summaryrefslogtreecommitdiff
path: root/src/actors/scala/actors/threadpool/Executors.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/actors/scala/actors/threadpool/Executors.java')
-rw-r--r--src/actors/scala/actors/threadpool/Executors.java667
1 files changed, 0 insertions, 667 deletions
diff --git a/src/actors/scala/actors/threadpool/Executors.java b/src/actors/scala/actors/threadpool/Executors.java
deleted file mode 100644
index 49a127a8db..0000000000
--- a/src/actors/scala/actors/threadpool/Executors.java
+++ /dev/null
@@ -1,667 +0,0 @@
-/*
- * Written by Doug Lea with assistance from members of JCP JSR-166
- * Expert Group and released to the public domain, as explained at
- * http://creativecommons.org/licenses/publicdomain
- */
-
-package scala.actors.threadpool;
-//import edu.emory.mathcs.backport.java.util.*;
-import java.security.AccessControlContext;
-import java.security.AccessController;
-import java.security.PrivilegedAction;
-import java.security.PrivilegedExceptionAction;
-import java.security.AccessControlException;
-import java.util.List;
-import java.util.Collection;
-
-/**
- * Factory and utility methods for {@link Executor}, {@link
- * ExecutorService}, {@link ScheduledExecutorService}, {@link
- * ThreadFactory}, and {@link Callable} classes defined in this
- * package. This class supports the following kinds of methods:
- *
- * <ul>
- * <li> Methods that create and return an {@link ExecutorService}
- * set up with commonly useful configuration settings.
- * <li> Methods that create and return a {@link ScheduledExecutorService}
- * set up with commonly useful configuration settings.
- * <li> Methods that create and return a "wrapped" ExecutorService, that
- * disables reconfiguration by making implementation-specific methods
- * inaccessible.
- * <li> Methods that create and return a {@link ThreadFactory}
- * that sets newly created threads to a known state.
- * <li> Methods that create and return a {@link Callable}
- * out of other closure-like forms, so they can be used
- * in execution methods requiring <tt>Callable</tt>.
- * </ul>
- *
- * @since 1.5
- * @author Doug Lea
- */
-public class Executors {
-
- /**
- * Creates a thread pool that reuses a fixed number of threads
- * operating off a shared unbounded queue. At any point, at most
- * <tt>nThreads</tt> threads will be active processing tasks.
- * If additional tasks are submitted when all threads are active,
- * they will wait in the queue until a thread is available.
- * If any thread terminates due to a failure during execution
- * prior to shutdown, a new one will take its place if needed to
- * execute subsequent tasks. The threads in the pool will exist
- * until it is explicitly {@link ExecutorService#shutdown shutdown}.
- *
- * @param nThreads the number of threads in the pool
- * @return the newly created thread pool
- * @throws IllegalArgumentException if <tt>nThreads &lt;= 0</tt>
- */
- public static ExecutorService newFixedThreadPool(int nThreads) {
- return new ThreadPoolExecutor(nThreads, nThreads,
- 0L, TimeUnit.MILLISECONDS,
- new LinkedBlockingQueue());
- }
-
- /**
- * Creates a thread pool that reuses a fixed number of threads
- * operating off a shared unbounded queue, using the provided
- * ThreadFactory to create new threads when needed. At any point,
- * at most <tt>nThreads</tt> threads will be active processing
- * tasks. If additional tasks are submitted when all threads are
- * active, they will wait in the queue until a thread is
- * available. If any thread terminates due to a failure during
- * execution prior to shutdown, a new one will take its place if
- * needed to execute subsequent tasks. The threads in the pool will
- * exist until it is explicitly {@link ExecutorService#shutdown
- * shutdown}.
- *
- * @param nThreads the number of threads in the pool
- * @param threadFactory the factory to use when creating new threads
- * @return the newly created thread pool
- * @throws NullPointerException if threadFactory is null
- * @throws IllegalArgumentException if <tt>nThreads &lt;= 0</tt>
- */
- public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
- return new ThreadPoolExecutor(nThreads, nThreads,
- 0L, TimeUnit.MILLISECONDS,
- new LinkedBlockingQueue(),
- threadFactory);
- }
-
- /**
- * Creates an Executor that uses a single worker thread operating
- * off an unbounded queue. (Note however that if this single
- * thread terminates due to a failure during execution prior to
- * shutdown, a new one will take its place if needed to execute
- * subsequent tasks.) Tasks are guaranteed to execute
- * sequentially, and no more than one task will be active at any
- * given time. Unlike the otherwise equivalent
- * <tt>newFixedThreadPool(1)</tt> the returned executor is
- * guaranteed not to be reconfigurable to use additional threads.
- *
- * @return the newly created single-threaded Executor
- */
- public static ExecutorService newSingleThreadExecutor() {
- return new FinalizableDelegatedExecutorService
- (new ThreadPoolExecutor(1, 1,
- 0L, TimeUnit.MILLISECONDS,
- new LinkedBlockingQueue()));
- }
-
- /**
- * Creates an Executor that uses a single worker thread operating
- * off an unbounded queue, and uses the provided ThreadFactory to
- * create a new thread when needed. Unlike the otherwise
- * equivalent <tt>newFixedThreadPool(1, threadFactory)</tt> the
- * returned executor is guaranteed not to be reconfigurable to use
- * additional threads.
- *
- * @param threadFactory the factory to use when creating new
- * threads
- *
- * @return the newly created single-threaded Executor
- * @throws NullPointerException if threadFactory is null
- */
- public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
- return new FinalizableDelegatedExecutorService
- (new ThreadPoolExecutor(1, 1,
- 0L, TimeUnit.MILLISECONDS,
- new LinkedBlockingQueue(),
- threadFactory));
- }
-
- /**
- * Creates a thread pool that creates new threads as needed, but
- * will reuse previously constructed threads when they are
- * available. These pools will typically improve the performance
- * of programs that execute many short-lived asynchronous tasks.
- * Calls to <tt>execute</tt> will reuse previously constructed
- * threads if available. If no existing thread is available, a new
- * thread will be created and added to the pool. Threads that have
- * not been used for sixty seconds are terminated and removed from
- * the cache. Thus, a pool that remains idle for long enough will
- * not consume any resources. Note that pools with similar
- * properties but different details (for example, timeout parameters)
- * may be created using {@link ThreadPoolExecutor} constructors.
- *
- * @return the newly created thread pool
- */
- public static ExecutorService newCachedThreadPool() {
- return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
- 60L, TimeUnit.SECONDS,
- new SynchronousQueue());
- }
-
- /**
- * Creates a thread pool that creates new threads as needed, but
- * will reuse previously constructed threads when they are
- * available, and uses the provided
- * ThreadFactory to create new threads when needed.
- * @param threadFactory the factory to use when creating new threads
- * @return the newly created thread pool
- * @throws NullPointerException if threadFactory is null
- */
- public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
- return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
- 60L, TimeUnit.SECONDS,
- new SynchronousQueue(),
- threadFactory);
- }
-
- /**
- * Creates a single-threaded executor that can schedule commands
- * to run after a given delay, or to execute periodically.
- * (Note however that if this single
- * thread terminates due to a failure during execution prior to
- * shutdown, a new one will take its place if needed to execute
- * subsequent tasks.) Tasks are guaranteed to execute
- * sequentially, and no more than one task will be active at any
- * given time. Unlike the otherwise equivalent
- * <tt>newScheduledThreadPool(1)</tt> the returned executor is
- * guaranteed not to be reconfigurable to use additional threads.
- * @return the newly created scheduled executor
- */
- /* public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
- return new DelegatedScheduledExecutorService
- (new ScheduledThreadPoolExecutor(1));
- }
- */
- /**
- * Creates a single-threaded executor that can schedule commands
- * to run after a given delay, or to execute periodically. (Note
- * however that if this single thread terminates due to a failure
- * during execution prior to shutdown, a new one will take its
- * place if needed to execute subsequent tasks.) Tasks are
- * guaranteed to execute sequentially, and no more than one task
- * will be active at any given time. Unlike the otherwise
- * equivalent <tt>newScheduledThreadPool(1, threadFactory)</tt>
- * the returned executor is guaranteed not to be reconfigurable to
- * use additional threads.
- * @param threadFactory the factory to use when creating new
- * threads
- * @return a newly created scheduled executor
- * @throws NullPointerException if threadFactory is null
- */
- /* public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
- return new DelegatedScheduledExecutorService
- (new ScheduledThreadPoolExecutor(1, threadFactory));
- }
- */
- /**
- * Creates a thread pool that can schedule commands to run after a
- * given delay, or to execute periodically.
- * @param corePoolSize the number of threads to keep in the pool,
- * even if they are idle.
- * @return a newly created scheduled thread pool
- * @throws IllegalArgumentException if <tt>corePoolSize &lt; 0</tt>
- */
- /* public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
- return new ScheduledThreadPoolExecutor(corePoolSize);
- }
- */
- /**
- * Creates a thread pool that can schedule commands to run after a
- * given delay, or to execute periodically.
- * @param corePoolSize the number of threads to keep in the pool,
- * even if they are idle.
- * @param threadFactory the factory to use when the executor
- * creates a new thread.
- * @return a newly created scheduled thread pool
- * @throws IllegalArgumentException if <tt>corePoolSize &lt; 0</tt>
- * @throws NullPointerException if threadFactory is null
- */
- /* public static ScheduledExecutorService newScheduledThreadPool(
- int corePoolSize, ThreadFactory threadFactory) {
- return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
- }
- */
-
- /**
- * Returns an object that delegates all defined {@link
- * ExecutorService} methods to the given executor, but not any
- * other methods that might otherwise be accessible using
- * casts. This provides a way to safely "freeze" configuration and
- * disallow tuning of a given concrete implementation.
- * @param executor the underlying implementation
- * @return an <tt>ExecutorService</tt> instance
- * @throws NullPointerException if executor null
- */
- public static ExecutorService unconfigurableExecutorService(ExecutorService executor) {
- if (executor == null)
- throw new NullPointerException();
- return new DelegatedExecutorService(executor);
- }
-
- /**
- * Returns an object that delegates all defined {@link
- * ScheduledExecutorService} methods to the given executor, but
- * not any other methods that might otherwise be accessible using
- * casts. This provides a way to safely "freeze" configuration and
- * disallow tuning of a given concrete implementation.
- * @param executor the underlying implementation
- * @return a <tt>ScheduledExecutorService</tt> instance
- * @throws NullPointerException if executor null
- */
- /* public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor) {
- if (executor == null)
- throw new NullPointerException();
- return new DelegatedScheduledExecutorService(executor);
- }
- */
- /**
- * Returns a default thread factory used to create new threads.
- * This factory creates all new threads used by an Executor in the
- * same {@link ThreadGroup}. If there is a {@link
- * java.lang.SecurityManager}, it uses the group of {@link
- * System#getSecurityManager}, else the group of the thread
- * invoking this <tt>defaultThreadFactory</tt> method. Each new
- * thread is created as a non-daemon thread with priority set to
- * the smaller of <tt>Thread.NORM_PRIORITY</tt> and the maximum
- * priority permitted in the thread group. New threads have names
- * accessible via {@link Thread#getName} of
- * <em>pool-N-thread-M</em>, where <em>N</em> is the sequence
- * number of this factory, and <em>M</em> is the sequence number
- * of the thread created by this factory.
- * @return a thread factory
- */
- public static ThreadFactory defaultThreadFactory() {
- return new DefaultThreadFactory();
- }
-
- /**
- * Returns a thread factory used to create new threads that
- * have the same permissions as the current thread.
- * This factory creates threads with the same settings as {@link
- * Executors#defaultThreadFactory}, additionally setting the
- * AccessControlContext and contextClassLoader of new threads to
- * be the same as the thread invoking this
- * <tt>privilegedThreadFactory</tt> method. A new
- * <tt>privilegedThreadFactory</tt> can be created within an
- * {@link AccessController#doPrivileged} action setting the
- * current thread's access control context to create threads with
- * the selected permission settings holding within that action.
- *
- * <p> Note that while tasks running within such threads will have
- * the same access control and class loader settings as the
- * current thread, they need not have the same {@link
- * java.lang.ThreadLocal} or {@link
- * java.lang.InheritableThreadLocal} values. If necessary,
- * particular values of thread locals can be set or reset before
- * any task runs in {@link ThreadPoolExecutor} subclasses using
- * {@link ThreadPoolExecutor#beforeExecute}. Also, if it is
- * necessary to initialize worker threads to have the same
- * InheritableThreadLocal settings as some other designated
- * thread, you can create a custom ThreadFactory in which that
- * thread waits for and services requests to create others that
- * will inherit its values.
- *
- * @return a thread factory
- * @throws AccessControlException if the current access control
- * context does not have permission to both get and set context
- * class loader.
- */
- public static ThreadFactory privilegedThreadFactory() {
- return new PrivilegedThreadFactory();
- }
-
- /**
- * Returns a {@link Callable} object that, when
- * called, runs the given task and returns the given result. This
- * can be useful when applying methods requiring a
- * <tt>Callable</tt> to an otherwise resultless action.
- * @param task the task to run
- * @param result the result to return
- * @return a callable object
- * @throws NullPointerException if task null
- */
- public static Callable callable(Runnable task, Object result) {
- if (task == null)
- throw new NullPointerException();
- return new RunnableAdapter(task, result);
- }
-
- /**
- * Returns a {@link Callable} object that, when
- * called, runs the given task and returns <tt>null</tt>.
- * @param task the task to run
- * @return a callable object
- * @throws NullPointerException if task null
- */
- public static Callable callable(Runnable task) {
- if (task == null)
- throw new NullPointerException();
- return new RunnableAdapter(task, null);
- }
-
- /**
- * Returns a {@link Callable} object that, when
- * called, runs the given privileged action and returns its result.
- * @param action the privileged action to run
- * @return a callable object
- * @throws NullPointerException if action null
- */
- public static Callable callable(final PrivilegedAction action) {
- if (action == null)
- throw new NullPointerException();
- return new Callable() {
- public Object call() { return action.run(); }};
- }
-
- /**
- * Returns a {@link Callable} object that, when
- * called, runs the given privileged exception action and returns
- * its result.
- * @param action the privileged exception action to run
- * @return a callable object
- * @throws NullPointerException if action null
- */
- public static Callable callable(final PrivilegedExceptionAction action) {
- if (action == null)
- throw new NullPointerException();
- return new Callable() {
- public Object call() throws Exception { return action.run(); }};
- }
-
- /**
- * Returns a {@link Callable} object that will, when
- * called, execute the given <tt>callable</tt> under the current
- * access control context. This method should normally be
- * invoked within an {@link AccessController#doPrivileged} action
- * to create callables that will, if possible, execute under the
- * selected permission settings holding within that action; or if
- * not possible, throw an associated {@link
- * AccessControlException}.
- * @param callable the underlying task
- * @return a callable object
- * @throws NullPointerException if callable null
- *
- */
- public static Callable privilegedCallable(Callable callable) {
- if (callable == null)
- throw new NullPointerException();
- return new PrivilegedCallable(callable);
- }
-
- /**
- * Returns a {@link Callable} object that will, when
- * called, execute the given <tt>callable</tt> under the current
- * access control context, with the current context class loader
- * as the context class loader. This method should normally be
- * invoked within an {@link AccessController#doPrivileged} action
- * to create callables that will, if possible, execute under the
- * selected permission settings holding within that action; or if
- * not possible, throw an associated {@link
- * AccessControlException}.
- * @param callable the underlying task
- *
- * @return a callable object
- * @throws NullPointerException if callable null
- * @throws AccessControlException if the current access control
- * context does not have permission to both set and get context
- * class loader.
- */
- public static Callable privilegedCallableUsingCurrentClassLoader(Callable callable) {
- if (callable == null)
- throw new NullPointerException();
- return new PrivilegedCallableUsingCurrentClassLoader(callable);
- }
-
- // Non-public classes supporting the public methods
-
- /**
- * A callable that runs given task and returns given result
- */
- static final class RunnableAdapter implements Callable {
- final Runnable task;
- final Object result;
- RunnableAdapter(Runnable task, Object result) {
- this.task = task;
- this.result = result;
- }
- public Object call() {
- task.run();
- return result;
- }
- }
-
- /**
- * A callable that runs under established access control settings
- */
- static final class PrivilegedCallable implements Callable {
- private final AccessControlContext acc;
- private final Callable task;
- private Object result;
- private Exception exception;
- PrivilegedCallable(Callable task) {
- this.task = task;
- this.acc = AccessController.getContext();
- }
-
- public Object call() throws Exception {
- AccessController.doPrivileged(new PrivilegedAction() {
- public Object run() {
- try {
- result = task.call();
- } catch (Exception ex) {
- exception = ex;
- }
- return null;
- }
- }, acc);
- if (exception != null)
- throw exception;
- else
- return result;
- }
- }
-
- /**
- * A callable that runs under established access control settings and
- * current ClassLoader
- */
- static final class PrivilegedCallableUsingCurrentClassLoader implements Callable {
- private final ClassLoader ccl;
- private final AccessControlContext acc;
- private final Callable task;
- private Object result;
- private Exception exception;
- PrivilegedCallableUsingCurrentClassLoader(Callable task) {
- this.task = task;
- this.ccl = Thread.currentThread().getContextClassLoader();
- this.acc = AccessController.getContext();
- acc.checkPermission(new RuntimePermission("getContextClassLoader"));
- acc.checkPermission(new RuntimePermission("setContextClassLoader"));
- }
-
- public Object call() throws Exception {
- AccessController.doPrivileged(new PrivilegedAction() {
- public Object run() {
- ClassLoader savedcl = null;
- Thread t = Thread.currentThread();
- try {
- ClassLoader cl = t.getContextClassLoader();
- if (ccl != cl) {
- t.setContextClassLoader(ccl);
- savedcl = cl;
- }
- result = task.call();
- } catch (Exception ex) {
- exception = ex;
- } finally {
- if (savedcl != null)
- t.setContextClassLoader(savedcl);
- }
- return null;
- }
- }, acc);
- if (exception != null)
- throw exception;
- else
- return result;
- }
- }
-
- /**
- * The default thread factory
- */
- static class DefaultThreadFactory implements ThreadFactory {
- static final AtomicInteger poolNumber = new AtomicInteger(1);
- final ThreadGroup group;
- final AtomicInteger threadNumber = new AtomicInteger(1);
- final String namePrefix;
-
- DefaultThreadFactory() {
- SecurityManager s = System.getSecurityManager();
- group = (s != null)? s.getThreadGroup() :
- Thread.currentThread().getThreadGroup();
- namePrefix = "pool-" +
- poolNumber.getAndIncrement() +
- "-thread-";
- }
-
- public Thread newThread(Runnable r) {
- Thread t = new Thread(group, r,
- namePrefix + threadNumber.getAndIncrement(),
- 0);
- if (t.isDaemon())
- t.setDaemon(false);
- if (t.getPriority() != Thread.NORM_PRIORITY)
- t.setPriority(Thread.NORM_PRIORITY);
- return t;
- }
- }
-
- /**
- * Thread factory capturing access control and class loader
- */
- static class PrivilegedThreadFactory extends DefaultThreadFactory {
- private final ClassLoader ccl;
- private final AccessControlContext acc;
-
- PrivilegedThreadFactory() {
- super();
- this.ccl = Thread.currentThread().getContextClassLoader();
- this.acc = AccessController.getContext();
- acc.checkPermission(new RuntimePermission("setContextClassLoader"));
- }
-
- public Thread newThread(final Runnable r) {
- return super.newThread(new Runnable() {
- public void run() {
- AccessController.doPrivileged(new PrivilegedAction() {
- public Object run() {
- Thread.currentThread().setContextClassLoader(ccl);
- r.run();
- return null;
- }
- }, acc);
- }
- });
- }
-
- }
-
- /**
- * A wrapper class that exposes only the ExecutorService methods
- * of an ExecutorService implementation.
- */
- static class DelegatedExecutorService extends AbstractExecutorService {
- private final ExecutorService e;
- DelegatedExecutorService(ExecutorService executor) { e = executor; }
- public void execute(Runnable command) { e.execute(command); }
- public void shutdown() { e.shutdown(); }
- public List shutdownNow() { return e.shutdownNow(); }
- public boolean isShutdown() { return e.isShutdown(); }
- public boolean isTerminated() { return e.isTerminated(); }
- public boolean awaitTermination(long timeout, TimeUnit unit)
- throws InterruptedException {
- return e.awaitTermination(timeout, unit);
- }
- public Future submit(Runnable task) {
- return e.submit(task);
- }
- public Future submit(Callable task) {
- return e.submit(task);
- }
- public Future submit(Runnable task, Object result) {
- return e.submit(task, result);
- }
- public List<Future> invokeAll(Collection tasks)
- throws InterruptedException {
- return e.invokeAll(tasks);
- }
- public List<Future> invokeAll(Collection tasks,
- long timeout, TimeUnit unit)
- throws InterruptedException {
- return e.invokeAll(tasks, timeout, unit);
- }
- public Object invokeAny(Collection tasks)
- throws InterruptedException, ExecutionException {
- return e.invokeAny(tasks);
- }
- public Object invokeAny(Collection tasks,
- long timeout, TimeUnit unit)
- throws InterruptedException, ExecutionException, TimeoutException {
- return e.invokeAny(tasks, timeout, unit);
- }
- }
-
- static class FinalizableDelegatedExecutorService
- extends DelegatedExecutorService {
- FinalizableDelegatedExecutorService(ExecutorService executor) {
- super(executor);
- }
- protected void finalize() {
- super.shutdown();
- }
- }
-
- /**
- * A wrapper class that exposes only the ScheduledExecutorService
- * methods of a ScheduledExecutorService implementation.
- */
- /* static class DelegatedScheduledExecutorService
- extends DelegatedExecutorService
- implements ScheduledExecutorService {
- private final ScheduledExecutorService e;
- DelegatedScheduledExecutorService(ScheduledExecutorService executor) {
- super(executor);
- e = executor;
- }
- public ScheduledFuture schedule(Runnable command, long delay, TimeUnit unit) {
- return e.schedule(command, delay, unit);
- }
- public ScheduledFuture schedule(Callable callable, long delay, TimeUnit unit) {
- return e.schedule(callable, delay, unit);
- }
- public ScheduledFuture scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) {
- return e.scheduleAtFixedRate(command, initialDelay, period, unit);
- }
- public ScheduledFuture scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) {
- return e.scheduleWithFixedDelay(command, initialDelay, delay, unit);
- }
- }
-*/
-
- /** Cannot instantiate. */
- private Executors() {}
-}