summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAdriaan Moors <adriaan.moors@typesafe.com>2013-03-10 11:49:46 -0700
committerAdriaan Moors <adriaan.moors@typesafe.com>2013-03-10 11:49:46 -0700
commit1b6297f642877dcc7edcd704a5d3cf99a12e54b8 (patch)
tree3588e8be3a311704295743e9e2ae4747ee9c9e15
parentb380f9ecbe1be8ffaf0f32001e95566747017294 (diff)
parente3b36c71b8cd5ef02390651ef64892fcd6606b77 (diff)
downloadscala-1b6297f642877dcc7edcd704a5d3cf99a12e54b8.tar.gz
scala-1b6297f642877dcc7edcd704a5d3cf99a12e54b8.tar.bz2
scala-1b6297f642877dcc7edcd704a5d3cf99a12e54b8.zip
Merge pull request #2201 from retronym/topic/types-break-down-squash
Carve up Types.scala
-rw-r--r--src/reflect/scala/reflect/internal/Types.scala2667
-rw-r--r--src/reflect/scala/reflect/internal/tpe/CommonOwners.scala50
-rw-r--r--src/reflect/scala/reflect/internal/tpe/GlbLubs.scala592
-rw-r--r--src/reflect/scala/reflect/internal/tpe/TypeComparers.scala617
-rw-r--r--src/reflect/scala/reflect/internal/tpe/TypeConstraints.scala282
-rw-r--r--src/reflect/scala/reflect/internal/tpe/TypeMaps.scala1144
-rw-r--r--src/reflect/scala/reflect/internal/tpe/TypeToStrings.scala29
7 files changed, 2732 insertions, 2649 deletions
diff --git a/src/reflect/scala/reflect/internal/Types.scala b/src/reflect/scala/reflect/internal/Types.scala
index f4befb1470..a6c5367425 100644
--- a/src/reflect/scala/reflect/internal/Types.scala
+++ b/src/reflect/scala/reflect/internal/Types.scala
@@ -14,7 +14,6 @@ import Flags._
import scala.util.control.ControlThrowable
import scala.annotation.tailrec
import util.Statistics
-import scala.runtime.ObjectRef
import util.ThreeValues._
import Variance._
@@ -73,28 +72,33 @@ import Variance._
// only used during erasure of derived value classes.
*/
-trait Types extends api.Types { self: SymbolTable =>
+trait Types
+ extends api.Types
+ with tpe.TypeComparers
+ with tpe.TypeToStrings
+ with tpe.CommonOwners
+ with tpe.GlbLubs
+ with tpe.TypeMaps
+ with tpe.TypeConstraints { self: SymbolTable =>
+
import definitions._
import TypesStats._
private var explainSwitch = false
private final val emptySymbolSet = immutable.Set.empty[Symbol]
- private final val LogPendingSubTypesThreshold = 50
- private final val LogPendingBaseTypesThreshold = 50
- private final val LogVolatileThreshold = 50
+ protected[internal] final val DefaultLogThreshhold = 50
+ private final val LogPendingBaseTypesThreshold = DefaultLogThreshhold
+ private final val LogVolatileThreshold = DefaultLogThreshhold
/** A don't care value for the depth parameter in lubs/glbs and related operations. */
- private final val AnyDepth = -3
+ protected[internal] final val AnyDepth = -3
/** Decrement depth unless it is a don't care. */
- private final def decr(depth: Int) = if (depth == AnyDepth) AnyDepth else depth - 1
+ protected[internal] final def decr(depth: Int) = if (depth == AnyDepth) AnyDepth else depth - 1
- private final val printLubs = sys.props contains "scalac.debug.lub"
private final val traceTypeVars = sys.props contains "scalac.debug.tvar"
private final val breakCycles = settings.breakCycles.value
- /** In case anyone wants to turn off lub verification without reverting anything. */
- private final val verifyLubs = true
/** In case anyone wants to turn off type parameter bounds being used
* to seed type constraints.
*/
@@ -107,80 +111,6 @@ trait Types extends api.Types { self: SymbolTable =>
*/
var skolemizationLevel = 0
- /** A log of type variable with their original constraints. Used in order
- * to undo constraints in the case of isSubType/isSameType failure.
- */
- lazy val undoLog = newUndoLog
-
- protected def newUndoLog = new UndoLog
-
- class UndoLog extends Clearable {
- private type UndoPairs = List[(TypeVar, TypeConstraint)]
- //OPT this method is public so we can do `manual inlining`
- var log: UndoPairs = List()
-
- /*
- * These two methods provide explicit locking mechanism that is overridden in SynchronizedUndoLog.
- *
- * The idea behind explicit locking mechanism is that all public methods that access mutable state
- * will have to obtain the lock for their entire execution so both reads and writes can be kept in
- * right order. Originally, that was achieved by overriding those public methods in
- * `SynchronizedUndoLog` which was fine but expensive. The reason is that those public methods take
- * thunk as argument and if we keep them non-final there's no way to make them inlined so thunks
- * can go away.
- *
- * By using explicit locking we can achieve inlining.
- *
- * NOTE: They are made public for now so we can apply 'manual inlining' (copy&pasting into hot
- * places implementation of `undo` or `undoUnless`). This should be changed back to protected
- * once inliner is fixed.
- */
- def lock(): Unit = ()
- def unlock(): Unit = ()
-
- // register with the auto-clearing cache manager
- perRunCaches.recordCache(this)
-
- /** Undo all changes to constraints to type variables upto `limit`. */
- //OPT this method is public so we can do `manual inlining`
- def undoTo(limit: UndoPairs) {
- assertCorrectThread()
- while ((log ne limit) && log.nonEmpty) {
- val (tv, constr) = log.head
- tv.constr = constr
- log = log.tail
- }
- }
-
- /** No sync necessary, because record should only
- * be called from within an undo or undoUnless block,
- * which is already synchronized.
- */
- private[reflect] def record(tv: TypeVar) = {
- log ::= ((tv, tv.constr.cloneInternal))
- }
-
- def clear() {
- lock()
- try {
- if (settings.debug.value)
- self.log("Clearing " + log.size + " entries from the undoLog.")
- log = Nil
- } finally unlock()
- }
-
- // `block` should not affect constraints on typevars
- def undo[T](block: => T): T = {
- lock()
- try {
- val before = log
-
- try block
- finally undoTo(before)
- } finally unlock()
- }
- }
-
/** A map from lists to compound types that have the given list as parents.
* This is used to avoid duplication in the computation of base type sequences and baseClasses.
* It makes use of the fact that these two operations depend only on the parents,
@@ -3732,72 +3662,7 @@ trait Types extends api.Types { self: SymbolTable =>
newExistentialType(tparams1, tpe1)
}
- /** Normalize any type aliases within this type (@see Type#normalize).
- * Note that this depends very much on the call to "normalize", not "dealias",
- * so it is no longer carries the too-stealthy name "deAlias".
- */
- object normalizeAliases extends TypeMap {
- def apply(tp: Type): Type = tp match {
- case TypeRef(_, sym, _) if sym.isAliasType =>
- def msg = if (tp.isHigherKinded) s"Normalizing type alias function $tp" else s"Dealiasing type alias $tp"
- mapOver(logResult(msg)(tp.normalize))
- case _ => mapOver(tp)
- }
- }
-
- /** Remove any occurrence of type <singleton> from this type and its parents */
- object dropSingletonType extends TypeMap {
- def apply(tp: Type): Type = {
- tp match {
- case TypeRef(_, SingletonClass, _) =>
- AnyClass.tpe
- case tp1 @ RefinedType(parents, decls) =>
- parents filter (_.typeSymbol != SingletonClass) match {
- case Nil => AnyClass.tpe
- case p :: Nil if decls.isEmpty => mapOver(p)
- case ps => mapOver(copyRefinedType(tp1, ps, decls))
- }
- case tp1 =>
- mapOver(tp1)
- }
- }
- }
- /** Type with all top-level occurrences of abstract types replaced by their bounds */
- object abstractTypesToBounds extends TypeMap {
- def apply(tp: Type): Type = tp match {
- case TypeRef(_, sym, _) if sym.isAliasType => apply(tp.dealias)
- case TypeRef(_, sym, _) if sym.isAbstractType => apply(tp.bounds.hi)
- case rtp @ RefinedType(parents, decls) => copyRefinedType(rtp, parents mapConserve this, decls)
- case AnnotatedType(_, _, _) => mapOver(tp)
- case _ => tp // no recursion - top level only
- }
- }
-
- // Set to true for A* => Seq[A]
- // (And it will only rewrite A* in method result types.)
- // This is the pre-existing behavior.
- // Or false for Seq[A] => Seq[A]
- // (It will rewrite A* everywhere but method parameters.)
- // This is the specified behavior.
- protected def etaExpandKeepsStar = false
-
- /** Turn any T* types into Seq[T] except when
- * in method parameter position.
- */
- object dropIllegalStarTypes extends TypeMap {
- def apply(tp: Type): Type = tp match {
- case MethodType(params, restpe) =>
- // Not mapping over params
- val restpe1 = apply(restpe)
- if (restpe eq restpe1) tp
- else MethodType(params, restpe1)
- case TypeRef(_, RepeatedParamClass, arg :: Nil) =>
- seqType(arg)
- case _ =>
- if (etaExpandKeepsStar) tp else mapOver(tp)
- }
- }
// Hash consing --------------------------------------------------------------
@@ -3817,121 +3682,6 @@ trait Types extends api.Types { self: SymbolTable =>
// Helper Classes ---------------------------------------------------------
- /** @PP: Unable to see why these apparently constant types should need vals
- * in every TypeConstraint, I lifted them out.
- */
- private lazy val numericLoBound = IntClass.tpe
- private lazy val numericHiBound = intersectionType(List(ByteClass.tpe, CharClass.tpe), ScalaPackageClass)
-
- /** A class expressing upper and lower bounds constraints of type variables,
- * as well as their instantiations.
- */
- class TypeConstraint(lo0: List[Type], hi0: List[Type], numlo0: Type, numhi0: Type, avoidWidening0: Boolean = false) {
- def this(lo0: List[Type], hi0: List[Type]) = this(lo0, hi0, NoType, NoType)
- def this(bounds: TypeBounds) = this(List(bounds.lo), List(bounds.hi))
- def this() = this(List(), List())
-
- /* Syncnote: Type constraints are assumed to be used from only one
- * thread. They are not exposed in api.Types and are used only locally
- * in operations that are exposed from types. Hence, no syncing of any
- * variables should be ncessesary.
- */
-
- /** Guard these lists against AnyClass and NothingClass appearing,
- * else loBounds.isEmpty will have different results for an empty
- * constraint and one with Nothing as a lower bound. [Actually
- * guarding addLoBound/addHiBound somehow broke raw types so it
- * only guards against being created with them.]
- */
- private var lobounds = lo0 filterNot typeIsNothing
- private var hibounds = hi0 filterNot typeIsAny
- private var numlo = numlo0
- private var numhi = numhi0
- private var avoidWidening = avoidWidening0
-
- def loBounds: List[Type] = if (numlo == NoType) lobounds else numlo :: lobounds
- def hiBounds: List[Type] = if (numhi == NoType) hibounds else numhi :: hibounds
- def avoidWiden: Boolean = avoidWidening
-
- def addLoBound(tp: Type, isNumericBound: Boolean = false) {
- // For some reason which is still a bit fuzzy, we must let Nothing through as
- // a lower bound despite the fact that Nothing is always a lower bound. My current
- // supposition is that the side-effecting type constraint accumulation mechanism
- // depends on these subtype tests being performed to make forward progress when
- // there are mutally recursive type vars.
- // See pos/t6367 and pos/t6499 for the competing test cases.
- val mustConsider = tp.typeSymbol match {
- case NothingClass => true
- case _ => !(lobounds contains tp)
- }
- if (mustConsider) {
- if (isNumericBound && isNumericValueType(tp)) {
- if (numlo == NoType || isNumericSubType(numlo, tp))
- numlo = tp
- else if (!isNumericSubType(tp, numlo))
- numlo = numericLoBound
- }
- else lobounds ::= tp
- }
- }
-
- def checkWidening(tp: Type) {
- if(tp.isStable) avoidWidening = true
- else tp match {
- case HasTypeMember(_, _) => avoidWidening = true
- case _ =>
- }
- }
-
- def addHiBound(tp: Type, isNumericBound: Boolean = false) {
- // My current test case only demonstrates the need to let Nothing through as
- // a lower bound, but I suspect the situation is symmetrical.
- val mustConsider = tp.typeSymbol match {
- case AnyClass => true
- case _ => !(hibounds contains tp)
- }
- if (mustConsider) {
- checkWidening(tp)
- if (isNumericBound && isNumericValueType(tp)) {
- if (numhi == NoType || isNumericSubType(tp, numhi))
- numhi = tp
- else if (!isNumericSubType(numhi, tp))
- numhi = numericHiBound
- }
- else hibounds ::= tp
- }
- }
-
- def isWithinBounds(tp: Type): Boolean =
- lobounds.forall(_ <:< tp) &&
- hibounds.forall(tp <:< _) &&
- (numlo == NoType || (numlo weak_<:< tp)) &&
- (numhi == NoType || (tp weak_<:< numhi))
-
- var inst: Type = NoType // @M reduce visibility?
-
- def instValid = (inst ne null) && (inst ne NoType)
-
- def cloneInternal = {
- val tc = new TypeConstraint(lobounds, hibounds, numlo, numhi, avoidWidening)
- tc.inst = inst
- tc
- }
-
- override def toString = {
- val boundsStr = {
- val lo = loBounds filterNot typeIsNothing
- val hi = hiBounds filterNot typeIsAny
- val lostr = if (lo.isEmpty) Nil else List(lo.mkString(" >: (", ", ", ")"))
- val histr = if (hi.isEmpty) Nil else List(hi.mkString(" <: (", ", ", ")"))
-
- lostr ++ histr mkString ("[", " | ", "]")
- }
- if (inst eq NoType) boundsStr
- else boundsStr + " _= " + inst.safeToString
- }
- }
-
class TypeUnwrapper(poly: Boolean, existential: Boolean, annotated: Boolean, nullary: Boolean) extends (Type => Type) {
def apply(tp: Type): Type = tp match {
case AnnotatedType(_, underlying, _) if annotated => apply(underlying)
@@ -3949,246 +3699,6 @@ trait Types extends api.Types { self: SymbolTable =>
object unwrapToStableClass extends ClassUnwrapper(existential = false) { }
object unwrapWrapperTypes extends TypeUnwrapper(true, true, true, true) { }
- trait AnnotationFilter extends TypeMap {
- def keepAnnotation(annot: AnnotationInfo): Boolean
-
- override def mapOver(annot: AnnotationInfo) =
- if (keepAnnotation(annot)) super.mapOver(annot)
- else UnmappableAnnotation
- }
-
- trait KeepOnlyTypeConstraints extends AnnotationFilter {
- // filter keeps only type constraint annotations
- def keepAnnotation(annot: AnnotationInfo) = annot matches TypeConstraintClass
- }
-
- // todo. move these into scala.reflect.api
-
- /** A prototype for mapping a function over all possible types
- */
- abstract class TypeMap(trackVariance: Boolean) extends (Type => Type) {
- def this() = this(trackVariance = false)
- def apply(tp: Type): Type
-
- private[this] var _variance: Variance = if (trackVariance) Covariant else Invariant
-
- def variance_=(x: Variance) = { assert(trackVariance, this) ; _variance = x }
- def variance = _variance
-
- /** Map this function over given type */
- def mapOver(tp: Type): Type = tp match {
- case tr @ TypeRef(pre, sym, args) =>
- val pre1 = this(pre)
- val args1 = (
- if (trackVariance && args.nonEmpty && !variance.isInvariant && sym.typeParams.nonEmpty)
- mapOverArgs(args, sym.typeParams)
- else
- args mapConserve this
- )
- if ((pre1 eq pre) && (args1 eq args)) tp
- else copyTypeRef(tp, pre1, tr.coevolveSym(pre1), args1)
- case ThisType(_) => tp
- case SingleType(pre, sym) =>
- if (sym.isPackageClass) tp // short path
- else {
- val pre1 = this(pre)
- if (pre1 eq pre) tp
- else singleType(pre1, sym)
- }
- case MethodType(params, result) =>
- val params1 = flipped(mapOver(params))
- val result1 = this(result)
- if ((params1 eq params) && (result1 eq result)) tp
- else copyMethodType(tp, params1, result1.substSym(params, params1))
- case PolyType(tparams, result) =>
- val tparams1 = flipped(mapOver(tparams))
- val result1 = this(result)
- if ((tparams1 eq tparams) && (result1 eq result)) tp
- else PolyType(tparams1, result1.substSym(tparams, tparams1))
- case NullaryMethodType(result) =>
- val result1 = this(result)
- if (result1 eq result) tp
- else NullaryMethodType(result1)
- case ConstantType(_) => tp
- case SuperType(thistp, supertp) =>
- val thistp1 = this(thistp)
- val supertp1 = this(supertp)
- if ((thistp1 eq thistp) && (supertp1 eq supertp)) tp
- else SuperType(thistp1, supertp1)
- case TypeBounds(lo, hi) =>
- val lo1 = flipped(this(lo))
- val hi1 = this(hi)
- if ((lo1 eq lo) && (hi1 eq hi)) tp
- else TypeBounds(lo1, hi1)
- case BoundedWildcardType(bounds) =>
- val bounds1 = this(bounds)
- if (bounds1 eq bounds) tp
- else BoundedWildcardType(bounds1.asInstanceOf[TypeBounds])
- case rtp @ RefinedType(parents, decls) =>
- val parents1 = parents mapConserve this
- val decls1 = mapOver(decls)
- copyRefinedType(rtp, parents1, decls1)
- case ExistentialType(tparams, result) =>
- val tparams1 = mapOver(tparams)
- val result1 = this(result)
- if ((tparams1 eq tparams) && (result1 eq result)) tp
- else newExistentialType(tparams1, result1.substSym(tparams, tparams1))
- case OverloadedType(pre, alts) =>
- val pre1 = if (pre.isInstanceOf[ClassInfoType]) pre else this(pre)
- if (pre1 eq pre) tp
- else OverloadedType(pre1, alts)
- case AntiPolyType(pre, args) =>
- val pre1 = this(pre)
- val args1 = args mapConserve this
- if ((pre1 eq pre) && (args1 eq args)) tp
- else AntiPolyType(pre1, args1)
- case tv@TypeVar(_, constr) =>
- if (constr.instValid) this(constr.inst)
- else tv.applyArgs(mapOverArgs(tv.typeArgs, tv.params)) //@M !args.isEmpty implies !typeParams.isEmpty
- case NotNullType(tp) =>
- val tp1 = this(tp)
- if (tp1 eq tp) tp
- else NotNullType(tp1)
- case AnnotatedType(annots, atp, selfsym) =>
- val annots1 = mapOverAnnotations(annots)
- val atp1 = this(atp)
- if ((annots1 eq annots) && (atp1 eq atp)) tp
- else if (annots1.isEmpty) atp1
- else AnnotatedType(annots1, atp1, selfsym)
-/*
- case ErrorType => tp
- case WildcardType => tp
- case NoType => tp
- case NoPrefix => tp
- case ErasedSingleType(sym) => tp
-*/
- case _ =>
- tp
- // throw new Error("mapOver inapplicable for " + tp);
- }
-
- def withVariance[T](v: Variance)(body: => T): T = {
- val saved = variance
- variance = v
- try body finally variance = saved
- }
- @inline final def flipped[T](body: => T): T = {
- if (trackVariance) variance = variance.flip
- try body
- finally if (trackVariance) variance = variance.flip
- }
- protected def mapOverArgs(args: List[Type], tparams: List[Symbol]): List[Type] = (
- if (trackVariance)
- map2Conserve(args, tparams)((arg, tparam) => withVariance(variance * tparam.variance)(this(arg)))
- else
- args mapConserve this
- )
- /** Applies this map to the symbol's info, setting variance = Invariant
- * if necessary when the symbol is an alias.
- */
- private def applyToSymbolInfo(sym: Symbol): Type = {
- if (trackVariance && !variance.isInvariant && sym.isAliasType)
- withVariance(Invariant)(this(sym.info))
- else
- this(sym.info)
- }
-
- /** Called by mapOver to determine whether the original symbols can
- * be returned, or whether they must be cloned.
- */
- protected def noChangeToSymbols(origSyms: List[Symbol]): Boolean = {
- @tailrec def loop(syms: List[Symbol]): Boolean = syms match {
- case Nil => true
- case x :: xs => (x.info eq applyToSymbolInfo(x)) && loop(xs)
- }
- loop(origSyms)
- }
-
- /** Map this function over given scope */
- def mapOver(scope: Scope): Scope = {
- val elems = scope.toList
- val elems1 = mapOver(elems)
- if (elems1 eq elems) scope
- else newScopeWith(elems1: _*)
- }
-
- /** Map this function over given list of symbols */
- def mapOver(origSyms: List[Symbol]): List[Symbol] = {
- // fast path in case nothing changes due to map
- if (noChangeToSymbols(origSyms)) origSyms
- // map is not the identity --> do cloning properly
- else cloneSymbolsAndModify(origSyms, TypeMap.this)
- }
-
- def mapOver(annot: AnnotationInfo): AnnotationInfo = {
- val AnnotationInfo(atp, args, assocs) = annot
- val atp1 = mapOver(atp)
- val args1 = mapOverAnnotArgs(args)
- // there is no need to rewrite assocs, as they are constants
-
- if ((args eq args1) && (atp eq atp1)) annot
- else if (args1.isEmpty && args.nonEmpty) UnmappableAnnotation // some annotation arg was unmappable
- else AnnotationInfo(atp1, args1, assocs) setPos annot.pos
- }
-
- def mapOverAnnotations(annots: List[AnnotationInfo]): List[AnnotationInfo] = {
- val annots1 = annots mapConserve mapOver
- if (annots1 eq annots) annots
- else annots1 filterNot (_ eq UnmappableAnnotation)
- }
-
- /** Map over a set of annotation arguments. If any
- * of the arguments cannot be mapped, then return Nil. */
- def mapOverAnnotArgs(args: List[Tree]): List[Tree] = {
- val args1 = args mapConserve mapOver
- if (args1 contains UnmappableTree) Nil
- else args1
- }
-
- def mapOver(tree: Tree): Tree =
- mapOver(tree, () => return UnmappableTree)
-
- /** Map a tree that is part of an annotation argument.
- * If the tree cannot be mapped, then invoke giveup().
- * The default is to transform the tree with
- * TypeMapTransformer.
- */
- def mapOver(tree: Tree, giveup: ()=>Nothing): Tree =
- (new TypeMapTransformer).transform(tree)
-
- /** This transformer leaves the tree alone except to remap
- * its types. */
- class TypeMapTransformer extends Transformer {
- override def transform(tree: Tree) = {
- val tree1 = super.transform(tree)
- val tpe1 = TypeMap.this(tree1.tpe)
- if ((tree eq tree1) && (tree.tpe eq tpe1))
- tree
- else
- tree1.shallowDuplicate.setType(tpe1)
- }
- }
- }
-
- abstract class TypeTraverser extends TypeMap {
- def traverse(tp: Type): Unit
- def apply(tp: Type): Type = { traverse(tp); tp }
- }
-
- abstract class TypeTraverserWithResult[T] extends TypeTraverser {
- def result: T
- def clear(): Unit
- }
-
- abstract class TypeCollector[T](initial: T) extends TypeTraverser {
- var result: T = _
- def collect(tp: Type) = {
- result = initial
- traverse(tp)
- result
- }
- }
-
/** Repack existential types, otherwise they sometimes get unpacked in the
* wrong location (type inference comes up with an unexpected skolem)
*/
@@ -4234,707 +3744,8 @@ trait Types extends api.Types { self: SymbolTable =>
&& isRawIfWithoutArgs(sym)
)
- /** The raw to existential map converts a ''raw type'' to an existential type.
- * It is necessary because we might have read a raw type of a
- * parameterized Java class from a class file. At the time we read the type
- * the corresponding class file might still not be read, so we do not
- * know what the type parameters of the type are. Therefore
- * the conversion of raw types to existential types might not have taken place
- * in ClassFileparser.sigToType (where it is usually done).
- */
- def rawToExistential = new TypeMap {
- private var expanded = immutable.Set[Symbol]()
- def apply(tp: Type): Type = tp match {
- case TypeRef(pre, sym, List()) if isRawIfWithoutArgs(sym) =>
- if (expanded contains sym) AnyRefClass.tpe
- else try {
- expanded += sym
- val eparams = mapOver(typeParamsToExistentials(sym))
- existentialAbstraction(eparams, typeRef(apply(pre), sym, eparams map (_.tpe)))
- } finally {
- expanded -= sym
- }
- case _ =>
- mapOver(tp)
- }
- }
- /***
- *@M: I think this is more desirable, but Martin prefers to leave raw-types as-is as much as possible
- object rawToExistentialInJava extends TypeMap {
- def apply(tp: Type): Type = tp match {
- // any symbol that occurs in a java sig, not just java symbols
- // see http://lampsvn.epfl.ch/trac/scala/ticket/2454#comment:14
- case TypeRef(pre, sym, List()) if !sym.typeParams.isEmpty =>
- val eparams = typeParamsToExistentials(sym, sym.typeParams)
- existentialAbstraction(eparams, TypeRef(pre, sym, eparams map (_.tpe)))
- case _ =>
- mapOver(tp)
- }
- }
- */
-
- /** Used by existentialAbstraction.
- */
- class ExistentialExtrapolation(tparams: List[Symbol]) extends TypeMap(trackVariance = true) {
- private val occurCount = mutable.HashMap[Symbol, Int]()
- private def countOccs(tp: Type) = {
- tp foreach {
- case TypeRef(_, sym, _) =>
- if (tparams contains sym)
- occurCount(sym) += 1
- case _ => ()
- }
- }
- def extrapolate(tpe: Type): Type = {
- tparams foreach (t => occurCount(t) = 0)
- countOccs(tpe)
- for (tparam <- tparams)
- countOccs(tparam.info)
-
- apply(tpe)
- }
-
- /** If these conditions all hold:
- * 1) we are in covariant (or contravariant) position
- * 2) this type occurs exactly once in the existential scope
- * 3) the widened upper (or lower) bound of this type contains no references to tparams
- * Then we replace this lone occurrence of the type with the widened upper (or lower) bound.
- * All other types pass through unchanged.
- */
- def apply(tp: Type): Type = {
- val tp1 = mapOver(tp)
- if (variance.isInvariant) tp1
- else tp1 match {
- case TypeRef(pre, sym, args) if tparams contains sym =>
- val repl = if (variance.isPositive) dropSingletonType(tp1.bounds.hi) else tp1.bounds.lo
- val count = occurCount(sym)
- val containsTypeParam = tparams exists (repl contains _)
- def msg = {
- val word = if (variance.isPositive) "upper" else "lower"
- s"Widened lone occurrence of $tp1 inside existential to $word bound"
- }
- if (!repl.typeSymbol.isBottomClass && count == 1 && !containsTypeParam)
- logResult(msg)(repl)
- else
- tp1
- case _ =>
- tp1
- }
- }
- override def mapOver(tp: Type): Type = tp match {
- case SingleType(pre, sym) =>
- if (sym.isPackageClass) tp // short path
- else {
- val pre1 = this(pre)
- if ((pre1 eq pre) || !pre1.isStable) tp
- else singleType(pre1, sym)
- }
- case _ => super.mapOver(tp)
- }
-
- // Do not discard the types of existential ident's. The
- // symbol of the Ident itself cannot be listed in the
- // existential's parameters, so the resulting existential
- // type would be ill-formed.
- override def mapOver(tree: Tree) = tree match {
- case Ident(_) if tree.tpe.isStable => tree
- case _ => super.mapOver(tree)
- }
- }
-
def singletonBounds(hi: Type) = TypeBounds.upper(intersectionType(List(hi, SingletonClass.tpe)))
- /** Might the given symbol be important when calculating the prefix
- * of a type? When tp.asSeenFrom(pre, clazz) is called on `tp`,
- * the result will be `tp` unchanged if `pre` is trivial and `clazz`
- * is a symbol such that isPossiblePrefix(clazz) == false.
- */
- def isPossiblePrefix(clazz: Symbol) = clazz.isClass && !clazz.isPackageClass
-
- private def skipPrefixOf(pre: Type, clazz: Symbol) = (
- (pre eq NoType) || (pre eq NoPrefix) || !isPossiblePrefix(clazz)
- )
-
- def newAsSeenFromMap(pre: Type, clazz: Symbol): AsSeenFromMap =
- new AsSeenFromMap(pre, clazz)
-
- /** A map to compute the asSeenFrom method.
- */
- class AsSeenFromMap(seenFromPrefix: Type, seenFromClass: Symbol) extends TypeMap with KeepOnlyTypeConstraints {
- // Some example source constructs relevant in asSeenFrom:
- //
- // object CaptureThis {
- // trait X[A] { def f: this.type = this }
- // class Y[A] { def f: this.type = this }
- // // Created new existential to represent This(CaptureThis.X) seen from CaptureThis.X[B]: type _1.type <: CaptureThis.X[B] with Singleton
- // def f1[B] = new X[B] { }
- // // TODO - why is the behavior different when it's a class?
- // def f2[B] = new Y[B] { }
- // }
- // class CaptureVal[T] {
- // val f: java.util.List[_ <: T] = null
- // // Captured existential skolem for type _$1 seen from CaptureVal.this.f.type: type _$1
- // def g = f get 0
- // }
- // class ClassParam[T] {
- // // AsSeenFromMap(Inner.this.type, class Inner)/classParameterAsSeen(T)#loop(ClassParam.this.type, class ClassParam)
- // class Inner(lhs: T) { def f = lhs }
- // }
- def capturedParams: List[Symbol] = _capturedParams
- def capturedSkolems: List[Symbol] = _capturedSkolems
-
- def apply(tp: Type): Type = tp match {
- case tp @ ThisType(_) => thisTypeAsSeen(tp)
- case tp @ SingleType(_, sym) => if (sym.isPackageClass) tp else singleTypeAsSeen(tp)
- case tp @ TypeRef(_, sym, _) if isTypeParamOfEnclosingClass(sym) => classParameterAsSeen(tp)
- case _ => mapOver(tp)
- }
-
- private var _capturedSkolems: List[Symbol] = Nil
- private var _capturedParams: List[Symbol] = Nil
- private val isStablePrefix = seenFromPrefix.isStable
-
- // isBaseClassOfEnclosingClassOrInfoIsNotYetComplete would be a more accurate
- // but less succinct name.
- private def isBaseClassOfEnclosingClass(base: Symbol) = {
- def loop(encl: Symbol): Boolean = (
- isPossiblePrefix(encl)
- && ((encl isSubClass base) || loop(encl.owner.enclClass))
- )
- // The hasCompleteInfo guard is necessary to avoid cycles during the typing
- // of certain classes, notably ones defined inside package objects.
- !base.hasCompleteInfo || loop(seenFromClass)
- }
-
- /** Is the symbol a class type parameter from one of the enclosing
- * classes, or a base class of one of them?
- */
- private def isTypeParamOfEnclosingClass(sym: Symbol): Boolean = (
- sym.isTypeParameter
- && sym.owner.isClass
- && isBaseClassOfEnclosingClass(sym.owner)
- )
-
- /** Creates an existential representing a type parameter which appears
- * in the prefix of a ThisType.
- */
- protected def captureThis(pre: Type, clazz: Symbol): Type = {
- capturedParams find (_.owner == clazz) match {
- case Some(p) => p.tpe
- case _ =>
- val qvar = clazz freshExistential nme.SINGLETON_SUFFIX setInfo singletonBounds(pre)
- _capturedParams ::= qvar
- debuglog(s"Captured This(${clazz.fullNameString}) seen from $seenFromPrefix: ${qvar.defString}")
- qvar.tpe
- }
- }
- protected def captureSkolems(skolems: List[Symbol]) {
- for (p <- skolems; if !(capturedSkolems contains p)) {
- debuglog(s"Captured $p seen from $seenFromPrefix")
- _capturedSkolems ::= p
- }
- }
-
- /** Find the type argument in an applied type which corresponds to a type parameter.
- * The arguments are required to be related as follows, through intermediary `clazz`.
- * An exception will be thrown if this is violated.
- *
- * @param lhs its symbol is a type parameter of `clazz`
- * @param rhs a type application constructed from `clazz`
- */
- private def correspondingTypeArgument(lhs: Type, rhs: Type): Type = {
- val TypeRef(_, lhsSym, lhsArgs) = lhs
- val TypeRef(_, rhsSym, rhsArgs) = rhs
- require(lhsSym.safeOwner == rhsSym, s"$lhsSym is not a type parameter of $rhsSym")
-
- // Find the type parameter position; we'll use the corresponding argument
- val argIndex = rhsSym.typeParams indexOf lhsSym
-
- if (argIndex >= 0 && argIndex < rhsArgs.length) // @M! don't just replace the whole thing, might be followed by type application
- appliedType(rhsArgs(argIndex), lhsArgs mapConserve this)
- else if (rhsSym.tpe_*.parents exists typeIsErroneous) // don't be too zealous with the exceptions, see #2641
- ErrorType
- else
- abort(s"something is wrong: cannot make sense of type application\n $lhs\n $rhs")
- }
-
- // 0) @pre: `classParam` is a class type parameter
- // 1) Walk the owner chain of `seenFromClass` until we find the class which owns `classParam`
- // 2) Take the base type of the prefix at that point with respect to the owning class
- // 3) Solve for the type parameters through correspondence with the type args of the base type
- //
- // Only class type parameters (and not skolems) are considered, because other type parameters
- // are not influenced by the prefix through which they are seen. Note that type params of
- // anonymous type functions, which currently can only arise from normalising type aliases, are
- // owned by the type alias of which they are the eta-expansion.
- private def classParameterAsSeen(classParam: Type): Type = {
- val TypeRef(_, tparam, _) = classParam
-
- def loop(pre: Type, clazz: Symbol): Type = {
- // have to deconst because it may be a Class[T]
- def nextBase = (pre baseType clazz).deconst
- //@M! see test pos/tcpoly_return_overriding.scala why mapOver is necessary
- if (skipPrefixOf(pre, clazz))
- mapOver(classParam)
- else if (!matchesPrefixAndClass(pre, clazz)(tparam.owner))
- loop(nextBase.prefix, clazz.owner)
- else nextBase match {
- case applied @ TypeRef(_, _, _) => correspondingTypeArgument(classParam, applied)
- case ExistentialType(eparams, qtpe) => captureSkolems(eparams) ; loop(qtpe, clazz)
- case t => abort(s"$tparam in ${tparam.owner} cannot be instantiated from ${seenFromPrefix.widen}")
- }
- }
- loop(seenFromPrefix, seenFromClass)
- }
-
- // Does the candidate symbol match the given prefix and class?
- // Since pre may be something like ThisType(A) where trait A { self: B => },
- // we have to test the typeSymbol of the widened type, not pre.typeSymbol, or
- // B will not be considered.
- private def matchesPrefixAndClass(pre: Type, clazz: Symbol)(candidate: Symbol) = pre.widen match {
- case _: TypeVar => false
- case wide => (clazz == candidate) && (wide.typeSymbol isSubClass clazz)
- }
-
- // Whether the annotation tree currently being mapped over has had a This(_) node rewritten.
- private[this] var wroteAnnotation = false
- private object annotationArgRewriter extends TypeMapTransformer {
- private def matchesThis(thiz: Symbol) = matchesPrefixAndClass(seenFromPrefix, seenFromClass)(thiz)
-
- // what symbol should really be used?
- private def newThis(): Tree = {
- wroteAnnotation = true
- val presym = seenFromPrefix.widen.typeSymbol
- val thisSym = presym.owner.newValue(presym.name.toTermName, presym.pos) setInfo seenFromPrefix
- gen.mkAttributedQualifier(seenFromPrefix, thisSym)
- }
-
- /** Rewrite `This` trees in annotation argument trees */
- override def transform(tree: Tree): Tree = super.transform(tree) match {
- case This(_) if matchesThis(tree.symbol) => newThis()
- case tree => tree
- }
- }
-
- // This becomes considerably cheaper if we optimize for the common cases:
- // where the prefix is stable and where no This nodes are rewritten. If
- // either is true, then we don't need to worry about calling giveup. So if
- // the prefix is unstable, use a stack variable to indicate whether the tree
- // was touched. This takes us to one allocation per AsSeenFromMap rather
- // than an allocation on every call to mapOver, and no extra work when the
- // tree only has its types remapped.
- override def mapOver(tree: Tree, giveup: ()=>Nothing): Tree = {
- if (isStablePrefix)
- annotationArgRewriter transform tree
- else {
- val saved = wroteAnnotation
- wroteAnnotation = false
- try annotationArgRewriter transform tree
- finally if (wroteAnnotation) giveup() else wroteAnnotation = saved
- }
- }
-
- private def thisTypeAsSeen(tp: ThisType): Type = {
- def loop(pre: Type, clazz: Symbol): Type = {
- val pre1 = pre match {
- case SuperType(thistpe, _) => thistpe
- case _ => pre
- }
- if (skipPrefixOf(pre, clazz))
- mapOver(tp) // TODO - is mapOver necessary here?
- else if (!matchesPrefixAndClass(pre, clazz)(tp.sym))
- loop((pre baseType clazz).prefix, clazz.owner)
- else if (pre1.isStable)
- pre1
- else
- captureThis(pre1, clazz)
- }
- loop(seenFromPrefix, seenFromClass)
- }
-
- private def singleTypeAsSeen(tp: SingleType): Type = {
- val SingleType(pre, sym) = tp
-
- val pre1 = this(pre)
- if (pre1 eq pre) tp
- else if (pre1.isStable) singleType(pre1, sym)
- else pre1.memberType(sym).resultType //todo: this should be rolled into existential abstraction
- }
-
- override def toString = s"AsSeenFromMap($seenFromPrefix, $seenFromClass)"
- }
-
- /** A base class to compute all substitutions */
- abstract class SubstMap[T](from: List[Symbol], to: List[T]) extends TypeMap {
- assert(sameLength(from, to), "Unsound substitution from "+ from +" to "+ to)
-
- /** Are `sym` and `sym1` the same? Can be tuned by subclasses. */
- protected def matches(sym: Symbol, sym1: Symbol): Boolean = sym eq sym1
-
- /** Map target to type, can be tuned by subclasses */
- protected def toType(fromtp: Type, tp: T): Type
-
- protected def renameBoundSyms(tp: Type): Type = tp match {
- case MethodType(ps, restp) =>
- createFromClonedSymbols(ps, restp)((ps1, tp1) => copyMethodType(tp, ps1, renameBoundSyms(tp1)))
- case PolyType(bs, restp) =>
- createFromClonedSymbols(bs, restp)((ps1, tp1) => PolyType(ps1, renameBoundSyms(tp1)))
- case ExistentialType(bs, restp) =>
- createFromClonedSymbols(bs, restp)(newExistentialType)
- case _ =>
- tp
- }
-
- @tailrec private def subst(tp: Type, sym: Symbol, from: List[Symbol], to: List[T]): Type = (
- if (from.isEmpty) tp
- // else if (to.isEmpty) error("Unexpected substitution on '%s': from = %s but to == Nil".format(tp, from))
- else if (matches(from.head, sym)) toType(tp, to.head)
- else subst(tp, sym, from.tail, to.tail)
- )
-
- def apply(tp0: Type): Type = if (from.isEmpty) tp0 else {
- val boundSyms = tp0.boundSyms
- val tp1 = if (boundSyms.nonEmpty && (boundSyms exists from.contains)) renameBoundSyms(tp0) else tp0
- val tp = mapOver(tp1)
- def substFor(sym: Symbol) = subst(tp, sym, from, to)
-
- tp match {
- // @M
- // 1) arguments must also be substituted (even when the "head" of the
- // applied type has already been substituted)
- // example: (subst RBound[RT] from [type RT,type RBound] to
- // [type RT&,type RBound&]) = RBound&[RT&]
- // 2) avoid loops (which occur because alpha-conversion is
- // not performed properly imo)
- // e.g. if in class Iterable[a] there is a new Iterable[(a,b)],
- // we must replace the a in Iterable[a] by (a,b)
- // (must not recurse --> loops)
- // 3) replacing m by List in m[Int] should yield List[Int], not just List
- case TypeRef(NoPrefix, sym, args) =>
- val tcon = substFor(sym)
- if ((tp eq tcon) || args.isEmpty) tcon
- else appliedType(tcon.typeConstructor, args)
- case SingleType(NoPrefix, sym) =>
- substFor(sym)
- case _ =>
- tp
- }
- }
- }
-
- /** A map to implement the `substSym` method. */
- class SubstSymMap(from: List[Symbol], to: List[Symbol]) extends SubstMap(from, to) {
- def this(pairs: (Symbol, Symbol)*) = this(pairs.toList.map(_._1), pairs.toList.map(_._2))
-
- protected def toType(fromtp: Type, sym: Symbol) = fromtp match {
- case TypeRef(pre, _, args) => copyTypeRef(fromtp, pre, sym, args)
- case SingleType(pre, _) => singleType(pre, sym)
- }
- @tailrec private def subst(sym: Symbol, from: List[Symbol], to: List[Symbol]): Symbol = (
- if (from.isEmpty) sym
- // else if (to.isEmpty) error("Unexpected substitution on '%s': from = %s but to == Nil".format(sym, from))
- else if (matches(from.head, sym)) to.head
- else subst(sym, from.tail, to.tail)
- )
- private def substFor(sym: Symbol) = subst(sym, from, to)
-
- override def apply(tp: Type): Type = (
- if (from.isEmpty) tp
- else tp match {
- case TypeRef(pre, sym, args) if pre ne NoPrefix =>
- val newSym = substFor(sym)
- // mapOver takes care of subst'ing in args
- mapOver ( if (sym eq newSym) tp else copyTypeRef(tp, pre, newSym, args) )
- // assert(newSym.typeParams.length == sym.typeParams.length, "typars mismatch in SubstSymMap: "+(sym, sym.typeParams, newSym, newSym.typeParams))
- case SingleType(pre, sym) if pre ne NoPrefix =>
- val newSym = substFor(sym)
- mapOver( if (sym eq newSym) tp else singleType(pre, newSym) )
- case _ =>
- super.apply(tp)
- }
- )
-
- object mapTreeSymbols extends TypeMapTransformer {
- val strictCopy = newStrictTreeCopier
-
- def termMapsTo(sym: Symbol) = from indexOf sym match {
- case -1 => None
- case idx => Some(to(idx))
- }
-
- // if tree.symbol is mapped to another symbol, passes the new symbol into the
- // constructor `trans` and sets the symbol and the type on the resulting tree.
- def transformIfMapped(tree: Tree)(trans: Symbol => Tree) = termMapsTo(tree.symbol) match {
- case Some(toSym) => trans(toSym) setSymbol toSym setType tree.tpe
- case None => tree
- }
-
- // changes trees which refer to one of the mapped symbols. trees are copied before attributes are modified.
- override def transform(tree: Tree) = {
- // super.transform maps symbol references in the types of `tree`. it also copies trees where necessary.
- super.transform(tree) match {
- case id @ Ident(_) =>
- transformIfMapped(id)(toSym =>
- strictCopy.Ident(id, toSym.name))
-
- case sel @ Select(qual, name) =>
- transformIfMapped(sel)(toSym =>
- strictCopy.Select(sel, qual, toSym.name))
-
- case tree => tree
- }
- }
- }
- override def mapOver(tree: Tree, giveup: ()=>Nothing): Tree = {
- mapTreeSymbols.transform(tree)
- }
- }
-
- /** A map to implement the `subst` method. */
- class SubstTypeMap(from: List[Symbol], to: List[Type])
- extends SubstMap(from, to) {
- protected def toType(fromtp: Type, tp: Type) = tp
-
- override def mapOver(tree: Tree, giveup: () => Nothing): Tree = {
- object trans extends TypeMapTransformer {
- override def transform(tree: Tree) = tree match {
- case Ident(name) =>
- from indexOf tree.symbol match {
- case -1 => super.transform(tree)
- case idx =>
- val totpe = to(idx)
- if (totpe.isStable) tree.duplicate setType totpe
- else giveup()
- }
- case _ =>
- super.transform(tree)
- }
- }
- trans.transform(tree)
- }
- }
-
- /** A map to implement the `substThis` method. */
- class SubstThisMap(from: Symbol, to: Type) extends TypeMap {
- def apply(tp: Type): Type = tp match {
- case ThisType(sym) if (sym == from) => to
- case _ => mapOver(tp)
- }
- }
-
- class SubstWildcardMap(from: List[Symbol]) extends TypeMap {
- def apply(tp: Type): Type = try {
- tp match {
- case TypeRef(_, sym, _) if from contains sym =>
- BoundedWildcardType(sym.info.bounds)
- case _ =>
- mapOver(tp)
- }
- } catch {
- case ex: MalformedType =>
- WildcardType
- }
- }
-
-// dependent method types
- object IsDependentCollector extends TypeCollector(false) {
- def traverse(tp: Type) {
- if (tp.isImmediatelyDependent) result = true
- else if (!result) mapOver(tp)
- }
- }
-
- object ApproximateDependentMap extends TypeMap {
- def apply(tp: Type): Type =
- if (tp.isImmediatelyDependent) WildcardType
- else mapOver(tp)
- }
-
- /** Note: This map is needed even for non-dependent method types, despite what the name might imply.
- */
- class InstantiateDependentMap(params: List[Symbol], actuals0: List[Type]) extends TypeMap with KeepOnlyTypeConstraints {
- private val actuals = actuals0.toIndexedSeq
- private val existentials = new Array[Symbol](actuals.size)
- def existentialsNeeded: List[Symbol] = existentials.filter(_ ne null).toList
-
- private object StableArg {
- def unapply(param: Symbol) = Arg unapply param map actuals filter (tp =>
- tp.isStable && (tp.typeSymbol != NothingClass)
- )
- }
- private object Arg {
- def unapply(param: Symbol) = Some(params indexOf param) filter (_ >= 0)
- }
-
- def apply(tp: Type): Type = mapOver(tp) match {
- // unsound to replace args by unstable actual #3873
- case SingleType(NoPrefix, StableArg(arg)) => arg
- // (soundly) expand type alias selections on implicit arguments,
- // see depmet_implicit_oopsla* test cases -- typically, `param.isImplicit`
- case tp1 @ TypeRef(SingleType(NoPrefix, Arg(pid)), sym, targs) =>
- val arg = actuals(pid)
- val res = typeRef(arg, sym, targs)
- if (res.typeSymbolDirect.isAliasType) res.dealias else tp1
- // don't return the original `tp`, which may be different from `tp1`,
- // due to dropping annotations
- case tp1 => tp1
- }
-
- /* Return the type symbol for referencing a parameter inside the existential quantifier.
- * (Only needed if the actual is unstable.)
- */
- private def existentialFor(pid: Int) = {
- if (existentials(pid) eq null) {
- val param = params(pid)
- existentials(pid) = (
- param.owner.newExistential(param.name.toTypeName append nme.SINGLETON_SUFFIX, param.pos, param.flags)
- setInfo singletonBounds(actuals(pid))
- )
- }
- existentials(pid)
- }
-
- //AM propagate more info to annotations -- this seems a bit ad-hoc... (based on code by spoon)
- override def mapOver(arg: Tree, giveup: ()=>Nothing): Tree = {
- // TODO: this should be simplified; in the stable case, one can
- // probably just use an Ident to the tree.symbol.
- //
- // @PP: That leads to failure here, where stuff no longer has type
- // 'String @Annot("stuff")' but 'String @Annot(x)'.
- //
- // def m(x: String): String @Annot(x) = x
- // val stuff = m("stuff")
- //
- // (TODO cont.) Why an existential in the non-stable case?
- //
- // @PP: In the following:
- //
- // def m = { val x = "three" ; val y: String @Annot(x) = x; y }
- //
- // m is typed as 'String @Annot(x) forSome { val x: String }'.
- //
- // Both examples are from run/constrained-types.scala.
- object treeTrans extends Transformer {
- override def transform(tree: Tree): Tree = tree.symbol match {
- case StableArg(actual) =>
- gen.mkAttributedQualifier(actual, tree.symbol)
- case Arg(pid) =>
- val sym = existentialFor(pid)
- Ident(sym) copyAttrs tree setType typeRef(NoPrefix, sym, Nil)
- case _ =>
- super.transform(tree)
- }
- }
- treeTrans transform arg
- }
- }
-
- /** A map to convert every occurrence of a wildcard type to a fresh
- * type variable */
- object wildcardToTypeVarMap extends TypeMap {
- def apply(tp: Type): Type = tp match {
- case WildcardType =>
- TypeVar(tp, new TypeConstraint)
- case BoundedWildcardType(bounds) =>
- TypeVar(tp, new TypeConstraint(bounds))
- case _ =>
- mapOver(tp)
- }
- }
-
- /** A map to convert every occurrence of a type variable to a wildcard type. */
- object typeVarToOriginMap extends TypeMap {
- def apply(tp: Type): Type = tp match {
- case TypeVar(origin, _) => origin
- case _ => mapOver(tp)
- }
- }
-
- /** A map to implement the `contains` method. */
- class ContainsCollector(sym: Symbol) extends TypeCollector(false) {
- def traverse(tp: Type) {
- if (!result) {
- tp.normalize match {
- case TypeRef(_, sym1, _) if (sym == sym1) => result = true
- case SingleType(_, sym1) if (sym == sym1) => result = true
- case _ => mapOver(tp)
- }
- }
- }
-
- override def mapOver(arg: Tree) = {
- for (t <- arg) {
- traverse(t.tpe)
- if (t.symbol == sym)
- result = true
- }
- arg
- }
- }
-
- /** A map to implement the `contains` method. */
- class ContainsTypeCollector(t: Type) extends TypeCollector(false) {
- def traverse(tp: Type) {
- if (!result) {
- if (tp eq t) result = true
- else mapOver(tp)
- }
- }
- override def mapOver(arg: Tree) = {
- for (t <- arg)
- traverse(t.tpe)
-
- arg
- }
- }
-
- /** A map to implement the `filter` method. */
- class FilterTypeCollector(p: Type => Boolean) extends TypeCollector[List[Type]](Nil) {
- override def collect(tp: Type) = super.collect(tp).reverse
-
- def traverse(tp: Type) {
- if (p(tp)) result ::= tp
- mapOver(tp)
- }
- }
-
- /** A map to implement the `collect` method. */
- class CollectTypeCollector[T](pf: PartialFunction[Type, T]) extends TypeCollector[List[T]](Nil) {
- override def collect(tp: Type) = super.collect(tp).reverse
-
- def traverse(tp: Type) {
- if (pf.isDefinedAt(tp)) result ::= pf(tp)
- mapOver(tp)
- }
- }
-
- class ForEachTypeTraverser(f: Type => Unit) extends TypeTraverser {
- def traverse(tp: Type) {
- f(tp)
- mapOver(tp)
- }
- }
-
- /** A map to implement the `filter` method. */
- class FindTypeCollector(p: Type => Boolean) extends TypeCollector[Option[Type]](None) {
- def traverse(tp: Type) {
- if (result.isEmpty) {
- if (p(tp)) result = Some(tp)
- mapOver(tp)
- }
- }
- }
-
- /** A map to implement the `contains` method. */
- object ErroneousCollector extends TypeCollector(false) {
- def traverse(tp: Type) {
- if (!result) {
- result = tp.isError
- mapOver(tp)
- }
- }
- }
-
/**
* A more persistent version of `Type#memberType` which does not require
* that the symbol is a direct member of the prefix.
@@ -4980,194 +3791,10 @@ trait Types extends api.Types { self: SymbolTable =>
result
}
- /** The most deeply nested owner that contains all the symbols
- * of thistype or prefixless typerefs/singletype occurrences in given type.
- */
- private def commonOwner(t: Type): Symbol = commonOwner(t :: Nil)
-
- /** The most deeply nested owner that contains all the symbols
- * of thistype or prefixless typerefs/singletype occurrences in given list
- * of types.
- */
- private def commonOwner(tps: List[Type]): Symbol = {
- if (tps.isEmpty) NoSymbol
- else {
- commonOwnerMap.clear()
- tps foreach (commonOwnerMap traverse _)
- if (commonOwnerMap.result ne null) commonOwnerMap.result else NoSymbol
- }
- }
-
- protected def commonOwnerMap: CommonOwnerMap = commonOwnerMapObj
-
- protected class CommonOwnerMap extends TypeTraverserWithResult[Symbol] {
- var result: Symbol = _
-
- def clear() { result = null }
-
- private def register(sym: Symbol) {
- // First considered type is the trivial result.
- if ((result eq null) || (sym eq NoSymbol))
- result = sym
- else
- while ((result ne NoSymbol) && (result ne sym) && !(sym isNestedIn result))
- result = result.owner
- }
- def traverse(tp: Type) = tp.normalize match {
- case ThisType(sym) => register(sym)
- case TypeRef(NoPrefix, sym, args) => register(sym.owner) ; args foreach traverse
- case SingleType(NoPrefix, sym) => register(sym.owner)
- case _ => mapOver(tp)
- }
- }
-
- private lazy val commonOwnerMapObj = new CommonOwnerMap
-
class MissingAliasControl extends ControlThrowable
val missingAliasException = new MissingAliasControl
class MissingTypeControl extends ControlThrowable
- object adaptToNewRunMap extends TypeMap {
-
- private def adaptToNewRun(pre: Type, sym: Symbol): Symbol = {
- if (phase.flatClasses || sym.isRootSymbol || (pre eq NoPrefix) || (pre eq NoType) || sym.isPackageClass)
- sym
- else if (sym.isModuleClass) {
- val sourceModule1 = adaptToNewRun(pre, sym.sourceModule)
-
- sourceModule1.moduleClass orElse sourceModule1.initialize.moduleClass orElse {
- val msg = "Cannot adapt module class; sym = %s, sourceModule = %s, sourceModule.moduleClass = %s => sourceModule1 = %s, sourceModule1.moduleClass = %s"
- debuglog(msg.format(sym, sym.sourceModule, sym.sourceModule.moduleClass, sourceModule1, sourceModule1.moduleClass))
- sym
- }
- }
- else {
- var rebind0 = pre.findMember(sym.name, BRIDGE, 0, stableOnly = true) orElse {
- if (sym.isAliasType) throw missingAliasException
- devWarning(s"$pre.$sym no longer exist at phase $phase")
- throw new MissingTypeControl // For build manager and presentation compiler purposes
- }
- /** The two symbols have the same fully qualified name */
- def corresponds(sym1: Symbol, sym2: Symbol): Boolean =
- sym1.name == sym2.name && (sym1.isPackageClass || corresponds(sym1.owner, sym2.owner))
- if (!corresponds(sym.owner, rebind0.owner)) {
- debuglog("ADAPT1 pre = "+pre+", sym = "+sym.fullLocationString+", rebind = "+rebind0.fullLocationString)
- val bcs = pre.baseClasses.dropWhile(bc => !corresponds(bc, sym.owner))
- if (bcs.isEmpty)
- assert(pre.typeSymbol.isRefinementClass, pre) // if pre is a refinementclass it might be a structural type => OK to leave it in.
- else
- rebind0 = pre.baseType(bcs.head).member(sym.name)
- debuglog(
- "ADAPT2 pre = " + pre +
- ", bcs.head = " + bcs.head +
- ", sym = " + sym.fullLocationString +
- ", rebind = " + rebind0.fullLocationString
- )
- }
- rebind0.suchThat(sym => sym.isType || sym.isStable) orElse {
- debuglog("" + phase + " " +phase.flatClasses+sym.owner+sym.name+" "+sym.isType)
- throw new MalformedType(pre, sym.nameString)
- }
- }
- }
- def apply(tp: Type): Type = tp match {
- case ThisType(sym) =>
- try {
- val sym1 = adaptToNewRun(sym.owner.thisType, sym)
- if (sym1 == sym) tp else ThisType(sym1)
- } catch {
- case ex: MissingTypeControl =>
- tp
- }
- case SingleType(pre, sym) =>
- if (sym.isPackage) tp
- else {
- val pre1 = this(pre)
- try {
- val sym1 = adaptToNewRun(pre1, sym)
- if ((pre1 eq pre) && (sym1 eq sym)) tp
- else singleType(pre1, sym1)
- } catch {
- case _: MissingTypeControl =>
- tp
- }
- }
- case TypeRef(pre, sym, args) =>
- if (sym.isPackageClass) tp
- else {
- val pre1 = this(pre)
- val args1 = args mapConserve (this)
- try {
- val sym1 = adaptToNewRun(pre1, sym)
- if ((pre1 eq pre) && (sym1 eq sym) && (args1 eq args)/* && sym.isExternal*/) {
- tp
- } else if (sym1 == NoSymbol) {
- devWarning(s"adapt to new run failed: pre=$pre pre1=$pre1 sym=$sym")
- tp
- } else {
- copyTypeRef(tp, pre1, sym1, args1)
- }
- } catch {
- case ex: MissingAliasControl =>
- apply(tp.dealias)
- case _: MissingTypeControl =>
- tp
- }
- }
- case MethodType(params, restp) =>
- val restp1 = this(restp)
- if (restp1 eq restp) tp
- else copyMethodType(tp, params, restp1)
- case NullaryMethodType(restp) =>
- val restp1 = this(restp)
- if (restp1 eq restp) tp
- else NullaryMethodType(restp1)
- case PolyType(tparams, restp) =>
- val restp1 = this(restp)
- if (restp1 eq restp) tp
- else PolyType(tparams, restp1)
-
- // Lukas: we need to check (together) whether we should also include parameter types
- // of PolyType and MethodType in adaptToNewRun
-
- case ClassInfoType(parents, decls, clazz) =>
- if (clazz.isPackageClass) tp
- else {
- val parents1 = parents mapConserve (this)
- if (parents1 eq parents) tp
- else ClassInfoType(parents1, decls, clazz)
- }
- case RefinedType(parents, decls) =>
- val parents1 = parents mapConserve (this)
- if (parents1 eq parents) tp
- else refinedType(parents1, tp.typeSymbol.owner, decls, tp.typeSymbol.owner.pos)
- case SuperType(_, _) => mapOver(tp)
- case TypeBounds(_, _) => mapOver(tp)
- case TypeVar(_, _) => mapOver(tp)
- case AnnotatedType(_,_,_) => mapOver(tp)
- case NotNullType(_) => mapOver(tp)
- case ExistentialType(_, _) => mapOver(tp)
- case _ => tp
- }
- }
-
- class SubTypePair(val tp1: Type, val tp2: Type) {
- override def hashCode = tp1.hashCode * 41 + tp2.hashCode
- override def equals(other: Any) = (this eq other.asInstanceOf[AnyRef]) || (other match {
- // suspend TypeVars in types compared by =:=,
- // since we don't want to mutate them simply to check whether a subtype test is pending
- // in addition to making subtyping "more correct" for type vars,
- // it should avoid the stackoverflow that's been plaguing us (https://groups.google.com/d/topic/scala-internals/2gHzNjtB4xA/discussion)
- // this method is only called when subtyping hits a recursion threshold (subsametypeRecursions >= LogPendingSubTypesThreshold)
- case stp: SubTypePair =>
- val tvars = List(tp1, stp.tp1, tp2, stp.tp2) flatMap (t => if (t.isGround) Nil else typeVarsInType(t))
- suspendingTypeVars(tvars)(tp1 =:= stp.tp1 && tp2 =:= stp.tp2)
- case _ =>
- false
- })
- override def toString = tp1+" <:<? "+tp2
- }
-
// Helper Methods -------------------------------------------------------------
/** The maximum allowable depth of lubs or glbs over types `ts`.
@@ -5275,84 +3902,6 @@ trait Types extends api.Types { self: SymbolTable =>
}
}
- private var subsametypeRecursions: Int = 0
-
- private def isUnifiable(pre1: Type, pre2: Type) =
- (beginsWithTypeVarOrIsRefined(pre1) || beginsWithTypeVarOrIsRefined(pre2)) && (pre1 =:= pre2)
-
- /** Returns true iff we are past phase specialize,
- * sym1 and sym2 are two existential skolems with equal names and bounds,
- * and pre1 and pre2 are equal prefixes
- */
- private def isSameSpecializedSkolem(sym1: Symbol, sym2: Symbol, pre1: Type, pre2: Type) = {
- sym1.isExistentialSkolem && sym2.isExistentialSkolem &&
- sym1.name == sym2.name &&
- phase.specialized &&
- sym1.info =:= sym2.info &&
- pre1 =:= pre2
- }
-
- private def isSubPre(pre1: Type, pre2: Type, sym: Symbol) =
- if ((pre1 ne pre2) && (pre1 ne NoPrefix) && (pre2 ne NoPrefix) && pre1 <:< pre2) {
- if (settings.debug.value) println(s"new isSubPre $sym: $pre1 <:< $pre2")
- true
- } else
- false
-
- private def equalSymsAndPrefixes(sym1: Symbol, pre1: Type, sym2: Symbol, pre2: Type): Boolean =
- if (sym1 == sym2) sym1.hasPackageFlag || sym1.owner.hasPackageFlag || phase.erasedTypes || pre1 =:= pre2
- else (sym1.name == sym2.name) && isUnifiable(pre1, pre2)
-
- /** Do `tp1` and `tp2` denote equivalent types? */
- def isSameType(tp1: Type, tp2: Type): Boolean = try {
- if (Statistics.canEnable) Statistics.incCounter(sametypeCount)
- subsametypeRecursions += 1
- //OPT cutdown on Function0 allocation
- //was:
-// undoLog undoUnless {
-// isSameType1(tp1, tp2)
-// }
-
- undoLog.lock()
- try {
- val before = undoLog.log
- var result = false
- try {
- result = isSameType1(tp1, tp2)
- }
- finally if (!result) undoLog.undoTo(before)
- result
- }
- finally undoLog.unlock()
- }
- finally {
- subsametypeRecursions -= 1
- // XXX AM TODO: figure out when it is safe and needed to clear the log -- the commented approach below is too eager (it breaks #3281, #3866)
- // it doesn't help to keep separate recursion counts for the three methods that now share it
- // if (subsametypeRecursions == 0) undoLog.clear()
- }
-
- def isDifferentType(tp1: Type, tp2: Type): Boolean = try {
- subsametypeRecursions += 1
- undoLog undo { // undo type constraints that arise from operations in this block
- !isSameType1(tp1, tp2)
- }
- } finally {
- subsametypeRecursions -= 1
- // XXX AM TODO: figure out when it is safe and needed to clear the log -- the commented approach below is too eager (it breaks #3281, #3866)
- // it doesn't help to keep separate recursion counts for the three methods that now share it
- // if (subsametypeRecursions == 0) undoLog.clear()
- }
-
- def isDifferentTypeConstructor(tp1: Type, tp2: Type): Boolean = tp1 match {
- case TypeRef(pre1, sym1, _) =>
- tp2 match {
- case TypeRef(pre2, sym2, _) => sym1 != sym2 || isDifferentType(pre1, pre2)
- case _ => true
- }
- case _ => true
- }
-
def normalizePlus(tp: Type) =
if (isRawType(tp)) rawToExistential(tp)
else tp.normalize
@@ -5368,186 +3917,6 @@ trait Types extends api.Types { self: SymbolTable =>
}
*/
- private def isSameType1(tp1: Type, tp2: Type): Boolean = {
- if ((tp1 eq tp2) ||
- (tp1 eq ErrorType) || (tp1 eq WildcardType) ||
- (tp2 eq ErrorType) || (tp2 eq WildcardType))
- true
- else if ((tp1 eq NoType) || (tp2 eq NoType))
- false
- else if (tp1 eq NoPrefix) // !! I do not see how this would be warranted by the spec
- tp2.typeSymbol.isPackageClass
- else if (tp2 eq NoPrefix) // !! I do not see how this would be warranted by the spec
- tp1.typeSymbol.isPackageClass
- else {
- isSameType2(tp1, tp2) || {
- val tp1n = normalizePlus(tp1)
- val tp2n = normalizePlus(tp2)
- ((tp1n ne tp1) || (tp2n ne tp2)) && isSameType(tp1n, tp2n)
- }
- }
- }
-
- def isSameType2(tp1: Type, tp2: Type): Boolean = {
- tp1 match {
- case tr1: TypeRef =>
- tp2 match {
- case tr2: TypeRef =>
- return (equalSymsAndPrefixes(tr1.sym, tr1.pre, tr2.sym, tr2.pre) &&
- ((tp1.isHigherKinded && tp2.isHigherKinded && tp1.normalize =:= tp2.normalize) ||
- isSameTypes(tr1.args, tr2.args))) ||
- ((tr1.pre, tr2.pre) match {
- case (tv @ TypeVar(_,_), _) => tv.registerTypeSelection(tr1.sym, tr2)
- case (_, tv @ TypeVar(_,_)) => tv.registerTypeSelection(tr2.sym, tr1)
- case _ => false
- })
- case _: SingleType =>
- return isSameType2(tp2, tp1) // put singleton type on the left, caught below
- case _ =>
- }
- case tt1: ThisType =>
- tp2 match {
- case tt2: ThisType =>
- if (tt1.sym == tt2.sym) return true
- case _ =>
- }
- case st1: SingleType =>
- tp2 match {
- case st2: SingleType =>
- if (equalSymsAndPrefixes(st1.sym, st1.pre, st2.sym, st2.pre)) return true
- case TypeRef(pre2, sym2, Nil) =>
- if (sym2.isModuleClass && equalSymsAndPrefixes(st1.sym, st1.pre, sym2.sourceModule, pre2)) return true
- case _ =>
- }
- case ct1: ConstantType =>
- tp2 match {
- case ct2: ConstantType =>
- return (ct1.value == ct2.value)
- case _ =>
- }
- case rt1: RefinedType =>
- tp2 match {
- case rt2: RefinedType => //
- def isSubScope(s1: Scope, s2: Scope): Boolean = s2.toList.forall {
- sym2 =>
- var e1 = s1.lookupEntry(sym2.name)
- (e1 ne null) && {
- val substSym = sym2.info.substThis(sym2.owner, e1.sym.owner)
- var isEqual = false
- while (!isEqual && (e1 ne null)) {
- isEqual = e1.sym.info =:= substSym
- e1 = s1.lookupNextEntry(e1)
- }
- isEqual
- }
- }
- //Console.println("is same? " + tp1 + " " + tp2 + " " + tp1.typeSymbol.owner + " " + tp2.typeSymbol.owner)//DEBUG
- return isSameTypes(rt1.parents, rt2.parents) && {
- val decls1 = rt1.decls
- val decls2 = rt2.decls
- isSubScope(decls1, decls2) && isSubScope(decls2, decls1)
- }
- case _ =>
- }
- case mt1: MethodType =>
- tp2 match {
- case mt2: MethodType =>
- return isSameTypes(mt1.paramTypes, mt2.paramTypes) &&
- mt1.resultType =:= mt2.resultType.substSym(mt2.params, mt1.params) &&
- mt1.isImplicit == mt2.isImplicit
- // note: no case NullaryMethodType(restpe) => return mt1.params.isEmpty && mt1.resultType =:= restpe
- case _ =>
- }
- case NullaryMethodType(restpe1) =>
- tp2 match {
- // note: no case mt2: MethodType => return mt2.params.isEmpty && restpe =:= mt2.resultType
- case NullaryMethodType(restpe2) =>
- return restpe1 =:= restpe2
- case _ =>
- }
- case PolyType(tparams1, res1) =>
- tp2 match {
- case PolyType(tparams2, res2) =>
-// assert((tparams1 map (_.typeParams.length)) == (tparams2 map (_.typeParams.length)))
- // @M looks like it might suffer from same problem as #2210
- return (
- (sameLength(tparams1, tparams2)) && // corresponds does not check length of two sequences before checking the predicate
- (tparams1 corresponds tparams2)(_.info =:= _.info.substSym(tparams2, tparams1)) &&
- res1 =:= res2.substSym(tparams2, tparams1)
- )
- case _ =>
- }
- case ExistentialType(tparams1, res1) =>
- tp2 match {
- case ExistentialType(tparams2, res2) =>
- // @M looks like it might suffer from same problem as #2210
- return (
- // corresponds does not check length of two sequences before checking the predicate -- faster & needed to avoid crasher in #2956
- sameLength(tparams1, tparams2) &&
- (tparams1 corresponds tparams2)(_.info =:= _.info.substSym(tparams2, tparams1)) &&
- res1 =:= res2.substSym(tparams2, tparams1)
- )
- case _ =>
- }
- case TypeBounds(lo1, hi1) =>
- tp2 match {
- case TypeBounds(lo2, hi2) =>
- return lo1 =:= lo2 && hi1 =:= hi2
- case _ =>
- }
- case BoundedWildcardType(bounds) =>
- return bounds containsType tp2
- case _ =>
- }
- tp2 match {
- case BoundedWildcardType(bounds) =>
- return bounds containsType tp1
- case _ =>
- }
- tp1 match {
- case tv @ TypeVar(_,_) =>
- return tv.registerTypeEquality(tp2, typeVarLHS = true)
- case _ =>
- }
- tp2 match {
- case tv @ TypeVar(_,_) =>
- return tv.registerTypeEquality(tp1, typeVarLHS = false)
- case _ =>
- }
- tp1 match {
- case _: AnnotatedType =>
- return annotationsConform(tp1, tp2) && annotationsConform(tp2, tp1) && tp1.withoutAnnotations =:= tp2.withoutAnnotations
- case _ =>
- }
- tp2 match {
- case _: AnnotatedType =>
- return annotationsConform(tp1, tp2) && annotationsConform(tp2, tp1) && tp1.withoutAnnotations =:= tp2.withoutAnnotations
- case _ =>
- }
- tp1 match {
- case _: SingletonType =>
- tp2 match {
- case _: SingletonType =>
- def chaseDealiasedUnderlying(tp: Type): Type = {
- var origin = tp
- var next = origin.underlying.dealias
- while (next.isInstanceOf[SingletonType]) {
- assert(origin ne next, origin)
- origin = next
- next = origin.underlying.dealias
- }
- origin
- }
- val origin1 = chaseDealiasedUnderlying(tp1)
- val origin2 = chaseDealiasedUnderlying(tp2)
- ((origin1 ne tp1) || (origin2 ne tp2)) && (origin1 =:= origin2)
- case _ =>
- false
- }
- case _ =>
- false
- }
- }
/** Are `tps1` and `tps2` lists of pairwise equivalent types? */
def isSameTypes(tps1: List[Type], tps2: List[Type]): Boolean = (tps1 corresponds tps2)(_ =:= _)
@@ -5565,64 +3934,9 @@ trait Types extends api.Types { self: SymbolTable =>
*/
final def hasLength(xs: List[_], len: Int) = xs.lengthCompare(len) == 0
- private val pendingSubTypes = new mutable.HashSet[SubTypePair]
private var basetypeRecursions: Int = 0
private val pendingBaseTypes = new mutable.HashSet[Type]
- def isSubType(tp1: Type, tp2: Type): Boolean = isSubType(tp1, tp2, AnyDepth)
-
- def isSubType(tp1: Type, tp2: Type, depth: Int): Boolean = try {
- subsametypeRecursions += 1
-
- //OPT cutdown on Function0 allocation
- //was:
-// undoLog undoUnless { // if subtype test fails, it should not affect constraints on typevars
-// if (subsametypeRecursions >= LogPendingSubTypesThreshold) {
-// val p = new SubTypePair(tp1, tp2)
-// if (pendingSubTypes(p))
-// false
-// else
-// try {
-// pendingSubTypes += p
-// isSubType2(tp1, tp2, depth)
-// } finally {
-// pendingSubTypes -= p
-// }
-// } else {
-// isSubType2(tp1, tp2, depth)
-// }
-// }
-
- undoLog.lock()
- try {
- val before = undoLog.log
- var result = false
-
- try result = { // if subtype test fails, it should not affect constraints on typevars
- if (subsametypeRecursions >= LogPendingSubTypesThreshold) {
- val p = new SubTypePair(tp1, tp2)
- if (pendingSubTypes(p))
- false
- else
- try {
- pendingSubTypes += p
- isSubType2(tp1, tp2, depth)
- } finally {
- pendingSubTypes -= p
- }
- } else {
- isSubType2(tp1, tp2, depth)
- }
- } finally if (!result) undoLog.undoTo(before)
-
- result
- } finally undoLog.unlock()
- } finally {
- subsametypeRecursions -= 1
- // XXX AM TODO: figure out when it is safe and needed to clear the log -- the commented approach below is too eager (it breaks #3281, #3866)
- // it doesn't help to keep separate recursion counts for the three methods that now share it
- // if (subsametypeRecursions == 0) undoLog.clear()
- }
/** Does this type have a prefix that begins with a type variable,
* or is it a refinement type? For type prefixes that fulfil this condition,
@@ -5755,42 +4069,6 @@ trait Types extends api.Types { self: SymbolTable =>
case _ => false
}
- private def isPolySubType(tp1: PolyType, tp2: PolyType): Boolean = {
- val PolyType(tparams1, res1) = tp1
- val PolyType(tparams2, res2) = tp2
-
- sameLength(tparams1, tparams2) && {
- // fast-path: polymorphic method type -- type params cannot be captured
- val isMethod = tparams1.head.owner.isMethod
- //@M for an example of why we need to generate fresh symbols otherwise, see neg/tcpoly_ticket2101.scala
- val substitutes = if (isMethod) tparams1 else cloneSymbols(tparams1)
- def sub1(tp: Type) = if (isMethod) tp else tp.substSym(tparams1, substitutes)
- def sub2(tp: Type) = tp.substSym(tparams2, substitutes)
- def cmp(p1: Symbol, p2: Symbol) = sub2(p2.info) <:< sub1(p1.info)
-
- (tparams1 corresponds tparams2)(cmp) && (sub1(res1) <:< sub2(res2))
- }
- }
-
- // @assume tp1.isHigherKinded || tp2.isHigherKinded
- def isHKSubType(tp1: Type, tp2: Type, depth: Int): Boolean = {
- def isSub(ntp1: Type, ntp2: Type) = (ntp1.withoutAnnotations, ntp2.withoutAnnotations) match {
- case (TypeRef(_, AnyClass, _), _) => false // avoid some warnings when Nothing/Any are on the other side
- case (_, TypeRef(_, NothingClass, _)) => false
- case (pt1: PolyType, pt2: PolyType) => isPolySubType(pt1, pt2) // @assume both .isHigherKinded (both normalized to PolyType)
- case (_: PolyType, MethodType(ps, _)) if ps exists (_.tpe.isWildcard) => false // don't warn on HasMethodMatching on right hand side
- case _ => // @assume !(both .isHigherKinded) thus cannot be subtypes
- def tp_s(tp: Type): String = f"$tp%-20s ${util.shortClassOfInstance(tp)}%s"
- devWarning(s"HK subtype check on $tp1 and $tp2, but both don't normalize to polytypes:\n tp1=${tp_s(ntp1)}\n tp2=${tp_s(ntp2)}")
- false
- }
-
- ( tp1.typeSymbol == NothingClass // @M Nothing is subtype of every well-kinded type
- || tp2.typeSymbol == AnyClass // @M Any is supertype of every well-kinded type (@PP: is it? What about continuations plugin?)
- || isSub(tp1.normalize, tp2.normalize) && annotationsConform(tp1, tp2) // @M! normalize reduces higher-kinded case to PolyType's
- )
- }
-
def isSubArgs(tps1: List[Type], tps2: List[Type], tparams: List[Symbol], depth: Int): Boolean = {
def isSubArg(t1: Type, t2: Type, variance: Variance) = (
(variance.isContravariant || isSubType(t1, t2, depth))
@@ -5800,205 +4078,7 @@ trait Types extends api.Types { self: SymbolTable =>
corresponds3(tps1, tps2, tparams map (_.variance))(isSubArg)
}
- /** Does type `tp1` conform to `tp2`? */
- private def isSubType2(tp1: Type, tp2: Type, depth: Int): Boolean = {
- if ((tp1 eq tp2) || isErrorOrWildcard(tp1) || isErrorOrWildcard(tp2)) return true
- if ((tp1 eq NoType) || (tp2 eq NoType)) return false
- if (tp1 eq NoPrefix) return (tp2 eq NoPrefix) || tp2.typeSymbol.isPackageClass // !! I do not see how the "isPackageClass" would be warranted by the spec
- if (tp2 eq NoPrefix) return tp1.typeSymbol.isPackageClass
- if (isSingleType(tp1) && isSingleType(tp2) || isConstantType(tp1) && isConstantType(tp2)) return tp1 =:= tp2
- if (tp1.isHigherKinded || tp2.isHigherKinded) return isHKSubType(tp1, tp2, depth)
-
- /** First try, on the right:
- * - unwrap Annotated types, BoundedWildcardTypes,
- * - bind TypeVars on the right, if lhs is not Annotated nor BoundedWildcard
- * - handle common cases for first-kind TypeRefs on both sides as a fast path.
- */
- def firstTry = tp2 match {
- // fast path: two typerefs, none of them HK
- case tr2: TypeRef =>
- tp1 match {
- case tr1: TypeRef =>
- val sym1 = tr1.sym
- val sym2 = tr2.sym
- val pre1 = tr1.pre
- val pre2 = tr2.pre
- (((if (sym1 == sym2) phase.erasedTypes || sym1.owner.hasPackageFlag || isSubType(pre1, pre2, depth)
- else (sym1.name == sym2.name && !sym1.isModuleClass && !sym2.isModuleClass &&
- (isUnifiable(pre1, pre2) ||
- isSameSpecializedSkolem(sym1, sym2, pre1, pre2) ||
- sym2.isAbstractType && isSubPre(pre1, pre2, sym2)))) &&
- isSubArgs(tr1.args, tr2.args, sym1.typeParams, depth))
- ||
- sym2.isClass && {
- val base = tr1 baseType sym2
- (base ne tr1) && isSubType(base, tr2, depth)
- }
- ||
- thirdTryRef(tr1, tr2))
- case _ =>
- secondTry
- }
- case AnnotatedType(_, _, _) =>
- isSubType(tp1.withoutAnnotations, tp2.withoutAnnotations, depth) &&
- annotationsConform(tp1, tp2)
- case BoundedWildcardType(bounds) =>
- isSubType(tp1, bounds.hi, depth)
- case tv2 @ TypeVar(_, constr2) =>
- tp1 match {
- case AnnotatedType(_, _, _) | BoundedWildcardType(_) =>
- secondTry
- case _ =>
- tv2.registerBound(tp1, isLowerBound = true)
- }
- case _ =>
- secondTry
- }
-
- /** Second try, on the left:
- * - unwrap AnnotatedTypes, BoundedWildcardTypes,
- * - bind typevars,
- * - handle existential types by skolemization.
- */
- def secondTry = tp1 match {
- case AnnotatedType(_, _, _) =>
- isSubType(tp1.withoutAnnotations, tp2.withoutAnnotations, depth) &&
- annotationsConform(tp1, tp2)
- case BoundedWildcardType(bounds) =>
- isSubType(tp1.bounds.lo, tp2, depth)
- case tv @ TypeVar(_,_) =>
- tv.registerBound(tp2, isLowerBound = false)
- case ExistentialType(_, _) =>
- try {
- skolemizationLevel += 1
- isSubType(tp1.skolemizeExistential, tp2, depth)
- } finally {
- skolemizationLevel -= 1
- }
- case _ =>
- thirdTry
- }
-
- def thirdTryRef(tp1: Type, tp2: TypeRef): Boolean = {
- val sym2 = tp2.sym
- sym2 match {
- case NotNullClass => tp1.isNotNull
- case SingletonClass => tp1.isStable || fourthTry
- case _: ClassSymbol =>
- if (isRawType(tp2))
- isSubType(tp1, rawToExistential(tp2), depth)
- else if (sym2.name == tpnme.REFINE_CLASS_NAME)
- isSubType(tp1, sym2.info, depth)
- else
- fourthTry
- case _: TypeSymbol =>
- if (sym2 hasFlag DEFERRED) {
- val tp2a = tp2.bounds.lo
- isDifferentTypeConstructor(tp2, tp2a) &&
- isSubType(tp1, tp2a, depth) ||
- fourthTry
- } else {
- isSubType(tp1.normalize, tp2.normalize, depth)
- }
- case _ =>
- fourthTry
- }
- }
-
- /** Third try, on the right:
- * - decompose refined types.
- * - handle typerefs, existentials, and notnull types.
- * - handle left+right method types, polytypes, typebounds
- */
- def thirdTry = tp2 match {
- case tr2: TypeRef =>
- thirdTryRef(tp1, tr2)
- case rt2: RefinedType =>
- (rt2.parents forall (isSubType(tp1, _, depth))) &&
- (rt2.decls forall (specializesSym(tp1, _, depth)))
- case et2: ExistentialType =>
- et2.withTypeVars(isSubType(tp1, _, depth), depth) || fourthTry
- case nn2: NotNullType =>
- tp1.isNotNull && isSubType(tp1, nn2.underlying, depth)
- case mt2: MethodType =>
- tp1 match {
- case mt1 @ MethodType(params1, res1) =>
- val params2 = mt2.params
- val res2 = mt2.resultType
- (sameLength(params1, params2) &&
- mt1.isImplicit == mt2.isImplicit &&
- matchingParams(params1, params2, mt1.isJava, mt2.isJava) &&
- isSubType(res1.substSym(params1, params2), res2, depth))
- // TODO: if mt1.params.isEmpty, consider NullaryMethodType?
- case _ =>
- false
- }
- case pt2 @ NullaryMethodType(_) =>
- tp1 match {
- // TODO: consider MethodType mt for which mt.params.isEmpty??
- case pt1 @ NullaryMethodType(_) =>
- isSubType(pt1.resultType, pt2.resultType, depth)
- case _ =>
- false
- }
- case TypeBounds(lo2, hi2) =>
- tp1 match {
- case TypeBounds(lo1, hi1) =>
- isSubType(lo2, lo1, depth) && isSubType(hi1, hi2, depth)
- case _ =>
- false
- }
- case _ =>
- fourthTry
- }
-
- /** Fourth try, on the left:
- * - handle typerefs, refined types, notnull and singleton types.
- */
- def fourthTry = tp1 match {
- case tr1 @ TypeRef(pre1, sym1, _) =>
- sym1 match {
- case NothingClass => true
- case NullClass =>
- tp2 match {
- case TypeRef(_, sym2, _) =>
- containsNull(sym2)
- case _ =>
- isSingleType(tp2) && isSubType(tp1, tp2.widen, depth)
- }
- case _: ClassSymbol =>
- if (isRawType(tp1))
- isSubType(rawToExistential(tp1), tp2, depth)
- else if (sym1.isModuleClass) tp2 match {
- case SingleType(pre2, sym2) => equalSymsAndPrefixes(sym1.sourceModule, pre1, sym2, pre2)
- case _ => false
- }
- else if (sym1.isRefinementClass)
- isSubType(sym1.info, tp2, depth)
- else false
-
- case _: TypeSymbol =>
- if (sym1 hasFlag DEFERRED) {
- val tp1a = tp1.bounds.hi
- isDifferentTypeConstructor(tp1, tp1a) && isSubType(tp1a, tp2, depth)
- } else {
- isSubType(tp1.normalize, tp2.normalize, depth)
- }
- case _ =>
- false
- }
- case RefinedType(parents1, _) =>
- parents1 exists (isSubType(_, tp2, depth))
- case _: SingletonType | _: NotNullType =>
- isSubType(tp1.underlying, tp2, depth)
- case _ =>
- false
- }
-
- firstTry
- }
-
- private def containsNull(sym: Symbol): Boolean =
+ protected[internal] def containsNull(sym: Symbol): Boolean =
sym.isClass && sym != NothingClass &&
!(sym isNonBottomSubClass AnyValClass) &&
!(sym isNonBottomSubClass NotNullClass)
@@ -6020,7 +4100,7 @@ trait Types extends api.Types { self: SymbolTable =>
/** Does member `sym1` of `tp1` have a stronger type
* than member `sym2` of `tp2`?
*/
- private def specializesSym(tp1: Type, sym1: Symbol, tp2: Type, sym2: Symbol, depth: Int): Boolean = {
+ protected[internal] def specializesSym(tp1: Type, sym1: Symbol, tp2: Type, sym2: Symbol, depth: Int): Boolean = {
require((sym1 ne NoSymbol) && (sym2 ne NoSymbol), ((tp1, sym1, tp2, sym2, depth)))
val info1 = tp1.memberInfo(sym1)
val info2 = tp2.memberInfo(sym2).substThis(tp2.typeSymbol, tp1)
@@ -6154,7 +4234,7 @@ trait Types extends api.Types { self: SymbolTable =>
*/
/** Are `syms1` and `syms2` parameter lists with pairwise equivalent types? */
- private def matchingParams(syms1: List[Symbol], syms2: List[Symbol], syms1isJava: Boolean, syms2isJava: Boolean): Boolean = syms1 match {
+ protected[internal] def matchingParams(syms1: List[Symbol], syms2: List[Symbol], syms1isJava: Boolean, syms2isJava: Boolean): Boolean = syms1 match {
case Nil =>
syms2.isEmpty
case sym1 :: rest1 =>
@@ -6183,87 +4263,6 @@ trait Types extends api.Types { self: SymbolTable =>
else x1 :: xs1
}
- /** Solve constraint collected in types `tvars`.
- *
- * @param tvars All type variables to be instantiated.
- * @param tparams The type parameters corresponding to `tvars`
- * @param variances The variances of type parameters; need to reverse
- * solution direction for all contravariant variables.
- * @param upper When `true` search for max solution else min.
- */
- def solve(tvars: List[TypeVar], tparams: List[Symbol],
- variances: List[Variance], upper: Boolean): Boolean =
- solve(tvars, tparams, variances, upper, AnyDepth)
-
- def solve(tvars: List[TypeVar], tparams: List[Symbol],
- variances: List[Variance], upper: Boolean, depth: Int): Boolean = {
-
- def solveOne(tvar: TypeVar, tparam: Symbol, variance: Variance) {
- if (tvar.constr.inst == NoType) {
- val up = if (variance.isContravariant) !upper else upper
- tvar.constr.inst = null
- val bound: Type = if (up) tparam.info.bounds.hi else tparam.info.bounds.lo
- //Console.println("solveOne0(tv, tp, v, b)="+(tvar, tparam, variance, bound))
- var cyclic = bound contains tparam
- foreach3(tvars, tparams, variances)((tvar2, tparam2, variance2) => {
- val ok = (tparam2 != tparam) && (
- (bound contains tparam2)
- || up && (tparam2.info.bounds.lo =:= tparam.tpeHK)
- || !up && (tparam2.info.bounds.hi =:= tparam.tpeHK)
- )
- if (ok) {
- if (tvar2.constr.inst eq null) cyclic = true
- solveOne(tvar2, tparam2, variance2)
- }
- })
- if (!cyclic) {
- if (up) {
- if (bound.typeSymbol != AnyClass) {
- log(s"$tvar addHiBound $bound.instantiateTypeParams($tparams, $tvars)")
- tvar addHiBound bound.instantiateTypeParams(tparams, tvars)
- }
- for (tparam2 <- tparams)
- tparam2.info.bounds.lo.dealias match {
- case TypeRef(_, `tparam`, _) =>
- log(s"$tvar addHiBound $tparam2.tpeHK.instantiateTypeParams($tparams, $tvars)")
- tvar addHiBound tparam2.tpeHK.instantiateTypeParams(tparams, tvars)
- case _ =>
- }
- } else {
- if (bound.typeSymbol != NothingClass && bound.typeSymbol != tparam) {
- log(s"$tvar addLoBound $bound.instantiateTypeParams($tparams, $tvars)")
- tvar addLoBound bound.instantiateTypeParams(tparams, tvars)
- }
- for (tparam2 <- tparams)
- tparam2.info.bounds.hi.dealias match {
- case TypeRef(_, `tparam`, _) =>
- log(s"$tvar addLoBound $tparam2.tpeHK.instantiateTypeParams($tparams, $tvars)")
- tvar addLoBound tparam2.tpeHK.instantiateTypeParams(tparams, tvars)
- case _ =>
- }
- }
- }
- tvar.constr.inst = NoType // necessary because hibounds/lobounds may contain tvar
-
- //println("solving "+tvar+" "+up+" "+(if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds)+((if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds) map (_.widen)))
- val newInst = (
- if (up) {
- if (depth != AnyDepth) glb(tvar.constr.hiBounds, depth) else glb(tvar.constr.hiBounds)
- } else {
- if (depth != AnyDepth) lub(tvar.constr.loBounds, depth) else lub(tvar.constr.loBounds)
- }
- )
- log(s"$tvar setInst $newInst")
- tvar setInst newInst
- //Console.println("solving "+tvar+" "+up+" "+(if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds)+((if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds) map (_.widen))+" = "+tvar.constr.inst)//@MDEBUG
- }
- }
-
- // println("solving "+tvars+"/"+tparams+"/"+(tparams map (_.info)))
- foreach3(tvars, tparams, variances)(solveOne)
- tvars forall (tvar => tvar.constr.isWithinBounds(tvar.constr.inst))
- }
-
/** Do type arguments `targs` conform to formal parameters `tparams`?
*/
def isWithinBounds(pre: Type, owner: Symbol, tparams: List[Symbol], targs: List[Type]): Boolean = {
@@ -6276,168 +4275,6 @@ trait Types extends api.Types { self: SymbolTable =>
def instantiatedBounds(pre: Type, owner: Symbol, tparams: List[Symbol], targs: List[Type]): List[TypeBounds] =
tparams map (_.info.asSeenFrom(pre, owner).instantiateTypeParams(tparams, targs).bounds)
-// Lubs and Glbs ---------------------------------------------------------
-
- private def printLubMatrix(btsMap: Map[Type, List[Type]], depth: Int) {
- import util.TableDef
- import TableDef.Column
- def str(tp: Type) = {
- if (tp == NoType) ""
- else {
- val s = ("" + tp).replaceAll("""[\w.]+\.(\w+)""", "$1")
- if (s.length < 60) s
- else (s take 57) + "..."
- }
- }
-
- val sorted = btsMap.toList.sortWith((x, y) => x._1.typeSymbol isLess y._1.typeSymbol)
- val maxSeqLength = sorted.map(_._2.size).max
- val padded = sorted map (_._2.padTo(maxSeqLength, NoType))
- val transposed = padded.transpose
-
- val columns: List[Column[List[Type]]] = mapWithIndex(sorted) {
- case ((k, v), idx) =>
- Column(str(k), (xs: List[Type]) => str(xs(idx)), left = true)
- }
-
- val tableDef = TableDef(columns: _*)
- val formatted = tableDef.table(transposed)
- println("** Depth is " + depth + "\n" + formatted)
- }
-
- /** From a list of types, find any which take type parameters
- * where the type parameter bounds contain references to other
- * any types in the list (including itself.)
- *
- * @return List of symbol pairs holding the recursive type
- * parameter and the parameter which references it.
- */
- def findRecursiveBounds(ts: List[Type]): List[(Symbol, Symbol)] = {
- if (ts.isEmpty) Nil
- else {
- val sym = ts.head.typeSymbol
- require(ts.tail forall (_.typeSymbol == sym), ts)
- for (p <- sym.typeParams ; in <- sym.typeParams ; if in.info.bounds contains p) yield
- p -> in
- }
- }
-
- /** Given a matrix `tsBts` whose columns are basetype sequences (and the symbols `tsParams` that should be interpreted as type parameters in this matrix),
- * compute its least sorted upwards closed upper bound relative to the following ordering <= between lists of types:
- *
- * xs <= ys iff forall y in ys exists x in xs such that x <: y
- *
- * @arg tsParams for each type in the original list of types `ts0`, its list of type parameters (if that type is a type constructor)
- * (these type parameters may be referred to by type arguments in the BTS column of those types,
- * and must be interpreted as bound variables; i.e., under a type lambda that wraps the types that refer to these type params)
- * @arg tsBts a matrix whose columns are basetype sequences
- * the first row is the original list of types for which we're computing the lub
- * (except that type constructors have been applied to their dummyArgs)
- * @See baseTypeSeq for a definition of sorted and upwards closed.
- */
- private def lubList(ts: List[Type], depth: Int): List[Type] = {
- var lubListDepth = 0
- // This catches some recursive situations which would otherwise
- // befuddle us, e.g. pos/hklub0.scala
- def isHotForTs(xs: List[Type]) = ts exists (_.typeParams == xs.map(_.typeSymbol))
-
- def elimHigherOrderTypeParam(tp: Type) = tp match {
- case TypeRef(_, _, args) if args.nonEmpty && isHotForTs(args) =>
- logResult("Retracting dummies from " + tp + " in lublist")(tp.typeConstructor)
- case _ => tp
- }
- // pretypes is a tail-recursion-preserving accumulator.
- @annotation.tailrec def loop(pretypes: List[Type], tsBts: List[List[Type]]): List[Type] = {
- lubListDepth += 1
-
- if (tsBts.isEmpty || (tsBts exists typeListIsEmpty)) pretypes.reverse
- else if (tsBts.tail.isEmpty) pretypes.reverse ++ tsBts.head
- else {
- // ts0 is the 1-dimensional frontier of symbols cutting through 2-dimensional tsBts.
- // Invariant: all symbols "under" (closer to the first row) the frontier
- // are smaller (according to _.isLess) than the ones "on and beyond" the frontier
- val ts0 = tsBts map (_.head)
-
- // Is the frontier made up of types with the same symbol?
- val isUniformFrontier = (ts0: @unchecked) match {
- case t :: ts => ts forall (_.typeSymbol == t.typeSymbol)
- }
-
- // Produce a single type for this frontier by merging the prefixes and arguments of those
- // typerefs that share the same symbol: that symbol is the current maximal symbol for which
- // the invariant holds, i.e., the one that conveys most information regarding subtyping. Before
- // merging, strip targs that refer to bound tparams (when we're computing the lub of type
- // constructors.) Also filter out all types that are a subtype of some other type.
- if (isUniformFrontier) {
- val fbounds = findRecursiveBounds(ts0) map (_._2)
- val tcLubList = typeConstructorLubList(ts0)
- def isRecursive(tp: Type) = tp.typeSymbol.typeParams exists fbounds.contains
-
- val ts1 = ts0 map { t =>
- if (isRecursive(t)) {
- tcLubList map (t baseType _.typeSymbol) find (t => !isRecursive(t)) match {
- case Some(tp) => logResult(s"Breaking recursion in lublist, substituting weaker type.\n Was: $t\n Now")(tp)
- case _ => t
- }
- }
- else t
- }
- val tails = tsBts map (_.tail)
- mergePrefixAndArgs(elimSub(ts1, depth) map elimHigherOrderTypeParam, Covariant, depth) match {
- case Some(tp) => loop(tp :: pretypes, tails)
- case _ => loop(pretypes, tails)
- }
- }
- else {
- // frontier is not uniform yet, move it beyond the current minimal symbol;
- // lather, rinSe, repeat
- val sym = minSym(ts0)
- val newtps = tsBts map (ts => if (ts.head.typeSymbol == sym) ts.tail else ts)
- if (printLubs) {
- val str = (newtps.zipWithIndex map { case (tps, idx) =>
- tps.map(" " + _ + "\n").mkString(" (" + idx + ")\n", "", "\n")
- }).mkString("")
-
- println("Frontier(\n" + str + ")")
- printLubMatrix((ts zip tsBts).toMap, lubListDepth)
- }
-
- loop(pretypes, newtps)
- }
- }
- }
-
- val initialBTSes = ts map (_.baseTypeSeq.toList)
- if (printLubs)
- printLubMatrix((ts zip initialBTSes).toMap, depth)
-
- loop(Nil, initialBTSes)
- }
-
- /** The minimal symbol of a list of types (as determined by `Symbol.isLess`). */
- private def minSym(tps: List[Type]): Symbol =
- (tps.head.typeSymbol /: tps.tail) {
- (sym1, tp2) => if (tp2.typeSymbol isLess sym1) tp2.typeSymbol else sym1
- }
-
- /** A minimal type list which has a given list of types as its base type sequence */
- def spanningTypes(ts: List[Type]): List[Type] = ts match {
- case List() => List()
- case first :: rest =>
- first :: spanningTypes(
- rest filter (t => !first.typeSymbol.isSubClass(t.typeSymbol)))
- }
-
- /** Eliminate from list of types all elements which are a supertype
- * of some other element of the list. */
- private def elimSuper(ts: List[Type]): List[Type] = ts match {
- case List() => List()
- case List(t) => List(t)
- case t :: ts1 =>
- val rest = elimSuper(ts1 filter (t1 => !(t <:< t1)))
- if (rest exists (t1 => t1 <:< t)) rest else t :: rest
- }
-
def elimAnonymousClass(t: Type) = t match {
case TypeRef(pre, clazz, Nil) if clazz.isAnonymousClass =>
clazz.classBound.asSeenFrom(pre, clazz.owner)
@@ -6445,406 +4282,6 @@ trait Types extends api.Types { self: SymbolTable =>
t
}
- /** Eliminate from list of types all elements which are a subtype
- * of some other element of the list. */
- private def elimSub(ts: List[Type], depth: Int): List[Type] = {
- def elimSub0(ts: List[Type]): List[Type] = ts match {
- case List() => List()
- case List(t) => List(t)
- case t :: ts1 =>
- val rest = elimSub0(ts1 filter (t1 => !isSubType(t1, t, decr(depth))))
- if (rest exists (t1 => isSubType(t, t1, decr(depth)))) rest else t :: rest
- }
- val ts0 = elimSub0(ts)
- if (ts0.isEmpty || ts0.tail.isEmpty) ts0
- else {
- val ts1 = ts0 mapConserve (t => elimAnonymousClass(t.dealiasWiden))
- if (ts1 eq ts0) ts0
- else elimSub(ts1, depth)
- }
- }
-
- private def stripExistentialsAndTypeVars(ts: List[Type]): (List[Type], List[Symbol]) = {
- val quantified = ts flatMap {
- case ExistentialType(qs, _) => qs
- case t => List()
- }
- def stripType(tp: Type): Type = tp match {
- case ExistentialType(_, res) =>
- res
- case tv@TypeVar(_, constr) =>
- if (tv.instValid) stripType(constr.inst)
- else if (tv.untouchable) tv
- else abort("trying to do lub/glb of typevar "+tp)
- case t => t
- }
- val strippedTypes = ts mapConserve stripType
- (strippedTypes, quantified)
- }
-
- def weakLub(ts: List[Type]) =
- if (ts.nonEmpty && (ts forall isNumericValueType)) (numericLub(ts), true)
- else if (ts exists typeHasAnnotations)
- (annotationsLub(lub(ts map (_.withoutAnnotations)), ts), true)
- else (lub(ts), false)
-
- def numericLub(ts: List[Type]) =
- ts reduceLeft ((t1, t2) =>
- if (isNumericSubType(t1, t2)) t2
- else if (isNumericSubType(t2, t1)) t1
- else IntClass.tpe)
-
- def isWeakSubType(tp1: Type, tp2: Type) =
- tp1.deconst.normalize match {
- case TypeRef(_, sym1, _) if isNumericValueClass(sym1) =>
- tp2.deconst.normalize match {
- case TypeRef(_, sym2, _) if isNumericValueClass(sym2) =>
- isNumericSubClass(sym1, sym2)
- case tv2 @ TypeVar(_, _) =>
- tv2.registerBound(tp1, isLowerBound = true, isNumericBound = true)
- case _ =>
- isSubType(tp1, tp2)
- }
- case tv1 @ TypeVar(_, _) =>
- tp2.deconst.normalize match {
- case TypeRef(_, sym2, _) if isNumericValueClass(sym2) =>
- tv1.registerBound(tp2, isLowerBound = false, isNumericBound = true)
- case _ =>
- isSubType(tp1, tp2)
- }
- case _ =>
- isSubType(tp1, tp2)
- }
-
- /** The isNumericValueType tests appear redundant, but without them
- * test/continuations-neg/function3.scala goes into an infinite loop.
- * (Even if the calls are to typeSymbolDirect.)
- */
- def isNumericSubType(tp1: Type, tp2: Type): Boolean = (
- isNumericValueType(tp1)
- && isNumericValueType(tp2)
- && isNumericSubClass(tp1.typeSymbol, tp2.typeSymbol)
- )
-
- private val lubResults = new mutable.HashMap[(Int, List[Type]), Type]
- private val glbResults = new mutable.HashMap[(Int, List[Type]), Type]
-
- /** Given a list of types, finds all the base classes they have in
- * common, then returns a list of type constructors derived directly
- * from the symbols (so any more specific type information is ignored.)
- * The list is filtered such that every type constructor in the list
- * expects the same number of type arguments, which is chosen based
- * on the deepest class among the common baseclasses.
- */
- def typeConstructorLubList(ts: List[Type]): List[Type] = {
- val bcs = ts.flatMap(_.baseClasses).distinct sortWith (_ isLess _)
- val tcons = bcs filter (clazz => ts forall (_.typeSymbol isSubClass clazz))
-
- tcons map (_.typeConstructor) match {
- case Nil => Nil
- case t :: ts => t :: ts.filter(_.typeParams.size == t.typeParams.size)
- }
- }
-
- def lub(ts: List[Type]): Type = ts match {
- case List() => NothingClass.tpe
- case List(t) => t
- case _ =>
- if (Statistics.canEnable) Statistics.incCounter(lubCount)
- val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, lubNanos) else null
- try {
- val res = lub(ts, lubDepth(ts))
- // If the number of unapplied type parameters in all incoming
- // types is consistent, and the lub does not match that, return
- // the type constructor of the calculated lub instead. This
- // is because lubbing type constructors tends to result in types
- // which have been applied to dummies or Nothing.
- ts.map(_.typeParams.size).distinct match {
- case x :: Nil if res.typeParams.size != x =>
- logResult(s"Stripping type args from lub because $res is not consistent with $ts")(res.typeConstructor)
- case _ =>
- res
- }
- }
- finally {
- lubResults.clear()
- glbResults.clear()
- if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
- }
- }
-
- /** The least upper bound wrt <:< of a list of types */
- private def lub(ts: List[Type], depth: Int): Type = {
- def lub0(ts0: List[Type]): Type = elimSub(ts0, depth) match {
- case List() => NothingClass.tpe
- case List(t) => t
- case ts @ PolyType(tparams, _) :: _ =>
- val tparams1 = map2(tparams, matchingBounds(ts, tparams).transpose)((tparam, bounds) =>
- tparam.cloneSymbol.setInfo(glb(bounds, depth)))
- PolyType(tparams1, lub0(matchingInstTypes(ts, tparams1)))
- case ts @ (mt @ MethodType(params, _)) :: rest =>
- MethodType(params, lub0(matchingRestypes(ts, mt.paramTypes)))
- case ts @ NullaryMethodType(_) :: rest =>
- NullaryMethodType(lub0(matchingRestypes(ts, Nil)))
- case ts @ TypeBounds(_, _) :: rest =>
- TypeBounds(glb(ts map (_.bounds.lo), depth), lub(ts map (_.bounds.hi), depth))
- case ts @ AnnotatedType(annots, tpe, _) :: rest =>
- annotationsLub(lub0(ts map (_.withoutAnnotations)), ts)
- case ts =>
- lubResults get (depth, ts) match {
- case Some(lubType) =>
- lubType
- case None =>
- lubResults((depth, ts)) = AnyClass.tpe
- val res = if (depth < 0) AnyClass.tpe else lub1(ts)
- lubResults((depth, ts)) = res
- res
- }
- }
- def lub1(ts0: List[Type]): Type = {
- val (ts, tparams) = stripExistentialsAndTypeVars(ts0)
- val lubBaseTypes: List[Type] = lubList(ts, depth)
- val lubParents = spanningTypes(lubBaseTypes)
- val lubOwner = commonOwner(ts)
- val lubBase = intersectionType(lubParents, lubOwner)
- val lubType =
- if (phase.erasedTypes || depth == 0 ) lubBase
- else {
- val lubRefined = refinedType(lubParents, lubOwner)
- val lubThisType = lubRefined.typeSymbol.thisType
- val narrowts = ts map (_.narrow)
- def excludeFromLub(sym: Symbol) = (
- sym.isClass
- || sym.isConstructor
- || !sym.isPublic
- || isGetClass(sym)
- || sym.isFinal
- || narrowts.exists(t => !refines(t, sym))
- )
- def lubsym(proto: Symbol): Symbol = {
- val prototp = lubThisType.memberInfo(proto)
- val syms = narrowts map (t =>
- t.nonPrivateMember(proto.name).suchThat(sym =>
- sym.tpe matches prototp.substThis(lubThisType.typeSymbol, t)))
-
- if (syms contains NoSymbol) NoSymbol
- else {
- val symtypes =
- map2(narrowts, syms)((t, sym) => t.memberInfo(sym).substThis(t.typeSymbol, lubThisType))
- if (proto.isTerm) // possible problem: owner of info is still the old one, instead of new refinement class
- proto.cloneSymbol(lubRefined.typeSymbol).setInfoOwnerAdjusted(lub(symtypes, decr(depth)))
- else if (symtypes.tail forall (symtypes.head =:= _))
- proto.cloneSymbol(lubRefined.typeSymbol).setInfoOwnerAdjusted(symtypes.head)
- else {
- def lubBounds(bnds: List[TypeBounds]): TypeBounds =
- TypeBounds(glb(bnds map (_.lo), decr(depth)), lub(bnds map (_.hi), decr(depth)))
- lubRefined.typeSymbol.newAbstractType(proto.name.toTypeName, proto.pos)
- .setInfoOwnerAdjusted(lubBounds(symtypes map (_.bounds)))
- }
- }
- }
- def refines(tp: Type, sym: Symbol): Boolean = {
- val syms = tp.nonPrivateMember(sym.name).alternatives
- !syms.isEmpty && (syms forall (alt =>
- // todo alt != sym is strictly speaking not correct, but without it we lose
- // efficiency.
- alt != sym && !specializesSym(lubThisType, sym, tp, alt, depth)))
- }
- // add a refinement symbol for all non-class members of lubBase
- // which are refined by every type in ts.
- for (sym <- lubBase.nonPrivateMembers ; if !excludeFromLub(sym)) {
- try lubsym(sym) andAlso (addMember(lubThisType, lubRefined, _, depth))
- catch {
- case ex: NoCommonType =>
- }
- }
- if (lubRefined.decls.isEmpty) lubBase
- else if (!verifyLubs) lubRefined
- else {
- // Verify that every given type conforms to the calculated lub.
- // In theory this should not be necessary, but higher-order type
- // parameters are not handled correctly.
- val ok = ts forall { t =>
- isSubType(t, lubRefined, depth) || {
- if (settings.debug.value || printLubs) {
- Console.println(
- "Malformed lub: " + lubRefined + "\n" +
- "Argument " + t + " does not conform. Falling back to " + lubBase
- )
- }
- false
- }
- }
- // If not, fall back on the more conservative calculation.
- if (ok) lubRefined
- else lubBase
- }
- }
- // dropIllegalStarTypes is a localized fix for SI-6897. We should probably
- // integrate that transformation at a lower level in master, but lubs are
- // the likely and maybe only spot they escape, so fixing here for 2.10.1.
- existentialAbstraction(tparams, dropIllegalStarTypes(lubType))
- }
- if (printLubs) {
- println(indent + "lub of " + ts + " at depth "+depth)//debug
- indent = indent + " "
- assert(indent.length <= 100)
- }
- if (Statistics.canEnable) Statistics.incCounter(nestedLubCount)
- val res = lub0(ts)
- if (printLubs) {
- indent = indent stripSuffix " "
- println(indent + "lub of " + ts + " is " + res)//debug
- }
- if (ts forall typeIsNotNull) res.notNull else res
- }
-
- val GlbFailure = new Throwable
-
- /** A global counter for glb calls in the `specializes` query connected to the `addMembers`
- * call in `glb`. There's a possible infinite recursion when `specializes` calls
- * memberType, which calls baseTypeSeq, which calls mergePrefixAndArgs, which calls glb.
- * The counter breaks this recursion after two calls.
- * If the recursion is broken, no member is added to the glb.
- */
- private var globalGlbDepth = 0
- private final val globalGlbLimit = 2
-
- /** The greatest lower bound of a list of types (as determined by `<:<`). */
- def glb(ts: List[Type]): Type = elimSuper(ts) match {
- case List() => AnyClass.tpe
- case List(t) => t
- case ts0 =>
- if (Statistics.canEnable) Statistics.incCounter(lubCount)
- val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, lubNanos) else null
- try {
- glbNorm(ts0, lubDepth(ts0))
- } finally {
- lubResults.clear()
- glbResults.clear()
- if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
- }
- }
-
- private def glb(ts: List[Type], depth: Int): Type = elimSuper(ts) match {
- case List() => AnyClass.tpe
- case List(t) => t
- case ts0 => glbNorm(ts0, depth)
- }
-
- /** The greatest lower bound of a list of types (as determined by `<:<`), which have been normalized
- * with regard to `elimSuper`. */
- protected def glbNorm(ts: List[Type], depth: Int): Type = {
- def glb0(ts0: List[Type]): Type = ts0 match {
- case List() => AnyClass.tpe
- case List(t) => t
- case ts @ PolyType(tparams, _) :: _ =>
- val tparams1 = map2(tparams, matchingBounds(ts, tparams).transpose)((tparam, bounds) =>
- tparam.cloneSymbol.setInfo(lub(bounds, depth)))
- PolyType(tparams1, glbNorm(matchingInstTypes(ts, tparams1), depth))
- case ts @ (mt @ MethodType(params, _)) :: rest =>
- MethodType(params, glbNorm(matchingRestypes(ts, mt.paramTypes), depth))
- case ts @ NullaryMethodType(_) :: rest =>
- NullaryMethodType(glbNorm(matchingRestypes(ts, Nil), depth))
- case ts @ TypeBounds(_, _) :: rest =>
- TypeBounds(lub(ts map (_.bounds.lo), depth), glb(ts map (_.bounds.hi), depth))
- case ts =>
- glbResults get (depth, ts) match {
- case Some(glbType) =>
- glbType
- case _ =>
- glbResults((depth, ts)) = NothingClass.tpe
- val res = if (depth < 0) NothingClass.tpe else glb1(ts)
- glbResults((depth, ts)) = res
- res
- }
- }
- def glb1(ts0: List[Type]): Type = {
- try {
- val (ts, tparams) = stripExistentialsAndTypeVars(ts0)
- val glbOwner = commonOwner(ts)
- def refinedToParents(t: Type): List[Type] = t match {
- case RefinedType(ps, _) => ps flatMap refinedToParents
- case _ => List(t)
- }
- def refinedToDecls(t: Type): List[Scope] = t match {
- case RefinedType(ps, decls) =>
- val dss = ps flatMap refinedToDecls
- if (decls.isEmpty) dss else decls :: dss
- case _ => List()
- }
- val ts1 = ts flatMap refinedToParents
- val glbBase = intersectionType(ts1, glbOwner)
- val glbType =
- if (phase.erasedTypes || depth == 0) glbBase
- else {
- val glbRefined = refinedType(ts1, glbOwner)
- val glbThisType = glbRefined.typeSymbol.thisType
- def glbsym(proto: Symbol): Symbol = {
- val prototp = glbThisType.memberInfo(proto)
- val syms = for (t <- ts;
- alt <- (t.nonPrivateMember(proto.name).alternatives)
- if glbThisType.memberInfo(alt) matches prototp
- ) yield alt
- val symtypes = syms map glbThisType.memberInfo
- assert(!symtypes.isEmpty)
- proto.cloneSymbol(glbRefined.typeSymbol).setInfoOwnerAdjusted(
- if (proto.isTerm) glb(symtypes, decr(depth))
- else {
- def isTypeBound(tp: Type) = tp match {
- case TypeBounds(_, _) => true
- case _ => false
- }
- def glbBounds(bnds: List[Type]): TypeBounds = {
- val lo = lub(bnds map (_.bounds.lo), decr(depth))
- val hi = glb(bnds map (_.bounds.hi), decr(depth))
- if (lo <:< hi) TypeBounds(lo, hi)
- else throw GlbFailure
- }
- val symbounds = symtypes filter isTypeBound
- var result: Type =
- if (symbounds.isEmpty)
- TypeBounds.empty
- else glbBounds(symbounds)
- for (t <- symtypes if !isTypeBound(t))
- if (result.bounds containsType t) result = t
- else throw GlbFailure
- result
- })
- }
- if (globalGlbDepth < globalGlbLimit)
- try {
- globalGlbDepth += 1
- val dss = ts flatMap refinedToDecls
- for (ds <- dss; sym <- ds.iterator)
- if (globalGlbDepth < globalGlbLimit && !specializesSym(glbThisType, sym, depth))
- try {
- addMember(glbThisType, glbRefined, glbsym(sym), depth)
- } catch {
- case ex: NoCommonType =>
- }
- } finally {
- globalGlbDepth -= 1
- }
- if (glbRefined.decls.isEmpty) glbBase else glbRefined
- }
- existentialAbstraction(tparams, glbType)
- } catch {
- case GlbFailure =>
- if (ts forall (t => NullClass.tpe <:< t)) NullClass.tpe
- else NothingClass.tpe
- }
- }
- // if (settings.debug.value) { println(indent + "glb of " + ts + " at depth "+depth); indent = indent + " " } //DEBUG
-
- if (Statistics.canEnable) Statistics.incCounter(nestedLubCount)
- val res = glb0(ts)
-
- // if (settings.debug.value) { indent = indent.substring(0, indent.length() - 2); log(indent + "glb of " + ts + " is " + res) }//DEBUG
-
- if (ts exists typeIsNotNull) res.notNull else res
- }
-
/** A list of the typevars in a type. */
def typeVarsInType(tp: Type): List[TypeVar] = {
var tvs: List[TypeVar] = Nil
@@ -6979,51 +4416,6 @@ trait Types extends api.Types { self: SymbolTable =>
def inheritsJavaVarArgsMethod(clazz: Symbol) =
clazz.thisType.baseClasses exists isJavaVarargsAncestor
- /** All types in list must be polytypes with type parameter lists of
- * same length as tparams.
- * Returns list of list of bounds infos, where corresponding type
- * parameters are renamed to tparams.
- */
- private def matchingBounds(tps: List[Type], tparams: List[Symbol]): List[List[Type]] = {
- def getBounds(tp: Type): List[Type] = tp match {
- case PolyType(tparams1, _) if sameLength(tparams1, tparams) =>
- tparams1 map (tparam => tparam.info.substSym(tparams1, tparams))
- case tp =>
- if (tp ne tp.normalize) getBounds(tp.normalize)
- else throw new NoCommonType(tps)
- }
- tps map getBounds
- }
-
- /** All types in list must be polytypes with type parameter lists of
- * same length as tparams.
- * Returns list of instance types, where corresponding type
- * parameters are renamed to tparams.
- */
- private def matchingInstTypes(tps: List[Type], tparams: List[Symbol]): List[Type] = {
- def transformResultType(tp: Type): Type = tp match {
- case PolyType(tparams1, restpe) if sameLength(tparams1, tparams) =>
- restpe.substSym(tparams1, tparams)
- case tp =>
- if (tp ne tp.normalize) transformResultType(tp.normalize)
- else throw new NoCommonType(tps)
- }
- tps map transformResultType
- }
-
- /** All types in list must be method types with equal parameter types.
- * Returns list of their result types.
- */
- private def matchingRestypes(tps: List[Type], pts: List[Type]): List[Type] =
- tps map {
- case mt @ MethodType(params1, res) if isSameTypes(mt.paramTypes, pts) =>
- res
- case NullaryMethodType(res) if pts.isEmpty =>
- res
- case _ =>
- throw new NoCommonType(tps)
- }
-
// Errors and Diagnostics -----------------------------------------------------
/** A throwable signalling a type error */
@@ -7048,7 +4440,7 @@ trait Types extends api.Types { self: SymbolTable =>
}
/** The current indentation string for traces */
- private var indent: String = ""
+ protected[internal] var indent: String = ""
/** Perform operation `p` on arguments `tp1`, `arg2` and print trace of computation. */
protected def explain[T](op: String, p: (Type, T) => Boolean, tp1: Type, arg2: T): Boolean = {
@@ -7114,29 +4506,6 @@ trait Types extends api.Types { self: SymbolTable =>
"scala.collection.IndexedSeq",
"scala.collection.Iterator")
-
- /** The maximum number of recursions allowed in toString
- */
- final val maxTostringRecursions = 50
-
- private var tostringRecursions = 0
-
- protected def typeToString(tpe: Type): String =
- if (tostringRecursions >= maxTostringRecursions) {
- devWarning("Exceeded recursion depth attempting to print " + util.shortClassOfInstance(tpe))
- if (settings.debug.value)
- (new Throwable).printStackTrace
-
- "..."
- }
- else
- try {
- tostringRecursions += 1
- tpe.safeToString
- } finally {
- tostringRecursions -= 1
- }
-
// ----- Hoisted closures and convenience methods, for compile time reductions -------
private[scala] val typeIsNotNull = (tp: Type) => tp.isNotNull
diff --git a/src/reflect/scala/reflect/internal/tpe/CommonOwners.scala b/src/reflect/scala/reflect/internal/tpe/CommonOwners.scala
new file mode 100644
index 0000000000..e5ddd8f359
--- /dev/null
+++ b/src/reflect/scala/reflect/internal/tpe/CommonOwners.scala
@@ -0,0 +1,50 @@
+package scala.reflect
+package internal
+package tpe
+
+private[internal] trait CommonOwners {
+ self: SymbolTable =>
+
+ /** The most deeply nested owner that contains all the symbols
+ * of thistype or prefixless typerefs/singletype occurrences in given type.
+ */
+ protected[internal] def commonOwner(t: Type): Symbol = commonOwner(t :: Nil)
+
+ /** The most deeply nested owner that contains all the symbols
+ * of thistype or prefixless typerefs/singletype occurrences in given list
+ * of types.
+ */
+ protected[internal] def commonOwner(tps: List[Type]): Symbol = {
+ if (tps.isEmpty) NoSymbol
+ else {
+ commonOwnerMap.clear()
+ tps foreach (commonOwnerMap traverse _)
+ if (commonOwnerMap.result ne null) commonOwnerMap.result else NoSymbol
+ }
+ }
+
+ protected def commonOwnerMap: CommonOwnerMap = commonOwnerMapObj
+
+ protected class CommonOwnerMap extends TypeTraverserWithResult[Symbol] {
+ var result: Symbol = _
+
+ def clear() { result = null }
+
+ private def register(sym: Symbol) {
+ // First considered type is the trivial result.
+ if ((result eq null) || (sym eq NoSymbol))
+ result = sym
+ else
+ while ((result ne NoSymbol) && (result ne sym) && !(sym isNestedIn result))
+ result = result.owner
+ }
+ def traverse(tp: Type) = tp.normalize match {
+ case ThisType(sym) => register(sym)
+ case TypeRef(NoPrefix, sym, args) => register(sym.owner) ; args foreach traverse
+ case SingleType(NoPrefix, sym) => register(sym.owner)
+ case _ => mapOver(tp)
+ }
+ }
+
+ private lazy val commonOwnerMapObj = new CommonOwnerMap
+}
diff --git a/src/reflect/scala/reflect/internal/tpe/GlbLubs.scala b/src/reflect/scala/reflect/internal/tpe/GlbLubs.scala
new file mode 100644
index 0000000000..bdccc75d6d
--- /dev/null
+++ b/src/reflect/scala/reflect/internal/tpe/GlbLubs.scala
@@ -0,0 +1,592 @@
+package scala.reflect
+package internal
+package tpe
+
+import scala.collection.{ mutable }
+import util.Statistics
+import Variance._
+
+private[internal] trait GlbLubs {
+ self: SymbolTable =>
+ import definitions._
+ import TypesStats._
+
+ private final val printLubs = sys.props contains "scalac.debug.lub"
+
+ /** In case anyone wants to turn off lub verification without reverting anything. */
+ private final val verifyLubs = true
+
+
+ private def printLubMatrix(btsMap: Map[Type, List[Type]], depth: Int) {
+ import util.TableDef
+ import TableDef.Column
+ def str(tp: Type) = {
+ if (tp == NoType) ""
+ else {
+ val s = ("" + tp).replaceAll("""[\w.]+\.(\w+)""", "$1")
+ if (s.length < 60) s
+ else (s take 57) + "..."
+ }
+ }
+
+ val sorted = btsMap.toList.sortWith((x, y) => x._1.typeSymbol isLess y._1.typeSymbol)
+ val maxSeqLength = sorted.map(_._2.size).max
+ val padded = sorted map (_._2.padTo(maxSeqLength, NoType))
+ val transposed = padded.transpose
+
+ val columns: List[Column[List[Type]]] = mapWithIndex(sorted) {
+ case ((k, v), idx) =>
+ Column(str(k), (xs: List[Type]) => str(xs(idx)), left = true)
+ }
+
+ val tableDef = TableDef(columns: _*)
+ val formatted = tableDef.table(transposed)
+ println("** Depth is " + depth + "\n" + formatted)
+ }
+
+ /** From a list of types, find any which take type parameters
+ * where the type parameter bounds contain references to other
+ * any types in the list (including itself.)
+ *
+ * @return List of symbol pairs holding the recursive type
+ * parameter and the parameter which references it.
+ */
+ def findRecursiveBounds(ts: List[Type]): List[(Symbol, Symbol)] = {
+ if (ts.isEmpty) Nil
+ else {
+ val sym = ts.head.typeSymbol
+ require(ts.tail forall (_.typeSymbol == sym), ts)
+ for (p <- sym.typeParams ; in <- sym.typeParams ; if in.info.bounds contains p) yield
+ p -> in
+ }
+ }
+
+ /** Given a matrix `tsBts` whose columns are basetype sequences (and the symbols `tsParams` that should be interpreted as type parameters in this matrix),
+ * compute its least sorted upwards closed upper bound relative to the following ordering <= between lists of types:
+ *
+ * xs <= ys iff forall y in ys exists x in xs such that x <: y
+ *
+ * @arg tsParams for each type in the original list of types `ts0`, its list of type parameters (if that type is a type constructor)
+ * (these type parameters may be referred to by type arguments in the BTS column of those types,
+ * and must be interpreted as bound variables; i.e., under a type lambda that wraps the types that refer to these type params)
+ * @arg tsBts a matrix whose columns are basetype sequences
+ * the first row is the original list of types for which we're computing the lub
+ * (except that type constructors have been applied to their dummyArgs)
+ * @See baseTypeSeq for a definition of sorted and upwards closed.
+ */
+ def lubList(ts: List[Type], depth: Int): List[Type] = {
+ var lubListDepth = 0
+ // This catches some recursive situations which would otherwise
+ // befuddle us, e.g. pos/hklub0.scala
+ def isHotForTs(xs: List[Type]) = ts exists (_.typeParams == xs.map(_.typeSymbol))
+
+ def elimHigherOrderTypeParam(tp: Type) = tp match {
+ case TypeRef(_, _, args) if args.nonEmpty && isHotForTs(args) =>
+ logResult("Retracting dummies from " + tp + " in lublist")(tp.typeConstructor)
+ case _ => tp
+ }
+ // pretypes is a tail-recursion-preserving accumulator.
+ @annotation.tailrec def loop(pretypes: List[Type], tsBts: List[List[Type]]): List[Type] = {
+ lubListDepth += 1
+
+ if (tsBts.isEmpty || (tsBts exists typeListIsEmpty)) pretypes.reverse
+ else if (tsBts.tail.isEmpty) pretypes.reverse ++ tsBts.head
+ else {
+ // ts0 is the 1-dimensional frontier of symbols cutting through 2-dimensional tsBts.
+ // Invariant: all symbols "under" (closer to the first row) the frontier
+ // are smaller (according to _.isLess) than the ones "on and beyond" the frontier
+ val ts0 = tsBts map (_.head)
+
+ // Is the frontier made up of types with the same symbol?
+ val isUniformFrontier = (ts0: @unchecked) match {
+ case t :: ts => ts forall (_.typeSymbol == t.typeSymbol)
+ }
+
+ // Produce a single type for this frontier by merging the prefixes and arguments of those
+ // typerefs that share the same symbol: that symbol is the current maximal symbol for which
+ // the invariant holds, i.e., the one that conveys most information regarding subtyping. Before
+ // merging, strip targs that refer to bound tparams (when we're computing the lub of type
+ // constructors.) Also filter out all types that are a subtype of some other type.
+ if (isUniformFrontier) {
+ val fbounds = findRecursiveBounds(ts0) map (_._2)
+ val tcLubList = typeConstructorLubList(ts0)
+ def isRecursive(tp: Type) = tp.typeSymbol.typeParams exists fbounds.contains
+
+ val ts1 = ts0 map { t =>
+ if (isRecursive(t)) {
+ tcLubList map (t baseType _.typeSymbol) find (t => !isRecursive(t)) match {
+ case Some(tp) => logResult(s"Breaking recursion in lublist, substituting weaker type.\n Was: $t\n Now")(tp)
+ case _ => t
+ }
+ }
+ else t
+ }
+ val tails = tsBts map (_.tail)
+ mergePrefixAndArgs(elimSub(ts1, depth) map elimHigherOrderTypeParam, Covariant, depth) match {
+ case Some(tp) => loop(tp :: pretypes, tails)
+ case _ => loop(pretypes, tails)
+ }
+ }
+ else {
+ // frontier is not uniform yet, move it beyond the current minimal symbol;
+ // lather, rinSe, repeat
+ val sym = minSym(ts0)
+ val newtps = tsBts map (ts => if (ts.head.typeSymbol == sym) ts.tail else ts)
+ if (printLubs) {
+ val str = (newtps.zipWithIndex map { case (tps, idx) =>
+ tps.map(" " + _ + "\n").mkString(" (" + idx + ")\n", "", "\n")
+ }).mkString("")
+
+ println("Frontier(\n" + str + ")")
+ printLubMatrix((ts zip tsBts).toMap, lubListDepth)
+ }
+
+ loop(pretypes, newtps)
+ }
+ }
+ }
+
+ val initialBTSes = ts map (_.baseTypeSeq.toList)
+ if (printLubs)
+ printLubMatrix((ts zip initialBTSes).toMap, depth)
+
+ loop(Nil, initialBTSes)
+ }
+
+ /** The minimal symbol of a list of types (as determined by `Symbol.isLess`). */
+ private def minSym(tps: List[Type]): Symbol =
+ (tps.head.typeSymbol /: tps.tail) {
+ (sym1, tp2) => if (tp2.typeSymbol isLess sym1) tp2.typeSymbol else sym1
+ }
+
+ /** A minimal type list which has a given list of types as its base type sequence */
+ def spanningTypes(ts: List[Type]): List[Type] = ts match {
+ case List() => List()
+ case first :: rest =>
+ first :: spanningTypes(
+ rest filter (t => !first.typeSymbol.isSubClass(t.typeSymbol)))
+ }
+
+ /** Eliminate from list of types all elements which are a supertype
+ * of some other element of the list. */
+ private def elimSuper(ts: List[Type]): List[Type] = ts match {
+ case List() => List()
+ case List(t) => List(t)
+ case t :: ts1 =>
+ val rest = elimSuper(ts1 filter (t1 => !(t <:< t1)))
+ if (rest exists (t1 => t1 <:< t)) rest else t :: rest
+ }
+
+ /** Eliminate from list of types all elements which are a subtype
+ * of some other element of the list. */
+ private def elimSub(ts: List[Type], depth: Int): List[Type] = {
+ def elimSub0(ts: List[Type]): List[Type] = ts match {
+ case List() => List()
+ case List(t) => List(t)
+ case t :: ts1 =>
+ val rest = elimSub0(ts1 filter (t1 => !isSubType(t1, t, decr(depth))))
+ if (rest exists (t1 => isSubType(t, t1, decr(depth)))) rest else t :: rest
+ }
+ val ts0 = elimSub0(ts)
+ if (ts0.isEmpty || ts0.tail.isEmpty) ts0
+ else {
+ val ts1 = ts0 mapConserve (t => elimAnonymousClass(t.dealiasWiden))
+ if (ts1 eq ts0) ts0
+ else elimSub(ts1, depth)
+ }
+ }
+
+ private def stripExistentialsAndTypeVars(ts: List[Type]): (List[Type], List[Symbol]) = {
+ val quantified = ts flatMap {
+ case ExistentialType(qs, _) => qs
+ case t => List()
+ }
+ def stripType(tp: Type): Type = tp match {
+ case ExistentialType(_, res) =>
+ res
+ case tv@TypeVar(_, constr) =>
+ if (tv.instValid) stripType(constr.inst)
+ else if (tv.untouchable) tv
+ else abort("trying to do lub/glb of typevar "+tp)
+ case t => t
+ }
+ val strippedTypes = ts mapConserve stripType
+ (strippedTypes, quantified)
+ }
+
+ def weakLub(ts: List[Type]) =
+ if (ts.nonEmpty && (ts forall isNumericValueType)) (numericLub(ts), true)
+ else if (ts exists typeHasAnnotations)
+ (annotationsLub(lub(ts map (_.withoutAnnotations)), ts), true)
+ else (lub(ts), false)
+
+ def numericLub(ts: List[Type]) =
+ ts reduceLeft ((t1, t2) =>
+ if (isNumericSubType(t1, t2)) t2
+ else if (isNumericSubType(t2, t1)) t1
+ else IntClass.tpe)
+
+ private val lubResults = new mutable.HashMap[(Int, List[Type]), Type]
+ private val glbResults = new mutable.HashMap[(Int, List[Type]), Type]
+
+ /** Given a list of types, finds all the base classes they have in
+ * common, then returns a list of type constructors derived directly
+ * from the symbols (so any more specific type information is ignored.)
+ * The list is filtered such that every type constructor in the list
+ * expects the same number of type arguments, which is chosen based
+ * on the deepest class among the common baseclasses.
+ */
+ def typeConstructorLubList(ts: List[Type]): List[Type] = {
+ val bcs = ts.flatMap(_.baseClasses).distinct sortWith (_ isLess _)
+ val tcons = bcs filter (clazz => ts forall (_.typeSymbol isSubClass clazz))
+
+ tcons map (_.typeConstructor) match {
+ case Nil => Nil
+ case t :: ts => t :: ts.filter(_.typeParams.size == t.typeParams.size)
+ }
+ }
+
+ def lub(ts: List[Type]): Type = ts match {
+ case List() => NothingClass.tpe
+ case List(t) => t
+ case _ =>
+ if (Statistics.canEnable) Statistics.incCounter(lubCount)
+ val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, lubNanos) else null
+ try {
+ val res = lub(ts, lubDepth(ts))
+ // If the number of unapplied type parameters in all incoming
+ // types is consistent, and the lub does not match that, return
+ // the type constructor of the calculated lub instead. This
+ // is because lubbing type constructors tends to result in types
+ // which have been applied to dummies or Nothing.
+ ts.map(_.typeParams.size).distinct match {
+ case x :: Nil if res.typeParams.size != x =>
+ logResult(s"Stripping type args from lub because $res is not consistent with $ts")(res.typeConstructor)
+ case _ =>
+ res
+ }
+ }
+ finally {
+ lubResults.clear()
+ glbResults.clear()
+ if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
+ }
+ }
+
+ /** The least upper bound wrt <:< of a list of types */
+ protected[internal] def lub(ts: List[Type], depth: Int): Type = {
+ def lub0(ts0: List[Type]): Type = elimSub(ts0, depth) match {
+ case List() => NothingClass.tpe
+ case List(t) => t
+ case ts @ PolyType(tparams, _) :: _ =>
+ val tparams1 = map2(tparams, matchingBounds(ts, tparams).transpose)((tparam, bounds) =>
+ tparam.cloneSymbol.setInfo(glb(bounds, depth)))
+ PolyType(tparams1, lub0(matchingInstTypes(ts, tparams1)))
+ case ts @ (mt @ MethodType(params, _)) :: rest =>
+ MethodType(params, lub0(matchingRestypes(ts, mt.paramTypes)))
+ case ts @ NullaryMethodType(_) :: rest =>
+ NullaryMethodType(lub0(matchingRestypes(ts, Nil)))
+ case ts @ TypeBounds(_, _) :: rest =>
+ TypeBounds(glb(ts map (_.bounds.lo), depth), lub(ts map (_.bounds.hi), depth))
+ case ts @ AnnotatedType(annots, tpe, _) :: rest =>
+ annotationsLub(lub0(ts map (_.withoutAnnotations)), ts)
+ case ts =>
+ lubResults get (depth, ts) match {
+ case Some(lubType) =>
+ lubType
+ case None =>
+ lubResults((depth, ts)) = AnyClass.tpe
+ val res = if (depth < 0) AnyClass.tpe else lub1(ts)
+ lubResults((depth, ts)) = res
+ res
+ }
+ }
+ def lub1(ts0: List[Type]): Type = {
+ val (ts, tparams) = stripExistentialsAndTypeVars(ts0)
+ val lubBaseTypes: List[Type] = lubList(ts, depth)
+ val lubParents = spanningTypes(lubBaseTypes)
+ val lubOwner = commonOwner(ts)
+ val lubBase = intersectionType(lubParents, lubOwner)
+ val lubType =
+ if (phase.erasedTypes || depth == 0 ) lubBase
+ else {
+ val lubRefined = refinedType(lubParents, lubOwner)
+ val lubThisType = lubRefined.typeSymbol.thisType
+ val narrowts = ts map (_.narrow)
+ def excludeFromLub(sym: Symbol) = (
+ sym.isClass
+ || sym.isConstructor
+ || !sym.isPublic
+ || isGetClass(sym)
+ || sym.isFinal
+ || narrowts.exists(t => !refines(t, sym))
+ )
+ def lubsym(proto: Symbol): Symbol = {
+ val prototp = lubThisType.memberInfo(proto)
+ val syms = narrowts map (t =>
+ t.nonPrivateMember(proto.name).suchThat(sym =>
+ sym.tpe matches prototp.substThis(lubThisType.typeSymbol, t)))
+
+ if (syms contains NoSymbol) NoSymbol
+ else {
+ val symtypes =
+ map2(narrowts, syms)((t, sym) => t.memberInfo(sym).substThis(t.typeSymbol, lubThisType))
+ if (proto.isTerm) // possible problem: owner of info is still the old one, instead of new refinement class
+ proto.cloneSymbol(lubRefined.typeSymbol).setInfoOwnerAdjusted(lub(symtypes, decr(depth)))
+ else if (symtypes.tail forall (symtypes.head =:= _))
+ proto.cloneSymbol(lubRefined.typeSymbol).setInfoOwnerAdjusted(symtypes.head)
+ else {
+ def lubBounds(bnds: List[TypeBounds]): TypeBounds =
+ TypeBounds(glb(bnds map (_.lo), decr(depth)), lub(bnds map (_.hi), decr(depth)))
+ lubRefined.typeSymbol.newAbstractType(proto.name.toTypeName, proto.pos)
+ .setInfoOwnerAdjusted(lubBounds(symtypes map (_.bounds)))
+ }
+ }
+ }
+ def refines(tp: Type, sym: Symbol): Boolean = {
+ val syms = tp.nonPrivateMember(sym.name).alternatives
+ !syms.isEmpty && (syms forall (alt =>
+ // todo alt != sym is strictly speaking not correct, but without it we lose
+ // efficiency.
+ alt != sym && !specializesSym(lubThisType, sym, tp, alt, depth)))
+ }
+ // add a refinement symbol for all non-class members of lubBase
+ // which are refined by every type in ts.
+ for (sym <- lubBase.nonPrivateMembers ; if !excludeFromLub(sym)) {
+ try lubsym(sym) andAlso (addMember(lubThisType, lubRefined, _, depth))
+ catch {
+ case ex: NoCommonType =>
+ }
+ }
+ if (lubRefined.decls.isEmpty) lubBase
+ else if (!verifyLubs) lubRefined
+ else {
+ // Verify that every given type conforms to the calculated lub.
+ // In theory this should not be necessary, but higher-order type
+ // parameters are not handled correctly.
+ val ok = ts forall { t =>
+ isSubType(t, lubRefined, depth) || {
+ if (settings.debug.value || printLubs) {
+ Console.println(
+ "Malformed lub: " + lubRefined + "\n" +
+ "Argument " + t + " does not conform. Falling back to " + lubBase
+ )
+ }
+ false
+ }
+ }
+ // If not, fall back on the more conservative calculation.
+ if (ok) lubRefined
+ else lubBase
+ }
+ }
+ // dropIllegalStarTypes is a localized fix for SI-6897. We should probably
+ // integrate that transformation at a lower level in master, but lubs are
+ // the likely and maybe only spot they escape, so fixing here for 2.10.1.
+ existentialAbstraction(tparams, dropIllegalStarTypes(lubType))
+ }
+ if (printLubs) {
+ println(indent + "lub of " + ts + " at depth "+depth)//debug
+ indent = indent + " "
+ assert(indent.length <= 100)
+ }
+ if (Statistics.canEnable) Statistics.incCounter(nestedLubCount)
+ val res = lub0(ts)
+ if (printLubs) {
+ indent = indent stripSuffix " "
+ println(indent + "lub of " + ts + " is " + res)//debug
+ }
+ if (ts forall typeIsNotNull) res.notNull else res
+ }
+
+ val GlbFailure = new Throwable
+
+ /** A global counter for glb calls in the `specializes` query connected to the `addMembers`
+ * call in `glb`. There's a possible infinite recursion when `specializes` calls
+ * memberType, which calls baseTypeSeq, which calls mergePrefixAndArgs, which calls glb.
+ * The counter breaks this recursion after two calls.
+ * If the recursion is broken, no member is added to the glb.
+ */
+ private var globalGlbDepth = 0
+ private final val globalGlbLimit = 2
+
+ /** The greatest lower bound of a list of types (as determined by `<:<`). */
+ def glb(ts: List[Type]): Type = elimSuper(ts) match {
+ case List() => AnyClass.tpe
+ case List(t) => t
+ case ts0 =>
+ if (Statistics.canEnable) Statistics.incCounter(lubCount)
+ val start = if (Statistics.canEnable) Statistics.pushTimer(typeOpsStack, lubNanos) else null
+ try {
+ glbNorm(ts0, lubDepth(ts0))
+ } finally {
+ lubResults.clear()
+ glbResults.clear()
+ if (Statistics.canEnable) Statistics.popTimer(typeOpsStack, start)
+ }
+ }
+
+ protected[internal] def glb(ts: List[Type], depth: Int): Type = elimSuper(ts) match {
+ case List() => AnyClass.tpe
+ case List(t) => t
+ case ts0 => glbNorm(ts0, depth)
+ }
+
+ /** The greatest lower bound of a list of types (as determined by `<:<`), which have been normalized
+ * with regard to `elimSuper`. */
+ protected def glbNorm(ts: List[Type], depth: Int): Type = {
+ def glb0(ts0: List[Type]): Type = ts0 match {
+ case List() => AnyClass.tpe
+ case List(t) => t
+ case ts @ PolyType(tparams, _) :: _ =>
+ val tparams1 = map2(tparams, matchingBounds(ts, tparams).transpose)((tparam, bounds) =>
+ tparam.cloneSymbol.setInfo(lub(bounds, depth)))
+ PolyType(tparams1, glbNorm(matchingInstTypes(ts, tparams1), depth))
+ case ts @ (mt @ MethodType(params, _)) :: rest =>
+ MethodType(params, glbNorm(matchingRestypes(ts, mt.paramTypes), depth))
+ case ts @ NullaryMethodType(_) :: rest =>
+ NullaryMethodType(glbNorm(matchingRestypes(ts, Nil), depth))
+ case ts @ TypeBounds(_, _) :: rest =>
+ TypeBounds(lub(ts map (_.bounds.lo), depth), glb(ts map (_.bounds.hi), depth))
+ case ts =>
+ glbResults get (depth, ts) match {
+ case Some(glbType) =>
+ glbType
+ case _ =>
+ glbResults((depth, ts)) = NothingClass.tpe
+ val res = if (depth < 0) NothingClass.tpe else glb1(ts)
+ glbResults((depth, ts)) = res
+ res
+ }
+ }
+ def glb1(ts0: List[Type]): Type = {
+ try {
+ val (ts, tparams) = stripExistentialsAndTypeVars(ts0)
+ val glbOwner = commonOwner(ts)
+ def refinedToParents(t: Type): List[Type] = t match {
+ case RefinedType(ps, _) => ps flatMap refinedToParents
+ case _ => List(t)
+ }
+ def refinedToDecls(t: Type): List[Scope] = t match {
+ case RefinedType(ps, decls) =>
+ val dss = ps flatMap refinedToDecls
+ if (decls.isEmpty) dss else decls :: dss
+ case _ => List()
+ }
+ val ts1 = ts flatMap refinedToParents
+ val glbBase = intersectionType(ts1, glbOwner)
+ val glbType =
+ if (phase.erasedTypes || depth == 0) glbBase
+ else {
+ val glbRefined = refinedType(ts1, glbOwner)
+ val glbThisType = glbRefined.typeSymbol.thisType
+ def glbsym(proto: Symbol): Symbol = {
+ val prototp = glbThisType.memberInfo(proto)
+ val syms = for (t <- ts;
+ alt <- (t.nonPrivateMember(proto.name).alternatives)
+ if glbThisType.memberInfo(alt) matches prototp
+ ) yield alt
+ val symtypes = syms map glbThisType.memberInfo
+ assert(!symtypes.isEmpty)
+ proto.cloneSymbol(glbRefined.typeSymbol).setInfoOwnerAdjusted(
+ if (proto.isTerm) glb(symtypes, decr(depth))
+ else {
+ def isTypeBound(tp: Type) = tp match {
+ case TypeBounds(_, _) => true
+ case _ => false
+ }
+ def glbBounds(bnds: List[Type]): TypeBounds = {
+ val lo = lub(bnds map (_.bounds.lo), decr(depth))
+ val hi = glb(bnds map (_.bounds.hi), decr(depth))
+ if (lo <:< hi) TypeBounds(lo, hi)
+ else throw GlbFailure
+ }
+ val symbounds = symtypes filter isTypeBound
+ var result: Type =
+ if (symbounds.isEmpty)
+ TypeBounds.empty
+ else glbBounds(symbounds)
+ for (t <- symtypes if !isTypeBound(t))
+ if (result.bounds containsType t) result = t
+ else throw GlbFailure
+ result
+ })
+ }
+ if (globalGlbDepth < globalGlbLimit)
+ try {
+ globalGlbDepth += 1
+ val dss = ts flatMap refinedToDecls
+ for (ds <- dss; sym <- ds.iterator)
+ if (globalGlbDepth < globalGlbLimit && !specializesSym(glbThisType, sym, depth))
+ try {
+ addMember(glbThisType, glbRefined, glbsym(sym), depth)
+ } catch {
+ case ex: NoCommonType =>
+ }
+ } finally {
+ globalGlbDepth -= 1
+ }
+ if (glbRefined.decls.isEmpty) glbBase else glbRefined
+ }
+ existentialAbstraction(tparams, glbType)
+ } catch {
+ case GlbFailure =>
+ if (ts forall (t => NullClass.tpe <:< t)) NullClass.tpe
+ else NothingClass.tpe
+ }
+ }
+ // if (settings.debug.value) { println(indent + "glb of " + ts + " at depth "+depth); indent = indent + " " } //DEBUG
+
+ if (Statistics.canEnable) Statistics.incCounter(nestedLubCount)
+ val res = glb0(ts)
+
+ // if (settings.debug.value) { indent = indent.substring(0, indent.length() - 2); log(indent + "glb of " + ts + " is " + res) }//DEBUG
+
+ if (ts exists typeIsNotNull) res.notNull else res
+ }
+
+ /** All types in list must be polytypes with type parameter lists of
+ * same length as tparams.
+ * Returns list of list of bounds infos, where corresponding type
+ * parameters are renamed to tparams.
+ */
+ private def matchingBounds(tps: List[Type], tparams: List[Symbol]): List[List[Type]] = {
+ def getBounds(tp: Type): List[Type] = tp match {
+ case PolyType(tparams1, _) if sameLength(tparams1, tparams) =>
+ tparams1 map (tparam => tparam.info.substSym(tparams1, tparams))
+ case tp =>
+ if (tp ne tp.normalize) getBounds(tp.normalize)
+ else throw new NoCommonType(tps)
+ }
+ tps map getBounds
+ }
+
+ /** All types in list must be polytypes with type parameter lists of
+ * same length as tparams.
+ * Returns list of instance types, where corresponding type
+ * parameters are renamed to tparams.
+ */
+ private def matchingInstTypes(tps: List[Type], tparams: List[Symbol]): List[Type] = {
+ def transformResultType(tp: Type): Type = tp match {
+ case PolyType(tparams1, restpe) if sameLength(tparams1, tparams) =>
+ restpe.substSym(tparams1, tparams)
+ case tp =>
+ if (tp ne tp.normalize) transformResultType(tp.normalize)
+ else throw new NoCommonType(tps)
+ }
+ tps map transformResultType
+ }
+
+ /** All types in list must be method types with equal parameter types.
+ * Returns list of their result types.
+ */
+ private def matchingRestypes(tps: List[Type], pts: List[Type]): List[Type] =
+ tps map {
+ case mt @ MethodType(params1, res) if isSameTypes(mt.paramTypes, pts) =>
+ res
+ case NullaryMethodType(res) if pts.isEmpty =>
+ res
+ case _ =>
+ throw new NoCommonType(tps)
+ }
+}
diff --git a/src/reflect/scala/reflect/internal/tpe/TypeComparers.scala b/src/reflect/scala/reflect/internal/tpe/TypeComparers.scala
new file mode 100644
index 0000000000..82321f61c2
--- /dev/null
+++ b/src/reflect/scala/reflect/internal/tpe/TypeComparers.scala
@@ -0,0 +1,617 @@
+package scala.reflect
+package internal
+package tpe
+
+import scala.collection.{ mutable }
+import Flags._
+import util.Statistics
+
+trait TypeComparers {
+ self: SymbolTable =>
+ import definitions._
+ import TypesStats._
+
+ private final val LogPendingSubTypesThreshold = DefaultLogThreshhold
+
+ private val pendingSubTypes = new mutable.HashSet[SubTypePair]
+
+ class SubTypePair(val tp1: Type, val tp2: Type) {
+ override def hashCode = tp1.hashCode * 41 + tp2.hashCode
+ override def equals(other: Any) = (this eq other.asInstanceOf[AnyRef]) || (other match {
+ // suspend TypeVars in types compared by =:=,
+ // since we don't want to mutate them simply to check whether a subtype test is pending
+ // in addition to making subtyping "more correct" for type vars,
+ // it should avoid the stackoverflow that's been plaguing us (https://groups.google.com/d/topic/scala-internals/2gHzNjtB4xA/discussion)
+ // this method is only called when subtyping hits a recursion threshold (subsametypeRecursions >= LogPendingSubTypesThreshold)
+ case stp: SubTypePair =>
+ val tvars = List(tp1, stp.tp1, tp2, stp.tp2) flatMap (t => if (t.isGround) Nil else typeVarsInType(t))
+ suspendingTypeVars(tvars)(tp1 =:= stp.tp1 && tp2 =:= stp.tp2)
+ case _ =>
+ false
+ })
+ override def toString = tp1+" <:<? "+tp2
+ }
+
+ private var subsametypeRecursions: Int = 0
+
+ private def isUnifiable(pre1: Type, pre2: Type) =
+ (beginsWithTypeVarOrIsRefined(pre1) || beginsWithTypeVarOrIsRefined(pre2)) && (pre1 =:= pre2)
+
+ /** Returns true iff we are past phase specialize,
+ * sym1 and sym2 are two existential skolems with equal names and bounds,
+ * and pre1 and pre2 are equal prefixes
+ */
+ private def isSameSpecializedSkolem(sym1: Symbol, sym2: Symbol, pre1: Type, pre2: Type) = {
+ sym1.isExistentialSkolem && sym2.isExistentialSkolem &&
+ sym1.name == sym2.name &&
+ phase.specialized &&
+ sym1.info =:= sym2.info &&
+ pre1 =:= pre2
+ }
+
+ private def isSubPre(pre1: Type, pre2: Type, sym: Symbol) =
+ if ((pre1 ne pre2) && (pre1 ne NoPrefix) && (pre2 ne NoPrefix) && pre1 <:< pre2) {
+ if (settings.debug.value) println(s"new isSubPre $sym: $pre1 <:< $pre2")
+ true
+ } else
+ false
+
+ private def equalSymsAndPrefixes(sym1: Symbol, pre1: Type, sym2: Symbol, pre2: Type): Boolean =
+ if (sym1 == sym2) sym1.hasPackageFlag || sym1.owner.hasPackageFlag || phase.erasedTypes || pre1 =:= pre2
+ else (sym1.name == sym2.name) && isUnifiable(pre1, pre2)
+
+
+ def isDifferentType(tp1: Type, tp2: Type): Boolean = try {
+ subsametypeRecursions += 1
+ undoLog undo { // undo type constraints that arise from operations in this block
+ !isSameType1(tp1, tp2)
+ }
+ } finally {
+ subsametypeRecursions -= 1
+ // XXX AM TODO: figure out when it is safe and needed to clear the log -- the commented approach below is too eager (it breaks #3281, #3866)
+ // it doesn't help to keep separate recursion counts for the three methods that now share it
+ // if (subsametypeRecursions == 0) undoLog.clear()
+ }
+
+ def isDifferentTypeConstructor(tp1: Type, tp2: Type): Boolean = tp1 match {
+ case TypeRef(pre1, sym1, _) =>
+ tp2 match {
+ case TypeRef(pre2, sym2, _) => sym1 != sym2 || isDifferentType(pre1, pre2)
+ case _ => true
+ }
+ case _ => true
+ }
+
+ /** Do `tp1` and `tp2` denote equivalent types? */
+ def isSameType(tp1: Type, tp2: Type): Boolean = try {
+ if (Statistics.canEnable) Statistics.incCounter(sametypeCount)
+ subsametypeRecursions += 1
+ //OPT cutdown on Function0 allocation
+ //was:
+ // undoLog undoUnless {
+ // isSameType1(tp1, tp2)
+ // }
+
+ undoLog.lock()
+ try {
+ val before = undoLog.log
+ var result = false
+ try {
+ result = isSameType1(tp1, tp2)
+ }
+ finally if (!result) undoLog.undoTo(before)
+ result
+ }
+ finally undoLog.unlock()
+ }
+ finally {
+ subsametypeRecursions -= 1
+ // XXX AM TODO: figure out when it is safe and needed to clear the log -- the commented approach below is too eager (it breaks #3281, #3866)
+ // it doesn't help to keep separate recursion counts for the three methods that now share it
+ // if (subsametypeRecursions == 0) undoLog.clear()
+ }
+
+ private def isSameType1(tp1: Type, tp2: Type): Boolean = {
+ if ((tp1 eq tp2) ||
+ (tp1 eq ErrorType) || (tp1 eq WildcardType) ||
+ (tp2 eq ErrorType) || (tp2 eq WildcardType))
+ true
+ else if ((tp1 eq NoType) || (tp2 eq NoType))
+ false
+ else if (tp1 eq NoPrefix) // !! I do not see how this would be warranted by the spec
+ tp2.typeSymbol.isPackageClass
+ else if (tp2 eq NoPrefix) // !! I do not see how this would be warranted by the spec
+ tp1.typeSymbol.isPackageClass
+ else {
+ isSameType2(tp1, tp2) || {
+ val tp1n = normalizePlus(tp1)
+ val tp2n = normalizePlus(tp2)
+ ((tp1n ne tp1) || (tp2n ne tp2)) && isSameType(tp1n, tp2n)
+ }
+ }
+ }
+
+ def isSameType2(tp1: Type, tp2: Type): Boolean = {
+ tp1 match {
+ case tr1: TypeRef =>
+ tp2 match {
+ case tr2: TypeRef =>
+ return (equalSymsAndPrefixes(tr1.sym, tr1.pre, tr2.sym, tr2.pre) &&
+ ((tp1.isHigherKinded && tp2.isHigherKinded && tp1.normalize =:= tp2.normalize) ||
+ isSameTypes(tr1.args, tr2.args))) ||
+ ((tr1.pre, tr2.pre) match {
+ case (tv @ TypeVar(_,_), _) => tv.registerTypeSelection(tr1.sym, tr2)
+ case (_, tv @ TypeVar(_,_)) => tv.registerTypeSelection(tr2.sym, tr1)
+ case _ => false
+ })
+ case _: SingleType =>
+ return isSameType2(tp2, tp1) // put singleton type on the left, caught below
+ case _ =>
+ }
+ case tt1: ThisType =>
+ tp2 match {
+ case tt2: ThisType =>
+ if (tt1.sym == tt2.sym) return true
+ case _ =>
+ }
+ case st1: SingleType =>
+ tp2 match {
+ case st2: SingleType =>
+ if (equalSymsAndPrefixes(st1.sym, st1.pre, st2.sym, st2.pre)) return true
+ case TypeRef(pre2, sym2, Nil) =>
+ if (sym2.isModuleClass && equalSymsAndPrefixes(st1.sym, st1.pre, sym2.sourceModule, pre2)) return true
+ case _ =>
+ }
+ case ct1: ConstantType =>
+ tp2 match {
+ case ct2: ConstantType =>
+ return (ct1.value == ct2.value)
+ case _ =>
+ }
+ case rt1: RefinedType =>
+ tp2 match {
+ case rt2: RefinedType => //
+ def isSubScope(s1: Scope, s2: Scope): Boolean = s2.toList.forall {
+ sym2 =>
+ var e1 = s1.lookupEntry(sym2.name)
+ (e1 ne null) && {
+ val substSym = sym2.info.substThis(sym2.owner, e1.sym.owner)
+ var isEqual = false
+ while (!isEqual && (e1 ne null)) {
+ isEqual = e1.sym.info =:= substSym
+ e1 = s1.lookupNextEntry(e1)
+ }
+ isEqual
+ }
+ }
+ //Console.println("is same? " + tp1 + " " + tp2 + " " + tp1.typeSymbol.owner + " " + tp2.typeSymbol.owner)//DEBUG
+ return isSameTypes(rt1.parents, rt2.parents) && {
+ val decls1 = rt1.decls
+ val decls2 = rt2.decls
+ isSubScope(decls1, decls2) && isSubScope(decls2, decls1)
+ }
+ case _ =>
+ }
+ case mt1: MethodType =>
+ tp2 match {
+ case mt2: MethodType =>
+ return isSameTypes(mt1.paramTypes, mt2.paramTypes) &&
+ mt1.resultType =:= mt2.resultType.substSym(mt2.params, mt1.params) &&
+ mt1.isImplicit == mt2.isImplicit
+ // note: no case NullaryMethodType(restpe) => return mt1.params.isEmpty && mt1.resultType =:= restpe
+ case _ =>
+ }
+ case NullaryMethodType(restpe1) =>
+ tp2 match {
+ // note: no case mt2: MethodType => return mt2.params.isEmpty && restpe =:= mt2.resultType
+ case NullaryMethodType(restpe2) =>
+ return restpe1 =:= restpe2
+ case _ =>
+ }
+ case PolyType(tparams1, res1) =>
+ tp2 match {
+ case PolyType(tparams2, res2) =>
+ // assert((tparams1 map (_.typeParams.length)) == (tparams2 map (_.typeParams.length)))
+ // @M looks like it might suffer from same problem as #2210
+ return (
+ (sameLength(tparams1, tparams2)) && // corresponds does not check length of two sequences before checking the predicate
+ (tparams1 corresponds tparams2)(_.info =:= _.info.substSym(tparams2, tparams1)) &&
+ res1 =:= res2.substSym(tparams2, tparams1)
+ )
+ case _ =>
+ }
+ case ExistentialType(tparams1, res1) =>
+ tp2 match {
+ case ExistentialType(tparams2, res2) =>
+ // @M looks like it might suffer from same problem as #2210
+ return (
+ // corresponds does not check length of two sequences before checking the predicate -- faster & needed to avoid crasher in #2956
+ sameLength(tparams1, tparams2) &&
+ (tparams1 corresponds tparams2)(_.info =:= _.info.substSym(tparams2, tparams1)) &&
+ res1 =:= res2.substSym(tparams2, tparams1)
+ )
+ case _ =>
+ }
+ case TypeBounds(lo1, hi1) =>
+ tp2 match {
+ case TypeBounds(lo2, hi2) =>
+ return lo1 =:= lo2 && hi1 =:= hi2
+ case _ =>
+ }
+ case BoundedWildcardType(bounds) =>
+ return bounds containsType tp2
+ case _ =>
+ }
+ tp2 match {
+ case BoundedWildcardType(bounds) =>
+ return bounds containsType tp1
+ case _ =>
+ }
+ tp1 match {
+ case tv @ TypeVar(_,_) =>
+ return tv.registerTypeEquality(tp2, typeVarLHS = true)
+ case _ =>
+ }
+ tp2 match {
+ case tv @ TypeVar(_,_) =>
+ return tv.registerTypeEquality(tp1, typeVarLHS = false)
+ case _ =>
+ }
+ tp1 match {
+ case _: AnnotatedType =>
+ return annotationsConform(tp1, tp2) && annotationsConform(tp2, tp1) && tp1.withoutAnnotations =:= tp2.withoutAnnotations
+ case _ =>
+ }
+ tp2 match {
+ case _: AnnotatedType =>
+ return annotationsConform(tp1, tp2) && annotationsConform(tp2, tp1) && tp1.withoutAnnotations =:= tp2.withoutAnnotations
+ case _ =>
+ }
+ tp1 match {
+ case _: SingletonType =>
+ tp2 match {
+ case _: SingletonType =>
+ def chaseDealiasedUnderlying(tp: Type): Type = {
+ var origin = tp
+ var next = origin.underlying.dealias
+ while (next.isInstanceOf[SingletonType]) {
+ assert(origin ne next, origin)
+ origin = next
+ next = origin.underlying.dealias
+ }
+ origin
+ }
+ val origin1 = chaseDealiasedUnderlying(tp1)
+ val origin2 = chaseDealiasedUnderlying(tp2)
+ ((origin1 ne tp1) || (origin2 ne tp2)) && (origin1 =:= origin2)
+ case _ =>
+ false
+ }
+ case _ =>
+ false
+ }
+ }
+
+ def isSubType(tp1: Type, tp2: Type): Boolean = isSubType(tp1, tp2, AnyDepth)
+
+ def isSubType(tp1: Type, tp2: Type, depth: Int): Boolean = try {
+ subsametypeRecursions += 1
+
+ //OPT cutdown on Function0 allocation
+ //was:
+ // undoLog undoUnless { // if subtype test fails, it should not affect constraints on typevars
+ // if (subsametypeRecursions >= LogPendingSubTypesThreshold) {
+ // val p = new SubTypePair(tp1, tp2)
+ // if (pendingSubTypes(p))
+ // false
+ // else
+ // try {
+ // pendingSubTypes += p
+ // isSubType2(tp1, tp2, depth)
+ // } finally {
+ // pendingSubTypes -= p
+ // }
+ // } else {
+ // isSubType2(tp1, tp2, depth)
+ // }
+ // }
+
+ undoLog.lock()
+ try {
+ val before = undoLog.log
+ var result = false
+
+ try result = { // if subtype test fails, it should not affect constraints on typevars
+ if (subsametypeRecursions >= LogPendingSubTypesThreshold) {
+ val p = new SubTypePair(tp1, tp2)
+ if (pendingSubTypes(p))
+ false
+ else
+ try {
+ pendingSubTypes += p
+ isSubType2(tp1, tp2, depth)
+ } finally {
+ pendingSubTypes -= p
+ }
+ } else {
+ isSubType2(tp1, tp2, depth)
+ }
+ } finally if (!result) undoLog.undoTo(before)
+
+ result
+ } finally undoLog.unlock()
+ } finally {
+ subsametypeRecursions -= 1
+ // XXX AM TODO: figure out when it is safe and needed to clear the log -- the commented approach below is too eager (it breaks #3281, #3866)
+ // it doesn't help to keep separate recursion counts for the three methods that now share it
+ // if (subsametypeRecursions == 0) undoLog.clear()
+ }
+
+ private def isPolySubType(tp1: PolyType, tp2: PolyType): Boolean = {
+ val PolyType(tparams1, res1) = tp1
+ val PolyType(tparams2, res2) = tp2
+
+ sameLength(tparams1, tparams2) && {
+ // fast-path: polymorphic method type -- type params cannot be captured
+ val isMethod = tparams1.head.owner.isMethod
+ //@M for an example of why we need to generate fresh symbols otherwise, see neg/tcpoly_ticket2101.scala
+ val substitutes = if (isMethod) tparams1 else cloneSymbols(tparams1)
+ def sub1(tp: Type) = if (isMethod) tp else tp.substSym(tparams1, substitutes)
+ def sub2(tp: Type) = tp.substSym(tparams2, substitutes)
+ def cmp(p1: Symbol, p2: Symbol) = sub2(p2.info) <:< sub1(p1.info)
+
+ (tparams1 corresponds tparams2)(cmp) && (sub1(res1) <:< sub2(res2))
+ }
+ }
+
+ // @assume tp1.isHigherKinded || tp2.isHigherKinded
+ def isHKSubType(tp1: Type, tp2: Type, depth: Int): Boolean = {
+ def isSub(ntp1: Type, ntp2: Type) = (ntp1.withoutAnnotations, ntp2.withoutAnnotations) match {
+ case (TypeRef(_, AnyClass, _), _) => false // avoid some warnings when Nothing/Any are on the other side
+ case (_, TypeRef(_, NothingClass, _)) => false
+ case (pt1: PolyType, pt2: PolyType) => isPolySubType(pt1, pt2) // @assume both .isHigherKinded (both normalized to PolyType)
+ case (_: PolyType, MethodType(ps, _)) if ps exists (_.tpe.isWildcard) => false // don't warn on HasMethodMatching on right hand side
+ case _ => // @assume !(both .isHigherKinded) thus cannot be subtypes
+ def tp_s(tp: Type): String = f"$tp%-20s ${util.shortClassOfInstance(tp)}%s"
+ devWarning(s"HK subtype check on $tp1 and $tp2, but both don't normalize to polytypes:\n tp1=${tp_s(ntp1)}\n tp2=${tp_s(ntp2)}")
+ false
+ }
+
+ ( tp1.typeSymbol == NothingClass // @M Nothing is subtype of every well-kinded type
+ || tp2.typeSymbol == AnyClass // @M Any is supertype of every well-kinded type (@PP: is it? What about continuations plugin?)
+ || isSub(tp1.normalize, tp2.normalize) && annotationsConform(tp1, tp2) // @M! normalize reduces higher-kinded case to PolyType's
+ )
+ }
+
+ /** Does type `tp1` conform to `tp2`? */
+ private def isSubType2(tp1: Type, tp2: Type, depth: Int): Boolean = {
+ if ((tp1 eq tp2) || isErrorOrWildcard(tp1) || isErrorOrWildcard(tp2)) return true
+ if ((tp1 eq NoType) || (tp2 eq NoType)) return false
+ if (tp1 eq NoPrefix) return (tp2 eq NoPrefix) || tp2.typeSymbol.isPackageClass // !! I do not see how the "isPackageClass" would be warranted by the spec
+ if (tp2 eq NoPrefix) return tp1.typeSymbol.isPackageClass
+ if (isSingleType(tp1) && isSingleType(tp2) || isConstantType(tp1) && isConstantType(tp2)) return tp1 =:= tp2
+ if (tp1.isHigherKinded || tp2.isHigherKinded) return isHKSubType(tp1, tp2, depth)
+
+ /** First try, on the right:
+ * - unwrap Annotated types, BoundedWildcardTypes,
+ * - bind TypeVars on the right, if lhs is not Annotated nor BoundedWildcard
+ * - handle common cases for first-kind TypeRefs on both sides as a fast path.
+ */
+ def firstTry = tp2 match {
+ // fast path: two typerefs, none of them HK
+ case tr2: TypeRef =>
+ tp1 match {
+ case tr1: TypeRef =>
+ val sym1 = tr1.sym
+ val sym2 = tr2.sym
+ val pre1 = tr1.pre
+ val pre2 = tr2.pre
+ (((if (sym1 == sym2) phase.erasedTypes || sym1.owner.hasPackageFlag || isSubType(pre1, pre2, depth)
+ else (sym1.name == sym2.name && !sym1.isModuleClass && !sym2.isModuleClass &&
+ (isUnifiable(pre1, pre2) ||
+ isSameSpecializedSkolem(sym1, sym2, pre1, pre2) ||
+ sym2.isAbstractType && isSubPre(pre1, pre2, sym2)))) &&
+ isSubArgs(tr1.args, tr2.args, sym1.typeParams, depth))
+ ||
+ sym2.isClass && {
+ val base = tr1 baseType sym2
+ (base ne tr1) && isSubType(base, tr2, depth)
+ }
+ ||
+ thirdTryRef(tr1, tr2))
+ case _ =>
+ secondTry
+ }
+ case AnnotatedType(_, _, _) =>
+ isSubType(tp1.withoutAnnotations, tp2.withoutAnnotations, depth) &&
+ annotationsConform(tp1, tp2)
+ case BoundedWildcardType(bounds) =>
+ isSubType(tp1, bounds.hi, depth)
+ case tv2 @ TypeVar(_, constr2) =>
+ tp1 match {
+ case AnnotatedType(_, _, _) | BoundedWildcardType(_) =>
+ secondTry
+ case _ =>
+ tv2.registerBound(tp1, isLowerBound = true)
+ }
+ case _ =>
+ secondTry
+ }
+
+ /** Second try, on the left:
+ * - unwrap AnnotatedTypes, BoundedWildcardTypes,
+ * - bind typevars,
+ * - handle existential types by skolemization.
+ */
+ def secondTry = tp1 match {
+ case AnnotatedType(_, _, _) =>
+ isSubType(tp1.withoutAnnotations, tp2.withoutAnnotations, depth) &&
+ annotationsConform(tp1, tp2)
+ case BoundedWildcardType(bounds) =>
+ isSubType(tp1.bounds.lo, tp2, depth)
+ case tv @ TypeVar(_,_) =>
+ tv.registerBound(tp2, isLowerBound = false)
+ case ExistentialType(_, _) =>
+ try {
+ skolemizationLevel += 1
+ isSubType(tp1.skolemizeExistential, tp2, depth)
+ } finally {
+ skolemizationLevel -= 1
+ }
+ case _ =>
+ thirdTry
+ }
+
+ def thirdTryRef(tp1: Type, tp2: TypeRef): Boolean = {
+ val sym2 = tp2.sym
+ sym2 match {
+ case NotNullClass => tp1.isNotNull
+ case SingletonClass => tp1.isStable || fourthTry
+ case _: ClassSymbol =>
+ if (isRawType(tp2))
+ isSubType(tp1, rawToExistential(tp2), depth)
+ else if (sym2.name == tpnme.REFINE_CLASS_NAME)
+ isSubType(tp1, sym2.info, depth)
+ else
+ fourthTry
+ case _: TypeSymbol =>
+ if (sym2 hasFlag DEFERRED) {
+ val tp2a = tp2.bounds.lo
+ isDifferentTypeConstructor(tp2, tp2a) &&
+ isSubType(tp1, tp2a, depth) ||
+ fourthTry
+ } else {
+ isSubType(tp1.normalize, tp2.normalize, depth)
+ }
+ case _ =>
+ fourthTry
+ }
+ }
+
+ /** Third try, on the right:
+ * - decompose refined types.
+ * - handle typerefs, existentials, and notnull types.
+ * - handle left+right method types, polytypes, typebounds
+ */
+ def thirdTry = tp2 match {
+ case tr2: TypeRef =>
+ thirdTryRef(tp1, tr2)
+ case rt2: RefinedType =>
+ (rt2.parents forall (isSubType(tp1, _, depth))) &&
+ (rt2.decls forall (specializesSym(tp1, _, depth)))
+ case et2: ExistentialType =>
+ et2.withTypeVars(isSubType(tp1, _, depth), depth) || fourthTry
+ case nn2: NotNullType =>
+ tp1.isNotNull && isSubType(tp1, nn2.underlying, depth)
+ case mt2: MethodType =>
+ tp1 match {
+ case mt1 @ MethodType(params1, res1) =>
+ val params2 = mt2.params
+ val res2 = mt2.resultType
+ (sameLength(params1, params2) &&
+ mt1.isImplicit == mt2.isImplicit &&
+ matchingParams(params1, params2, mt1.isJava, mt2.isJava) &&
+ isSubType(res1.substSym(params1, params2), res2, depth))
+ // TODO: if mt1.params.isEmpty, consider NullaryMethodType?
+ case _ =>
+ false
+ }
+ case pt2 @ NullaryMethodType(_) =>
+ tp1 match {
+ // TODO: consider MethodType mt for which mt.params.isEmpty??
+ case pt1 @ NullaryMethodType(_) =>
+ isSubType(pt1.resultType, pt2.resultType, depth)
+ case _ =>
+ false
+ }
+ case TypeBounds(lo2, hi2) =>
+ tp1 match {
+ case TypeBounds(lo1, hi1) =>
+ isSubType(lo2, lo1, depth) && isSubType(hi1, hi2, depth)
+ case _ =>
+ false
+ }
+ case _ =>
+ fourthTry
+ }
+
+ /** Fourth try, on the left:
+ * - handle typerefs, refined types, notnull and singleton types.
+ */
+ def fourthTry = tp1 match {
+ case tr1 @ TypeRef(pre1, sym1, _) =>
+ sym1 match {
+ case NothingClass => true
+ case NullClass =>
+ tp2 match {
+ case TypeRef(_, sym2, _) =>
+ containsNull(sym2)
+ case _ =>
+ isSingleType(tp2) && isSubType(tp1, tp2.widen, depth)
+ }
+ case _: ClassSymbol =>
+ if (isRawType(tp1))
+ isSubType(rawToExistential(tp1), tp2, depth)
+ else if (sym1.isModuleClass) tp2 match {
+ case SingleType(pre2, sym2) => equalSymsAndPrefixes(sym1.sourceModule, pre1, sym2, pre2)
+ case _ => false
+ }
+ else if (sym1.isRefinementClass)
+ isSubType(sym1.info, tp2, depth)
+ else false
+
+ case _: TypeSymbol =>
+ if (sym1 hasFlag DEFERRED) {
+ val tp1a = tp1.bounds.hi
+ isDifferentTypeConstructor(tp1, tp1a) && isSubType(tp1a, tp2, depth)
+ } else {
+ isSubType(tp1.normalize, tp2.normalize, depth)
+ }
+ case _ =>
+ false
+ }
+ case RefinedType(parents1, _) =>
+ parents1 exists (isSubType(_, tp2, depth))
+ case _: SingletonType | _: NotNullType =>
+ isSubType(tp1.underlying, tp2, depth)
+ case _ =>
+ false
+ }
+
+ firstTry
+ }
+
+
+ def isWeakSubType(tp1: Type, tp2: Type) =
+ tp1.deconst.normalize match {
+ case TypeRef(_, sym1, _) if isNumericValueClass(sym1) =>
+ tp2.deconst.normalize match {
+ case TypeRef(_, sym2, _) if isNumericValueClass(sym2) =>
+ isNumericSubClass(sym1, sym2)
+ case tv2 @ TypeVar(_, _) =>
+ tv2.registerBound(tp1, isLowerBound = true, isNumericBound = true)
+ case _ =>
+ isSubType(tp1, tp2)
+ }
+ case tv1 @ TypeVar(_, _) =>
+ tp2.deconst.normalize match {
+ case TypeRef(_, sym2, _) if isNumericValueClass(sym2) =>
+ tv1.registerBound(tp2, isLowerBound = false, isNumericBound = true)
+ case _ =>
+ isSubType(tp1, tp2)
+ }
+ case _ =>
+ isSubType(tp1, tp2)
+ }
+
+ /** The isNumericValueType tests appear redundant, but without them
+ * test/continuations-neg/function3.scala goes into an infinite loop.
+ * (Even if the calls are to typeSymbolDirect.)
+ */
+ def isNumericSubType(tp1: Type, tp2: Type): Boolean = (
+ isNumericValueType(tp1)
+ && isNumericValueType(tp2)
+ && isNumericSubClass(tp1.typeSymbol, tp2.typeSymbol)
+ )
+
+}
diff --git a/src/reflect/scala/reflect/internal/tpe/TypeConstraints.scala b/src/reflect/scala/reflect/internal/tpe/TypeConstraints.scala
new file mode 100644
index 0000000000..a002b01f70
--- /dev/null
+++ b/src/reflect/scala/reflect/internal/tpe/TypeConstraints.scala
@@ -0,0 +1,282 @@
+package scala.reflect
+package internal
+package tpe
+
+import scala.collection.{ generic }
+import generic.Clearable
+
+
+private[internal] trait TypeConstraints {
+ self: SymbolTable =>
+ import definitions._
+
+ /** A log of type variable with their original constraints. Used in order
+ * to undo constraints in the case of isSubType/isSameType failure.
+ */
+ lazy val undoLog = newUndoLog
+
+ protected def newUndoLog = new UndoLog
+
+ class UndoLog extends Clearable {
+ private type UndoPairs = List[(TypeVar, TypeConstraint)]
+ //OPT this method is public so we can do `manual inlining`
+ var log: UndoPairs = List()
+
+ /*
+ * These two methods provide explicit locking mechanism that is overridden in SynchronizedUndoLog.
+ *
+ * The idea behind explicit locking mechanism is that all public methods that access mutable state
+ * will have to obtain the lock for their entire execution so both reads and writes can be kept in
+ * right order. Originally, that was achieved by overriding those public methods in
+ * `SynchronizedUndoLog` which was fine but expensive. The reason is that those public methods take
+ * thunk as argument and if we keep them non-final there's no way to make them inlined so thunks
+ * can go away.
+ *
+ * By using explicit locking we can achieve inlining.
+ *
+ * NOTE: They are made public for now so we can apply 'manual inlining' (copy&pasting into hot
+ * places implementation of `undo` or `undoUnless`). This should be changed back to protected
+ * once inliner is fixed.
+ */
+ def lock(): Unit = ()
+ def unlock(): Unit = ()
+
+ // register with the auto-clearing cache manager
+ perRunCaches.recordCache(this)
+
+ /** Undo all changes to constraints to type variables upto `limit`. */
+ //OPT this method is public so we can do `manual inlining`
+ def undoTo(limit: UndoPairs) {
+ assertCorrectThread()
+ while ((log ne limit) && log.nonEmpty) {
+ val (tv, constr) = log.head
+ tv.constr = constr
+ log = log.tail
+ }
+ }
+
+ /** No sync necessary, because record should only
+ * be called from within an undo or undoUnless block,
+ * which is already synchronized.
+ */
+ private[reflect] def record(tv: TypeVar) = {
+ log ::= ((tv, tv.constr.cloneInternal))
+ }
+
+ def clear() {
+ lock()
+ try {
+ if (settings.debug.value)
+ self.log("Clearing " + log.size + " entries from the undoLog.")
+ log = Nil
+ } finally unlock()
+ }
+
+ // `block` should not affect constraints on typevars
+ def undo[T](block: => T): T = {
+ lock()
+ try {
+ val before = log
+
+ try block
+ finally undoTo(before)
+ } finally unlock()
+ }
+ }
+
+ /** @PP: Unable to see why these apparently constant types should need vals
+ * in every TypeConstraint, I lifted them out.
+ */
+ private lazy val numericLoBound = IntClass.tpe
+ private lazy val numericHiBound = intersectionType(List(ByteClass.tpe, CharClass.tpe), ScalaPackageClass)
+
+ /** A class expressing upper and lower bounds constraints of type variables,
+ * as well as their instantiations.
+ */
+ class TypeConstraint(lo0: List[Type], hi0: List[Type], numlo0: Type, numhi0: Type, avoidWidening0: Boolean = false) {
+ def this(lo0: List[Type], hi0: List[Type]) = this(lo0, hi0, NoType, NoType)
+ def this(bounds: TypeBounds) = this(List(bounds.lo), List(bounds.hi))
+ def this() = this(List(), List())
+
+ /* Syncnote: Type constraints are assumed to be used from only one
+ * thread. They are not exposed in api.Types and are used only locally
+ * in operations that are exposed from types. Hence, no syncing of any
+ * variables should be ncessesary.
+ */
+
+ /** Guard these lists against AnyClass and NothingClass appearing,
+ * else loBounds.isEmpty will have different results for an empty
+ * constraint and one with Nothing as a lower bound. [Actually
+ * guarding addLoBound/addHiBound somehow broke raw types so it
+ * only guards against being created with them.]
+ */
+ private var lobounds = lo0 filterNot typeIsNothing
+ private var hibounds = hi0 filterNot typeIsAny
+ private var numlo = numlo0
+ private var numhi = numhi0
+ private var avoidWidening = avoidWidening0
+
+ def loBounds: List[Type] = if (numlo == NoType) lobounds else numlo :: lobounds
+ def hiBounds: List[Type] = if (numhi == NoType) hibounds else numhi :: hibounds
+ def avoidWiden: Boolean = avoidWidening
+
+ def addLoBound(tp: Type, isNumericBound: Boolean = false) {
+ // For some reason which is still a bit fuzzy, we must let Nothing through as
+ // a lower bound despite the fact that Nothing is always a lower bound. My current
+ // supposition is that the side-effecting type constraint accumulation mechanism
+ // depends on these subtype tests being performed to make forward progress when
+ // there are mutally recursive type vars.
+ // See pos/t6367 and pos/t6499 for the competing test cases.
+ val mustConsider = tp.typeSymbol match {
+ case NothingClass => true
+ case _ => !(lobounds contains tp)
+ }
+ if (mustConsider) {
+ if (isNumericBound && isNumericValueType(tp)) {
+ if (numlo == NoType || isNumericSubType(numlo, tp))
+ numlo = tp
+ else if (!isNumericSubType(tp, numlo))
+ numlo = numericLoBound
+ }
+ else lobounds ::= tp
+ }
+ }
+
+ def checkWidening(tp: Type) {
+ if(tp.isStable) avoidWidening = true
+ else tp match {
+ case HasTypeMember(_, _) => avoidWidening = true
+ case _ =>
+ }
+ }
+
+ def addHiBound(tp: Type, isNumericBound: Boolean = false) {
+ // My current test case only demonstrates the need to let Nothing through as
+ // a lower bound, but I suspect the situation is symmetrical.
+ val mustConsider = tp.typeSymbol match {
+ case AnyClass => true
+ case _ => !(hibounds contains tp)
+ }
+ if (mustConsider) {
+ checkWidening(tp)
+ if (isNumericBound && isNumericValueType(tp)) {
+ if (numhi == NoType || isNumericSubType(tp, numhi))
+ numhi = tp
+ else if (!isNumericSubType(numhi, tp))
+ numhi = numericHiBound
+ }
+ else hibounds ::= tp
+ }
+ }
+
+ def isWithinBounds(tp: Type): Boolean =
+ lobounds.forall(_ <:< tp) &&
+ hibounds.forall(tp <:< _) &&
+ (numlo == NoType || (numlo weak_<:< tp)) &&
+ (numhi == NoType || (tp weak_<:< numhi))
+
+ var inst: Type = NoType // @M reduce visibility?
+
+ def instValid = (inst ne null) && (inst ne NoType)
+
+ def cloneInternal = {
+ val tc = new TypeConstraint(lobounds, hibounds, numlo, numhi, avoidWidening)
+ tc.inst = inst
+ tc
+ }
+
+ override def toString = {
+ val boundsStr = {
+ val lo = loBounds filterNot typeIsNothing
+ val hi = hiBounds filterNot typeIsAny
+ val lostr = if (lo.isEmpty) Nil else List(lo.mkString(" >: (", ", ", ")"))
+ val histr = if (hi.isEmpty) Nil else List(hi.mkString(" <: (", ", ", ")"))
+
+ lostr ++ histr mkString ("[", " | ", "]")
+ }
+ if (inst eq NoType) boundsStr
+ else boundsStr + " _= " + inst.safeToString
+ }
+ }
+
+ /** Solve constraint collected in types `tvars`.
+ *
+ * @param tvars All type variables to be instantiated.
+ * @param tparams The type parameters corresponding to `tvars`
+ * @param variances The variances of type parameters; need to reverse
+ * solution direction for all contravariant variables.
+ * @param upper When `true` search for max solution else min.
+ */
+ def solve(tvars: List[TypeVar], tparams: List[Symbol],
+ variances: List[Variance], upper: Boolean): Boolean =
+ solve(tvars, tparams, variances, upper, AnyDepth)
+
+ def solve(tvars: List[TypeVar], tparams: List[Symbol],
+ variances: List[Variance], upper: Boolean, depth: Int): Boolean = {
+
+ def solveOne(tvar: TypeVar, tparam: Symbol, variance: Variance) {
+ if (tvar.constr.inst == NoType) {
+ val up = if (variance.isContravariant) !upper else upper
+ tvar.constr.inst = null
+ val bound: Type = if (up) tparam.info.bounds.hi else tparam.info.bounds.lo
+ //Console.println("solveOne0(tv, tp, v, b)="+(tvar, tparam, variance, bound))
+ var cyclic = bound contains tparam
+ foreach3(tvars, tparams, variances)((tvar2, tparam2, variance2) => {
+ val ok = (tparam2 != tparam) && (
+ (bound contains tparam2)
+ || up && (tparam2.info.bounds.lo =:= tparam.tpeHK)
+ || !up && (tparam2.info.bounds.hi =:= tparam.tpeHK)
+ )
+ if (ok) {
+ if (tvar2.constr.inst eq null) cyclic = true
+ solveOne(tvar2, tparam2, variance2)
+ }
+ })
+ if (!cyclic) {
+ if (up) {
+ if (bound.typeSymbol != AnyClass) {
+ log(s"$tvar addHiBound $bound.instantiateTypeParams($tparams, $tvars)")
+ tvar addHiBound bound.instantiateTypeParams(tparams, tvars)
+ }
+ for (tparam2 <- tparams)
+ tparam2.info.bounds.lo.dealias match {
+ case TypeRef(_, `tparam`, _) =>
+ log(s"$tvar addHiBound $tparam2.tpeHK.instantiateTypeParams($tparams, $tvars)")
+ tvar addHiBound tparam2.tpeHK.instantiateTypeParams(tparams, tvars)
+ case _ =>
+ }
+ } else {
+ if (bound.typeSymbol != NothingClass && bound.typeSymbol != tparam) {
+ log(s"$tvar addLoBound $bound.instantiateTypeParams($tparams, $tvars)")
+ tvar addLoBound bound.instantiateTypeParams(tparams, tvars)
+ }
+ for (tparam2 <- tparams)
+ tparam2.info.bounds.hi.dealias match {
+ case TypeRef(_, `tparam`, _) =>
+ log(s"$tvar addLoBound $tparam2.tpeHK.instantiateTypeParams($tparams, $tvars)")
+ tvar addLoBound tparam2.tpeHK.instantiateTypeParams(tparams, tvars)
+ case _ =>
+ }
+ }
+ }
+ tvar.constr.inst = NoType // necessary because hibounds/lobounds may contain tvar
+
+ //println("solving "+tvar+" "+up+" "+(if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds)+((if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds) map (_.widen)))
+ val newInst = (
+ if (up) {
+ if (depth != AnyDepth) glb(tvar.constr.hiBounds, depth) else glb(tvar.constr.hiBounds)
+ } else {
+ if (depth != AnyDepth) lub(tvar.constr.loBounds, depth) else lub(tvar.constr.loBounds)
+ }
+ )
+ log(s"$tvar setInst $newInst")
+ tvar setInst newInst
+ //Console.println("solving "+tvar+" "+up+" "+(if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds)+((if (up) (tvar.constr.hiBounds) else tvar.constr.loBounds) map (_.widen))+" = "+tvar.constr.inst)//@MDEBUG
+ }
+ }
+
+ // println("solving "+tvars+"/"+tparams+"/"+(tparams map (_.info)))
+ foreach3(tvars, tparams, variances)(solveOne)
+ tvars forall (tvar => tvar.constr.isWithinBounds(tvar.constr.inst))
+ }
+}
diff --git a/src/reflect/scala/reflect/internal/tpe/TypeMaps.scala b/src/reflect/scala/reflect/internal/tpe/TypeMaps.scala
new file mode 100644
index 0000000000..51363c0f82
--- /dev/null
+++ b/src/reflect/scala/reflect/internal/tpe/TypeMaps.scala
@@ -0,0 +1,1144 @@
+package scala.reflect
+package internal
+package tpe
+
+import scala.collection.{ mutable, immutable }
+import Flags._
+import scala.annotation.tailrec
+import Variance._
+
+private[internal] trait TypeMaps {
+ self: SymbolTable =>
+ import definitions._
+
+ /** Normalize any type aliases within this type (@see Type#normalize).
+ * Note that this depends very much on the call to "normalize", not "dealias",
+ * so it is no longer carries the too-stealthy name "deAlias".
+ */
+ object normalizeAliases extends TypeMap {
+ def apply(tp: Type): Type = tp match {
+ case TypeRef(_, sym, _) if sym.isAliasType =>
+ def msg = if (tp.isHigherKinded) s"Normalizing type alias function $tp" else s"Dealiasing type alias $tp"
+ mapOver(logResult(msg)(tp.normalize))
+ case _ => mapOver(tp)
+ }
+ }
+
+ /** Remove any occurrence of type <singleton> from this type and its parents */
+ object dropSingletonType extends TypeMap {
+ def apply(tp: Type): Type = {
+ tp match {
+ case TypeRef(_, SingletonClass, _) =>
+ AnyClass.tpe
+ case tp1 @ RefinedType(parents, decls) =>
+ parents filter (_.typeSymbol != SingletonClass) match {
+ case Nil => AnyClass.tpe
+ case p :: Nil if decls.isEmpty => mapOver(p)
+ case ps => mapOver(copyRefinedType(tp1, ps, decls))
+ }
+ case tp1 =>
+ mapOver(tp1)
+ }
+ }
+ }
+
+ /** Type with all top-level occurrences of abstract types replaced by their bounds */
+ object abstractTypesToBounds extends TypeMap {
+ def apply(tp: Type): Type = tp match {
+ case TypeRef(_, sym, _) if sym.isAliasType => apply(tp.dealias)
+ case TypeRef(_, sym, _) if sym.isAbstractType => apply(tp.bounds.hi)
+ case rtp @ RefinedType(parents, decls) => copyRefinedType(rtp, parents mapConserve this, decls)
+ case AnnotatedType(_, _, _) => mapOver(tp)
+ case _ => tp // no recursion - top level only
+ }
+ }
+
+ // Set to true for A* => Seq[A]
+ // (And it will only rewrite A* in method result types.)
+ // This is the pre-existing behavior.
+ // Or false for Seq[A] => Seq[A]
+ // (It will rewrite A* everywhere but method parameters.)
+ // This is the specified behavior.
+ protected def etaExpandKeepsStar = false
+
+ /** Turn any T* types into Seq[T] except when
+ * in method parameter position.
+ */
+ object dropIllegalStarTypes extends TypeMap {
+ def apply(tp: Type): Type = tp match {
+ case MethodType(params, restpe) =>
+ // Not mapping over params
+ val restpe1 = apply(restpe)
+ if (restpe eq restpe1) tp
+ else MethodType(params, restpe1)
+ case TypeRef(_, RepeatedParamClass, arg :: Nil) =>
+ seqType(arg)
+ case _ =>
+ if (etaExpandKeepsStar) tp else mapOver(tp)
+ }
+ }
+
+ trait AnnotationFilter extends TypeMap {
+ def keepAnnotation(annot: AnnotationInfo): Boolean
+
+ override def mapOver(annot: AnnotationInfo) =
+ if (keepAnnotation(annot)) super.mapOver(annot)
+ else UnmappableAnnotation
+ }
+
+ trait KeepOnlyTypeConstraints extends AnnotationFilter {
+ // filter keeps only type constraint annotations
+ def keepAnnotation(annot: AnnotationInfo) = annot matches TypeConstraintClass
+ }
+
+ // todo. move these into scala.reflect.api
+
+ /** A prototype for mapping a function over all possible types
+ */
+ abstract class TypeMap(trackVariance: Boolean) extends (Type => Type) {
+ def this() = this(trackVariance = false)
+ def apply(tp: Type): Type
+
+ private[this] var _variance: Variance = if (trackVariance) Covariant else Invariant
+
+ def variance_=(x: Variance) = { assert(trackVariance, this) ; _variance = x }
+ def variance = _variance
+
+ /** Map this function over given type */
+ def mapOver(tp: Type): Type = tp match {
+ case tr @ TypeRef(pre, sym, args) =>
+ val pre1 = this(pre)
+ val args1 = (
+ if (trackVariance && args.nonEmpty && !variance.isInvariant && sym.typeParams.nonEmpty)
+ mapOverArgs(args, sym.typeParams)
+ else
+ args mapConserve this
+ )
+ if ((pre1 eq pre) && (args1 eq args)) tp
+ else copyTypeRef(tp, pre1, tr.coevolveSym(pre1), args1)
+ case ThisType(_) => tp
+ case SingleType(pre, sym) =>
+ if (sym.isPackageClass) tp // short path
+ else {
+ val pre1 = this(pre)
+ if (pre1 eq pre) tp
+ else singleType(pre1, sym)
+ }
+ case MethodType(params, result) =>
+ val params1 = flipped(mapOver(params))
+ val result1 = this(result)
+ if ((params1 eq params) && (result1 eq result)) tp
+ else copyMethodType(tp, params1, result1.substSym(params, params1))
+ case PolyType(tparams, result) =>
+ val tparams1 = flipped(mapOver(tparams))
+ val result1 = this(result)
+ if ((tparams1 eq tparams) && (result1 eq result)) tp
+ else PolyType(tparams1, result1.substSym(tparams, tparams1))
+ case NullaryMethodType(result) =>
+ val result1 = this(result)
+ if (result1 eq result) tp
+ else NullaryMethodType(result1)
+ case ConstantType(_) => tp
+ case SuperType(thistp, supertp) =>
+ val thistp1 = this(thistp)
+ val supertp1 = this(supertp)
+ if ((thistp1 eq thistp) && (supertp1 eq supertp)) tp
+ else SuperType(thistp1, supertp1)
+ case TypeBounds(lo, hi) =>
+ val lo1 = flipped(this(lo))
+ val hi1 = this(hi)
+ if ((lo1 eq lo) && (hi1 eq hi)) tp
+ else TypeBounds(lo1, hi1)
+ case BoundedWildcardType(bounds) =>
+ val bounds1 = this(bounds)
+ if (bounds1 eq bounds) tp
+ else BoundedWildcardType(bounds1.asInstanceOf[TypeBounds])
+ case rtp @ RefinedType(parents, decls) =>
+ val parents1 = parents mapConserve this
+ val decls1 = mapOver(decls)
+ copyRefinedType(rtp, parents1, decls1)
+ case ExistentialType(tparams, result) =>
+ val tparams1 = mapOver(tparams)
+ val result1 = this(result)
+ if ((tparams1 eq tparams) && (result1 eq result)) tp
+ else newExistentialType(tparams1, result1.substSym(tparams, tparams1))
+ case OverloadedType(pre, alts) =>
+ val pre1 = if (pre.isInstanceOf[ClassInfoType]) pre else this(pre)
+ if (pre1 eq pre) tp
+ else OverloadedType(pre1, alts)
+ case AntiPolyType(pre, args) =>
+ val pre1 = this(pre)
+ val args1 = args mapConserve this
+ if ((pre1 eq pre) && (args1 eq args)) tp
+ else AntiPolyType(pre1, args1)
+ case tv@TypeVar(_, constr) =>
+ if (constr.instValid) this(constr.inst)
+ else tv.applyArgs(mapOverArgs(tv.typeArgs, tv.params)) //@M !args.isEmpty implies !typeParams.isEmpty
+ case NotNullType(tp) =>
+ val tp1 = this(tp)
+ if (tp1 eq tp) tp
+ else NotNullType(tp1)
+ case AnnotatedType(annots, atp, selfsym) =>
+ val annots1 = mapOverAnnotations(annots)
+ val atp1 = this(atp)
+ if ((annots1 eq annots) && (atp1 eq atp)) tp
+ else if (annots1.isEmpty) atp1
+ else AnnotatedType(annots1, atp1, selfsym)
+ /*
+ case ErrorType => tp
+ case WildcardType => tp
+ case NoType => tp
+ case NoPrefix => tp
+ case ErasedSingleType(sym) => tp
+ */
+ case _ =>
+ tp
+ // throw new Error("mapOver inapplicable for " + tp);
+ }
+
+ def withVariance[T](v: Variance)(body: => T): T = {
+ val saved = variance
+ variance = v
+ try body finally variance = saved
+ }
+ @inline final def flipped[T](body: => T): T = {
+ if (trackVariance) variance = variance.flip
+ try body
+ finally if (trackVariance) variance = variance.flip
+ }
+ protected def mapOverArgs(args: List[Type], tparams: List[Symbol]): List[Type] = (
+ if (trackVariance)
+ map2Conserve(args, tparams)((arg, tparam) => withVariance(variance * tparam.variance)(this(arg)))
+ else
+ args mapConserve this
+ )
+ /** Applies this map to the symbol's info, setting variance = Invariant
+ * if necessary when the symbol is an alias.
+ */
+ private def applyToSymbolInfo(sym: Symbol): Type = {
+ if (trackVariance && !variance.isInvariant && sym.isAliasType)
+ withVariance(Invariant)(this(sym.info))
+ else
+ this(sym.info)
+ }
+
+ /** Called by mapOver to determine whether the original symbols can
+ * be returned, or whether they must be cloned.
+ */
+ protected def noChangeToSymbols(origSyms: List[Symbol]): Boolean = {
+ @tailrec def loop(syms: List[Symbol]): Boolean = syms match {
+ case Nil => true
+ case x :: xs => (x.info eq applyToSymbolInfo(x)) && loop(xs)
+ }
+ loop(origSyms)
+ }
+
+ /** Map this function over given scope */
+ def mapOver(scope: Scope): Scope = {
+ val elems = scope.toList
+ val elems1 = mapOver(elems)
+ if (elems1 eq elems) scope
+ else newScopeWith(elems1: _*)
+ }
+
+ /** Map this function over given list of symbols */
+ def mapOver(origSyms: List[Symbol]): List[Symbol] = {
+ // fast path in case nothing changes due to map
+ if (noChangeToSymbols(origSyms)) origSyms
+ // map is not the identity --> do cloning properly
+ else cloneSymbolsAndModify(origSyms, TypeMap.this)
+ }
+
+ def mapOver(annot: AnnotationInfo): AnnotationInfo = {
+ val AnnotationInfo(atp, args, assocs) = annot
+ val atp1 = mapOver(atp)
+ val args1 = mapOverAnnotArgs(args)
+ // there is no need to rewrite assocs, as they are constants
+
+ if ((args eq args1) && (atp eq atp1)) annot
+ else if (args1.isEmpty && args.nonEmpty) UnmappableAnnotation // some annotation arg was unmappable
+ else AnnotationInfo(atp1, args1, assocs) setPos annot.pos
+ }
+
+ def mapOverAnnotations(annots: List[AnnotationInfo]): List[AnnotationInfo] = {
+ val annots1 = annots mapConserve mapOver
+ if (annots1 eq annots) annots
+ else annots1 filterNot (_ eq UnmappableAnnotation)
+ }
+
+ /** Map over a set of annotation arguments. If any
+ * of the arguments cannot be mapped, then return Nil. */
+ def mapOverAnnotArgs(args: List[Tree]): List[Tree] = {
+ val args1 = args mapConserve mapOver
+ if (args1 contains UnmappableTree) Nil
+ else args1
+ }
+
+ def mapOver(tree: Tree): Tree =
+ mapOver(tree, () => return UnmappableTree)
+
+ /** Map a tree that is part of an annotation argument.
+ * If the tree cannot be mapped, then invoke giveup().
+ * The default is to transform the tree with
+ * TypeMapTransformer.
+ */
+ def mapOver(tree: Tree, giveup: ()=>Nothing): Tree =
+ (new TypeMapTransformer).transform(tree)
+
+ /** This transformer leaves the tree alone except to remap
+ * its types. */
+ class TypeMapTransformer extends Transformer {
+ override def transform(tree: Tree) = {
+ val tree1 = super.transform(tree)
+ val tpe1 = TypeMap.this(tree1.tpe)
+ if ((tree eq tree1) && (tree.tpe eq tpe1))
+ tree
+ else
+ tree1.shallowDuplicate.setType(tpe1)
+ }
+ }
+ }
+
+ abstract class TypeTraverser extends TypeMap {
+ def traverse(tp: Type): Unit
+ def apply(tp: Type): Type = { traverse(tp); tp }
+ }
+
+ abstract class TypeTraverserWithResult[T] extends TypeTraverser {
+ def result: T
+ def clear(): Unit
+ }
+
+ abstract class TypeCollector[T](initial: T) extends TypeTraverser {
+ var result: T = _
+ def collect(tp: Type) = {
+ result = initial
+ traverse(tp)
+ result
+ }
+ }
+
+ /** The raw to existential map converts a ''raw type'' to an existential type.
+ * It is necessary because we might have read a raw type of a
+ * parameterized Java class from a class file. At the time we read the type
+ * the corresponding class file might still not be read, so we do not
+ * know what the type parameters of the type are. Therefore
+ * the conversion of raw types to existential types might not have taken place
+ * in ClassFileparser.sigToType (where it is usually done).
+ */
+ def rawToExistential = new TypeMap {
+ private var expanded = immutable.Set[Symbol]()
+ def apply(tp: Type): Type = tp match {
+ case TypeRef(pre, sym, List()) if isRawIfWithoutArgs(sym) =>
+ if (expanded contains sym) AnyRefClass.tpe
+ else try {
+ expanded += sym
+ val eparams = mapOver(typeParamsToExistentials(sym))
+ existentialAbstraction(eparams, typeRef(apply(pre), sym, eparams map (_.tpe)))
+ } finally {
+ expanded -= sym
+ }
+ case _ =>
+ mapOver(tp)
+ }
+ }
+ /***
+ *@M: I think this is more desirable, but Martin prefers to leave raw-types as-is as much as possible
+ object rawToExistentialInJava extends TypeMap {
+ def apply(tp: Type): Type = tp match {
+ // any symbol that occurs in a java sig, not just java symbols
+ // see http://lampsvn.epfl.ch/trac/scala/ticket/2454#comment:14
+ case TypeRef(pre, sym, List()) if !sym.typeParams.isEmpty =>
+ val eparams = typeParamsToExistentials(sym, sym.typeParams)
+ existentialAbstraction(eparams, TypeRef(pre, sym, eparams map (_.tpe)))
+ case _ =>
+ mapOver(tp)
+ }
+ }
+ */
+
+ /** Used by existentialAbstraction.
+ */
+ class ExistentialExtrapolation(tparams: List[Symbol]) extends TypeMap(trackVariance = true) {
+ private val occurCount = mutable.HashMap[Symbol, Int]()
+ private def countOccs(tp: Type) = {
+ tp foreach {
+ case TypeRef(_, sym, _) =>
+ if (tparams contains sym)
+ occurCount(sym) += 1
+ case _ => ()
+ }
+ }
+ def extrapolate(tpe: Type): Type = {
+ tparams foreach (t => occurCount(t) = 0)
+ countOccs(tpe)
+ for (tparam <- tparams)
+ countOccs(tparam.info)
+
+ apply(tpe)
+ }
+
+ /** If these conditions all hold:
+ * 1) we are in covariant (or contravariant) position
+ * 2) this type occurs exactly once in the existential scope
+ * 3) the widened upper (or lower) bound of this type contains no references to tparams
+ * Then we replace this lone occurrence of the type with the widened upper (or lower) bound.
+ * All other types pass through unchanged.
+ */
+ def apply(tp: Type): Type = {
+ val tp1 = mapOver(tp)
+ if (variance.isInvariant) tp1
+ else tp1 match {
+ case TypeRef(pre, sym, args) if tparams contains sym =>
+ val repl = if (variance.isPositive) dropSingletonType(tp1.bounds.hi) else tp1.bounds.lo
+ val count = occurCount(sym)
+ val containsTypeParam = tparams exists (repl contains _)
+ def msg = {
+ val word = if (variance.isPositive) "upper" else "lower"
+ s"Widened lone occurrence of $tp1 inside existential to $word bound"
+ }
+ if (!repl.typeSymbol.isBottomClass && count == 1 && !containsTypeParam)
+ logResult(msg)(repl)
+ else
+ tp1
+ case _ =>
+ tp1
+ }
+ }
+ override def mapOver(tp: Type): Type = tp match {
+ case SingleType(pre, sym) =>
+ if (sym.isPackageClass) tp // short path
+ else {
+ val pre1 = this(pre)
+ if ((pre1 eq pre) || !pre1.isStable) tp
+ else singleType(pre1, sym)
+ }
+ case _ => super.mapOver(tp)
+ }
+
+ // Do not discard the types of existential ident's. The
+ // symbol of the Ident itself cannot be listed in the
+ // existential's parameters, so the resulting existential
+ // type would be ill-formed.
+ override def mapOver(tree: Tree) = tree match {
+ case Ident(_) if tree.tpe.isStable => tree
+ case _ => super.mapOver(tree)
+ }
+ }
+
+ /** Might the given symbol be important when calculating the prefix
+ * of a type? When tp.asSeenFrom(pre, clazz) is called on `tp`,
+ * the result will be `tp` unchanged if `pre` is trivial and `clazz`
+ * is a symbol such that isPossiblePrefix(clazz) == false.
+ */
+ def isPossiblePrefix(clazz: Symbol) = clazz.isClass && !clazz.isPackageClass
+
+ protected[internal] def skipPrefixOf(pre: Type, clazz: Symbol) = (
+ (pre eq NoType) || (pre eq NoPrefix) || !isPossiblePrefix(clazz)
+ )
+
+ def newAsSeenFromMap(pre: Type, clazz: Symbol): AsSeenFromMap =
+ new AsSeenFromMap(pre, clazz)
+
+ /** A map to compute the asSeenFrom method.
+ */
+ class AsSeenFromMap(seenFromPrefix: Type, seenFromClass: Symbol) extends TypeMap with KeepOnlyTypeConstraints {
+ // Some example source constructs relevant in asSeenFrom:
+ //
+ // object CaptureThis {
+ // trait X[A] { def f: this.type = this }
+ // class Y[A] { def f: this.type = this }
+ // // Created new existential to represent This(CaptureThis.X) seen from CaptureThis.X[B]: type _1.type <: CaptureThis.X[B] with Singleton
+ // def f1[B] = new X[B] { }
+ // // TODO - why is the behavior different when it's a class?
+ // def f2[B] = new Y[B] { }
+ // }
+ // class CaptureVal[T] {
+ // val f: java.util.List[_ <: T] = null
+ // // Captured existential skolem for type _$1 seen from CaptureVal.this.f.type: type _$1
+ // def g = f get 0
+ // }
+ // class ClassParam[T] {
+ // // AsSeenFromMap(Inner.this.type, class Inner)/classParameterAsSeen(T)#loop(ClassParam.this.type, class ClassParam)
+ // class Inner(lhs: T) { def f = lhs }
+ // }
+ def capturedParams: List[Symbol] = _capturedParams
+ def capturedSkolems: List[Symbol] = _capturedSkolems
+
+ def apply(tp: Type): Type = tp match {
+ case tp @ ThisType(_) => thisTypeAsSeen(tp)
+ case tp @ SingleType(_, sym) => if (sym.isPackageClass) tp else singleTypeAsSeen(tp)
+ case tp @ TypeRef(_, sym, _) if isTypeParamOfEnclosingClass(sym) => classParameterAsSeen(tp)
+ case _ => mapOver(tp)
+ }
+
+ private var _capturedSkolems: List[Symbol] = Nil
+ private var _capturedParams: List[Symbol] = Nil
+ private val isStablePrefix = seenFromPrefix.isStable
+
+ // isBaseClassOfEnclosingClassOrInfoIsNotYetComplete would be a more accurate
+ // but less succinct name.
+ private def isBaseClassOfEnclosingClass(base: Symbol) = {
+ def loop(encl: Symbol): Boolean = (
+ isPossiblePrefix(encl)
+ && ((encl isSubClass base) || loop(encl.owner.enclClass))
+ )
+ // The hasCompleteInfo guard is necessary to avoid cycles during the typing
+ // of certain classes, notably ones defined inside package objects.
+ !base.hasCompleteInfo || loop(seenFromClass)
+ }
+
+ /** Is the symbol a class type parameter from one of the enclosing
+ * classes, or a base class of one of them?
+ */
+ private def isTypeParamOfEnclosingClass(sym: Symbol): Boolean = (
+ sym.isTypeParameter
+ && sym.owner.isClass
+ && isBaseClassOfEnclosingClass(sym.owner)
+ )
+
+ /** Creates an existential representing a type parameter which appears
+ * in the prefix of a ThisType.
+ */
+ protected def captureThis(pre: Type, clazz: Symbol): Type = {
+ capturedParams find (_.owner == clazz) match {
+ case Some(p) => p.tpe
+ case _ =>
+ val qvar = clazz freshExistential nme.SINGLETON_SUFFIX setInfo singletonBounds(pre)
+ _capturedParams ::= qvar
+ debuglog(s"Captured This(${clazz.fullNameString}) seen from $seenFromPrefix: ${qvar.defString}")
+ qvar.tpe
+ }
+ }
+ protected def captureSkolems(skolems: List[Symbol]) {
+ for (p <- skolems; if !(capturedSkolems contains p)) {
+ debuglog(s"Captured $p seen from $seenFromPrefix")
+ _capturedSkolems ::= p
+ }
+ }
+
+ /** Find the type argument in an applied type which corresponds to a type parameter.
+ * The arguments are required to be related as follows, through intermediary `clazz`.
+ * An exception will be thrown if this is violated.
+ *
+ * @param lhs its symbol is a type parameter of `clazz`
+ * @param rhs a type application constructed from `clazz`
+ */
+ private def correspondingTypeArgument(lhs: Type, rhs: Type): Type = {
+ val TypeRef(_, lhsSym, lhsArgs) = lhs
+ val TypeRef(_, rhsSym, rhsArgs) = rhs
+ require(lhsSym.safeOwner == rhsSym, s"$lhsSym is not a type parameter of $rhsSym")
+
+ // Find the type parameter position; we'll use the corresponding argument
+ val argIndex = rhsSym.typeParams indexOf lhsSym
+
+ if (argIndex >= 0 && argIndex < rhsArgs.length) // @M! don't just replace the whole thing, might be followed by type application
+ appliedType(rhsArgs(argIndex), lhsArgs mapConserve this)
+ else if (rhsSym.tpe_*.parents exists typeIsErroneous) // don't be too zealous with the exceptions, see #2641
+ ErrorType
+ else
+ abort(s"something is wrong: cannot make sense of type application\n $lhs\n $rhs")
+ }
+
+ // 0) @pre: `classParam` is a class type parameter
+ // 1) Walk the owner chain of `seenFromClass` until we find the class which owns `classParam`
+ // 2) Take the base type of the prefix at that point with respect to the owning class
+ // 3) Solve for the type parameters through correspondence with the type args of the base type
+ //
+ // Only class type parameters (and not skolems) are considered, because other type parameters
+ // are not influenced by the prefix through which they are seen. Note that type params of
+ // anonymous type functions, which currently can only arise from normalising type aliases, are
+ // owned by the type alias of which they are the eta-expansion.
+ private def classParameterAsSeen(classParam: Type): Type = {
+ val TypeRef(_, tparam, _) = classParam
+
+ def loop(pre: Type, clazz: Symbol): Type = {
+ // have to deconst because it may be a Class[T]
+ def nextBase = (pre baseType clazz).deconst
+ //@M! see test pos/tcpoly_return_overriding.scala why mapOver is necessary
+ if (skipPrefixOf(pre, clazz))
+ mapOver(classParam)
+ else if (!matchesPrefixAndClass(pre, clazz)(tparam.owner))
+ loop(nextBase.prefix, clazz.owner)
+ else nextBase match {
+ case applied @ TypeRef(_, _, _) => correspondingTypeArgument(classParam, applied)
+ case ExistentialType(eparams, qtpe) => captureSkolems(eparams) ; loop(qtpe, clazz)
+ case t => abort(s"$tparam in ${tparam.owner} cannot be instantiated from ${seenFromPrefix.widen}")
+ }
+ }
+ loop(seenFromPrefix, seenFromClass)
+ }
+
+ // Does the candidate symbol match the given prefix and class?
+ // Since pre may be something like ThisType(A) where trait A { self: B => },
+ // we have to test the typeSymbol of the widened type, not pre.typeSymbol, or
+ // B will not be considered.
+ private def matchesPrefixAndClass(pre: Type, clazz: Symbol)(candidate: Symbol) = pre.widen match {
+ case _: TypeVar => false
+ case wide => (clazz == candidate) && (wide.typeSymbol isSubClass clazz)
+ }
+
+ // Whether the annotation tree currently being mapped over has had a This(_) node rewritten.
+ private[this] var wroteAnnotation = false
+ private object annotationArgRewriter extends TypeMapTransformer {
+ private def matchesThis(thiz: Symbol) = matchesPrefixAndClass(seenFromPrefix, seenFromClass)(thiz)
+
+ // what symbol should really be used?
+ private def newThis(): Tree = {
+ wroteAnnotation = true
+ val presym = seenFromPrefix.widen.typeSymbol
+ val thisSym = presym.owner.newValue(presym.name.toTermName, presym.pos) setInfo seenFromPrefix
+ gen.mkAttributedQualifier(seenFromPrefix, thisSym)
+ }
+
+ /** Rewrite `This` trees in annotation argument trees */
+ override def transform(tree: Tree): Tree = super.transform(tree) match {
+ case This(_) if matchesThis(tree.symbol) => newThis()
+ case tree => tree
+ }
+ }
+
+ // This becomes considerably cheaper if we optimize for the common cases:
+ // where the prefix is stable and where no This nodes are rewritten. If
+ // either is true, then we don't need to worry about calling giveup. So if
+ // the prefix is unstable, use a stack variable to indicate whether the tree
+ // was touched. This takes us to one allocation per AsSeenFromMap rather
+ // than an allocation on every call to mapOver, and no extra work when the
+ // tree only has its types remapped.
+ override def mapOver(tree: Tree, giveup: ()=>Nothing): Tree = {
+ if (isStablePrefix)
+ annotationArgRewriter transform tree
+ else {
+ val saved = wroteAnnotation
+ wroteAnnotation = false
+ try annotationArgRewriter transform tree
+ finally if (wroteAnnotation) giveup() else wroteAnnotation = saved
+ }
+ }
+
+ private def thisTypeAsSeen(tp: ThisType): Type = {
+ def loop(pre: Type, clazz: Symbol): Type = {
+ val pre1 = pre match {
+ case SuperType(thistpe, _) => thistpe
+ case _ => pre
+ }
+ if (skipPrefixOf(pre, clazz))
+ mapOver(tp) // TODO - is mapOver necessary here?
+ else if (!matchesPrefixAndClass(pre, clazz)(tp.sym))
+ loop((pre baseType clazz).prefix, clazz.owner)
+ else if (pre1.isStable)
+ pre1
+ else
+ captureThis(pre1, clazz)
+ }
+ loop(seenFromPrefix, seenFromClass)
+ }
+
+ private def singleTypeAsSeen(tp: SingleType): Type = {
+ val SingleType(pre, sym) = tp
+
+ val pre1 = this(pre)
+ if (pre1 eq pre) tp
+ else if (pre1.isStable) singleType(pre1, sym)
+ else pre1.memberType(sym).resultType //todo: this should be rolled into existential abstraction
+ }
+
+ override def toString = s"AsSeenFromMap($seenFromPrefix, $seenFromClass)"
+ }
+
+ /** A base class to compute all substitutions */
+ abstract class SubstMap[T](from: List[Symbol], to: List[T]) extends TypeMap {
+ assert(sameLength(from, to), "Unsound substitution from "+ from +" to "+ to)
+
+ /** Are `sym` and `sym1` the same? Can be tuned by subclasses. */
+ protected def matches(sym: Symbol, sym1: Symbol): Boolean = sym eq sym1
+
+ /** Map target to type, can be tuned by subclasses */
+ protected def toType(fromtp: Type, tp: T): Type
+
+ protected def renameBoundSyms(tp: Type): Type = tp match {
+ case MethodType(ps, restp) =>
+ createFromClonedSymbols(ps, restp)((ps1, tp1) => copyMethodType(tp, ps1, renameBoundSyms(tp1)))
+ case PolyType(bs, restp) =>
+ createFromClonedSymbols(bs, restp)((ps1, tp1) => PolyType(ps1, renameBoundSyms(tp1)))
+ case ExistentialType(bs, restp) =>
+ createFromClonedSymbols(bs, restp)(newExistentialType)
+ case _ =>
+ tp
+ }
+
+ @tailrec private def subst(tp: Type, sym: Symbol, from: List[Symbol], to: List[T]): Type = (
+ if (from.isEmpty) tp
+ // else if (to.isEmpty) error("Unexpected substitution on '%s': from = %s but to == Nil".format(tp, from))
+ else if (matches(from.head, sym)) toType(tp, to.head)
+ else subst(tp, sym, from.tail, to.tail)
+ )
+
+ def apply(tp0: Type): Type = if (from.isEmpty) tp0 else {
+ val boundSyms = tp0.boundSyms
+ val tp1 = if (boundSyms.nonEmpty && (boundSyms exists from.contains)) renameBoundSyms(tp0) else tp0
+ val tp = mapOver(tp1)
+ def substFor(sym: Symbol) = subst(tp, sym, from, to)
+
+ tp match {
+ // @M
+ // 1) arguments must also be substituted (even when the "head" of the
+ // applied type has already been substituted)
+ // example: (subst RBound[RT] from [type RT,type RBound] to
+ // [type RT&,type RBound&]) = RBound&[RT&]
+ // 2) avoid loops (which occur because alpha-conversion is
+ // not performed properly imo)
+ // e.g. if in class Iterable[a] there is a new Iterable[(a,b)],
+ // we must replace the a in Iterable[a] by (a,b)
+ // (must not recurse --> loops)
+ // 3) replacing m by List in m[Int] should yield List[Int], not just List
+ case TypeRef(NoPrefix, sym, args) =>
+ val tcon = substFor(sym)
+ if ((tp eq tcon) || args.isEmpty) tcon
+ else appliedType(tcon.typeConstructor, args)
+ case SingleType(NoPrefix, sym) =>
+ substFor(sym)
+ case _ =>
+ tp
+ }
+ }
+ }
+
+ /** A map to implement the `substSym` method. */
+ class SubstSymMap(from: List[Symbol], to: List[Symbol]) extends SubstMap(from, to) {
+ def this(pairs: (Symbol, Symbol)*) = this(pairs.toList.map(_._1), pairs.toList.map(_._2))
+
+ protected def toType(fromtp: Type, sym: Symbol) = fromtp match {
+ case TypeRef(pre, _, args) => copyTypeRef(fromtp, pre, sym, args)
+ case SingleType(pre, _) => singleType(pre, sym)
+ }
+ @tailrec private def subst(sym: Symbol, from: List[Symbol], to: List[Symbol]): Symbol = (
+ if (from.isEmpty) sym
+ // else if (to.isEmpty) error("Unexpected substitution on '%s': from = %s but to == Nil".format(sym, from))
+ else if (matches(from.head, sym)) to.head
+ else subst(sym, from.tail, to.tail)
+ )
+ private def substFor(sym: Symbol) = subst(sym, from, to)
+
+ override def apply(tp: Type): Type = (
+ if (from.isEmpty) tp
+ else tp match {
+ case TypeRef(pre, sym, args) if pre ne NoPrefix =>
+ val newSym = substFor(sym)
+ // mapOver takes care of subst'ing in args
+ mapOver ( if (sym eq newSym) tp else copyTypeRef(tp, pre, newSym, args) )
+ // assert(newSym.typeParams.length == sym.typeParams.length, "typars mismatch in SubstSymMap: "+(sym, sym.typeParams, newSym, newSym.typeParams))
+ case SingleType(pre, sym) if pre ne NoPrefix =>
+ val newSym = substFor(sym)
+ mapOver( if (sym eq newSym) tp else singleType(pre, newSym) )
+ case _ =>
+ super.apply(tp)
+ }
+ )
+
+ object mapTreeSymbols extends TypeMapTransformer {
+ val strictCopy = newStrictTreeCopier
+
+ def termMapsTo(sym: Symbol) = from indexOf sym match {
+ case -1 => None
+ case idx => Some(to(idx))
+ }
+
+ // if tree.symbol is mapped to another symbol, passes the new symbol into the
+ // constructor `trans` and sets the symbol and the type on the resulting tree.
+ def transformIfMapped(tree: Tree)(trans: Symbol => Tree) = termMapsTo(tree.symbol) match {
+ case Some(toSym) => trans(toSym) setSymbol toSym setType tree.tpe
+ case None => tree
+ }
+
+ // changes trees which refer to one of the mapped symbols. trees are copied before attributes are modified.
+ override def transform(tree: Tree) = {
+ // super.transform maps symbol references in the types of `tree`. it also copies trees where necessary.
+ super.transform(tree) match {
+ case id @ Ident(_) =>
+ transformIfMapped(id)(toSym =>
+ strictCopy.Ident(id, toSym.name))
+
+ case sel @ Select(qual, name) =>
+ transformIfMapped(sel)(toSym =>
+ strictCopy.Select(sel, qual, toSym.name))
+
+ case tree => tree
+ }
+ }
+ }
+ override def mapOver(tree: Tree, giveup: ()=>Nothing): Tree = {
+ mapTreeSymbols.transform(tree)
+ }
+ }
+
+ /** A map to implement the `subst` method. */
+ class SubstTypeMap(from: List[Symbol], to: List[Type])
+ extends SubstMap(from, to) {
+ protected def toType(fromtp: Type, tp: Type) = tp
+
+ override def mapOver(tree: Tree, giveup: () => Nothing): Tree = {
+ object trans extends TypeMapTransformer {
+ override def transform(tree: Tree) = tree match {
+ case Ident(name) =>
+ from indexOf tree.symbol match {
+ case -1 => super.transform(tree)
+ case idx =>
+ val totpe = to(idx)
+ if (totpe.isStable) tree.duplicate setType totpe
+ else giveup()
+ }
+ case _ =>
+ super.transform(tree)
+ }
+ }
+ trans.transform(tree)
+ }
+ }
+
+ /** A map to implement the `substThis` method. */
+ class SubstThisMap(from: Symbol, to: Type) extends TypeMap {
+ def apply(tp: Type): Type = tp match {
+ case ThisType(sym) if (sym == from) => to
+ case _ => mapOver(tp)
+ }
+ }
+
+ class SubstWildcardMap(from: List[Symbol]) extends TypeMap {
+ def apply(tp: Type): Type = try {
+ tp match {
+ case TypeRef(_, sym, _) if from contains sym =>
+ BoundedWildcardType(sym.info.bounds)
+ case _ =>
+ mapOver(tp)
+ }
+ } catch {
+ case ex: MalformedType =>
+ WildcardType
+ }
+ }
+
+ // dependent method types
+ object IsDependentCollector extends TypeCollector(false) {
+ def traverse(tp: Type) {
+ if (tp.isImmediatelyDependent) result = true
+ else if (!result) mapOver(tp)
+ }
+ }
+
+ object ApproximateDependentMap extends TypeMap {
+ def apply(tp: Type): Type =
+ if (tp.isImmediatelyDependent) WildcardType
+ else mapOver(tp)
+ }
+
+ /** Note: This map is needed even for non-dependent method types, despite what the name might imply.
+ */
+ class InstantiateDependentMap(params: List[Symbol], actuals0: List[Type]) extends TypeMap with KeepOnlyTypeConstraints {
+ private val actuals = actuals0.toIndexedSeq
+ private val existentials = new Array[Symbol](actuals.size)
+ def existentialsNeeded: List[Symbol] = existentials.filter(_ ne null).toList
+
+ private object StableArg {
+ def unapply(param: Symbol) = Arg unapply param map actuals filter (tp =>
+ tp.isStable && (tp.typeSymbol != NothingClass)
+ )
+ }
+ private object Arg {
+ def unapply(param: Symbol) = Some(params indexOf param) filter (_ >= 0)
+ }
+
+ def apply(tp: Type): Type = mapOver(tp) match {
+ // unsound to replace args by unstable actual #3873
+ case SingleType(NoPrefix, StableArg(arg)) => arg
+ // (soundly) expand type alias selections on implicit arguments,
+ // see depmet_implicit_oopsla* test cases -- typically, `param.isImplicit`
+ case tp1 @ TypeRef(SingleType(NoPrefix, Arg(pid)), sym, targs) =>
+ val arg = actuals(pid)
+ val res = typeRef(arg, sym, targs)
+ if (res.typeSymbolDirect.isAliasType) res.dealias else tp1
+ // don't return the original `tp`, which may be different from `tp1`,
+ // due to dropping annotations
+ case tp1 => tp1
+ }
+
+ /* Return the type symbol for referencing a parameter inside the existential quantifier.
+ * (Only needed if the actual is unstable.)
+ */
+ private def existentialFor(pid: Int) = {
+ if (existentials(pid) eq null) {
+ val param = params(pid)
+ existentials(pid) = (
+ param.owner.newExistential(param.name.toTypeName append nme.SINGLETON_SUFFIX, param.pos, param.flags)
+ setInfo singletonBounds(actuals(pid))
+ )
+ }
+ existentials(pid)
+ }
+
+ //AM propagate more info to annotations -- this seems a bit ad-hoc... (based on code by spoon)
+ override def mapOver(arg: Tree, giveup: ()=>Nothing): Tree = {
+ // TODO: this should be simplified; in the stable case, one can
+ // probably just use an Ident to the tree.symbol.
+ //
+ // @PP: That leads to failure here, where stuff no longer has type
+ // 'String @Annot("stuff")' but 'String @Annot(x)'.
+ //
+ // def m(x: String): String @Annot(x) = x
+ // val stuff = m("stuff")
+ //
+ // (TODO cont.) Why an existential in the non-stable case?
+ //
+ // @PP: In the following:
+ //
+ // def m = { val x = "three" ; val y: String @Annot(x) = x; y }
+ //
+ // m is typed as 'String @Annot(x) forSome { val x: String }'.
+ //
+ // Both examples are from run/constrained-types.scala.
+ object treeTrans extends Transformer {
+ override def transform(tree: Tree): Tree = tree.symbol match {
+ case StableArg(actual) =>
+ gen.mkAttributedQualifier(actual, tree.symbol)
+ case Arg(pid) =>
+ val sym = existentialFor(pid)
+ Ident(sym) copyAttrs tree setType typeRef(NoPrefix, sym, Nil)
+ case _ =>
+ super.transform(tree)
+ }
+ }
+ treeTrans transform arg
+ }
+ }
+
+ /** A map to convert every occurrence of a wildcard type to a fresh
+ * type variable */
+ object wildcardToTypeVarMap extends TypeMap {
+ def apply(tp: Type): Type = tp match {
+ case WildcardType =>
+ TypeVar(tp, new TypeConstraint)
+ case BoundedWildcardType(bounds) =>
+ TypeVar(tp, new TypeConstraint(bounds))
+ case _ =>
+ mapOver(tp)
+ }
+ }
+
+ /** A map to convert every occurrence of a type variable to a wildcard type. */
+ object typeVarToOriginMap extends TypeMap {
+ def apply(tp: Type): Type = tp match {
+ case TypeVar(origin, _) => origin
+ case _ => mapOver(tp)
+ }
+ }
+
+ /** A map to implement the `contains` method. */
+ class ContainsCollector(sym: Symbol) extends TypeCollector(false) {
+ def traverse(tp: Type) {
+ if (!result) {
+ tp.normalize match {
+ case TypeRef(_, sym1, _) if (sym == sym1) => result = true
+ case SingleType(_, sym1) if (sym == sym1) => result = true
+ case _ => mapOver(tp)
+ }
+ }
+ }
+
+ override def mapOver(arg: Tree) = {
+ for (t <- arg) {
+ traverse(t.tpe)
+ if (t.symbol == sym)
+ result = true
+ }
+ arg
+ }
+ }
+
+ /** A map to implement the `contains` method. */
+ class ContainsTypeCollector(t: Type) extends TypeCollector(false) {
+ def traverse(tp: Type) {
+ if (!result) {
+ if (tp eq t) result = true
+ else mapOver(tp)
+ }
+ }
+ override def mapOver(arg: Tree) = {
+ for (t <- arg)
+ traverse(t.tpe)
+
+ arg
+ }
+ }
+
+ /** A map to implement the `filter` method. */
+ class FilterTypeCollector(p: Type => Boolean) extends TypeCollector[List[Type]](Nil) {
+ override def collect(tp: Type) = super.collect(tp).reverse
+
+ def traverse(tp: Type) {
+ if (p(tp)) result ::= tp
+ mapOver(tp)
+ }
+ }
+
+ /** A map to implement the `collect` method. */
+ class CollectTypeCollector[T](pf: PartialFunction[Type, T]) extends TypeCollector[List[T]](Nil) {
+ override def collect(tp: Type) = super.collect(tp).reverse
+
+ def traverse(tp: Type) {
+ if (pf.isDefinedAt(tp)) result ::= pf(tp)
+ mapOver(tp)
+ }
+ }
+
+ class ForEachTypeTraverser(f: Type => Unit) extends TypeTraverser {
+ def traverse(tp: Type) {
+ f(tp)
+ mapOver(tp)
+ }
+ }
+
+ /** A map to implement the `filter` method. */
+ class FindTypeCollector(p: Type => Boolean) extends TypeCollector[Option[Type]](None) {
+ def traverse(tp: Type) {
+ if (result.isEmpty) {
+ if (p(tp)) result = Some(tp)
+ mapOver(tp)
+ }
+ }
+ }
+
+ /** A map to implement the `contains` method. */
+ object ErroneousCollector extends TypeCollector(false) {
+ def traverse(tp: Type) {
+ if (!result) {
+ result = tp.isError
+ mapOver(tp)
+ }
+ }
+ }
+
+ object adaptToNewRunMap extends TypeMap {
+
+ private def adaptToNewRun(pre: Type, sym: Symbol): Symbol = {
+ if (phase.flatClasses || sym.isRootSymbol || (pre eq NoPrefix) || (pre eq NoType) || sym.isPackageClass)
+ sym
+ else if (sym.isModuleClass) {
+ val sourceModule1 = adaptToNewRun(pre, sym.sourceModule)
+
+ sourceModule1.moduleClass orElse sourceModule1.initialize.moduleClass orElse {
+ val msg = "Cannot adapt module class; sym = %s, sourceModule = %s, sourceModule.moduleClass = %s => sourceModule1 = %s, sourceModule1.moduleClass = %s"
+ debuglog(msg.format(sym, sym.sourceModule, sym.sourceModule.moduleClass, sourceModule1, sourceModule1.moduleClass))
+ sym
+ }
+ }
+ else {
+ var rebind0 = pre.findMember(sym.name, BRIDGE, 0, stableOnly = true) orElse {
+ if (sym.isAliasType) throw missingAliasException
+ devWarning(s"$pre.$sym no longer exist at phase $phase")
+ throw new MissingTypeControl // For build manager and presentation compiler purposes
+ }
+ /** The two symbols have the same fully qualified name */
+ def corresponds(sym1: Symbol, sym2: Symbol): Boolean =
+ sym1.name == sym2.name && (sym1.isPackageClass || corresponds(sym1.owner, sym2.owner))
+ if (!corresponds(sym.owner, rebind0.owner)) {
+ debuglog("ADAPT1 pre = "+pre+", sym = "+sym.fullLocationString+", rebind = "+rebind0.fullLocationString)
+ val bcs = pre.baseClasses.dropWhile(bc => !corresponds(bc, sym.owner))
+ if (bcs.isEmpty)
+ assert(pre.typeSymbol.isRefinementClass, pre) // if pre is a refinementclass it might be a structural type => OK to leave it in.
+ else
+ rebind0 = pre.baseType(bcs.head).member(sym.name)
+ debuglog(
+ "ADAPT2 pre = " + pre +
+ ", bcs.head = " + bcs.head +
+ ", sym = " + sym.fullLocationString +
+ ", rebind = " + rebind0.fullLocationString
+ )
+ }
+ rebind0.suchThat(sym => sym.isType || sym.isStable) orElse {
+ debuglog("" + phase + " " +phase.flatClasses+sym.owner+sym.name+" "+sym.isType)
+ throw new MalformedType(pre, sym.nameString)
+ }
+ }
+ }
+ def apply(tp: Type): Type = tp match {
+ case ThisType(sym) =>
+ try {
+ val sym1 = adaptToNewRun(sym.owner.thisType, sym)
+ if (sym1 == sym) tp else ThisType(sym1)
+ } catch {
+ case ex: MissingTypeControl =>
+ tp
+ }
+ case SingleType(pre, sym) =>
+ if (sym.isPackage) tp
+ else {
+ val pre1 = this(pre)
+ try {
+ val sym1 = adaptToNewRun(pre1, sym)
+ if ((pre1 eq pre) && (sym1 eq sym)) tp
+ else singleType(pre1, sym1)
+ } catch {
+ case _: MissingTypeControl =>
+ tp
+ }
+ }
+ case TypeRef(pre, sym, args) =>
+ if (sym.isPackageClass) tp
+ else {
+ val pre1 = this(pre)
+ val args1 = args mapConserve (this)
+ try {
+ val sym1 = adaptToNewRun(pre1, sym)
+ if ((pre1 eq pre) && (sym1 eq sym) && (args1 eq args)/* && sym.isExternal*/) {
+ tp
+ } else if (sym1 == NoSymbol) {
+ devWarning(s"adapt to new run failed: pre=$pre pre1=$pre1 sym=$sym")
+ tp
+ } else {
+ copyTypeRef(tp, pre1, sym1, args1)
+ }
+ } catch {
+ case ex: MissingAliasControl =>
+ apply(tp.dealias)
+ case _: MissingTypeControl =>
+ tp
+ }
+ }
+ case MethodType(params, restp) =>
+ val restp1 = this(restp)
+ if (restp1 eq restp) tp
+ else copyMethodType(tp, params, restp1)
+ case NullaryMethodType(restp) =>
+ val restp1 = this(restp)
+ if (restp1 eq restp) tp
+ else NullaryMethodType(restp1)
+ case PolyType(tparams, restp) =>
+ val restp1 = this(restp)
+ if (restp1 eq restp) tp
+ else PolyType(tparams, restp1)
+
+ // Lukas: we need to check (together) whether we should also include parameter types
+ // of PolyType and MethodType in adaptToNewRun
+
+ case ClassInfoType(parents, decls, clazz) =>
+ if (clazz.isPackageClass) tp
+ else {
+ val parents1 = parents mapConserve (this)
+ if (parents1 eq parents) tp
+ else ClassInfoType(parents1, decls, clazz)
+ }
+ case RefinedType(parents, decls) =>
+ val parents1 = parents mapConserve (this)
+ if (parents1 eq parents) tp
+ else refinedType(parents1, tp.typeSymbol.owner, decls, tp.typeSymbol.owner.pos)
+ case SuperType(_, _) => mapOver(tp)
+ case TypeBounds(_, _) => mapOver(tp)
+ case TypeVar(_, _) => mapOver(tp)
+ case AnnotatedType(_,_,_) => mapOver(tp)
+ case NotNullType(_) => mapOver(tp)
+ case ExistentialType(_, _) => mapOver(tp)
+ case _ => tp
+ }
+ }
+
+}
diff --git a/src/reflect/scala/reflect/internal/tpe/TypeToStrings.scala b/src/reflect/scala/reflect/internal/tpe/TypeToStrings.scala
new file mode 100644
index 0000000000..263b0f5a3e
--- /dev/null
+++ b/src/reflect/scala/reflect/internal/tpe/TypeToStrings.scala
@@ -0,0 +1,29 @@
+package scala.reflect
+package internal
+package tpe
+
+private[internal] trait TypeToStrings {
+ self: SymbolTable =>
+
+ /** The maximum number of recursions allowed in toString
+ */
+ final val maxTostringRecursions = 50
+
+ private var tostringRecursions = 0
+
+ protected def typeToString(tpe: Type): String =
+ if (tostringRecursions >= maxTostringRecursions) {
+ devWarning("Exceeded recursion depth attempting to print " + util.shortClassOfInstance(tpe))
+ if (settings.debug.value)
+ (new Throwable).printStackTrace
+
+ "..."
+ }
+ else
+ try {
+ tostringRecursions += 1
+ tpe.safeToString
+ } finally {
+ tostringRecursions -= 1
+ }
+}