summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAdriaan Moors <adriaan.moors@epfl.ch>2012-05-23 02:42:06 -0700
committerAdriaan Moors <adriaan.moors@epfl.ch>2012-05-23 02:42:06 -0700
commitcebf241ad87358b0e8d2804750a4ac36e76f7091 (patch)
tree29e04607f5bf666bed4f8d78d1b757f0763fdd1e
parent2e7daa10097246c03df1f77aebc85f1ecdebb7e9 (diff)
parent3f7b8b58748eb70aec4269f1ef63853b5ad4af60 (diff)
downloadscala-cebf241ad87358b0e8d2804750a4ac36e76f7091.tar.gz
scala-cebf241ad87358b0e8d2804750a4ac36e76f7091.tar.bz2
scala-cebf241ad87358b0e8d2804750a4ac36e76f7091.zip
Merge pull request #601 from adriaanm/3f7b8b58748eb70aec4269f1ef63853b5ad4af60
virtpatmat: treemaker approximation refactorings and exhaustivity
-rw-r--r--src/compiler/scala/reflect/internal/Constants.scala1
-rw-r--r--src/compiler/scala/reflect/internal/Definitions.scala1
-rw-r--r--src/compiler/scala/tools/nsc/symtab/classfile/ClassfileParser.scala9
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala1334
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/Typers.scala6
-rw-r--r--test/files/neg/exhausting.check34
-rw-r--r--test/files/neg/exhausting.flags2
-rw-r--r--test/files/neg/exhausting.scala26
-rw-r--r--test/files/neg/pat_unreachable.flags2
-rw-r--r--test/files/neg/patmatexhaust.check55
-rw-r--r--test/files/neg/patmatexhaust.flags2
-rw-r--r--test/files/neg/patmatexhaust.scala2
-rw-r--r--test/files/neg/sealed-java-enums.check8
-rw-r--r--test/files/neg/sealed-java-enums.flags2
-rw-r--r--test/files/neg/switch.check6
-rw-r--r--test/files/neg/switch.flags1
-rw-r--r--test/files/neg/t3098.check5
-rw-r--r--test/files/neg/t3098.flags2
-rw-r--r--test/files/neg/t3683a.check5
-rw-r--r--test/files/neg/t3683a.flags2
-rw-r--r--test/files/neg/t3692-new.flags2
-rw-r--r--test/files/neg/t3692-old.flags2
-rw-r--r--test/files/pos/exhaust_alternatives.flags1
-rw-r--r--test/files/pos/exhaust_alternatives.scala10
-rw-r--r--test/files/pos/exhaustive_heuristics.scala16
-rw-r--r--test/files/pos/t3097.scala31
-rw-r--r--test/files/pos/virtpatmat_exhaust.scala24
-rw-r--r--test/files/pos/virtpatmat_exhaust_unchecked.flags1
-rw-r--r--test/files/pos/virtpatmat_exhaust_unchecked.scala24
-rw-r--r--test/files/run/t3097.check1
-rw-r--r--test/files/run/t3097.scala18
-rw-r--r--test/pending/pos/no-widen-locals.scala (renamed from test/files/pos/no-widen-locals.scala)0
32 files changed, 1285 insertions, 350 deletions
diff --git a/src/compiler/scala/reflect/internal/Constants.scala b/src/compiler/scala/reflect/internal/Constants.scala
index 135d18d5ad..861bc870a7 100644
--- a/src/compiler/scala/reflect/internal/Constants.scala
+++ b/src/compiler/scala/reflect/internal/Constants.scala
@@ -224,6 +224,7 @@ trait Constants extends api.Constants {
case ClazzTag => "classOf[" + signature(typeValue) + "]"
case CharTag => "'" + escapedChar(charValue) + "'"
case LongTag => longValue.toString() + "L"
+ case EnumTag => symbolValue.name.toString()
case _ => String.valueOf(value)
}
}
diff --git a/src/compiler/scala/reflect/internal/Definitions.scala b/src/compiler/scala/reflect/internal/Definitions.scala
index 00afdd37a6..0cdef9e79a 100644
--- a/src/compiler/scala/reflect/internal/Definitions.scala
+++ b/src/compiler/scala/reflect/internal/Definitions.scala
@@ -610,6 +610,7 @@ trait Definitions extends reflect.api.StandardDefinitions {
def isTupleTypeOrSubtype(tp: Type) = isTupleType(tp)
def tupleField(n: Int, j: Int) = getMember(TupleClass(n), nme.productAccessorName(j))
+ // NOTE: returns true for NoSymbol since it's included in the TupleClass array -- is this intensional?
def isTupleSymbol(sym: Symbol) = TupleClass contains unspecializedSymbol(sym)
def isProductNClass(sym: Symbol) = ProductClass contains sym
diff --git a/src/compiler/scala/tools/nsc/symtab/classfile/ClassfileParser.scala b/src/compiler/scala/tools/nsc/symtab/classfile/ClassfileParser.scala
index 7c61ec032e..7373a610d7 100644
--- a/src/compiler/scala/tools/nsc/symtab/classfile/ClassfileParser.scala
+++ b/src/compiler/scala/tools/nsc/symtab/classfile/ClassfileParser.scala
@@ -615,12 +615,11 @@ abstract class ClassfileParser {
// sealed java enums (experimental)
if (isEnum && opt.experimental) {
- // need to give singleton type
- sym setInfo info.narrow
- if (!sym.superClass.isSealed)
- sym.superClass setFlag SEALED
+ val enumClass = sym.owner.linkedClassOfClass
+ if (!enumClass.isSealed)
+ enumClass setFlag (SEALED | ABSTRACT)
- sym.superClass addChild sym
+ enumClass addChild sym
}
}
}
diff --git a/src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala b/src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala
index c48c81ea7a..80d40011ad 100644
--- a/src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala
@@ -12,6 +12,8 @@ import Flags.{MUTABLE, METHOD, LABEL, SYNTHETIC}
import language.postfixOps
import scala.tools.nsc.transform.TypingTransformers
import scala.tools.nsc.transform.Transform
+import scala.collection.mutable.HashSet
+import scala.collection.mutable.HashMap
/** Translate pattern matching.
*
@@ -306,7 +308,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// it tests the type, checks the outer pointer and casts to the expected type
// TODO: the outer check is mandated by the spec for case classes, but we do it for user-defined unapplies as well [SPEC]
// (the prefix of the argument passed to the unapply must equal the prefix of the type of the binder)
- val treeMaker = TypeTestTreeMaker(patBinder, extractor.paramType, pos)
+ val treeMaker = TypeTestTreeMaker(patBinder, patBinder, extractor.paramType, extractor.paramType)(pos, extractorArgTypeTest = true)
(List(treeMaker), treeMaker.nextBinder)
} else (Nil, patBinder)
@@ -364,7 +366,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// must treat Typed and Bind together -- we need to know the patBinder of the Bind pattern to get at the actual type
case MaybeBoundTyped(subPatBinder, pt) =>
// a typed pattern never has any subtrees
- noFurtherSubPats(TypeAndEqualityTestTreeMaker(subPatBinder, patBinder, pt, pos))
+ noFurtherSubPats(TypeTestTreeMaker(subPatBinder, patBinder, pt, glb(List(patBinder.info.widen, pt)).normalize)(pos))
/** A pattern binder x@p consists of a pattern variable x and a pattern p.
The type of the variable x is the static type T of the pattern p.
@@ -562,8 +564,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
protected def lengthGuard(binder: Symbol): Option[Tree] =
// no need to check unless it's an unapplySeq and the minimal length is non-trivially satisfied
- if (!isSeq || (expectedLength < minLenToCheck)) None
- else { import CODE._
+ checkedLength map { expectedLength => import CODE._
// `binder.lengthCompare(expectedLength)`
def checkExpectedLength = (seqTree(binder) DOT seqLenCmp)(LIT(expectedLength))
@@ -575,8 +576,14 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
else _ INT_== _
// `if (binder != null && $checkExpectedLength [== | >=] 0) then else zero`
- Some((seqTree(binder) ANY_!= NULL) AND compareOp(checkExpectedLength, ZERO))
+ (seqTree(binder) ANY_!= NULL) AND compareOp(checkExpectedLength, ZERO)
}
+
+ def checkedLength: Option[Int] =
+ // no need to check unless it's an unapplySeq and the minimal length is non-trivially satisfied
+ if (!isSeq || (expectedLength < minLenToCheck)) None
+ else Some(expectedLength)
+
}
// TODO: to be called when there's a def unapplyProd(x: T): U
@@ -650,7 +657,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// the extractor call (applied to the binder bound by the flatMap corresponding to the previous (i.e., enclosing/outer) pattern)
val extractorApply = atPos(pos)(spliceApply(patBinderOrCasted))
val binder = freshSym(pos, pureType(resultInMonad)) // can't simplify this when subPatBinders.isEmpty, since UnitClass.tpe is definitely wrong when isSeq, and resultInMonad should always be correct since it comes directly from the extractor's result type
- ExtractorTreeMaker(extractorApply, lengthGuard(binder), binder, Substitution(subPatBinders, subPatRefs(binder)))(resultType.typeSymbol == BooleanClass)
+ ExtractorTreeMaker(extractorApply, lengthGuard(binder), binder, Substitution(subPatBinders, subPatRefs(binder)))(resultType.typeSymbol == BooleanClass, checkedLength, patBinderOrCasted)
}
override protected def seqTree(binder: Symbol): Tree =
@@ -762,7 +769,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
val (fromFiltered, toFiltered) = (from, to).zipped filter { (f, t) => !other.from.contains(f) }
new Substitution(other.from ++ fromFiltered, other.to.map(apply) ++ toFiltered) // a quick benchmarking run indicates the `.map(apply)` is not too costly
}
- override def toString = (from zip to) mkString("Substitution(", ", ", ")")
+ override def toString = (from.map(_.name) zip to) mkString("Substitution(", ", ", ")")
}
object EmptySubstitution extends Substitution(Nil, Nil) {
@@ -775,7 +782,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// the making of the trees
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
trait TreeMakers extends TypedSubstitution { self: CodegenCore =>
- def optimizeCases(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type): (List[List[TreeMaker]], List[Tree]) =
+ def optimizeCases(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type, unchecked: Boolean): (List[List[TreeMaker]], List[Tree]) =
(cases, Nil)
def emitSwitch(scrut: Tree, scrutSym: Symbol, cases: List[List[TreeMaker]], pt: Type, matchFailGenOverride: Option[Tree => Tree]): Option[Tree] =
@@ -819,11 +826,13 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
case class BodyTreeMaker(body: Tree, matchPt: Type) extends TreeMaker with NoNewBinders {
def chainBefore(next: Tree)(casegen: Casegen): Tree = // assert(next eq EmptyTree)
atPos(body.pos)(casegen.one(substitution(body))) // since SubstOnly treemakers are dropped, need to do it here
+ override def toString = "B"+(body, matchPt)
}
case class SubstOnlyTreeMaker(prevBinder: Symbol, nextBinder: Symbol) extends TreeMaker {
val localSubstitution = Substitution(prevBinder, CODE.REF(nextBinder))
def chainBefore(next: Tree)(casegen: Casegen): Tree = substitution(next)
+ override def toString = "S"+ localSubstitution
}
abstract class FunTreeMaker extends TreeMaker {
@@ -851,7 +860,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
* the function's body is determined by the next TreeMaker
* in this function's body, and all the subsequent ones, references to the symbols in `from` will be replaced by the corresponding tree in `to`
*/
- case class ExtractorTreeMaker(extractor: Tree, extraCond: Option[Tree], nextBinder: Symbol, localSubstitution: Substitution)(extractorReturnsBoolean: Boolean) extends FunTreeMaker {
+ case class ExtractorTreeMaker(extractor: Tree, extraCond: Option[Tree], nextBinder: Symbol, localSubstitution: Substitution)(extractorReturnsBoolean: Boolean, val checkedLength: Option[Int], val prevBinder: Symbol) extends FunTreeMaker {
def chainBefore(next: Tree)(casegen: Casegen): Tree = {
val condAndNext = extraCond map (casegen.ifThenElseZero(_, next)) getOrElse next
atPos(extractor.pos)(
@@ -860,136 +869,157 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
)
}
- override def toString = "X"+(extractor, nextBinder)
+ override def toString = "X"+(extractor, nextBinder.name)
}
// TODO: allow user-defined unapplyProduct
- case class ProductExtractorTreeMaker(prevBinder: Symbol, extraCond: Option[Tree], localSubstitution: Substitution) extends TreeMaker { import CODE._
+ case class ProductExtractorTreeMaker(prevBinder: Symbol, extraCond: Option[Tree], localSubstitution: Substitution) extends FunTreeMaker { import CODE._
+ val nextBinder = prevBinder // just passing through
def chainBefore(next: Tree)(casegen: Casegen): Tree = {
val nullCheck = REF(prevBinder) OBJ_NE NULL
val cond = extraCond map (nullCheck AND _) getOrElse nullCheck
casegen.ifThenElseZero(cond, substitution(next))
}
- override def toString = "P"+(prevBinder, extraCond getOrElse "", localSubstitution)
+ override def toString = "P"+(prevBinder.name, extraCond getOrElse "", localSubstitution)
}
- // tack an outer test onto `cond` if binder.info and expectedType warrant it
- def maybeWithOuterCheck(binder: Symbol, expectedTp: Type)(cond: Tree): Tree = { import CODE._
- if ( !((expectedTp.prefix eq NoPrefix) || expectedTp.prefix.typeSymbol.isPackageClass)
- && needsOuterTest(expectedTp, binder.info, matchOwner)) {
- val expectedPrefix = expectedTp.prefix match {
- case ThisType(clazz) => THIS(clazz)
- case pre => REF(pre.prefix, pre.termSymbol)
- }
+ // typetag-based tests are inserted by the type checker
+ def needsTypeTest(tp: Type, pt: Type): Boolean = !(tp <:< pt)
+
+ object TypeTestTreeMaker {
+ // factored out so that we can consistently generate other representations of the tree that implements the test
+ // (e.g. propositions for exhaustivity and friends, boolean for isPureTypeTest)
+ trait TypeTestCondStrategy {
+ type Result
+
+ def outerTest(testedBinder: Symbol, expectedTp: Type): Result
+ // TODO: can probably always widen
+ def typeTest(testedBinder: Symbol, expectedTp: Type): Result
+ def nonNullTest(testedBinder: Symbol): Result
+ def equalsTest(pat: Tree, testedBinder: Symbol): Result
+ def eqTest(pat: Tree, testedBinder: Symbol): Result
+ def and(a: Result, b: Result): Result
+ }
+
+ object treeCondStrategy extends TypeTestCondStrategy { import CODE._
+ type Result = Tree
- // ExplicitOuter replaces `Select(q, outerSym) OBJ_EQ expectedPrefix` by `Select(q, outerAccessor(outerSym.owner)) OBJ_EQ expectedPrefix`
- // if there's an outer accessor, otherwise the condition becomes `true` -- TODO: can we improve needsOuterTest so there's always an outerAccessor?
- val outer = expectedTp.typeSymbol.newMethod(vpmName.outer) setInfo expectedTp.prefix setFlag SYNTHETIC
- val outerCheck = (Select(codegen._asInstanceOf(binder, expectedTp), outer)) OBJ_EQ expectedPrefix
-
- // first check cond, since that should ensure we're not selecting outer on null
- codegen.and(cond, outerCheck)
- }
- else
- cond
- }
-
- // containsUnchecked: also need to test when erasing pt loses crucial information (maybe we can recover it using a TypeTag)
- def needsTypeTest(tp: Type, pt: Type): Boolean = !(tp <:< pt) // || containsUnchecked(pt)
- // TODO: try to find the TypeTag for the binder's type and the expected type, and if they exists,
- // check that the TypeTag of the binder's type conforms to the TypeTag of the expected type
- private def typeTest(binderToTest: Symbol, expectedTp: Type, disableOuterCheck: Boolean = false, dynamic: Boolean = false): Tree = { import CODE._
- // def coreTest =
- if (disableOuterCheck) codegen._isInstanceOf(binderToTest, expectedTp) else maybeWithOuterCheck(binderToTest, expectedTp)(codegen._isInstanceOf(binderToTest, expectedTp))
- // [Eugene to Adriaan] use `resolveErasureTag` instead of `findManifest`. please, provide a meaningful position
- // if (opt.experimental && containsUnchecked(expectedTp)) {
- // if (dynamic) {
- // val expectedTpTagTree = findManifest(expectedTp, true)
- // if (!expectedTpTagTree.isEmpty)
- // ((expectedTpTagTree DOT "erasure".toTermName) DOT "isAssignableFrom".toTermName)(REF(binderToTest) DOT nme.getClass_)
- // else
- // coreTest
- // } else {
- // val expectedTpTagTree = findManifest(expectedTp, true)
- // val binderTpTagTree = findManifest(binderToTest.info, true)
- // if(!(expectedTpTagTree.isEmpty || binderTpTagTree.isEmpty))
- // coreTest AND (binderTpTagTree DOT nme.CONFORMS)(expectedTpTagTree)
- // else
- // coreTest
- // }
- // } else coreTest
- }
-
- // need to substitute since binder may be used outside of the next extractor call (say, in the body of the case)
- case class TypeTestTreeMaker(prevBinder: Symbol, nextBinderTp: Type, pos: Position) extends CondTreeMaker {
- val cond = typeTest(prevBinder, nextBinderTp, dynamic = true)
- val res = codegen._asInstanceOf(prevBinder, nextBinderTp)
- override def toString = "TT"+(prevBinder, nextBinderTp)
- }
-
- // implements the run-time aspects of (§8.2) (typedPattern has already done the necessary type transformations)
- // TODO: normalize construction, which yields a combination of a EqualityTestTreeMaker (when necessary) and a TypeTestTreeMaker
- case class TypeAndEqualityTestTreeMaker(prevBinder: Symbol, patBinder: Symbol, pt: Type, pos: Position) extends CondTreeMaker {
- val nextBinderTp = glb(List(patBinder.info.widen, pt)).normalize
-
- /** Type patterns consist of types, type variables, and wildcards. A type pattern T is of one of the following forms:
- - A reference to a class C, p.C, or T#C.
- This type pattern matches any non-null instance of the given class.
- Note that the prefix of the class, if it is given, is relevant for determining class instances.
- For instance, the pattern p.C matches only instances of classes C which were created with the path p as prefix.
- The bottom types scala.Nothing and scala.Null cannot be used as type patterns, because they would match nothing in any case.
-
- - A singleton type p.type.
- This type pattern matches only the value denoted by the path p
- (that is, a pattern match involved a comparison of the matched value with p using method eq in class AnyRef). // TODO: the actual pattern matcher uses ==, so that's what I'm using for now
- // https://issues.scala-lang.org/browse/SI-4577 "pattern matcher, still disappointing us at equality time"
-
- - A compound type pattern T1 with ... with Tn where each Ti is a type pat- tern.
- This type pattern matches all values that are matched by each of the type patterns Ti.
-
- - A parameterized type pattern T[a1,...,an], where the ai are type variable patterns or wildcards _.
- This type pattern matches all values which match T for some arbitrary instantiation of the type variables and wildcards.
- The bounds or alias type of these type variable are determined as described in (§8.3).
-
- - A parameterized type pattern scala.Array[T1], where T1 is a type pattern. // TODO
- This type pattern matches any non-null instance of type scala.Array[U1], where U1 is a type matched by T1.
- **/
-
- // generate the tree for the run-time test that follows from the fact that
- // a `scrut` of known type `scrutTp` is expected to have type `expectedTp`
- // uses maybeWithOuterCheck to check the type's prefix
- private def typeAndEqualityTest(patBinder: Symbol, pt: Type): Tree = { import CODE._
- // TODO: `null match { x : T }` will yield a check that (indirectly) tests whether `null ne null`
- // don't bother (so that we don't end up with the warning "comparing values of types Null and Null using `ne' will always yield false")
- def genEqualsAndInstanceOf(sym: Symbol): Tree
- = codegen._equals(REF(sym), patBinder) AND typeTest(patBinder, pt.widen, disableOuterCheck = true)
-
- def isRefTp(tp: Type) = tp <:< AnyRefClass.tpe
-
- val patBinderTp = patBinder.info.widen
- def isMatchUnlessNull = isRefTp(pt) && !needsTypeTest(patBinderTp, pt)
-
- // TODO: [SPEC] type test for Array
- // TODO: use TypeTags to improve tests (for erased types we can do better when we have a TypeTag)
- pt match {
- case SingleType(_, sym) /*this implies sym.isStable*/ => genEqualsAndInstanceOf(sym) // TODO: [SPEC] the spec requires `eq` instead of `==` here
- case ThisType(sym) if sym.isModule => genEqualsAndInstanceOf(sym) // must use == to support e.g. List() == Nil
- case ThisType(sym) => REF(patBinder) OBJ_EQ This(sym)
- case ConstantType(Constant(null)) if isRefTp(patBinderTp) => REF(patBinder) OBJ_EQ NULL
- case ConstantType(const) => codegen._equals(Literal(const), patBinder)
- case _ if isMatchUnlessNull => maybeWithOuterCheck(patBinder, pt)(REF(patBinder) OBJ_NE NULL)
- case _ => typeTest(patBinder, pt)
+ def and(a: Result, b: Result): Result = a AND b
+ def typeTest(testedBinder: Symbol, expectedTp: Type) = codegen._isInstanceOf(testedBinder, expectedTp)
+ def nonNullTest(testedBinder: Symbol) = REF(testedBinder) OBJ_NE NULL
+ def equalsTest(pat: Tree, testedBinder: Symbol) = codegen._equals(pat, testedBinder)
+ def eqTest(pat: Tree, testedBinder: Symbol) = REF(testedBinder) OBJ_EQ pat
+
+ def outerTest(testedBinder: Symbol, expectedTp: Type): Tree = {
+ val expectedOuter = expectedTp.prefix match {
+ case ThisType(clazz) => THIS(clazz)
+ case pre => REF(pre.prefix, pre.termSymbol)
}
+
+ // ExplicitOuter replaces `Select(q, outerSym) OBJ_EQ expectedPrefix` by `Select(q, outerAccessor(outerSym.owner)) OBJ_EQ expectedPrefix`
+ // if there's an outer accessor, otherwise the condition becomes `true` -- TODO: can we improve needsOuterTest so there's always an outerAccessor?
+ val outer = expectedTp.typeSymbol.newMethod(vpmName.outer) setInfo expectedTp.prefix setFlag SYNTHETIC
+
+ (Select(codegen._asInstanceOf(testedBinder, expectedTp), outer)) OBJ_EQ expectedOuter
+ }
}
- val cond = typeAndEqualityTest(patBinder, pt)
- val res = codegen._asInstanceOf(patBinder, nextBinderTp)
+ object pureTypeTestChecker extends TypeTestCondStrategy {
+ type Result = Boolean
- // TODO: remove this
- def isStraightTypeTest = cond match { case TypeApply(_, _) => cond.symbol == Any_isInstanceOf case _ => false }
+ def typeTest(testedBinder: Symbol, expectedTp: Type): Result = true
- override def toString = "TET"+(patBinder, pt)
+ def outerTest(testedBinder: Symbol, expectedTp: Type): Result = false
+ def nonNullTest(testedBinder: Symbol): Result = false
+ def equalsTest(pat: Tree, testedBinder: Symbol): Result = false
+ def eqTest(pat: Tree, testedBinder: Symbol): Result = false
+ def and(a: Result, b: Result): Result = false // we don't and type tests, so the conjunction must include at least one false
+ }
+ }
+
+ /** implements the run-time aspects of (§8.2) (typedPattern has already done the necessary type transformations)
+ *
+ * Type patterns consist of types, type variables, and wildcards. A type pattern T is of one of the following forms:
+ - A reference to a class C, p.C, or T#C.
+ This type pattern matches any non-null instance of the given class.
+ Note that the prefix of the class, if it is given, is relevant for determining class instances.
+ For instance, the pattern p.C matches only instances of classes C which were created with the path p as prefix.
+ The bottom types scala.Nothing and scala.Null cannot be used as type patterns, because they would match nothing in any case.
+
+ - A singleton type p.type.
+ This type pattern matches only the value denoted by the path p
+ (that is, a pattern match involved a comparison of the matched value with p using method eq in class AnyRef). // TODO: the actual pattern matcher uses ==, so that's what I'm using for now
+ // https://issues.scala-lang.org/browse/SI-4577 "pattern matcher, still disappointing us at equality time"
+
+ - A compound type pattern T1 with ... with Tn where each Ti is a type pat- tern.
+ This type pattern matches all values that are matched by each of the type patterns Ti.
+
+ - A parameterized type pattern T[a1,...,an], where the ai are type variable patterns or wildcards _.
+ This type pattern matches all values which match T for some arbitrary instantiation of the type variables and wildcards.
+ The bounds or alias type of these type variable are determined as described in (§8.3).
+
+ - A parameterized type pattern scala.Array[T1], where T1 is a type pattern. // TODO
+ This type pattern matches any non-null instance of type scala.Array[U1], where U1 is a type matched by T1.
+ **/
+ case class TypeTestTreeMaker(prevBinder: Symbol, testedBinder: Symbol, expectedTp: Type, nextBinderTp: Type)(_pos: Position, extractorArgTypeTest: Boolean = false) extends CondTreeMaker {
+ val pos = _pos
+
+ import TypeTestTreeMaker._
+ // println("TTTM"+(prevBinder, extractorArgTypeTest, testedBinder, expectedTp, nextBinderTp))
+
+ lazy val outerTestNeeded = (
+ !((expectedTp.prefix eq NoPrefix) || expectedTp.prefix.typeSymbol.isPackageClass)
+ && needsOuterTest(expectedTp, testedBinder.info, matchOwner))
+
+ // the logic to generate the run-time test that follows from the fact that
+ // a `prevBinder` is expected to have type `expectedTp`
+ // the actual tree-generation logic is factored out, since the analyses generate Cond(ition)s rather than Trees
+ // TODO: `null match { x : T }` will yield a check that (indirectly) tests whether `null ne null`
+ // don't bother (so that we don't end up with the warning "comparing values of types Null and Null using `ne' will always yield false")
+ def renderCondition(cs: TypeTestCondStrategy): cs.Result = {
+ import cs._
+
+ def default =
+ // do type test first to ensure we won't select outer on null
+ if (outerTestNeeded) and(typeTest(testedBinder, expectedTp), outerTest(testedBinder, expectedTp))
+ else typeTest(testedBinder, expectedTp)
+
+ // true when called to type-test the argument to an extractor
+ // don't do any fancy equality checking, just test the type
+ if (extractorArgTypeTest) default
+ else expectedTp match {
+ // TODO: [SPEC] the spec requires `eq` instead of `==` for singleton types
+ // this implies sym.isStable
+ case SingleType(_, sym) => and(equalsTest(CODE.REF(sym), testedBinder), typeTest(testedBinder, expectedTp.widen))
+ // must use == to support e.g. List() == Nil
+ case ThisType(sym) if sym.isModule => and(equalsTest(CODE.REF(sym), testedBinder), typeTest(testedBinder, expectedTp.widen))
+ case ConstantType(const) => equalsTest(Literal(const), testedBinder)
+
+ case ThisType(sym) => eqTest(This(sym), testedBinder)
+ case ConstantType(Constant(null)) if testedBinder.info.widen <:< AnyRefClass.tpe
+ => eqTest(CODE.NULL, testedBinder)
+
+ // TODO: verify that we don't need to special-case Array
+ // I think it's okay:
+ // - the isInstanceOf test includes a test for the element type
+ // - Scala's arrays are invariant (so we don't drop type tests unsoundly)
+ case _ if (expectedTp <:< AnyRefClass.tpe) && !needsTypeTest(testedBinder.info.widen, expectedTp) =>
+ // do non-null check first to ensure we won't select outer on null
+ if (outerTestNeeded) and(nonNullTest(testedBinder), outerTest(testedBinder, expectedTp))
+ else nonNullTest(testedBinder)
+
+ case _ => default
+ }
+ }
+
+ val cond = renderCondition(treeCondStrategy)
+ val res = codegen._asInstanceOf(testedBinder, nextBinderTp)
+
+ // is this purely a type test, e.g. no outer check, no equality tests (used in switch emission)
+ def isPureTypeTest = renderCondition(pureTypeTestChecker)
+
+ override def toString = "TT"+(expectedTp, testedBinder.name, nextBinderTp)
}
// need to substitute to deal with existential types -- TODO: deal with existentials better, don't substitute (see RichClass during quick.comp)
@@ -1000,7 +1030,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// equals need not be well-behaved, so don't intersect with pattern's (stabilized) type (unlike MaybeBoundTyped's accumType, where it's required)
val cond = codegen._equals(patTree, prevBinder)
val res = CODE.REF(prevBinder)
- override def toString = "ET"+(prevBinder, patTree)
+ override def toString = "ET"+(prevBinder.name, patTree)
}
case class AlternativesTreeMaker(prevBinder: Symbol, var altss: List[List[TreeMaker]], pos: Position) extends TreeMaker with NoNewBinders {
@@ -1062,7 +1092,21 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
def matchFailGen = (matchFailGenOverride orElse Some(CODE.MATCHERROR(_: Tree)))
// println("combining cases: "+ (casesNoSubstOnly.map(_.mkString(" >> ")).mkString("{", "\n", "}")))
+ def isSwitchAnnotation(tpe: Type) = tpe hasAnnotation SwitchClass
+ def isUncheckedAnnotation(tpe: Type) = tpe hasAnnotation UncheckedClass
+
+ val (unchecked, requireSwitch) = scrut match {
+ case Typed(_, tpt) =>
+ (isUncheckedAnnotation(tpt.tpe),
+ // matches with two or fewer cases need not apply for switchiness (if-then-else will do)
+ isSwitchAnnotation(tpt.tpe) && casesNoSubstOnly.lengthCompare(2) > 0)
+ case _ =>
+ (false, false)
+ }
+
emitSwitch(scrut, scrutSym, casesNoSubstOnly, pt, matchFailGenOverride).getOrElse{
+ if (requireSwitch) typer.context.unit.error(scrut.pos, "could not emit switch for @switch annotated match")
+
if (casesNoSubstOnly nonEmpty) {
// before optimizing, check casesNoSubstOnly for presence of a default case,
// since DCE will eliminate trivial cases like `case _ =>`, even if they're the last one
@@ -1077,7 +1121,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
}) None
else matchFailGen
- val (cases, toHoist) = optimizeCases(scrutSym, casesNoSubstOnly, pt)
+ val (cases, toHoist) = optimizeCases(scrutSym, casesNoSubstOnly, pt, unchecked)
val matchRes = codegen.matcher(scrut, scrutSym, pt)(cases map combineExtractors, synthCatchAll)
@@ -1262,7 +1306,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// decisions, decisions
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- trait TreeMakerApproximation extends TreeMakers { self: CodegenCore =>
+ trait TreeMakerApproximation extends TreeMakers with Prettification{ self: CodegenCore =>
object Test {
var currId = 0
}
@@ -1281,9 +1325,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
val id = { Test.currId += 1; Test.currId}
override def toString =
- if (cond eq Top) "T"
- else if(cond eq Havoc) "!?"
- else "T"+ id + (if(reusedBy nonEmpty) "!["+ treeMaker +"]" else (if(reuses.isEmpty) "["+ treeMaker +"]" else " cf. T"+reuses.get.id))
+ "T"+ id + "C("+ cond +")" //+ (reuses map ("== T"+_.id) getOrElse (if(reusedBy.isEmpty) treeMaker else reusedBy mkString (treeMaker+ " -->(", ", ",")")))
}
object Cond {
@@ -1304,10 +1346,11 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
}
// does not contribute any knowledge
- case object Top extends Cond
+ case object Top extends Cond {override def toString = "T"}
+
// takes away knowledge. e.g., a user-defined guard
- case object Havoc extends Cond
+ case object Havoc extends Cond {override def toString = "_|_"}
// we know everything! everything!
// this either means the case is unreachable,
@@ -1315,11 +1358,15 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// case object Bottom extends Cond
+ case class AndCond(a: Cond, b: Cond) extends Cond {override def toString = a +"/\\"+ b}
+ case class OrCond(a: Cond, b: Cond) extends Cond {override def toString = "("+a+") \\/ ("+ b +")"}
+
object EqualityCond {
private val uniques = new collection.mutable.HashMap[(Tree, Tree), EqualityCond]
def apply(testedPath: Tree, rhs: Tree): EqualityCond = uniques getOrElseUpdate((testedPath, rhs), new EqualityCond(testedPath, rhs))
+ def unapply(c: EqualityCond) = Some(c.testedPath, c.rhs)
}
- class EqualityCond(testedPath: Tree, rhs: Tree) extends Cond {
+ class EqualityCond(val testedPath: Tree, val rhs: Tree) extends Cond {
// def negation = TopCond // inequality doesn't teach us anything
// do simplification when we know enough about the tree statically:
// - collapse equal trees
@@ -1329,103 +1376,873 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
override def toString = testedPath +" == "+ rhs +"#"+ id
}
- object TypeCond {
- private val uniques = new collection.mutable.HashMap[(Tree, Type), TypeCond]
- def apply(testedPath: Tree, pt: Type): TypeCond = uniques getOrElseUpdate((testedPath, pt), new TypeCond(testedPath, pt))
+ object NonNullCond {
+ private val uniques = new collection.mutable.HashMap[Tree, NonNullCond]
+ def apply(testedPath: Tree): NonNullCond = uniques getOrElseUpdate(testedPath, new NonNullCond(testedPath))
+ def unapply(c: NonNullCond) = Some(c.testedPath)
}
- class TypeCond(testedPath: Tree, pt: Type) extends Cond {
- // def negation = TopCond // inequality doesn't teach us anything
- // do simplification when we know enough about the tree statically:
- // - collapse equal trees
- // - accumulate tests when (in)equality not known statically
- // - become bottom when we statically know this can never match
- override def toString = testedPath +" <: "+ pt +"#"+ id
+ class NonNullCond(val testedPath: Tree) extends Cond {
+ override def toString = testedPath +" ne null " +"#"+ id
}
- object TypeAndEqualityCond {
- private val uniques = new collection.mutable.HashMap[(Tree, Type), TypeAndEqualityCond]
- def apply(testedPath: Tree, pt: Type): TypeAndEqualityCond = uniques getOrElseUpdate((testedPath, pt), new TypeAndEqualityCond(testedPath, pt))
+ object TypeCond {
+ private val uniques = new collection.mutable.HashMap[(Tree, Type), TypeCond]
+ def apply(testedPath: Tree, pt: Type): TypeCond = uniques getOrElseUpdate((testedPath, pt), new TypeCond(testedPath, pt))
+ def unapply(c: TypeCond) = Some(c.testedPath, c.pt)
}
- class TypeAndEqualityCond(testedPath: Tree, pt: Type) extends Cond {
+ class TypeCond(val testedPath: Tree, val pt: Type) extends Cond {
// def negation = TopCond // inequality doesn't teach us anything
// do simplification when we know enough about the tree statically:
// - collapse equal trees
// - accumulate tests when (in)equality not known statically
// - become bottom when we statically know this can never match
- override def toString = testedPath +" (<: && ==) "+ pt +"#"+ id
+ override def toString = testedPath +" : "+ pt +"#"+ id
}
- def approximateMatch(root: Symbol, cases: List[List[TreeMaker]]): List[List[Test]] = {
+// class OuterEqCond(val testedPath: Tree, val expectedType: Type) extends Cond {
+// val expectedOuter = expectedTp.prefix match {
+// case ThisType(clazz) => THIS(clazz)
+// case pre => REF(pre.prefix, pre.termSymbol)
+// }
+//
+// // ExplicitOuter replaces `Select(q, outerSym) OBJ_EQ expectedPrefix` by `Select(q, outerAccessor(outerSym.owner)) OBJ_EQ expectedPrefix`
+// // if there's an outer accessor, otherwise the condition becomes `true` -- TODO: can we improve needsOuterTest so there's always an outerAccessor?
+// val outer = expectedTp.typeSymbol.newMethod(vpmName.outer) setInfo expectedTp.prefix setFlag SYNTHETIC
+//
+// (Select(codegen._asInstanceOf(testedBinder, expectedTp), outer)) OBJ_EQ expectedOuter
+// }
+
+
+ // returns (tree, tests), where `tree` will be used to refer to `root` in `tests`
+ abstract class TreeMakersToConds(val root: Symbol, val cases: List[List[TreeMaker]]) {
// a variable in this set should never be replaced by a tree that "does not consist of a selection on a variable in this set" (intuitively)
- val pointsToBound = collection.mutable.HashSet(root)
+ private val pointsToBound = collection.mutable.HashSet(root)
// the substitution that renames variables to variables in pointsToBound
- var normalize: Substitution = EmptySubstitution
+ private var normalize: Substitution = EmptySubstitution
// replaces a variable (in pointsToBound) by a selection on another variable in pointsToBound
// TODO check:
// pointsToBound -- accumSubst.from == Set(root) && (accumSubst.from.toSet -- pointsToBound) isEmpty
- var accumSubst: Substitution = EmptySubstitution
+ private var accumSubst: Substitution = EmptySubstitution
+
+ private val trees = new collection.mutable.HashSet[Tree]
- val trees = new collection.mutable.HashSet[Tree]
+ // TODO: improve, e.g., for constants
+ def sameValue(a: Tree, b: Tree): Boolean = (a eq b) || ((a, b) match {
+ case (_ : Ident, _ : Ident) => a.symbol eq b.symbol
+ case _ => false
+ })
+
+ // hashconsing trees (modulo value-equality)
+ def unique(t: Tree, tpOverride: Type = NoType): Tree =
+ trees find (a => a.equalsStructure0(t)(sameValue)) match {
+ case Some(orig) => orig // println("unique: "+ (t eq orig, orig));
+ case _ =>
+ trees += t
+ if (tpOverride != NoType) t setType tpOverride
+ else t
+ }
- def approximateTreeMaker(tm: TreeMaker): Test = {
- val subst = tm.substitution
+ def uniqueTp(tp: Type): Type = tp match {
+ // typerefs etc are already hashconsed
+ case _ : UniqueType => tp
+ case tp@RefinedType(parents, EmptyScope) => tp.memo(tp: Type)(identity) // TODO: does this help?
+ case _ => tp
+ }
+ // produce the unique tree used to refer to this binder
+ // the type of the binder passed to the first invocation
+ // determines the type of the tree that'll be returned for that binder as of then
+ def binderToUniqueTree(b: Symbol) =
+ unique(accumSubst(normalize(CODE.REF(b))), b.tpe)
+
+ // note that the sequencing of operations is important: must visit in same order as match execution
+ // binderToUniqueTree uses the type of the first symbol that was encountered as the type for all future binders
+ def treeMakerToCond(tm: TreeMaker): Cond = {
+ updateSubstitution(tm.substitution)
+
+ tm match {
+ case ttm@TypeTestTreeMaker(prevBinder, testedBinder, pt, _) =>
+ object condStrategy extends TypeTestTreeMaker.TypeTestCondStrategy {
+ type Result = Cond
+ def and(a: Result, b: Result) = AndCond(a, b)
+ def outerTest(testedBinder: Symbol, expectedTp: Type) = Top // TODO OuterEqCond(testedBinder, expectedType)
+ def typeTest(b: Symbol, pt: Type) = TypeCond(binderToUniqueTree(b), uniqueTp(pt))
+ def nonNullTest(testedBinder: Symbol) = NonNullCond(binderToUniqueTree(testedBinder))
+ def equalsTest(pat: Tree, testedBinder: Symbol) = EqualityCond(binderToUniqueTree(testedBinder), unique(pat))
+ def eqTest(pat: Tree, testedBinder: Symbol) = EqualityCond(binderToUniqueTree(testedBinder), unique(pat)) // TODO: eq, not ==
+ }
+ ttm.renderCondition(condStrategy)
+ case EqualityTestTreeMaker(prevBinder, patTree, _) => EqualityCond(binderToUniqueTree(prevBinder), unique(patTree))
+ case AlternativesTreeMaker(_, altss, _) => altss map (_ map treeMakerToCond reduceLeft AndCond) reduceLeft OrCond
+ case ProductExtractorTreeMaker(testedBinder, None, subst) => NonNullCond(binderToUniqueTree(testedBinder))
+ case ExtractorTreeMaker(_, _, _, _)
+ | GuardTreeMaker(_)
+ | ProductExtractorTreeMaker(_, Some(_), _)
+ | BodyTreeMaker(_, _) => Havoc
+ case SubstOnlyTreeMaker(_, _) => Top
+ }
+ }
+
+ private def updateSubstitution(subst: Substitution) = {
// find part of substitution that replaces bound symbols by new symbols, and reverse that part
// so that we don't introduce new aliases for existing symbols, thus keeping the set of bound symbols minimal
val (boundSubst, unboundSubst) = (subst.from zip subst.to) partition {case (f, t) =>
t.isInstanceOf[Ident] && (t.symbol ne NoSymbol) && pointsToBound(f)
}
val (boundFrom, boundTo) = boundSubst.unzip
+ val (unboundFrom, unboundTo) = unboundSubst.unzip
+
+ // reverse substitution that would otherwise replace a variable we already encountered by a new variable
+ // NOTE: this forgets the more precise we have for these later variables, but that's probably okay
normalize >>= Substitution(boundTo map (_.symbol), boundFrom map (CODE.REF(_)))
// println("normalize: "+ normalize)
- val (unboundFrom, unboundTo) = unboundSubst unzip
val okSubst = Substitution(unboundFrom, unboundTo map (normalize(_))) // it's important substitution does not duplicate trees here -- it helps to keep hash consing simple, anyway
pointsToBound ++= ((okSubst.from, okSubst.to).zipped filter { (f, t) => pointsToBound exists (sym => t.exists(_.symbol == sym)) })._1
// println("pointsToBound: "+ pointsToBound)
accumSubst >>= okSubst
// println("accumSubst: "+ accumSubst)
+ }
+
+ def approximateTreeMaker(tm: TreeMaker): Test =
+ Test(treeMakerToCond(tm), tm)
+
+ def approximateMatch: List[List[Test]] = cases.map { _ map approximateTreeMaker }
+ }
+
+ def approximateMatch(root: Symbol, cases: List[List[TreeMaker]]): List[List[Test]] = {
+ object approximator extends TreeMakersToConds(root, cases)
+ approximator.approximateMatch
+ }
+
+ def showTreeMakers(cases: List[List[TreeMaker]]) = {
+ println("treeMakers:")
+ println(alignAcrossRows(cases, ">>"))
+ }
- // TODO: improve, e.g., for constants
- def sameValue(a: Tree, b: Tree): Boolean = (a eq b) || ((a, b) match {
- case (_ : Ident, _ : Ident) => a.symbol eq b.symbol
- case _ => false
- })
-
- // hashconsing trees (modulo value-equality)
- def unique(t: Tree): Tree =
- trees find (a => a.equalsStructure0(t)(sameValue)) match {
- case Some(orig) => orig // println("unique: "+ (t eq orig, orig));
- case _ => trees += t; t
+ def showTests(testss: List[List[Test]]) = {
+ println("tests: ")
+ println(alignAcrossRows(testss, "&"))
+ }
+ }
+
+ trait Prettification {
+ private def max(xs: Seq[Int]) = if (xs isEmpty) 0 else xs max
+
+ def alignedColumns(cols: Seq[AnyRef]): Seq[String] = {
+ def toString(x: AnyRef) = if (x eq null) "" else x.toString
+ if (cols.isEmpty || cols.tails.isEmpty) cols map toString
+ else {
+ val (colStrs, colLens) = cols map {c => val s = toString(c); (s, s.length)} unzip
+ val maxLen = max(colLens)
+ val avgLen = colLens.sum/colLens.length
+ val goalLen = maxLen min avgLen*2
+ def pad(s: String) = {
+ val toAdd = ((goalLen - s.length) max 0) + 2
+ (" " * (toAdd/2)) + s + (" " * (toAdd/2 + (toAdd%2)))
+ }
+ cols map (x => pad(toString(x)))
+ }
+ }
+ def alignAcrossRows(xss: List[List[AnyRef]], sep: String, lineSep: String = "\n"): String = {
+ val maxLen = max(xss map (_.length))
+ val padded = xss map (xs => xs ++ List.fill(maxLen - xs.length)(null))
+ padded.transpose.map(alignedColumns).transpose map (_.mkString(sep)) mkString(lineSep)
+ }
+ }
+
+ // http://www.cis.upenn.edu/~cis510/tcl/chap3.pdf
+ // http://users.encs.concordia.ca/~ta_ahmed/ms_thesis.pdf
+ trait Logic extends Prettification {
+ class Prop
+ case class Eq(p: Var, q: Const) extends Prop
+
+ type Const
+ type Var <: AbsVar
+
+ trait AbsVar {
+ // if the domain is enumerable, at least one assignment must be true
+ def domainEnumerable: Boolean
+ def domain: Option[Set[Const]]
+
+ // for this var, call it V, turn V = C into the equivalent proposition in boolean logic
+ def propForEqualsTo(c: Const): Prop
+
+ def equalitySyms: Set[Sym]
+ }
+
+ // would be nice to statically check whether a prop is equational or pure,
+ // but that requires typing relations like And(x: Tx, y: Ty) : (if(Tx == PureProp && Ty == PureProp) PureProp else Prop)
+ case class And(a: Prop, b: Prop) extends Prop
+ case class Or(a: Prop, b: Prop) extends Prop
+ case class Not(a: Prop) extends Prop
+
+ case object True extends Prop
+ case object False extends Prop
+
+ private def nextSymId = {_symId += 1; _symId}; private var _symId = 0
+
+ // symbols are propositions
+ case class Sym(val variable: Var, val const: Const) extends Prop {
+ override val toString = variable +"="+ const +"#"+ nextSymId
+ }
+
+ trait PropTraverser {
+ def apply(x: Prop): Unit = x match {
+ case And(a, b) => apply(a); apply(b)
+ case Or(a, b) => apply(a); apply(b)
+ case Not(a) => apply(a)
+ case Eq(a, b) => applyVar(a); applyConst(b)
+ case _ =>
+ }
+ def applyVar(x: Var): Unit = {}
+ def applyConst(x: Const): Unit = {}
+ }
+
+ trait PropMap {
+ def apply(x: Prop): Prop = x match { // TODO: mapConserve
+ case And(a, b) => And(apply(a), apply(b))
+ case Or(a, b) => Or(apply(a), apply(b))
+ case Not(a) => Not(apply(a))
+ case p => p
+ }
+ }
+
+ // plan: (aka TODO)
+
+ // convert finite domain propositional logic to boolean propositional logic
+ // for all c in C, there is a corresponding (meta-indexed) proposition Qv(c) that represents V = c,
+ // the only property of equality that is encoded is that a variable can at most be equal to one of the c in C:
+ // thus, for each distinct c, c', c'',... in C, a clause `not (Qv(c) /\ (Qv(c') \/ ... \/ Qv(c'')))` is added
+ def removeVarEq(prop: Prop): Prop = {
+ val vars = new collection.mutable.HashSet[Var]
+
+ object dropEquational extends PropMap {
+ override def apply(p: Prop) = p match {
+ case Eq(v, c) => vars += v; v.propForEqualsTo(c)
+ case _ => super.apply(p)
+ }
+ }
+
+ // dropEquational populates vars, and for each var in vars. var.equalitySyms
+ val pure = dropEquational(prop)
+
+ // X = C is translated to P_X=C
+ // X = C' is translated to P_X=C'
+ // need to enforce X cannot simultaneously equal C and C'
+ // thus, all equality syms are mutually exclusive
+ // X = A, B, C, D --> Not(And(A, B)) /\ Not(And(A, C)) /\ Not(And(A, D))
+ // /\ Not(And(B, C)) /\ Not(And(B, D))
+ // /\ Not(And(C, D))
+ // equivalently Or(Not(A), Not(B)) /\ Or(...)
+
+ var eqAxioms: Prop = True
+ def mutex(a: Sym)(b: Sym) =
+ eqAxioms = And(eqAxioms, Or(Not(a), Not(b)))
+
+ // at least one assignment from the domain must be true
+ def assigned(dom: Set[Sym]) =
+ eqAxioms = And(eqAxioms, dom.reduceLeft(Or))
+
+ // println("vars: "+ vars)
+ vars.foreach { v =>
+ // is the domain enumerable? then create equality syms for all elements in the domain and
+ // assert at least one of them must be selected
+ // if v.domain.isEmpty, we must consider the domain to be infinite
+ v.domain foreach { dom =>
+ // get the Syms for the constants in the domain (making fresh ones for those not encountered in the formula)
+ val domProps = dom map {c => v.propForEqualsTo(c)}
+ val domSyms = new collection.mutable.HashSet[Sym]()
+ object collectSyms extends PropTraverser {
+ override def apply(p: Prop) = p match {
+ case domSym: Sym => domSyms += domSym
+ case _ => super.apply(p)
+ }
}
+ domProps foreach collectSyms.apply
- def uniqueTp(tp: Type): Type = tp match {
- // typerefs etc are already hashconsed
- case _ : UniqueType => tp
- case tp@RefinedType(parents, EmptyScope) => tp.memo(tp: Type)(identity) // TODO: does this help?
- case _ => tp
+ // TODO: an empty domain means involved type tests can never be true --> always non-exhaustive?
+ if (domSyms.nonEmpty) assigned(domSyms.toSet)
}
- def binderToUniqueTree(b: Symbol) = unique(accumSubst(normalize(CODE.REF(b))))
+ // recover mutual-exclusivity (a variable can never be assigned two different constants)
+ var syms = v.equalitySyms.toList
+ while (syms.nonEmpty) {
+ syms.tail.foreach(mutex(syms.head))
+ syms = syms.tail
+ }
+ }
- Test(tm match {
- case ProductExtractorTreeMaker(pb, None, subst) => Top // TODO: NotNullTest(prevBinder)
- case tm@TypeTestTreeMaker(prevBinder, nextBinderTp, _) => TypeCond(binderToUniqueTree(prevBinder), uniqueTp(nextBinderTp))
- case tm@TypeAndEqualityTestTreeMaker(_, patBinder, pt, _) => TypeAndEqualityCond(binderToUniqueTree(patBinder), uniqueTp(pt))
- case tm@EqualityTestTreeMaker(prevBinder, patTree, _) => EqualityCond(binderToUniqueTree(prevBinder), unique(patTree))
- case ExtractorTreeMaker(_, _, _, _)
- | GuardTreeMaker(_)
- | ProductExtractorTreeMaker(_, Some(_), _) => Havoc
- case AlternativesTreeMaker(_, _, _) => Havoc // TODO: can do better here
- case SubstOnlyTreeMaker(_, _) => Top
- case BodyTreeMaker(_, _) => Havoc
- }, tm)
+ // println("eqAxioms:\n"+ cnfString(conjunctiveNormalForm(negationNormalForm(eqAxioms))))
+ // println("pure:\n"+ cnfString(conjunctiveNormalForm(negationNormalForm(pure))))
+
+ And(eqAxioms, pure)
+ }
+
+ // convert propositional logic formula to CNF
+ // http://www.dcs.warwick.ac.uk/people/academic/Ranko.Lazic/fsv/fsv6.pdf
+ def negationNormalForm(p: Prop): Prop = p match {
+ case And(a, b) => And(negationNormalForm(a), negationNormalForm(b))
+ case Or(a, b) => Or(negationNormalForm(a), negationNormalForm(b))
+ case Not(And(a, b)) => negationNormalForm(Or(Not(a), Not(b)))
+ case Not(Or(a, b)) => negationNormalForm(And(Not(a), Not(b)))
+ case Not(Not(p)) => negationNormalForm(p)
+ case Not(True) => False
+ case Not(False) => True
+ case True
+ | False
+ | (_ : Sym)
+ | Not(_ : Sym) => p
+ }
+
+ // CNF: a formula is a conjunction of clauses
+ type Formula = List[Clause] ; def formula(c: Clause*): Formula = c.toList
+
+ // a clause is a disjunction of distinct literals
+ type Clause = Set[Lit] ; def clause(l: Lit*): Clause = l.toSet
+
+ // a literal is a (possibly negated) variable
+ case class Lit(sym: Sym, pos: Boolean = true) {
+ override def toString = if (!pos) "-"+ sym.toString else sym.toString
+ def unary_- = Lit(sym, !pos)
+ }
+
+ val TrueF = formula()
+ val FalseF = formula(clause())
+ def lit(s: Sym) = formula(clause(Lit(s)))
+ def negLit(s: Sym) = formula(clause(Lit(s, false)))
+
+ def conjunctiveNormalForm(p: Prop): Formula = {
+ def distribute(a: Formula, b: Formula): Formula = (a, b) match {
+ // true \/ _ = true
+ case (TrueF, _) => TrueF
+ // _ \/ true = true
+ case (_, TrueF) => TrueF
+ // lit \/ lit
+ case (List(a), List(b)) => formula(a ++ b)
+ // (c1 /\ ... /\ cn) \/ d = ((c1 \/ d) /\ ... /\ (cn \/ d))
+ case (cs, d) if cs.tail nonEmpty => cs flatMap (c => distribute(formula(c), d))
+ // d \/ (c1 /\ ... /\ cn) = ((d \/ c1) /\ ... /\ (d \/ cn))
+ case (d, cs) if cs.tail nonEmpty => cs flatMap (c => distribute(d, formula(c)))
}
- cases.map { _ map approximateTreeMaker }
+ p match {
+ case True => TrueF
+ case False => FalseF
+ case s: Sym => lit(s)
+ case Not(s: Sym) => negLit(s)
+ case And(a, b) => conjunctiveNormalForm(a) ++ conjunctiveNormalForm(b)
+ case Or(a, b) => distribute(conjunctiveNormalForm(a), conjunctiveNormalForm(b))
+ }
+ }
+
+ def normalize(p: Prop) = conjunctiveNormalForm(negationNormalForm(removeVarEq(p)))
+ def cnfString(f: Formula) = alignAcrossRows(f map (_.toList) toList, "\\/", " /\\\n")
+
+ // adapted from http://lara.epfl.ch/w/sav10:simple_sat_solver (original by Hossein Hojjat)
+ type Model = Map[Sym, Boolean]
+ val EmptyModel = Map.empty[Sym, Boolean]
+
+ // returns all solutions, if any (TODO: better infinite recursion backstop -- detect fixpoint??)
+ def fullDPLL(f: Formula): List[Model] = {
+ // the negation of a model -(S1=True/False /\ ... /\ SN=True/False) = clause(S1=False/True, ...., SN=False/True)
+ def negateModel(m: Model) = clause(m.toSeq.map{ case (sym, pos) => Lit(sym, !pos) } : _*)
+
+ def findAllModels(f: Formula, models: List[Model], recursionDepthAllowed: Int = 20): List[Model]=
+ if (recursionDepthAllowed == 0) models
+ else {
+ val (ok, model) = DPLL(f)
+ // if we found a solution, conjunct the formula with the model's negation and recurse
+ if (ok) findAllModels(f :+ negateModel(model), model :: models, recursionDepthAllowed - 1)
+ else models
+ }
+
+ findAllModels(f, Nil)
+ }
+
+ def DPLL(f: Formula): (Boolean, Model) = {
+ @inline def withLit(res: (Boolean, Model), l: Lit) = (res._1, res._2 + (l.sym -> l.pos))
+ @inline def orElse(a: (Boolean, Model), b: => (Boolean, Model)) = if (a._1) a else b
+
+// println("dpll\n"+ cnfString(f))
+
+ if (f isEmpty) (true, EmptyModel)
+ else if(f exists (_.isEmpty)) (false, EmptyModel)
+ else f.find(_.size == 1) map { unitClause =>
+ val unitLit = unitClause.head
+// println("unit: "+ unitLit)
+ val negated = -unitLit
+ // drop entire clauses that are trivially true
+ // (i.e., disjunctions that contain the literal we're making true in the returned model),
+ // and simplify clauses by dropping the negation of the literal we're making true
+ // (since False \/ X == X)
+ val simplified = f.filterNot(_.contains(unitLit)).map(_ - negated)
+ withLit(DPLL(simplified), unitLit)
+ } getOrElse {
+ // partition symbols according to whether they appear in positive and/or negative literals
+ val pos = new HashSet[Sym]()
+ val neg = new HashSet[Sym]()
+ f.foreach{_.foreach{ lit =>
+ if (lit.pos) pos += lit.sym else neg += lit.sym
+ }}
+ // appearing in both positive and negative
+ val impures = pos intersect neg
+ // appearing only in either positive/negative positions
+ val pures = (pos ++ neg) -- impures
+
+ if (pures nonEmpty) {
+ val pureSym = pures.head
+ // turn it back into a literal
+ // (since equality on literals is in terms of equality
+ // of the underlying symbol and its positivity, simply construct a new Lit)
+ val pureLit = Lit(pureSym, pos(pureSym))
+// println("pure: "+ pureLit +" pures: "+ pures +" impures: "+ impures)
+ val simplified = f.filterNot(_.contains(pureLit))
+ withLit(DPLL(simplified), pureLit)
+ } else {
+ val split = f.head.head
+// println("split: "+ split)
+ orElse(DPLL(f :+ clause(split)), DPLL(f :+ clause(-split)))
+ }
+ }
+ }
+ }
+
+ /**
+ * Represent a match as a formula in propositional logic that encodes whether the match matches (abstractly: we only consider types)
+ *
+ */
+ trait SymbolicMatchAnalysis extends TreeMakerApproximation with Logic { self: CodegenCore =>
+ object Var {
+ private var _nextId = 0
+ def nextId = {_nextId += 1; _nextId}
+
+ private val uniques = new collection.mutable.HashMap[Tree, Var]
+ def apply(x: Tree): Var = uniques getOrElseUpdate(x, new Var(x, x.tpe))
+ }
+ class Var(val path: Tree, fullTp: Type, checked: Boolean = true) extends AbsVar {
+ // when looking at the domain, we only care about types we can check at run time
+ val domainTp: Type = checkableType(fullTp)
+
+ // case None => domain is unknown,
+ // case Some(List(tps: _*)) => domain is exactly tps
+ // we enumerate the subtypes of the full type, as that allows us to filter out more types statically,
+ // once we go to run-time checks (on Const's), convert them to checkable types
+ // TODO: there seems to be bug for singleton domains (variable does not show up in model)
+ val domain = if (checked) enumerateSubtypes(fullTp).map(_.map(Const).toSet) else None
+
+ def describe = toString + ": "+ fullTp + domain.map(_.map(_.tp).mkString(" ::= ", " | ", "")).getOrElse(" ::= ??") +" // = "+ path
+ def domainEnumerable = domain.nonEmpty
+
+ private val domMap = new collection.mutable.HashMap[Const, Sym]
+ private def symForEqualsTo(c: Const) = {
+ domMap getOrElseUpdate(c, {
+ // println("creating symbol for equality "+ this +" = "+ c)
+ Sym(this, c)
+ })
+ }
+
+ // for this var, call it V, turn V = C into the equivalent proposition in boolean logic
+ // over all executions of this method on the same Var object,
+ def propForEqualsTo(c: Const): Prop = {
+ domain match {
+ case None => symForEqualsTo(c)
+ case Some(domainConsts) =>
+ val domainTps = domainConsts map (_.tp)
+ val checkedTp = c.tp
+ // find all the domain types that could make the type test true
+ // if the checked type is a supertype of the lub of the domain,
+ // we'll end up \/'ing the whole domain together,
+ // but must not simplify to True, as the type test may also fail...
+ val matches = domainTps.filter(_ <:< checkedTp).map{ tp => symForEqualsTo(Const(tp)) }
+ // println("type-equals-prop for "+ this +" = "+ c +": "+ (checkedTp, domainTp, domainTps) +" matches: "+ matches)
+
+ if (matches isEmpty) False else matches.reduceLeft(Or)
+ }
+ }
+
+ def equalitySyms: Set[Sym] = domMap.values.toSet
+
+ private[this] val id: Int = Var.nextId
+ override def toString = "V"+ id
+ }
+
+ // all our variables range over types
+ // a literal constant becomes ConstantType(Constant(v)) when the type allows it (roughly, anyval + string + null)
+ // equality between variables: SingleType(x) (note that pattern variables cannot relate to each other -- it's always patternVar == nonPatternVar)
+ case class Const(tp: Type) {
+ override def toString = tp.toString
+
+ def toValueString = tp match {
+ case ConstantType(c) => c.escapedStringValue
+ case _ => tp.toString
+ }
+ }
+
+ // make sure it's not a primitive, else (5: Byte) match { case 5 => ... } sees no Byte
+ // TODO: domain of feasibly enumerable built-in types (enums, char?)
+ def enumerateSubtypes(tp: Type): Option[List[Type]] =
+ tp.typeSymbol match {
+ case BooleanClass =>
+ // println("enum bool "+ tp)
+ Some(List(ConstantType(Constant(true)), ConstantType(Constant(false))))
+ // TODO case _ if tp.isTupleType => // recurse into component types
+ case sym if !sym.isSealed || isPrimitiveValueClass(sym) =>
+ // println("enum unsealed "+ (tp, sym, sym.isSealed, isPrimitiveValueClass(sym)))
+ None
+ case sym =>
+ val subclasses = (
+ sym.sealedDescendants.toList sortBy (_.sealedSortName)
+ // symbols which are both sealed and abstract need not be covered themselves, because
+ // all of their children must be and they cannot otherwise be created.
+ filterNot (x => x.isSealed && x.isAbstractClass && !isPrimitiveValueClass(x)))
+ // println("subclasses "+ (sym, subclasses))
+
+ val tpApprox = typer.infer.approximateAbstracts(tp)
+ val pre = tpApprox.prefix
+ // valid subtypes are turned into checkable types, as we are entering the realm of the dynamic
+ val validSubTypes = (subclasses flatMap {sym =>
+ // have to filter out children which cannot match: see ticket #3683 for an example
+ // compare to the fully known type `tp` (modulo abstract types),
+ // so that we can rule out stuff like: sealed trait X[T]; class XInt extends X[Int] --> XInt not valid when enumerating X[String]
+ // however, must approximate abstract types in
+ val subTp = appliedType(pre.memberType(sym), sym.typeParams.map(_ => WildcardType))
+ val subTpApprox = typer.infer.approximateAbstracts(subTp) // TODO: needed?
+ // println("subtp"+(subTpApprox <:< tpApprox, subTpApprox, tpApprox))
+ if (subTpApprox <:< tpApprox) Some(checkableType(subTp))
+ else None
+ })
+ // println("enum sealed "+ (tp, tpApprox) + " as "+ validSubTypes)
+ Some(validSubTypes)
+ }
+
+ def narrowTypeOf(p: Tree) = p match {
+ case Literal(c) => ConstantType(c)
+ case Ident(_) if p.symbol.isStable => singleType(p.tpe.prefix, p.symbol)
+ case x => x.tpe.narrow
+ }
+
+ // approximate a type to the static type that is fully checkable at run time,
+ // hiding statically known but dynamically uncheckable information using existential quantification
+ // TODO: this is subject to the availability of TypeTags (since an abstract type with a type tag is checkable at run time)
+ def checkableType(tp: Type): Type = {
+ // TODO: this is extremely rough...
+ object toCheckable extends TypeMap {
+ def apply(tp: Type) = tp match {
+ case TypeRef(pre, sym, a :: as) if sym ne ArrayClass =>
+ // replace type args by existentials, since they can't be checked
+ // TODO: when type tags are available, we will check -- when this is implemented, can we take that into account here?
+ // TODO: don't reuse sym.typeParams, they have bounds (and those must not be considered)
+ newExistentialType(sym.typeParams, sym.tpe).asSeenFrom(pre, sym.owner)
+ case _ => mapOver(tp)
+ }
+ }
+ val res = toCheckable(tp)
+ // println("checkable "+(tp, res))
+ res
+ }
+
+ // a type is "uncheckable" (for exhaustivity) if we don't statically know its subtypes (i.e., it's unsealed)
+ // we consider tuple types with at least one component of a checkable type as a checkable type
+ def uncheckableType(tp: Type): Boolean = {
+ @inline def tupleComponents(tp: Type) = tp.normalize.typeArgs
+ val checkable = (
+ (isTupleType(tp) && tupleComponents(tp).exists(tp => !uncheckableType(tp)))
+ || enumerateSubtypes(tp).nonEmpty)
+ // if (!checkable) println("deemed uncheckable: "+ tp)
+ !checkable
+ }
+
+ def exhaustive(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type): List[String] = if (uncheckableType(prevBinder.info)) Nil else {
+ // customize TreeMakersToConds (which turns a tree of tree makers into a more abstract DAG of tests)
+ // - approximate the pattern `List()` (unapplySeq on List with empty length) as `Nil`,
+ // otherwise the common (xs: List[Any]) match { case List() => case x :: xs => } is deemed unexhaustive
+ // - back off (to avoid crying exhaustive too often) when:
+ // - there are guards -->
+ // - there are extractor calls (that we can't secretly/soundly) rewrite
+ var backoff = false
+ object exhaustivityApproximation extends TreeMakersToConds(prevBinder, cases) {
+ override def treeMakerToCond(tm: TreeMaker): Cond = tm match {
+ case p@ExtractorTreeMaker(extractor, Some(lenCheck), testedBinder, _) =>
+ p.checkedLength match {
+ // pattern: `List()` (interpret as `Nil`)
+ // TODO: make it more general List(1, 2) => 1 :: 2 :: Nil
+ case Some(0) if testedBinder.tpe.typeSymbol == ListClass => // extractor.symbol.owner == SeqFactory
+ EqualityCond(binderToUniqueTree(p.prevBinder), unique(Ident(NilModule) setType NilModule.tpe))
+ case _ =>
+ super.treeMakerToCond(tm)
+ }
+ case ExtractorTreeMaker(_, _, _, _) =>
+// println("backing off due to "+ tm)
+ backoff = true
+ super.treeMakerToCond(tm)
+ case GuardTreeMaker(guard) =>
+ guard.tpe match {
+ case ConstantType(Constant(true)) => Top
+ case ConstantType(Constant(false)) => Havoc
+ case _ =>
+// println("can't statically interpret guard: "+(guard, guard.tpe))
+ backoff = true
+ Havoc
+ }
+ case _ =>
+ super.treeMakerToCond(tm)
+ }
+ }
+
+ def symbolic(t: Cond): Prop = t match {
+ case AndCond(a, b) => And(symbolic(a), symbolic(b))
+ case OrCond(a, b) => Or(symbolic(a), symbolic(b))
+ case Top => True
+ case Havoc => False
+ case TypeCond(p, pt) => Eq(Var(p), Const(checkableType(pt)))
+ case EqualityCond(p, q) => Eq(Var(p), Const(narrowTypeOf(q)))
+ case NonNullCond(p) => True // ignoring nullness because it generates too much noise Not(Eq(Var(p), Const(NullClass.tpe)))
+ }
+
+ def symbolicCase(tests: List[Test]) = {
+ val testsBeforeBody = tests.takeWhile(t => !t.treeMaker.isInstanceOf[BodyTreeMaker])
+ testsBeforeBody.map(t => symbolic(t.cond)).foldLeft(True: Prop)(And)
+ }
+
+ val tests = exhaustivityApproximation.approximateMatch
+
+ if (backoff) Nil else {
+ val symbolicCases = tests map symbolicCase
+
+ val prevBinderTree = exhaustivityApproximation.binderToUniqueTree(prevBinder)
+
+ // TODO: null tests generate too much noise, so disabled them -- is there any way to bring them back?
+ // assuming we're matching on a non-null scrutinee (prevBinder), when does the match fail?
+ // val nonNullScrutineeCond =
+ // assume non-null for all the components of the tuple we're matching on (if we're matching on a tuple)
+ // if (isTupleType(prevBinder.tpe))
+ // prevBinder.tpe.typeArgs.mapWithIndex{case (_, i) => NonNullCond(codegen.tupleSel(prevBinderTree)(i))}.reduceLeft(AndCond)
+ // else
+ // NonNullCond(prevBinderTree)
+ // val matchFails = And(symbolic(nonNullScrutineeCond), Not(symbolicCases reduceLeft (Or(_, _))))
+
+ // when does the match fail?
+ val matchFails = Not(symbolicCases reduceLeft (Or(_, _)))
+
+
+ // debug output:
+ // println("analysing:")
+ // showTreeMakers(cases)
+ // showTests(tests)
+ //
+ // def gatherVariables(p: Prop): Set[Var] = {
+ // val vars = new HashSet[Var]()
+ // (new PropTraverser {
+ // override def applyVar(v: Var) = vars += v
+ // })(p)
+ // vars.toSet
+ // }
+ // val vars = gatherVariables(matchFails)
+ // println("\nvars:\n"+ (vars map (_.describe) mkString ("\n")))
+ //
+ // println("\nmatchFails as CNF:\n"+ cnfString(normalize(matchFails)))
+
+ // find the models (under which the match fails)
+ val matchFailModels = fullDPLL(normalize(matchFails))
+
+ val scrutVar = Var(prevBinderTree)
+ val counterExamples = matchFailModels.map(modelToCounterExample(scrutVar))
+
+ CounterExample.prune(counterExamples).map(_.toString).sorted
+ }
+ }
+
+ object CounterExample {
+ def prune(examples: List[CounterExample]): List[CounterExample] = {
+ val distinct = examples.filterNot(_ == NoExample).toSet
+ distinct.filterNot(ce => distinct.exists(other => (ce ne other) && ce.coveredBy(other))).toList
+ }
+ }
+
+ // a way to construct a value that will make the match fail: a constructor invocation, a constant, an object of some type)
+ class CounterExample {
+ protected[SymbolicMatchAnalysis] def flattenConsArgs: List[CounterExample] = Nil
+ def coveredBy(other: CounterExample): Boolean = this == other || other == WildcardExample
+ }
+ case class ValueExample(c: Const) extends CounterExample { override def toString = c.toValueString }
+ case class TypeExample(c: Const) extends CounterExample { override def toString = "(_ : "+ c +")" }
+ case class NegativeExample(nonTrivialNonEqualTo: List[Const]) extends CounterExample {
+ override def toString = {
+ val negation =
+ if (nonTrivialNonEqualTo.tail.isEmpty) nonTrivialNonEqualTo.head.toValueString
+ else nonTrivialNonEqualTo.map(_.toValueString).sorted.mkString("in (", ", ", ")")
+ "<not "+ negation +">"
+ }
+ }
+ case class ListExample(ctorArgs: List[CounterExample]) extends CounterExample {
+ protected[SymbolicMatchAnalysis] override def flattenConsArgs: List[CounterExample] = ctorArgs match {
+ case hd :: tl :: Nil => hd :: tl.flattenConsArgs
+ case _ => Nil
+ }
+ protected[SymbolicMatchAnalysis] lazy val elems = flattenConsArgs
+
+ override def coveredBy(other: CounterExample): Boolean =
+ other match {
+ case other@ListExample(_) =>
+ this == other || ((elems.length == other.elems.length) && (elems zip other.elems).forall{case (a, b) => a coveredBy b})
+ case _ => super.coveredBy(other)
+ }
+
+ override def toString = elems.mkString("List(", ", ", ")")
+ }
+ case class TupleExample(ctorArgs: List[CounterExample]) extends CounterExample {
+ override def toString = ctorArgs.mkString("(", ", ", ")")
+
+ override def coveredBy(other: CounterExample): Boolean =
+ other match {
+ case TupleExample(otherArgs) =>
+ this == other || ((ctorArgs.length == otherArgs.length) && (ctorArgs zip otherArgs).forall{case (a, b) => a coveredBy b})
+ case _ => super.coveredBy(other)
+ }
+ }
+ case class ConstructorExample(cls: Symbol, ctorArgs: List[CounterExample]) extends CounterExample {
+ override def toString = cls.decodedName + (if (cls.isModuleClass) "" else ctorArgs.mkString("(", ", ", ")"))
+ }
+
+ case object WildcardExample extends CounterExample { override def toString = "_" }
+ case object NoExample extends CounterExample { override def toString = "??" }
+
+ // return constructor call when the model is a true counter example
+ // (the variables don't take into account type information derived from other variables,
+ // so, naively, you might try to construct a counter example like _ :: Nil(_ :: _, _ :: _),
+ // since we didn't realize the tail of the outer cons was a Nil)
+ def modelToCounterExample(scrutVar: Var)(model: Model): CounterExample = {
+ // x1 = ...
+ // x1.hd = ...
+ // x1.tl = ...
+ // x1.hd.hd = ...
+ // ...
+ val varAssignment = model.toSeq.groupBy{f => f match {case (sym, value) => sym.variable} }.mapValues{ xs =>
+ val (trues, falses) = xs.partition(_._2)
+ (trues map (_._1.const), falses map (_._1.const))
+ // should never be more than one value in trues...
+ }
+
+ // println("var assignment:\n"+
+ // varAssignment.toSeq.sortBy(_._1.toString).map { case (v, (trues, falses)) =>
+ // val assignment = "== "+ (trues mkString("(", ", ", ")")) +" != ("+ (falses mkString(", ")) +")"
+ // v +"(="+ v.path +": "+ v.domainTp +") "+ assignment
+ // }.mkString("\n"))
+
+
+ // chop a path into a list of symbols
+ def chop(path: Tree): List[Symbol] = path match {
+ case Ident(_) => List(path.symbol)
+ case Select(pre, name) => chop(pre) :+ path.symbol
+ case _ => println("don't know how to chop "+ path); Nil
+ }
+
+ // turn the variable assignments into a tree
+ // the root is the scrutinee (x1), edges are labelled by the fields that are assigned
+ // a node is a variable example (which is later turned into a counter example)
+ object VariableAssignment {
+ private def findVar(path: List[Symbol]) = path match {
+ case List(root) if root == scrutVar.path.symbol => Some(scrutVar)
+ case _ => varAssignment.find{case (v, a) => chop(v.path) == path}.map(_._1)
+ }
+
+ private val uniques = new collection.mutable.HashMap[Var, VariableAssignment]
+ private def unique(variable: Var): VariableAssignment =
+ uniques.getOrElseUpdate(variable, {
+ val (eqTo, neqTo) = varAssignment.getOrElse(variable, (Nil, Nil)) // TODO
+ VariableAssignment(variable, eqTo.toList, neqTo.toList, HashMap.empty)
+ })
+
+ def apply(variable: Var): VariableAssignment = {
+ val path = chop(variable.path)
+ val pre = path.init
+ val field = path.last
+
+ val newCtor = unique(variable)
+
+ if (pre.isEmpty) newCtor
+ else {
+ findVar(pre) foreach { preVar =>
+ val outerCtor = this(preVar)
+ outerCtor.fields(field) = newCtor
+ }
+ newCtor
+ }
+ }
+ }
+
+ // node in the tree that describes how to construct a counter-example
+ case class VariableAssignment(variable: Var, equalTo: List[Const], notEqualTo: List[Const], fields: collection.mutable.Map[Symbol, VariableAssignment]) {
+ private lazy val ctor = (equalTo match { case List(Const(tp)) => tp case _ => variable.domainTp }).typeSymbol.primaryConstructor
+ private lazy val ctorParams = if (ctor == NoSymbol || ctor.paramss.isEmpty) Nil else ctor.paramss.head
+ private lazy val cls = if (ctor == NoSymbol) NoSymbol else ctor.owner
+ private lazy val caseFieldAccs = if (cls == NoSymbol) Nil else cls.caseFieldAccessors
+
+
+ def allFieldAssignmentsLegal: Boolean =
+ (fields.keySet subsetOf caseFieldAccs.toSet) && fields.values.forall(_.allFieldAssignmentsLegal)
+
+ private lazy val nonTrivialNonEqualTo = notEqualTo.filterNot{c => val sym = c.tp.typeSymbol; sym == AnyClass } // sym == NullClass ||
+
+ // NoExample if the constructor call is ill-typed
+ // (thus statically impossible -- can we incorporate this into the formula?)
+ // beBrief is used to suppress negative information nested in tuples -- it tends to get too noisy
+ def toCounterExample(beBrief: Boolean = false): CounterExample =
+ if (!allFieldAssignmentsLegal) NoExample
+ else {
+// println("describing "+ (variable, equalTo, notEqualTo, fields, cls, allFieldAssignmentsLegal))
+ val res = equalTo match {
+ // a definite assignment to a value
+ case List(eq@Const(_: ConstantType)) if fields.isEmpty => ValueExample(eq)
+
+ // constructor call
+ // or we did not gather any information about equality but we have information about the fields
+ // --> typical example is when the scrutinee is a tuple and all the cases first unwrap that tuple and only then test something interesting
+ case _ if cls != NoSymbol &&
+ ( equalTo.nonEmpty
+ || (fields.nonEmpty && !isPrimitiveValueClass(cls) && equalTo.isEmpty && notEqualTo.isEmpty)) =>
+
+ @inline def args(brevity: Boolean = beBrief) = {
+ // figure out the constructor arguments from the field assignment
+ val argLen = (caseFieldAccs.length min ctorParams.length)
+
+ (0 until argLen).map(i => fields.get(caseFieldAccs(i)).map(_.toCounterExample(brevity)) getOrElse WildcardExample).toList
+ }
+
+ cls match {
+ case ConsClass => ListExample(args())
+ case _ if isTupleSymbol(cls) => TupleExample(args(true))
+ case _ => ConstructorExample(cls, args())
+ }
+
+ // a definite assignment to a type
+ case List(eq) if fields.isEmpty => TypeExample(eq)
+
+ // negative information
+ case Nil if nonTrivialNonEqualTo.nonEmpty =>
+ // negation tends to get pretty verbose
+ if (beBrief) WildcardExample else NegativeExample(nonTrivialNonEqualTo)
+
+ // not a valid counter-example, possibly since we have a definite type but there was a field mismatch
+ // TODO: improve reasoning -- in the mean time, a false negative is better than an annoying false positive
+ case _ => NoExample
+ }
+// println("described as: "+ res)
+ res
+ }
+
+ override def toString = toCounterExample().toString
+ }
+
+ // slurp in information from other variables
+ varAssignment.keys.foreach{ v => if (v != scrutVar) VariableAssignment(v) }
+
+ // this is the variable we want a counter example for
+ VariableAssignment(scrutVar).toCounterExample()
}
}
@@ -1446,28 +2263,49 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// interpret:
val dependencies = new collection.mutable.LinkedHashMap[Test, Set[Cond]]
val tested = new collection.mutable.HashSet[Cond]
- testss foreach { tests =>
- tested.clear()
- tests dropWhile { test =>
- val cond = test.cond
- if ((cond eq Havoc) || (cond eq Top)) (cond eq Top) // stop when we encounter a havoc, skip top
- else {
- tested += cond
+
+ def storeDependencies(test: Test) = {
+ val cond = test.cond
+
+ def simplify(c: Cond): Set[Cond] = c match {
+ case AndCond(a, b) => simplify(a) ++ simplify(b)
+ case OrCond(_, _) => Set(Havoc) // TODO: supremum?
+ case NonNullCond(_) => Set(Top) // not worth remembering
+ case _ => Set(c)
+ }
+ val conds = simplify(cond)
+
+ if (conds(Havoc)) false // stop when we encounter a havoc
+ else {
+ val nonTrivial = conds filterNot (_ == Top)
+ if (nonTrivial nonEmpty) {
+ tested ++= nonTrivial
// is there an earlier test that checks our condition and whose dependencies are implied by ours?
- dependencies find { case (priorTest, deps) =>
- ((priorTest.cond eq cond) || (deps contains cond)) && (deps subsetOf tested)
- } foreach { case (priorTest, deps) =>
- // if so, note the dependency in both tests
- priorTest registerReuseBy test
+ dependencies find {
+ case (priorTest, deps) =>
+ ((simplify(priorTest.cond) == nonTrivial) || // our conditions are implied by priorTest if it checks the same thing directly
+ (nonTrivial subsetOf deps) // or if it depends on a superset of our conditions
+ ) && (deps subsetOf tested) // the conditions we've tested when we are here in the match satisfy the prior test, and hence what it tested
+ } foreach {
+ case (priorTest, _) =>
+ // if so, note the dependency in both tests
+ priorTest registerReuseBy test
}
dependencies(test) = tested.toSet // copies
- true
}
+ true
}
}
+
+ testss foreach { tests =>
+ tested.clear()
+ tests dropWhile storeDependencies
+ }
+ // println("dependencies: "+ dependencies)
+
// find longest prefix of tests that reuse a prior test, and whose dependent conditions monotonically increase
// then, collapse these contiguous sequences of reusing tests
// store the result of the final test and the intermediate results in hoisted mutable variables (TODO: optimize: don't store intermediate results that aren't used)
@@ -1476,7 +2314,12 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
var okToCall = false
val reusedOrOrig = (tm: TreeMaker) => {assert(okToCall); reused.getOrElse(tm, tm)}
- val res = testss map { tests =>
+ // maybe collapse: replace shared prefix of tree makers by a ReusingCondTreeMaker
+ // once this has been computed, we'll know which tree makers are reused,
+ // and we'll replace those by the ReusedCondTreeMakers we've constructed (and stored in the reused map)
+ val collapsed = testss map { tests =>
+ // map tests to the equivalent list of treemakers, replacing shared prefixes by a reusing treemaker
+ // if there's no sharing, simply map to the tree makers corresponding to the tests
var currDeps = Set[Cond]()
val (sharedPrefix, suffix) = tests span { test =>
(test.cond eq Top) || (for(
@@ -1487,23 +2330,33 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
yield diff).nonEmpty
}
- val collapsedTreeMakers = if (sharedPrefix.nonEmpty) { // even sharing prefixes of length 1 brings some benefit (overhead-percentage for compiler: 26->24%, lib: 19->16%)
- for (test <- sharedPrefix; reusedTest <- test.reuses) reusedTest.treeMaker match {
- case reusedCTM: CondTreeMaker => reused(reusedCTM) = ReusedCondTreeMaker(reusedCTM)
- case _ =>
- }
+ val collapsedTreeMakers =
+ if (sharedPrefix.isEmpty) None
+ else { // even sharing prefixes of length 1 brings some benefit (overhead-percentage for compiler: 26->24%, lib: 19->16%)
+ for (test <- sharedPrefix; reusedTest <- test.reuses) reusedTest.treeMaker match {
+ case reusedCTM: CondTreeMaker => reused(reusedCTM) = ReusedCondTreeMaker(reusedCTM)
+ case _ =>
+ }
- // println("sharedPrefix: "+ sharedPrefix)
- for (lastShared <- sharedPrefix.reverse.dropWhile(_.cond eq Top).headOption;
- lastReused <- lastShared.reuses)
- yield ReusingCondTreeMaker(sharedPrefix, reusedOrOrig) :: suffix.map(_.treeMaker)
- } else None
+ // println("sharedPrefix: "+ sharedPrefix)
+ // if the shared prefix contains interesting conditions (!= Top)
+ // and the last of such interesting shared conditions reuses another treemaker's test
+ // replace the whole sharedPrefix by a ReusingCondTreeMaker
+ for (lastShared <- sharedPrefix.reverse.dropWhile(_.cond eq Top).headOption;
+ lastReused <- lastShared.reuses)
+ yield ReusingCondTreeMaker(sharedPrefix, reusedOrOrig) :: suffix.map(_.treeMaker)
+ }
collapsedTreeMakers getOrElse tests.map(_.treeMaker) // sharedPrefix need not be empty (but it only contains Top-tests, which are dropped above)
}
okToCall = true // TODO: remove (debugging)
- res mapConserve (_ mapConserve reusedOrOrig)
+ // replace original treemakers that are reused (as determined when computing collapsed),
+ // by ReusedCondTreeMakers
+ val reusedMakers = collapsed mapConserve (_ mapConserve reusedOrOrig)
+// println("after CSE:")
+// showTreeMakers(reusedMakers)
+ reusedMakers
}
object ReusedCondTreeMaker {
@@ -1520,28 +2373,45 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// TODO: finer-grained duplication
def chainBefore(next: Tree)(casegen: Casegen): Tree = // assert(codegen eq optimizedCodegen)
atPos(pos)(casegen.asInstanceOf[optimizedCodegen.OptimizedCasegen].flatMapCondStored(cond, storedCond, res, nextBinder, substitution(next).duplicate))
+
+ override def toString = "Memo"+(nextBinder.name, storedCond.name, cond, res, substitution)
}
case class ReusingCondTreeMaker(sharedPrefix: List[Test], toReused: TreeMaker => TreeMaker) extends TreeMaker { import CODE._
- lazy val dropped_priors = sharedPrefix map (t => (toReused(t.treeMaker), t.reuses map (test => toReused(test.treeMaker))))
lazy val localSubstitution = {
- val (from, to) = dropped_priors.collect {
- case (dropped: CondTreeMaker, Some(prior: ReusedCondTreeMaker)) =>
- (dropped.nextBinder, REF(prior.nextBinder))
- }.unzip
- val oldSubs = dropped_priors.collect {
- case (dropped: TreeMaker, _) =>
- dropped.substitution
+ // replace binder of each dropped treemaker by corresponding binder bound by the most recent reused treemaker
+ var mostRecentReusedMaker: ReusedCondTreeMaker = null
+ def mapToStored(droppedBinder: Symbol) = if (mostRecentReusedMaker eq null) Nil else List((droppedBinder, REF(mostRecentReusedMaker.nextBinder)))
+ val (from, to) = sharedPrefix.flatMap { dropped =>
+ dropped.reuses.map(test => toReused(test.treeMaker)).foreach {
+ case reusedMaker: ReusedCondTreeMaker =>
+ mostRecentReusedMaker = reusedMaker
+ case _ =>
}
- oldSubs.foldLeft(Substitution(from, to))(_ >> _)
+
+ // TODO: have super-trait for retrieving the variable that's operated on by a tree maker
+ // and thus assumed in scope, either because it binds it or because it refers to it
+ dropped.treeMaker match {
+ case dropped: FunTreeMaker =>
+ mapToStored(dropped.nextBinder)
+ case _ => Nil
+ }
+ }.unzip
+ val rerouteToReusedBinders = Substitution(from, to)
+
+ val collapsedDroppedSubst = sharedPrefix map (t => (toReused(t.treeMaker).substitution))
+
+ collapsedDroppedSubst.foldLeft(rerouteToReusedBinders)(_ >> _)
}
- def chainBefore(next: Tree)(casegen: Casegen): Tree = {
- val cond = REF(dropped_priors.reverse.collectFirst{case (_, Some(ctm: ReusedCondTreeMaker)) => ctm}.get.storedCond)
+ lazy val lastReusedTreeMaker = sharedPrefix.reverse.flatMap(tm => tm.reuses map (test => toReused(test.treeMaker))).collectFirst{case x: ReusedCondTreeMaker => x}.head
- // TODO: finer-grained duplication -- MUST duplicate though, or we'll get VerifyErrors since sharing trees confuses lambdalift, and its confusion it emits illegal casts (diagnosed by Grzegorz: checkcast T ; invokevirtual S.m, where T not a subtype of S)
- casegen.ifThenElseZero(cond, substitution(next).duplicate)
+ def chainBefore(next: Tree)(casegen: Casegen): Tree = {
+ // TODO: finer-grained duplication -- MUST duplicate though, or we'll get VerifyErrors since sharing trees confuses lambdalift,
+ // and in its confusion it emits illegal casts (diagnosed by Grzegorz: checkcast T ; invokevirtual S.m, where T not a subtype of S)
+ casegen.ifThenElseZero(REF(lastReusedTreeMaker.storedCond), substitution(next).duplicate)
}
+ override def toString = "R"+(lastReusedTreeMaker.storedCond.name, substitution)
}
}
@@ -1669,10 +2539,8 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// analyze the result of approximateTreeMaker rather than the TreeMaker itself
object SwitchableTreeMaker extends SwitchableTreeMakerExtractor {
def unapply(x: TreeMaker): Option[Tree] = x match {
- case tm@TypeTestTreeMaker(_, _, _) =>
- Some(Bind(tm.nextBinder, Typed(Ident(nme.WILDCARD), TypeTree(tm.nextBinderTp)) /* not used by back-end */)) // -- TODO: use this if binder does not occur in the body
- case tm@TypeAndEqualityTestTreeMaker(_, patBinder, pt, _) if tm.isStraightTypeTest =>
- Some(Bind(tm.nextBinder, Typed(Ident(nme.WILDCARD), TypeTree(tm.nextBinderTp)) /* not used by back-end */))
+ case tm@TypeTestTreeMaker(_, _, pt, _) if tm.isPureTypeTest => // -- TODO: use this if binder does not occur in the body
+ Some(Bind(tm.nextBinder, Typed(Ident(nme.WILDCARD), TypeTree(pt)) /* not used by back-end */))
case _ =>
None
}
@@ -1823,8 +2691,18 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
trait MatchOptimizations extends CommonSubconditionElimination
with DeadCodeElimination
with SwitchEmission
- with OptimizedCodegen { self: TreeMakers =>
- override def optimizeCases(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type): (List[List[TreeMaker]], List[Tree]) = {
+ with OptimizedCodegen
+ with SymbolicMatchAnalysis { self: TreeMakers =>
+ override def optimizeCases(prevBinder: Symbol, cases: List[List[TreeMaker]], pt: Type, unchecked: Boolean): (List[List[TreeMaker]], List[Tree]) = {
+ val counterExamples = if (unchecked) Nil else exhaustive(prevBinder, cases, pt)
+ if (counterExamples.nonEmpty) {
+ val ceString =
+ if (counterExamples.tail.isEmpty) "input: " + counterExamples.head
+ else "inputs: " + counterExamples.mkString(", ")
+
+ typer.context.unit.warning(prevBinder.pos, "match may not be exhaustive.\nIt would fail on the following "+ ceString)
+ }
+
val optCases = doCSE(prevBinder, doDCE(prevBinder, cases, pt), pt)
val toHoist = (
for (treeMakers <- optCases)
diff --git a/src/compiler/scala/tools/nsc/typechecker/Typers.scala b/src/compiler/scala/tools/nsc/typechecker/Typers.scala
index b1698ccb36..349bd1912b 100644
--- a/src/compiler/scala/tools/nsc/typechecker/Typers.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/Typers.scala
@@ -2327,7 +2327,7 @@ trait Typers extends Modes with Adaptations with Taggings {
val methodBodyTyper = newTyper(context.makeNewScope(context.tree, methodSym)) // should use the DefDef for the context's tree, but it doesn't exist yet (we need the typer we're creating to create it)
paramSyms foreach (methodBodyTyper.context.scope enter _)
- val match_ = methodBodyTyper.typedMatch(selector, cases, mode, ptRes)
+ val match_ = methodBodyTyper.typedMatch(gen.mkUnchecked(selector), cases, mode, ptRes)
val resTp = match_.tpe
val methFormals = paramSyms map (_.tpe)
@@ -2367,7 +2367,7 @@ trait Typers extends Modes with Adaptations with Taggings {
val methodBodyTyper = newTyper(context.makeNewScope(context.tree, methodSym)) // should use the DefDef for the context's tree, but it doesn't exist yet (we need the typer we're creating to create it)
paramSyms foreach (methodBodyTyper.context.scope enter _)
- val match_ = methodBodyTyper.typedMatch(selector, cases, mode, ptRes)
+ val match_ = methodBodyTyper.typedMatch(gen.mkUnchecked(selector), cases, mode, ptRes)
val resTp = match_.tpe
anonClass setInfo ClassInfoType(parentsPartial(List(argTp, resTp)), newScope, anonClass)
@@ -2394,7 +2394,7 @@ trait Typers extends Modes with Adaptations with Taggings {
paramSyms foreach (methodBodyTyper.context.scope enter _)
methodSym setInfoAndEnter MethodType(paramSyms, BooleanClass.tpe)
- val match_ = methodBodyTyper.typedMatch(selector, casesTrue, mode, BooleanClass.tpe)
+ val match_ = methodBodyTyper.typedMatch(gen.mkUnchecked(selector), casesTrue, mode, BooleanClass.tpe)
val body = methodBodyTyper.virtualizedMatch(match_ withAttachment DefaultOverrideMatchAttachment(FALSE_typed), mode, BooleanClass.tpe)
DefDef(methodSym, body)
diff --git a/test/files/neg/exhausting.check b/test/files/neg/exhausting.check
index 0bef21e077..7140b99428 100644
--- a/test/files/neg/exhausting.check
+++ b/test/files/neg/exhausting.check
@@ -1,29 +1,25 @@
-exhausting.scala:20: error: match is not exhaustive!
-missing combination * Nil
-
+exhausting.scala:21: error: match may not be exhaustive.
+It would fail on the following input: List(_, _, _)
def fail1[T](xs: List[T]) = xs match {
^
-exhausting.scala:24: error: match is not exhaustive!
-missing combination Nil
-
+exhausting.scala:27: error: match may not be exhaustive.
+It would fail on the following input: Nil
def fail2[T](xs: List[T]) = xs match {
^
-exhausting.scala:27: error: match is not exhaustive!
-missing combination Bar3
-
+exhausting.scala:32: error: match may not be exhaustive.
+It would fail on the following input: List(<not in (1, 2)>)
+ def fail3a(xs: List[Int]) = xs match {
+ ^
+exhausting.scala:39: error: match may not be exhaustive.
+It would fail on the following input: Bar3
def fail3[T](x: Foo[T]) = x match {
^
-exhausting.scala:31: error: match is not exhaustive!
-missing combination Bar2 Bar2
-
+exhausting.scala:47: error: match may not be exhaustive.
+It would fail on the following inputs: (Bar1, Bar2), (Bar1, Bar3), (Bar2, Bar1), (Bar2, Bar2)
def fail4[T <: AnyRef](xx: (Foo[T], Foo[T])) = xx match {
^
-exhausting.scala:36: error: match is not exhaustive!
-missing combination Bar1 Bar2
-missing combination Bar1 Bar3
-missing combination Bar2 Bar1
-missing combination Bar2 Bar2
-
+exhausting.scala:56: error: match may not be exhaustive.
+It would fail on the following inputs: (Bar1, Bar2), (Bar1, Bar3), (Bar2, Bar1), (Bar2, Bar2)
def fail5[T](xx: (Foo[T], Foo[T])) = xx match {
^
-5 errors found
+6 errors found
diff --git a/test/files/neg/exhausting.flags b/test/files/neg/exhausting.flags
index b7eb21d5f5..85d8eb2ba2 100644
--- a/test/files/neg/exhausting.flags
+++ b/test/files/neg/exhausting.flags
@@ -1 +1 @@
--Xfatal-warnings -Xoldpatmat
+-Xfatal-warnings
diff --git a/test/files/neg/exhausting.scala b/test/files/neg/exhausting.scala
index 14b05695aa..5554ee2671 100644
--- a/test/files/neg/exhausting.scala
+++ b/test/files/neg/exhausting.scala
@@ -16,30 +16,46 @@ object Test {
def ex3[T](xx: (Foo[T], Foo[T])) = xx match {
case (_: Foo[_], _: Foo[_]) => ()
}
-
+
+ // fails for: ::(_, ::(_, ::(_, _)))
def fail1[T](xs: List[T]) = xs match {
case Nil => "ok"
case x :: y :: Nil => "ok"
}
+
+ // fails for: Nil
def fail2[T](xs: List[T]) = xs match {
case _ :: _ => "ok"
}
+
+ // fails for: ::(<not in (2, 1)>, _)
+ def fail3a(xs: List[Int]) = xs match {
+ case 1 :: _ =>
+ case 2 :: _ =>
+ case Nil =>
+ }
+
+ // fails for: Bar3
def fail3[T](x: Foo[T]) = x match {
case Bar1 => "ok"
case Bar2 => "ok"
}
+ // fails for: (Bar1, Bar2)
+ // fails for: (Bar1, Bar3)
+ // fails for: (Bar2, Bar2)
+ // fails for: (Bar2, Bar1)
def fail4[T <: AnyRef](xx: (Foo[T], Foo[T])) = xx match {
case (Bar1, Bar1) => ()
case (Bar2, Bar3) => ()
case (Bar3, _) => ()
}
+ // fails for: (Bar1, Bar2)
+ // fails for: (Bar1, Bar3)
+ // fails for: (Bar2, Bar1)
+ // fails for: (Bar2, Bar2)
def fail5[T](xx: (Foo[T], Foo[T])) = xx match {
case (Bar1, Bar1) => ()
case (Bar2, Bar3) => ()
case (Bar3, _) => ()
}
-
- def main(args: Array[String]): Unit = {
-
- }
}
diff --git a/test/files/neg/pat_unreachable.flags b/test/files/neg/pat_unreachable.flags
index ba80cad69b..cb8324a345 100644
--- a/test/files/neg/pat_unreachable.flags
+++ b/test/files/neg/pat_unreachable.flags
@@ -1 +1 @@
--Xoldpatmat
+-Xoldpatmat \ No newline at end of file
diff --git a/test/files/neg/patmatexhaust.check b/test/files/neg/patmatexhaust.check
index 5426d61d31..6172811e13 100644
--- a/test/files/neg/patmatexhaust.check
+++ b/test/files/neg/patmatexhaust.check
@@ -1,54 +1,41 @@
-patmatexhaust.scala:7: error: match is not exhaustive!
-missing combination Baz
-
+patmatexhaust.scala:7: error: match may not be exhaustive.
+It would fail on the following input: Baz
def ma1(x:Foo) = x match {
^
-patmatexhaust.scala:11: error: match is not exhaustive!
-missing combination Bar
-
+patmatexhaust.scala:11: error: match may not be exhaustive.
+It would fail on the following input: Bar(_)
def ma2(x:Foo) = x match {
^
-patmatexhaust.scala:23: error: match is not exhaustive!
-missing combination Kult Kult
-missing combination Qult Qult
-
+patmatexhaust.scala:23: error: match may not be exhaustive.
+It would fail on the following inputs: (Kult(_), Kult(_)), (Qult(), Qult())
def ma3(x:Mult) = (x,x) match { // not exhaustive
^
-patmatexhaust.scala:49: error: match is not exhaustive!
-missing combination Gp
-missing combination Gu
-
+patmatexhaust.scala:49: error: match may not be exhaustive.
+It would fail on the following inputs: Gp(), Gu
def ma4(x:Deep) = x match { // missing cases: Gu, Gp
^
-patmatexhaust.scala:53: error: match is not exhaustive!
-missing combination Gp
-
- def ma5(x:Deep) = x match { // Gp
+patmatexhaust.scala:53: error: match may not be exhaustive.
+It would fail on the following input: Gp()
+ def ma5(x:Deep) = x match {
^
-patmatexhaust.scala:59: error: match is not exhaustive!
-missing combination Nil
-
+patmatexhaust.scala:59: error: match may not be exhaustive.
+It would fail on the following input: Nil
def ma6() = List(1,2) match { // give up
^
-patmatexhaust.scala:75: error: match is not exhaustive!
-missing combination B
-
+patmatexhaust.scala:75: error: match may not be exhaustive.
+It would fail on the following input: B()
def ma9(x: B) = x match {
^
-patmatexhaust.scala:100: error: match is not exhaustive!
-missing combination C1
-
+patmatexhaust.scala:100: error: match may not be exhaustive.
+It would fail on the following input: C1()
def ma10(x: C) = x match { // not exhaustive: C1 is not sealed.
^
-patmatexhaust.scala:114: error: match is not exhaustive!
-missing combination D1
-missing combination D2
-
+patmatexhaust.scala:114: error: match may not be exhaustive.
+It would fail on the following inputs: D1, D2()
def ma10(x: C) = x match { // not exhaustive: C1 has subclasses.
^
-patmatexhaust.scala:126: error: match is not exhaustive!
-missing combination C1
-
+patmatexhaust.scala:126: error: match may not be exhaustive.
+It would fail on the following input: C1()
def ma10(x: C) = x match { // not exhaustive: C1 is not abstract.
^
10 errors found
diff --git a/test/files/neg/patmatexhaust.flags b/test/files/neg/patmatexhaust.flags
index b7eb21d5f5..85d8eb2ba2 100644
--- a/test/files/neg/patmatexhaust.flags
+++ b/test/files/neg/patmatexhaust.flags
@@ -1 +1 @@
--Xfatal-warnings -Xoldpatmat
+-Xfatal-warnings
diff --git a/test/files/neg/patmatexhaust.scala b/test/files/neg/patmatexhaust.scala
index 9297e09d0d..ceb960ee97 100644
--- a/test/files/neg/patmatexhaust.scala
+++ b/test/files/neg/patmatexhaust.scala
@@ -50,7 +50,7 @@ class TestSealedExhaustive { // compile only
case Ga =>
}
- def ma5(x:Deep) = x match { // Gp
+ def ma5(x:Deep) = x match {
case Gu =>
case _ if 1 == 0 =>
case Ga =>
diff --git a/test/files/neg/sealed-java-enums.check b/test/files/neg/sealed-java-enums.check
index 9303c2df9c..20d00c8e91 100644
--- a/test/files/neg/sealed-java-enums.check
+++ b/test/files/neg/sealed-java-enums.check
@@ -1,9 +1,5 @@
-sealed-java-enums.scala:5: error: match is not exhaustive!
-missing combination BLOCKED
-missing combination State
-missing combination TERMINATED
-missing combination TIMED_WAITING
-
+sealed-java-enums.scala:5: error: match may not be exhaustive.
+It would fail on the following inputs: BLOCKED, TERMINATED, TIMED_WAITING
def f(state: State) = state match {
^
one error found
diff --git a/test/files/neg/sealed-java-enums.flags b/test/files/neg/sealed-java-enums.flags
index 312f3a87ec..e709c65918 100644
--- a/test/files/neg/sealed-java-enums.flags
+++ b/test/files/neg/sealed-java-enums.flags
@@ -1 +1 @@
--Xexperimental -Xfatal-warnings -Xoldpatmat
+-Xexperimental -Xfatal-warnings
diff --git a/test/files/neg/switch.check b/test/files/neg/switch.check
index 7212c1a22b..8955c94b32 100644
--- a/test/files/neg/switch.check
+++ b/test/files/neg/switch.check
@@ -1,10 +1,10 @@
switch.scala:28: error: could not emit switch for @switch annotated match
def fail1(c: Char) = (c: @switch) match {
- ^
+ ^
switch.scala:38: error: could not emit switch for @switch annotated match
def fail2(c: Char) = (c: @switch @unchecked) match {
- ^
+ ^
switch.scala:45: error: could not emit switch for @switch annotated match
def fail3(c: Char) = (c: @unchecked @switch) match {
- ^
+ ^
three errors found
diff --git a/test/files/neg/switch.flags b/test/files/neg/switch.flags
deleted file mode 100644
index 809e9ff2f2..0000000000
--- a/test/files/neg/switch.flags
+++ /dev/null
@@ -1 +0,0 @@
- -Xoldpatmat
diff --git a/test/files/neg/t3098.check b/test/files/neg/t3098.check
index 403da281c8..85829747b9 100644
--- a/test/files/neg/t3098.check
+++ b/test/files/neg/t3098.check
@@ -1,6 +1,5 @@
-b.scala:3: error: match is not exhaustive!
-missing combination C
-
+b.scala:3: error: match may not be exhaustive.
+It would fail on the following input: (_ : C)
def f = (null: T) match {
^
one error found
diff --git a/test/files/neg/t3098.flags b/test/files/neg/t3098.flags
index b7eb21d5f5..85d8eb2ba2 100644
--- a/test/files/neg/t3098.flags
+++ b/test/files/neg/t3098.flags
@@ -1 +1 @@
--Xfatal-warnings -Xoldpatmat
+-Xfatal-warnings
diff --git a/test/files/neg/t3683a.check b/test/files/neg/t3683a.check
index 18e80dd5e8..3de3ad784e 100644
--- a/test/files/neg/t3683a.check
+++ b/test/files/neg/t3683a.check
@@ -1,6 +1,5 @@
-t3683a.scala:14: error: match is not exhaustive!
-missing combination XX
-
+t3683a.scala:14: error: match may not be exhaustive.
+It would fail on the following input: XX()
w match {
^
one error found
diff --git a/test/files/neg/t3683a.flags b/test/files/neg/t3683a.flags
index b7eb21d5f5..85d8eb2ba2 100644
--- a/test/files/neg/t3683a.flags
+++ b/test/files/neg/t3683a.flags
@@ -1 +1 @@
--Xfatal-warnings -Xoldpatmat
+-Xfatal-warnings
diff --git a/test/files/neg/t3692-new.flags b/test/files/neg/t3692-new.flags
index 82becdfbfd..cb8324a345 100644
--- a/test/files/neg/t3692-new.flags
+++ b/test/files/neg/t3692-new.flags
@@ -1 +1 @@
- -Xoldpatmat \ No newline at end of file
+-Xoldpatmat \ No newline at end of file
diff --git a/test/files/neg/t3692-old.flags b/test/files/neg/t3692-old.flags
index 82becdfbfd..cb8324a345 100644
--- a/test/files/neg/t3692-old.flags
+++ b/test/files/neg/t3692-old.flags
@@ -1 +1 @@
- -Xoldpatmat \ No newline at end of file
+-Xoldpatmat \ No newline at end of file
diff --git a/test/files/pos/exhaust_alternatives.flags b/test/files/pos/exhaust_alternatives.flags
new file mode 100644
index 0000000000..e8fb65d50c
--- /dev/null
+++ b/test/files/pos/exhaust_alternatives.flags
@@ -0,0 +1 @@
+-Xfatal-warnings \ No newline at end of file
diff --git a/test/files/pos/exhaust_alternatives.scala b/test/files/pos/exhaust_alternatives.scala
new file mode 100644
index 0000000000..cc81d0be7d
--- /dev/null
+++ b/test/files/pos/exhaust_alternatives.scala
@@ -0,0 +1,10 @@
+sealed abstract class X
+sealed case class A(x: Boolean) extends X
+case object B extends X
+
+object Test {
+ def test(x: X) = x match {
+ case A(true) =>
+ case A(false) | B =>
+ }
+} \ No newline at end of file
diff --git a/test/files/pos/exhaustive_heuristics.scala b/test/files/pos/exhaustive_heuristics.scala
new file mode 100644
index 0000000000..f6bea455a5
--- /dev/null
+++ b/test/files/pos/exhaustive_heuristics.scala
@@ -0,0 +1,16 @@
+// tests exhaustivity doesn't give warnings (due to its heuristic rewrites kicking in or it backing off)
+object Test {
+ // List() => Nil
+ List(1) match {
+ case List() =>
+ case x :: xs =>
+ }
+
+ // we don't look into guards
+ val turnOffChecks = true
+ List(1) match {
+ case _ if turnOffChecks =>
+ }
+
+ // TODO: we back off when there are any user-defined extractors
+} \ No newline at end of file
diff --git a/test/files/pos/t3097.scala b/test/files/pos/t3097.scala
deleted file mode 100644
index a034b960f7..0000000000
--- a/test/files/pos/t3097.scala
+++ /dev/null
@@ -1,31 +0,0 @@
-package seal
-
-sealed trait ISimpleValue
-
-sealed trait IListValue extends ISimpleValue {
- def items: List[IAtomicValue[_]]
-}
-sealed trait IAtomicValue[O] extends ISimpleValue {
- def data: O
-}
-
-sealed trait IAbstractDoubleValue[O] extends IAtomicValue[O] { }
-sealed trait IDoubleValue extends IAbstractDoubleValue[Double]
-
-case class ListValue(val items: List[IAtomicValue[_]]) extends IListValue
-class DoubleValue(val data: Double) extends IDoubleValue {
- def asDouble = data
-}
-
-object Test {
- /**
- * @param args the command line arguments
- */
- def main(args: Array[String]): Unit = {
- val v: ISimpleValue = new DoubleValue(1)
- v match {
- case m: IListValue => println("list")
- case a: IAtomicValue[_] => println("atomic")
- }
- }
-}
diff --git a/test/files/pos/virtpatmat_exhaust.scala b/test/files/pos/virtpatmat_exhaust.scala
new file mode 100644
index 0000000000..a2f47c88c8
--- /dev/null
+++ b/test/files/pos/virtpatmat_exhaust.scala
@@ -0,0 +1,24 @@
+sealed trait Option {}
+case class Choice(a: Option, b: Option) extends Option;
+case class Some(x: Boolean) extends Option;
+case object None extends Option;
+
+object test {
+
+// drop any case and it will report an error
+// note that booleans are taken into account
+ def f(opt: Option) = opt match {
+ case Choice(None, None) => 1;
+ case Choice(None, Some(_)) => 1;
+ case Choice(None, Choice(_, _)) => 1;
+ case Choice(Some(true), None) => 1;
+ case Choice(Some(false), None) => 1;
+ case Choice(Some(_), Some(_)) => 1;
+ case Choice(Some(_), Choice(_, _)) => 1;
+ case Choice(Choice(_, _), None) => 1;
+ case Choice(Choice(_, _), Some(_)) => 1;
+ case Choice(Choice(_, _), Choice(_, _)) => 1;
+ case Some(b) => 4;
+ case None => 5;
+ }
+}
diff --git a/test/files/pos/virtpatmat_exhaust_unchecked.flags b/test/files/pos/virtpatmat_exhaust_unchecked.flags
new file mode 100644
index 0000000000..85d8eb2ba2
--- /dev/null
+++ b/test/files/pos/virtpatmat_exhaust_unchecked.flags
@@ -0,0 +1 @@
+-Xfatal-warnings
diff --git a/test/files/pos/virtpatmat_exhaust_unchecked.scala b/test/files/pos/virtpatmat_exhaust_unchecked.scala
new file mode 100644
index 0000000000..641f2b4f9a
--- /dev/null
+++ b/test/files/pos/virtpatmat_exhaust_unchecked.scala
@@ -0,0 +1,24 @@
+sealed trait Option {}
+case class Choice(a: Option, b: Option) extends Option;
+case class Some(x: Boolean) extends Option;
+case object None extends Option;
+
+object test {
+
+// drop any case and it will report an error
+// note that booleans are taken into account
+ def f(opt: Option) = (opt: @unchecked) match {
+ case Choice(None, None) => 1;
+ case Choice(None, Some(_)) => 1;
+ case Choice(None, Choice(_, _)) => 1;
+ case Choice(Some(true), None) => 1;
+ // case Choice(Some(false), None) => 1;
+ case Choice(Some(_), Some(_)) => 1;
+ case Choice(Some(_), Choice(_, _)) => 1;
+ case Choice(Choice(_, _), None) => 1;
+ case Choice(Choice(_, _), Some(_)) => 1;
+ case Choice(Choice(_, _), Choice(_, _)) => 1;
+ case Some(b) => 4;
+ case None => 5;
+ }
+}
diff --git a/test/files/run/t3097.check b/test/files/run/t3097.check
new file mode 100644
index 0000000000..63695f771b
--- /dev/null
+++ b/test/files/run/t3097.check
@@ -0,0 +1 @@
+atomic
diff --git a/test/files/run/t3097.scala b/test/files/run/t3097.scala
new file mode 100644
index 0000000000..4aaf8056ca
--- /dev/null
+++ b/test/files/run/t3097.scala
@@ -0,0 +1,18 @@
+sealed trait ISimpleValue
+
+sealed trait IListValue extends ISimpleValue
+sealed trait IAtomicValue[O] extends ISimpleValue
+
+sealed trait IAbstractDoubleValue[O] extends IAtomicValue[O]
+sealed trait IDoubleValue extends IAbstractDoubleValue[Double]
+
+case class ListValue(val items: List[IAtomicValue[_]]) extends IListValue
+class DoubleValue(val data: Double) extends IDoubleValue
+
+object Test extends App {
+ // match is exhaustive
+ (new DoubleValue(1): ISimpleValue) match {
+ case m: IListValue => println("list")
+ case a: IAtomicValue[_] => println("atomic")
+ }
+}
diff --git a/test/files/pos/no-widen-locals.scala b/test/pending/pos/no-widen-locals.scala
index 013e63f0a2..013e63f0a2 100644
--- a/test/files/pos/no-widen-locals.scala
+++ b/test/pending/pos/no-widen-locals.scala