
-#define GOOGLE_DCHECK_NE(A, B) GOOGLE_DCHECK(A != B)
-#define GOOGLE_DCHECK_LT(A, B) GOOGLE_DCHECK(A < B)
-#define GOOGLE_DCHECK_LE(A, B) GOOGLE_DCHECK(A <= B)
-#define GOOGLE_DCHECK_GT(A, B) GOOGLE_DCHECK(A > B)
-#define GOOGLE_DCHECK_GE(A, B) GOOGLE_DCHECK(A >= B)
-
-#else // NDEBUG
-
-#define GOOGLE_DLOG GOOGLE_LOG
-
-#define GOOGLE_DCHECK GOOGLE_CHECK
-#define GOOGLE_DCHECK_EQ GOOGLE_CHECK_EQ
-#define GOOGLE_DCHECK_NE GOOGLE_CHECK_NE
-#define GOOGLE_DCHECK_LT GOOGLE_CHECK_LT
-#define GOOGLE_DCHECK_LE GOOGLE_CHECK_LE
-#define GOOGLE_DCHECK_GT GOOGLE_CHECK_GT
-#define GOOGLE_DCHECK_GE GOOGLE_CHECK_GE
-
-#endif // !NDEBUG
-
-typedef void LogHandler(LogLevel level, const char* filename, int line,
- const string& message);
-
-// The protobuf library sometimes writes warning and error messages to
-// stderr. These messages are primarily useful for developers, but may
-// also help end users figure out a problem. If you would prefer that
-// these messages be sent somewhere other than stderr, call SetLogHandler()
-// to set your own handler. This returns the old handler. Set the handler
-// to NULL to ignore log messages (but see also LogSilencer, below).
-//
-// Obviously, SetLogHandler is not thread-safe. You should only call it
-// at initialization time, and probably not from library code. If you
-// simply want to suppress log messages temporarily (e.g. because you
-// have some code that tends to trigger them frequently and you know
-// the warnings are not important to you), use the LogSilencer class
-// below.
-LIBPROTOBUF_EXPORT LogHandler* SetLogHandler(LogHandler* new_func);
-
-// Create a LogSilencer if you want to temporarily suppress all log
-// messages. As long as any LogSilencer objects exist, non-fatal
-// log messages will be discarded (the current LogHandler will *not*
-// be called). Constructing a LogSilencer is thread-safe. You may
-// accidentally suppress log messages occurring in another thread, but
-// since messages are generally for debugging purposes only, this isn't
-// a big deal. If you want to intercept log messages, use SetLogHandler().
-class LIBPROTOBUF_EXPORT LogSilencer {
- public:
- LogSilencer();
- ~LogSilencer();
-};
-
-// ===================================================================
-// emulates google3/base/callback.h
-
-// Abstract interface for a callback. When calling an RPC, you must provide
-// a Closure to call when the procedure completes. See the Service interface
-// in service.h.
-//
-// To automatically construct a Closure which calls a particular function or
-// method with a particular set of parameters, use the NewCallback() function.
-// Example:
-// void FooDone(const FooResponse* response) {
-// ...
-// }
-//
-// void CallFoo() {
-// ...
-// // When done, call FooDone() and pass it a pointer to the response.
-// Closure* callback = NewCallback(&FooDone, response);
-// // Make the call.
-// service->Foo(controller, request, response, callback);
-// }
-//
-// Example that calls a method:
-// class Handler {
-// public:
-// ...
-//
-// void FooDone(const FooResponse* response) {
-// ...
-// }
-//
-// void CallFoo() {
-// ...
-// // When done, call FooDone() and pass it a pointer to the response.
-// Closure* callback = NewCallback(this, &Handler::FooDone, response);
-// // Make the call.
-// service->Foo(controller, request, response, callback);
-// }
-// };
-//
-// Currently NewCallback() supports binding zero, one, or two arguments.
-//
-// Callbacks created with NewCallback() automatically delete themselves when
-// executed. They should be used when a callback is to be called exactly
-// once (usually the case with RPC callbacks). If a callback may be called
-// a different number of times (including zero), create it with
-// NewPermanentCallback() instead. You are then responsible for deleting the
-// callback (using the "delete" keyword as normal).
-//
-// Note that NewCallback() is a bit touchy regarding argument types. Generally,
-// the values you provide for the parameter bindings must exactly match the
-// types accepted by the callback function. For example:
-// void Foo(string s);
-// NewCallback(&Foo, "foo"); // WON'T WORK: const char* != string
-// NewCallback(&Foo, string("foo")); // WORKS
-// Also note that the arguments cannot be references:
-// void Foo(const string& s);
-// string my_str;
-// NewCallback(&Foo, my_str); // WON'T WORK: Can't use referecnes.
-// However, correctly-typed pointers will work just fine.
-class LIBPROTOBUF_EXPORT Closure {
- public:
- Closure() {}
- virtual ~Closure();
-
- virtual void Run() = 0;
-
- private:
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Closure);
-};
-
-namespace internal {
-
-class LIBPROTOBUF_EXPORT FunctionClosure0 : public Closure {
- public:
- typedef void (*FunctionType)();
-
- FunctionClosure0(FunctionType function, bool self_deleting)
- : function_(function), self_deleting_(self_deleting) {}
- ~FunctionClosure0();
-
- void Run() {
- function_();
- if (self_deleting_) delete this;
- }
-
- private:
- FunctionType function_;
- bool self_deleting_;
-};
-
-template <typename Class>
-class MethodClosure0 : public Closure {
- public:
- typedef void (Class::*MethodType)();
-
- MethodClosure0(Class* object, MethodType method, bool self_deleting)
- : object_(object), method_(method), self_deleting_(self_deleting) {}
- ~MethodClosure0() {}
-
- void Run() {
- (object_->*method_)();
- if (self_deleting_) delete this;
- }
-
- private:
- Class* object_;
- MethodType method_;
- bool self_deleting_;
-};
-
-template <typename Arg1>
-class FunctionClosure1 : public Closure {
- public:
- typedef void (*FunctionType)(Arg1 arg1);
-
- FunctionClosure1(FunctionType function, bool self_deleting,
- Arg1 arg1)
- : function_(function), self_deleting_(self_deleting),
- arg1_(arg1) {}
- ~FunctionClosure1() {}
-
- void Run() {
- function_(arg1_);
- if (self_deleting_) delete this;
- }
-
- private:
- FunctionType function_;
- bool self_deleting_;
- Arg1 arg1_;
-};
-
-template <typename Class, typename Arg1>
-class MethodClosure1 : public Closure {
- public:
- typedef void (Class::*MethodType)(Arg1 arg1);
-
- MethodClosure1(Class* object, MethodType method, bool self_deleting,
- Arg1 arg1)
- : object_(object), method_(method), self_deleting_(self_deleting),
- arg1_(arg1) {}
- ~MethodClosure1() {}
-
- void Run() {
- (object_->*method_)(arg1_);
- if (self_deleting_) delete this;
- }
-
- private:
- Class* object_;
- MethodType method_;
- bool self_deleting_;
- Arg1 arg1_;
-};
-
-template <typename Arg1, typename Arg2>
-class FunctionClosure2 : public Closure {
- public:
- typedef void (*FunctionType)(Arg1 arg1, Arg2 arg2);
-
- FunctionClosure2(FunctionType function, bool self_deleting,
- Arg1 arg1, Arg2 arg2)
- : function_(function), self_deleting_(self_deleting),
- arg1_(arg1), arg2_(arg2) {}
- ~FunctionClosure2() {}
-
- void Run() {
- function_(arg1_, arg2_);
- if (self_deleting_) delete this;
- }
-
- private:
- FunctionType function_;
- bool self_deleting_;
- Arg1 arg1_;
- Arg2 arg2_;
-};
-
-template <typename Class, typename Arg1, typename Arg2>
-class MethodClosure2 : public Closure {
- public:
- typedef void (Class::*MethodType)(Arg1 arg1, Arg2 arg2);
-
- MethodClosure2(Class* object, MethodType method, bool self_deleting,
- Arg1 arg1, Arg2 arg2)
- : object_(object), method_(method), self_deleting_(self_deleting),
- arg1_(arg1), arg2_(arg2) {}
- ~MethodClosure2() {}
-
- void Run() {
- (object_->*method_)(arg1_, arg2_);
- if (self_deleting_) delete this;
- }
-
- private:
- Class* object_;
- MethodType method_;
- bool self_deleting_;
- Arg1 arg1_;
- Arg2 arg2_;
-};
-
-} // namespace internal
-
-// See Closure.
-inline Closure* NewCallback(void (*function)()) {
- return new internal::FunctionClosure0(function, true);
-}
-
-// See Closure.
-inline Closure* NewPermanentCallback(void (*function)()) {
- return new internal::FunctionClosure0(function, false);
-}
-
-// See Closure.
-template <typename Class>
-inline Closure* NewCallback(Class* object, void (Class::*method)()) {
- return new internal::MethodClosure0<Class>(object, method, true);
-}
-
-// See Closure.
-template <typename Class>
-inline Closure* NewPermanentCallback(Class* object, void (Class::*method)()) {
- return new internal::MethodClosure0<Class>(object, method, false);
-}
-
-// See Closure.
-template <typename Arg1>
-inline Closure* NewCallback(void (*function)(Arg1),
- Arg1 arg1) {
- return new internal::FunctionClosure1<Arg1>(function, true, arg1);
-}
-
-// See Closure.
-template <typename Arg1>
-inline Closure* NewPermanentCallback(void (*function)(Arg1),
- Arg1 arg1) {
- return new internal::FunctionClosure1<Arg1>(function, false, arg1);
-}
-
-// See Closure.
-template <typename Class, typename Arg1>
-inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1),
- Arg1 arg1) {
- return new internal::MethodClosure1<Class, Arg1>(object, method, true, arg1);
-}
-
-// See Closure.
-template <typename Class, typename Arg1>
-inline Closure* NewPermanentCallback(Class* object, void (Class::*method)(Arg1),
- Arg1 arg1) {
- return new internal::MethodClosure1<Class, Arg1>(object, method, false, arg1);
-}
-
-// See Closure.
-template <typename Arg1, typename Arg2>
-inline Closure* NewCallback(void (*function)(Arg1, Arg2),
- Arg1 arg1, Arg2 arg2) {
- return new internal::FunctionClosure2<Arg1, Arg2>(
- function, true, arg1, arg2);
-}
-
-// See Closure.
-template <typename Arg1, typename Arg2>
-inline Closure* NewPermanentCallback(void (*function)(Arg1, Arg2),
- Arg1 arg1, Arg2 arg2) {
- return new internal::FunctionClosure2<Arg1, Arg2>(
- function, false, arg1, arg2);
-}
-
-// See Closure.
-template <typename Class, typename Arg1, typename Arg2>
-inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1, Arg2),
- Arg1 arg1, Arg2 arg2) {
- return new internal::MethodClosure2<Class, Arg1, Arg2>(
- object, method, true, arg1, arg2);
-}
-
-// See Closure.
-template <typename Class, typename Arg1, typename Arg2>
-inline Closure* NewPermanentCallback(
- Class* object, void (Class::*method)(Arg1, Arg2),
- Arg1 arg1, Arg2 arg2) {
- return new internal::MethodClosure2<Class, Arg1, Arg2>(
- object, method, false, arg1, arg2);
-}
-
-// A function which does nothing. Useful for creating no-op callbacks, e.g.:
-// Closure* nothing = NewCallback(&DoNothing);
-void LIBPROTOBUF_EXPORT DoNothing();
-
-// ===================================================================
-// emulates google3/base/mutex.h
-
-namespace internal {
-
-// A Mutex is a non-reentrant (aka non-recursive) mutex. At most one thread T
-// may hold a mutex at a given time. If T attempts to Lock() the same Mutex
-// while holding it, T will deadlock.
-class LIBPROTOBUF_EXPORT Mutex {
- public:
- // Create a Mutex that is not held by anybody.
- Mutex();
-
- // Destructor
- ~Mutex();
-
- // Block if necessary until this Mutex is free, then acquire it exclusively.
- void Lock();
-
- // Release this Mutex. Caller must hold it exclusively.
- void Unlock();
-
- // Crash if this Mutex is not held exclusively by this thread.
- // May fail to crash when it should; will never crash when it should not.
- void AssertHeld();
-
- private:
- struct Internal;
- Internal* mInternal;
-
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Mutex);
-};
-
-// MutexLock(mu) acquires mu when constructed and releases it when destroyed.
-class LIBPROTOBUF_EXPORT MutexLock {
- public:
- explicit MutexLock(Mutex *mu) : mu_(mu) { this->mu_->Lock(); }
- ~MutexLock() { this->mu_->Unlock(); }
- private:
- Mutex *const mu_;
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLock);
-};
-
-// MutexLockMaybe is like MutexLock, but is a no-op when mu is NULL.
-class LIBPROTOBUF_EXPORT MutexLockMaybe {
- public:
- explicit MutexLockMaybe(Mutex *mu) :
- mu_(mu) { if (this->mu_ != NULL) { this->mu_->Lock(); } }
- ~MutexLockMaybe() { if (this->mu_ != NULL) { this->mu_->Unlock(); } }
- private:
- Mutex *const mu_;
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLockMaybe);
-};
-
-} // namespace internal
-
-// We made these internal so that they would show up as such in the docs,
-// but we don't want to stick "internal::" in front of them everywhere.
-using internal::Mutex;
-using internal::MutexLock;
-using internal::MutexLockMaybe;
-
-// ===================================================================
-// from google3/base/type_traits.h
-
-namespace internal {
-
-// Specified by TR1 [4.7.4] Pointer modifications.
-template<typename T> struct remove_pointer { typedef T type; };
-template<typename T> struct remove_pointer<T*> { typedef T type; };
-template<typename T> struct remove_pointer<T* const> { typedef T type; };
-template<typename T> struct remove_pointer<T* volatile> { typedef T type; };
-template<typename T> struct remove_pointer<T* const volatile> {
- typedef T type; };
-
-} // namespace internal
-
-} // namespace protobuf
-} // namespace google
-
-#endif // GOOGLE_PROTOBUF_COMMON_H__