summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/asm/Label.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/compiler/scala/tools/asm/Label.java')
-rw-r--r--src/compiler/scala/tools/asm/Label.java555
1 files changed, 555 insertions, 0 deletions
diff --git a/src/compiler/scala/tools/asm/Label.java b/src/compiler/scala/tools/asm/Label.java
new file mode 100644
index 0000000000..712c7f251f
--- /dev/null
+++ b/src/compiler/scala/tools/asm/Label.java
@@ -0,0 +1,555 @@
+/***
+ * ASM: a very small and fast Java bytecode manipulation framework
+ * Copyright (c) 2000-2011 INRIA, France Telecom
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+package scala.tools.asm;
+
+/**
+ * A label represents a position in the bytecode of a method. Labels are used
+ * for jump, goto, and switch instructions, and for try catch blocks. A label
+ * designates the <i>instruction</i> that is just after. Note however that
+ * there can be other elements between a label and the instruction it
+ * designates (such as other labels, stack map frames, line numbers, etc.).
+ *
+ * @author Eric Bruneton
+ */
+public class Label {
+
+ /**
+ * Indicates if this label is only used for debug attributes. Such a label
+ * is not the start of a basic block, the target of a jump instruction, or
+ * an exception handler. It can be safely ignored in control flow graph
+ * analysis algorithms (for optimization purposes).
+ */
+ static final int DEBUG = 1;
+
+ /**
+ * Indicates if the position of this label is known.
+ */
+ static final int RESOLVED = 2;
+
+ /**
+ * Indicates if this label has been updated, after instruction resizing.
+ */
+ static final int RESIZED = 4;
+
+ /**
+ * Indicates if this basic block has been pushed in the basic block stack.
+ * See {@link MethodWriter#visitMaxs visitMaxs}.
+ */
+ static final int PUSHED = 8;
+
+ /**
+ * Indicates if this label is the target of a jump instruction, or the start
+ * of an exception handler.
+ */
+ static final int TARGET = 16;
+
+ /**
+ * Indicates if a stack map frame must be stored for this label.
+ */
+ static final int STORE = 32;
+
+ /**
+ * Indicates if this label corresponds to a reachable basic block.
+ */
+ static final int REACHABLE = 64;
+
+ /**
+ * Indicates if this basic block ends with a JSR instruction.
+ */
+ static final int JSR = 128;
+
+ /**
+ * Indicates if this basic block ends with a RET instruction.
+ */
+ static final int RET = 256;
+
+ /**
+ * Indicates if this basic block is the start of a subroutine.
+ */
+ static final int SUBROUTINE = 512;
+
+ /**
+ * Indicates if this subroutine basic block has been visited by a
+ * visitSubroutine(null, ...) call.
+ */
+ static final int VISITED = 1024;
+
+ /**
+ * Indicates if this subroutine basic block has been visited by a
+ * visitSubroutine(!null, ...) call.
+ */
+ static final int VISITED2 = 2048;
+
+ /**
+ * Field used to associate user information to a label. Warning: this field
+ * is used by the ASM tree package. In order to use it with the ASM tree
+ * package you must override the {@link
+ * org.objectweb.asm.tree.MethodNode#getLabelNode} method.
+ */
+ public Object info;
+
+ /**
+ * Flags that indicate the status of this label.
+ *
+ * @see #DEBUG
+ * @see #RESOLVED
+ * @see #RESIZED
+ * @see #PUSHED
+ * @see #TARGET
+ * @see #STORE
+ * @see #REACHABLE
+ * @see #JSR
+ * @see #RET
+ */
+ int status;
+
+ /**
+ * The line number corresponding to this label, if known.
+ */
+ int line;
+
+ /**
+ * The position of this label in the code, if known.
+ */
+ int position;
+
+ /**
+ * Number of forward references to this label, times two.
+ */
+ private int referenceCount;
+
+ /**
+ * Informations about forward references. Each forward reference is
+ * described by two consecutive integers in this array: the first one is the
+ * position of the first byte of the bytecode instruction that contains the
+ * forward reference, while the second is the position of the first byte of
+ * the forward reference itself. In fact the sign of the first integer
+ * indicates if this reference uses 2 or 4 bytes, and its absolute value
+ * gives the position of the bytecode instruction. This array is also used
+ * as a bitset to store the subroutines to which a basic block belongs. This
+ * information is needed in {@linked MethodWriter#visitMaxs}, after all
+ * forward references have been resolved. Hence the same array can be used
+ * for both purposes without problems.
+ */
+ private int[] srcAndRefPositions;
+
+ // ------------------------------------------------------------------------
+
+ /*
+ * Fields for the control flow and data flow graph analysis algorithms (used
+ * to compute the maximum stack size or the stack map frames). A control
+ * flow graph contains one node per "basic block", and one edge per "jump"
+ * from one basic block to another. Each node (i.e., each basic block) is
+ * represented by the Label object that corresponds to the first instruction
+ * of this basic block. Each node also stores the list of its successors in
+ * the graph, as a linked list of Edge objects.
+ *
+ * The control flow analysis algorithms used to compute the maximum stack
+ * size or the stack map frames are similar and use two steps. The first
+ * step, during the visit of each instruction, builds information about the
+ * state of the local variables and the operand stack at the end of each
+ * basic block, called the "output frame", <i>relatively</i> to the frame
+ * state at the beginning of the basic block, which is called the "input
+ * frame", and which is <i>unknown</i> during this step. The second step,
+ * in {@link MethodWriter#visitMaxs}, is a fix point algorithm that
+ * computes information about the input frame of each basic block, from the
+ * input state of the first basic block (known from the method signature),
+ * and by the using the previously computed relative output frames.
+ *
+ * The algorithm used to compute the maximum stack size only computes the
+ * relative output and absolute input stack heights, while the algorithm
+ * used to compute stack map frames computes relative output frames and
+ * absolute input frames.
+ */
+
+ /**
+ * Start of the output stack relatively to the input stack. The exact
+ * semantics of this field depends on the algorithm that is used.
+ *
+ * When only the maximum stack size is computed, this field is the number of
+ * elements in the input stack.
+ *
+ * When the stack map frames are completely computed, this field is the
+ * offset of the first output stack element relatively to the top of the
+ * input stack. This offset is always negative or null. A null offset means
+ * that the output stack must be appended to the input stack. A -n offset
+ * means that the first n output stack elements must replace the top n input
+ * stack elements, and that the other elements must be appended to the input
+ * stack.
+ */
+ int inputStackTop;
+
+ /**
+ * Maximum height reached by the output stack, relatively to the top of the
+ * input stack. This maximum is always positive or null.
+ */
+ int outputStackMax;
+
+ /**
+ * Information about the input and output stack map frames of this basic
+ * block. This field is only used when {@link ClassWriter#COMPUTE_FRAMES}
+ * option is used.
+ */
+ Frame frame;
+
+ /**
+ * The successor of this label, in the order they are visited. This linked
+ * list does not include labels used for debug info only. If
+ * {@link ClassWriter#COMPUTE_FRAMES} option is used then, in addition, it
+ * does not contain successive labels that denote the same bytecode position
+ * (in this case only the first label appears in this list).
+ */
+ Label successor;
+
+ /**
+ * The successors of this node in the control flow graph. These successors
+ * are stored in a linked list of {@link Edge Edge} objects, linked to each
+ * other by their {@link Edge#next} field.
+ */
+ Edge successors;
+
+ /**
+ * The next basic block in the basic block stack. This stack is used in the
+ * main loop of the fix point algorithm used in the second step of the
+ * control flow analysis algorithms. It is also used in
+ * {@link #visitSubroutine} to avoid using a recursive method.
+ *
+ * @see MethodWriter#visitMaxs
+ */
+ Label next;
+
+ // ------------------------------------------------------------------------
+ // Constructor
+ // ------------------------------------------------------------------------
+
+ /**
+ * Constructs a new label.
+ */
+ public Label() {
+ }
+
+ // ------------------------------------------------------------------------
+ // Methods to compute offsets and to manage forward references
+ // ------------------------------------------------------------------------
+
+ /**
+ * Returns the offset corresponding to this label. This offset is computed
+ * from the start of the method's bytecode. <i>This method is intended for
+ * {@link Attribute} sub classes, and is normally not needed by class
+ * generators or adapters.</i>
+ *
+ * @return the offset corresponding to this label.
+ * @throws IllegalStateException if this label is not resolved yet.
+ */
+ public int getOffset() {
+ if ((status & RESOLVED) == 0) {
+ throw new IllegalStateException("Label offset position has not been resolved yet");
+ }
+ return position;
+ }
+
+ /**
+ * Puts a reference to this label in the bytecode of a method. If the
+ * position of the label is known, the offset is computed and written
+ * directly. Otherwise, a null offset is written and a new forward reference
+ * is declared for this label.
+ *
+ * @param owner the code writer that calls this method.
+ * @param out the bytecode of the method.
+ * @param source the position of first byte of the bytecode instruction that
+ * contains this label.
+ * @param wideOffset <tt>true</tt> if the reference must be stored in 4
+ * bytes, or <tt>false</tt> if it must be stored with 2 bytes.
+ * @throws IllegalArgumentException if this label has not been created by
+ * the given code writer.
+ */
+ void put(
+ final MethodWriter owner,
+ final ByteVector out,
+ final int source,
+ final boolean wideOffset)
+ {
+ if ((status & RESOLVED) == 0) {
+ if (wideOffset) {
+ addReference(-1 - source, out.length);
+ out.putInt(-1);
+ } else {
+ addReference(source, out.length);
+ out.putShort(-1);
+ }
+ } else {
+ if (wideOffset) {
+ out.putInt(position - source);
+ } else {
+ out.putShort(position - source);
+ }
+ }
+ }
+
+ /**
+ * Adds a forward reference to this label. This method must be called only
+ * for a true forward reference, i.e. only if this label is not resolved
+ * yet. For backward references, the offset of the reference can be, and
+ * must be, computed and stored directly.
+ *
+ * @param sourcePosition the position of the referencing instruction. This
+ * position will be used to compute the offset of this forward
+ * reference.
+ * @param referencePosition the position where the offset for this forward
+ * reference must be stored.
+ */
+ private void addReference(
+ final int sourcePosition,
+ final int referencePosition)
+ {
+ if (srcAndRefPositions == null) {
+ srcAndRefPositions = new int[6];
+ }
+ if (referenceCount >= srcAndRefPositions.length) {
+ int[] a = new int[srcAndRefPositions.length + 6];
+ System.arraycopy(srcAndRefPositions,
+ 0,
+ a,
+ 0,
+ srcAndRefPositions.length);
+ srcAndRefPositions = a;
+ }
+ srcAndRefPositions[referenceCount++] = sourcePosition;
+ srcAndRefPositions[referenceCount++] = referencePosition;
+ }
+
+ /**
+ * Resolves all forward references to this label. This method must be called
+ * when this label is added to the bytecode of the method, i.e. when its
+ * position becomes known. This method fills in the blanks that where left
+ * in the bytecode by each forward reference previously added to this label.
+ *
+ * @param owner the code writer that calls this method.
+ * @param position the position of this label in the bytecode.
+ * @param data the bytecode of the method.
+ * @return <tt>true</tt> if a blank that was left for this label was to
+ * small to store the offset. In such a case the corresponding jump
+ * instruction is replaced with a pseudo instruction (using unused
+ * opcodes) using an unsigned two bytes offset. These pseudo
+ * instructions will need to be replaced with true instructions with
+ * wider offsets (4 bytes instead of 2). This is done in
+ * {@link MethodWriter#resizeInstructions}.
+ * @throws IllegalArgumentException if this label has already been resolved,
+ * or if it has not been created by the given code writer.
+ */
+ boolean resolve(
+ final MethodWriter owner,
+ final int position,
+ final byte[] data)
+ {
+ boolean needUpdate = false;
+ this.status |= RESOLVED;
+ this.position = position;
+ int i = 0;
+ while (i < referenceCount) {
+ int source = srcAndRefPositions[i++];
+ int reference = srcAndRefPositions[i++];
+ int offset;
+ if (source >= 0) {
+ offset = position - source;
+ if (offset < Short.MIN_VALUE || offset > Short.MAX_VALUE) {
+ /*
+ * changes the opcode of the jump instruction, in order to
+ * be able to find it later (see resizeInstructions in
+ * MethodWriter). These temporary opcodes are similar to
+ * jump instruction opcodes, except that the 2 bytes offset
+ * is unsigned (and can therefore represent values from 0 to
+ * 65535, which is sufficient since the size of a method is
+ * limited to 65535 bytes).
+ */
+ int opcode = data[reference - 1] & 0xFF;
+ if (opcode <= Opcodes.JSR) {
+ // changes IFEQ ... JSR to opcodes 202 to 217
+ data[reference - 1] = (byte) (opcode + 49);
+ } else {
+ // changes IFNULL and IFNONNULL to opcodes 218 and 219
+ data[reference - 1] = (byte) (opcode + 20);
+ }
+ needUpdate = true;
+ }
+ data[reference++] = (byte) (offset >>> 8);
+ data[reference] = (byte) offset;
+ } else {
+ offset = position + source + 1;
+ data[reference++] = (byte) (offset >>> 24);
+ data[reference++] = (byte) (offset >>> 16);
+ data[reference++] = (byte) (offset >>> 8);
+ data[reference] = (byte) offset;
+ }
+ }
+ return needUpdate;
+ }
+
+ /**
+ * Returns the first label of the series to which this label belongs. For an
+ * isolated label or for the first label in a series of successive labels,
+ * this method returns the label itself. For other labels it returns the
+ * first label of the series.
+ *
+ * @return the first label of the series to which this label belongs.
+ */
+ Label getFirst() {
+ return !ClassReader.FRAMES || frame == null ? this : frame.owner;
+ }
+
+ // ------------------------------------------------------------------------
+ // Methods related to subroutines
+ // ------------------------------------------------------------------------
+
+ /**
+ * Returns true is this basic block belongs to the given subroutine.
+ *
+ * @param id a subroutine id.
+ * @return true is this basic block belongs to the given subroutine.
+ */
+ boolean inSubroutine(final long id) {
+ if ((status & Label.VISITED) != 0) {
+ return (srcAndRefPositions[(int) (id >>> 32)] & (int) id) != 0;
+ }
+ return false;
+ }
+
+ /**
+ * Returns true if this basic block and the given one belong to a common
+ * subroutine.
+ *
+ * @param block another basic block.
+ * @return true if this basic block and the given one belong to a common
+ * subroutine.
+ */
+ boolean inSameSubroutine(final Label block) {
+ if ((status & VISITED) == 0 || (block.status & VISITED) == 0) {
+ return false;
+ }
+ for (int i = 0; i < srcAndRefPositions.length; ++i) {
+ if ((srcAndRefPositions[i] & block.srcAndRefPositions[i]) != 0) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ /**
+ * Marks this basic block as belonging to the given subroutine.
+ *
+ * @param id a subroutine id.
+ * @param nbSubroutines the total number of subroutines in the method.
+ */
+ void addToSubroutine(final long id, final int nbSubroutines) {
+ if ((status & VISITED) == 0) {
+ status |= VISITED;
+ srcAndRefPositions = new int[(nbSubroutines - 1) / 32 + 1];
+ }
+ srcAndRefPositions[(int) (id >>> 32)] |= (int) id;
+ }
+
+ /**
+ * Finds the basic blocks that belong to a given subroutine, and marks these
+ * blocks as belonging to this subroutine. This method follows the control
+ * flow graph to find all the blocks that are reachable from the current
+ * block WITHOUT following any JSR target.
+ *
+ * @param JSR a JSR block that jumps to this subroutine. If this JSR is not
+ * null it is added to the successor of the RET blocks found in the
+ * subroutine.
+ * @param id the id of this subroutine.
+ * @param nbSubroutines the total number of subroutines in the method.
+ */
+ void visitSubroutine(final Label JSR, final long id, final int nbSubroutines)
+ {
+ // user managed stack of labels, to avoid using a recursive method
+ // (recursivity can lead to stack overflow with very large methods)
+ Label stack = this;
+ while (stack != null) {
+ // removes a label l from the stack
+ Label l = stack;
+ stack = l.next;
+ l.next = null;
+
+ if (JSR != null) {
+ if ((l.status & VISITED2) != 0) {
+ continue;
+ }
+ l.status |= VISITED2;
+ // adds JSR to the successors of l, if it is a RET block
+ if ((l.status & RET) != 0) {
+ if (!l.inSameSubroutine(JSR)) {
+ Edge e = new Edge();
+ e.info = l.inputStackTop;
+ e.successor = JSR.successors.successor;
+ e.next = l.successors;
+ l.successors = e;
+ }
+ }
+ } else {
+ // if the l block already belongs to subroutine 'id', continue
+ if (l.inSubroutine(id)) {
+ continue;
+ }
+ // marks the l block as belonging to subroutine 'id'
+ l.addToSubroutine(id, nbSubroutines);
+ }
+ // pushes each successor of l on the stack, except JSR targets
+ Edge e = l.successors;
+ while (e != null) {
+ // if the l block is a JSR block, then 'l.successors.next' leads
+ // to the JSR target (see {@link #visitJumpInsn}) and must
+ // therefore not be followed
+ if ((l.status & Label.JSR) == 0 || e != l.successors.next) {
+ // pushes e.successor on the stack if it not already added
+ if (e.successor.next == null) {
+ e.successor.next = stack;
+ stack = e.successor;
+ }
+ }
+ e = e.next;
+ }
+ }
+ }
+
+ // ------------------------------------------------------------------------
+ // Overriden Object methods
+ // ------------------------------------------------------------------------
+
+ /**
+ * Returns a string representation of this label.
+ *
+ * @return a string representation of this label.
+ */
+ @Override
+ public String toString() {
+ return "L" + System.identityHashCode(this);
+ }
+}