summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/Macros.scala
diff options
context:
space:
mode:
Diffstat (limited to 'src/compiler/scala/tools/nsc/typechecker/Macros.scala')
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/Macros.scala1361
1 files changed, 1149 insertions, 212 deletions
diff --git a/src/compiler/scala/tools/nsc/typechecker/Macros.scala b/src/compiler/scala/tools/nsc/typechecker/Macros.scala
index e43b1fab0b..3b270a92ad 100644
--- a/src/compiler/scala/tools/nsc/typechecker/Macros.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/Macros.scala
@@ -3,135 +3,682 @@ package typechecker
import symtab.Flags._
import scala.tools.nsc.util._
+import scala.tools.nsc.util.ClassPath._
import scala.reflect.ReflectionUtils
+import scala.collection.mutable.ListBuffer
+import scala.compat.Platform.EOL
+import scala.reflect.makro.runtime.{Context => MacroContext}
+import scala.reflect.runtime.Mirror
+/**
+ * Code to deal with macros, namely with:
+ * * Compilation of macro definitions
+ * * Expansion of macro applications
+ *
+ * Say we have in a class C:
+ *
+ * def foo[T](xs: List[T]): T = macro fooBar
+ *
+ * Then fooBar needs to point to a static method of the following form:
+ *
+ * def fooBar[T: c.TypeTag]
+ * (c: scala.reflect.makro.Context)
+ * (xs: c.Expr[List[T]])
+ * : c.mirror.Tree = {
+ * ...
+ * }
+ *
+ * Then, if foo is called in qual.foo[Int](elems), where qual: D,
+ * the macro application is expanded to a reflective invocation of fooBar with parameters
+ *
+ * (simpleMacroContext{ type PrefixType = D; val prefix = qual })
+ * (Expr(elems))
+ * (TypeTag(Int))
+ */
trait Macros { self: Analyzer =>
import global._
import definitions._
- def macroMeth(mac: Symbol): Symbol = {
- var owner = mac.owner
- if (!owner.isModuleClass) owner = owner.companionModule.moduleClass
- owner.info.decl(nme.macroMethodName(mac.name))
- }
+ val macroDebug = settings.Ymacrodebug.value
+ val macroCopypaste = settings.Ymacrocopypaste.value
+ val macroTrace = scala.tools.nsc.util.trace when macroDebug
- def macroArgs(tree: Tree): (List[List[Tree]]) = tree match {
- case Apply(fn, args) =>
- macroArgs(fn) :+ args
- case TypeApply(fn, args) =>
- macroArgs(fn) :+ args
- case Select(qual, name) =>
- List(List(qual))
- case _ =>
- List(List())
- }
+ val globalMacroCache = collection.mutable.Map[Any, Any]()
+ val perRunMacroCache = perRunCaches.newMap[Symbol, collection.mutable.Map[Any, Any]]
- /**
- * The definition of the method implementing a macro. Example:
- * Say we have in a class C
+ /** A list of compatible macro implementation signatures.
*
- * def macro foo[T](xs: List[T]): T = expr
+ * In the example above:
+ * (c: scala.reflect.makro.Context)(xs: c.Expr[List[T]]): c.Expr[T]
*
- * Then the following macro method is generated for `foo`:
- *
- * def defmacro$foo
- * (_context: scala.reflect.macro.Context)
- * (_this: _context.Tree)
- * (T: _context.TypeTree)
- * (xs: _context.Tree): _context.Tree = {
- * import _context._ // this means that all methods of Context can be used unqualified in macro's body
- * expr
- * }
+ * @param macroDef The macro definition symbol
+ * @param tparams The type parameters of the macro definition
+ * @param vparamss The value parameters of the macro definition
+ * @param retTpe The return type of the macro definition
+ */
+ private def macroImplSigs(macroDef: Symbol, tparams: List[TypeDef], vparamss: List[List[ValDef]], retTpe: Type): (List[List[List[Symbol]]], Type) = {
+ // had to move method's body to an object because of the recursive dependencies between sigma and param
+ object SigGenerator {
+ val hasThis = macroDef.owner.isClass
+ val ownerTpe = macroDef.owner match {
+ case owner if owner.isModuleClass => new UniqueThisType(macroDef.owner)
+ case owner if owner.isClass => macroDef.owner.tpe
+ case _ => NoType
+ }
+ val hasTparams = !tparams.isEmpty
+
+ def sigma(tpe: Type): Type = {
+ class SigmaTypeMap extends TypeMap {
+ def apply(tp: Type): Type = tp match {
+ case TypeRef(pre, sym, args) =>
+ val pre1 = pre match {
+ case ThisType(sym) if sym == macroDef.owner =>
+ SingleType(SingleType(SingleType(NoPrefix, paramsCtx(0)), MacroContextPrefix), ExprValue)
+ case SingleType(NoPrefix, sym) =>
+ vparamss.flatten.find(_.symbol == sym) match {
+ case Some(macroDefParam) =>
+ SingleType(SingleType(NoPrefix, param(macroDefParam)), ExprValue)
+ case _ =>
+ pre
+ }
+ case _ =>
+ pre
+ }
+ val args1 = args map mapOver
+ TypeRef(pre1, sym, args1)
+ case _ =>
+ mapOver(tp)
+ }
+ }
+
+ new SigmaTypeMap() apply tpe
+ }
+
+ def makeParam(name: Name, pos: Position, tpe: Type, flags: Long = 0L) =
+ macroDef.newValueParameter(name, pos, flags) setInfo tpe
+ val ctxParam = makeParam(nme.macroContext, macroDef.pos, MacroContextClass.tpe, SYNTHETIC)
+ def implType(isType: Boolean, origTpe: Type): Type =
+ if (isRepeatedParamType(origTpe))
+ appliedType(
+ RepeatedParamClass.typeConstructor,
+ List(implType(isType, sigma(origTpe.typeArgs.head))))
+ else {
+ val tsym = getMember(MacroContextClass, if (isType) tpnme.TypeTag else tpnme.Expr)
+ typeRef(singleType(NoPrefix, ctxParam), tsym, List(sigma(origTpe)))
+ }
+ val paramCache = collection.mutable.Map[Symbol, Symbol]()
+ def param(tree: Tree): Symbol =
+ paramCache.getOrElseUpdate(tree.symbol, {
+ // [Eugene] deskolemization became necessary once I implemented inference of macro def return type
+ // please, verify this solution, but for now I'll leave it here - cargo cult for the win
+ val sym = tree.symbol.deSkolemize
+ val sigParam = makeParam(sym.name, sym.pos, implType(sym.isType, sym.tpe))
+ if (sym.isSynthetic) sigParam.flags |= SYNTHETIC
+ sigParam
+ })
+
+ val paramsCtx = List(ctxParam)
+ val paramsThis = List(makeParam(nme.macroThis, macroDef.pos, implType(false, ownerTpe), SYNTHETIC))
+ val paramsTparams = tparams map param
+ val paramssParams = vparamss map (_ map param)
+
+ var paramsss = List[List[List[Symbol]]]()
+ // tparams are no longer part of a signature, they get into macro implementations via context bounds
+// if (hasTparams && hasThis) paramsss :+= paramsCtx :: paramsThis :: paramsTparams :: paramssParams
+// if (hasTparams) paramsss :+= paramsCtx :: paramsTparams :: paramssParams
+ // _this params are no longer part of a signature, its gets into macro implementations via Context.prefix
+// if (hasThis) paramsss :+= paramsCtx :: paramsThis :: paramssParams
+ paramsss :+= paramsCtx :: paramssParams
+
+ val tsym = getMember(MacroContextClass, tpnme.Expr)
+ val implRetTpe = typeRef(singleType(NoPrefix, ctxParam), tsym, List(sigma(retTpe)))
+ }
+
+ import SigGenerator._
+ macroTrace("generating macroImplSigs for: ")(macroDef)
+ macroTrace("tparams are: ")(tparams)
+ macroTrace("vparamss are: ")(vparamss)
+ macroTrace("retTpe is: ")(retTpe)
+ macroTrace("macroImplSigs are: ")(paramsss, implRetTpe)
+ }
+
+ private def transformTypeTagEvidenceParams(paramss: List[List[Symbol]], transform: (Symbol, Symbol) => Option[Symbol]): List[List[Symbol]] = {
+ if (paramss.length == 0)
+ return paramss
+
+ val wannabe = if (paramss.head.length == 1) paramss.head.head else NoSymbol
+ val contextParam = if (wannabe != NoSymbol && wannabe.tpe <:< definitions.MacroContextClass.tpe) wannabe else NoSymbol
+
+ val lastParamList0 = paramss.lastOption getOrElse Nil
+ val lastParamList = lastParamList0 flatMap (param => param.tpe match {
+ case TypeRef(SingleType(NoPrefix, contextParam), sym, List(tparam)) =>
+ var wannabe = sym
+ while (wannabe.isAliasType) wannabe = wannabe.info.typeSymbol
+ if (wannabe != definitions.TypeTagClass)
+ List(param)
+ else
+ transform(param, tparam.typeSymbol) map (_ :: Nil) getOrElse Nil
+ case _ =>
+ List(param)
+ })
+
+ var result = paramss.dropRight(1) :+ lastParamList
+ if (lastParamList0.isEmpty ^ lastParamList.isEmpty) {
+ result = result dropRight 1
+ }
+
+ result
+ }
+
+ /** As specified above, body of a macro definition must reference its implementation.
+ * This function verifies that the body indeed refers to a method, and that
+ * the referenced macro implementation is compatible with the given macro definition.
*
- * If macro has no type arguments, the third parameter list is omitted (it's not empty, but omitted altogether).
+ * This means that macro implementation (fooBar in example above) must:
+ * 1) Refer to a statically accessible, non-overloaded method.
+ * 2) Have the right parameter lists as outlined in the SIP / in the doc comment of this class.
*
- * To find out the desugared representation of your particular macro, compile it with -Ymacro-debug.
+ * @return typechecked rhs of the given macro definition
*/
- def macroMethDef(mdef: DefDef): Tree = {
- def paramDef(name: Name, tpt: Tree) = ValDef(Modifiers(PARAM), name, tpt, EmptyTree)
- val contextType = TypeTree(ReflectMacroContext.tpe)
- val globParamSec = List(paramDef(nme.macroContext, contextType))
- def globSelect(name: Name) = Select(Ident(nme.macroContext), name)
- def globTree = globSelect(tpnme.Tree)
- def globTypeTree = globSelect(tpnme.TypeTree)
- val thisParamSec = List(paramDef(newTermName(nme.macroThis), globTree))
- def tparamInMacro(tdef: TypeDef) = paramDef(tdef.name.toTermName, globTypeTree)
- def vparamInMacro(vdef: ValDef): ValDef = paramDef(vdef.name, vdef.tpt match {
- case tpt @ AppliedTypeTree(hk, _) if treeInfo.isRepeatedParamType(tpt) => AppliedTypeTree(hk, List(globTree))
- case _ => globTree
- })
- def wrapImplicit(tree: Tree) = atPos(tree.pos) {
- // implicit hasn't proven useful so far, so I'm disabling it
- //val implicitDecl = ValDef(Modifiers(IMPLICIT), nme.macroContextImplicit, SingletonTypeTree(Ident(nme.macroContext)), Ident(nme.macroContext))
- val importGlob = Import(Ident(nme.macroContext), List(ImportSelector(nme.WILDCARD, -1, null, -1)))
- Block(List(importGlob), tree)
+ def typedMacroBody(typer: Typer, ddef: DefDef): Tree = {
+ import typer.context
+ if (macroDebug) println("typechecking macro def %s at %s".format(ddef.symbol, ddef.pos))
+
+ implicit def augmentString(s: String) = new AugmentedString(s)
+ class AugmentedString(s: String) {
+ def abbreviateCoreAliases: String = { // hack!
+ var result = s
+ result = result.replace("c.mirror.TypeTag", "c.TypeTag")
+ result = result.replace("c.mirror.Expr", "c.Expr")
+ result
+ }
}
- var formals = (mdef.vparamss map (_ map vparamInMacro))
- if (mdef.tparams.nonEmpty) formals = (mdef.tparams map tparamInMacro) :: formals
-
- atPos(mdef.pos) {
- new DefDef( // can't call DefDef here; need to find out why
- mods = mdef.mods &~ MACRO &~ OVERRIDE,
- name = nme.macroMethodName(mdef.name),
- tparams = List(),
- vparamss = globParamSec :: thisParamSec :: formals,
- tpt = globTree,
- wrapImplicit(mdef.rhs))
+
+ var hasErrors = false
+ def reportError(pos: Position, msg: String) = {
+ hasErrors = true
+ context.error(pos, msg)
+ }
+
+ val macroDef = ddef.symbol
+ val defpos = macroDef.pos
+ val implpos = ddef.rhs.pos
+ assert(macroDef.isTermMacro, ddef)
+
+ def invalidBodyError() =
+ reportError(defpos,
+ "macro body has wrong shape:" +
+ "\n required: macro <reference to implementation object>.<implementation method name>" +
+ "\n or : macro <implementation method name>")
+ def validatePreTyper(rhs: Tree): Unit = rhs match {
+ // we do allow macro invocations inside macro bodies
+ // personally I don't mind if pre-typer tree is a macro invocation
+ // that later resolves to a valid reference to a macro implementation
+ // however, I don't think that invalidBodyError() should hint at that
+ // let this be an Easter Egg :)
+ case Apply(_, _) => ;
+ case TypeApply(_, _) => ;
+ case Super(_, _) => ;
+ case This(_) => ;
+ case Ident(_) => ;
+ case Select(_, _) => ;
+ case _ => invalidBodyError()
}
+ def validatePostTyper(rhs1: Tree): Unit = {
+ def loop(tree: Tree): Unit = {
+ def errorNotStatic() =
+ reportError(implpos, "macro implementation must be in statically accessible object")
+
+ def ensureRoot(sym: Symbol) =
+ if (!sym.isModule && !sym.isModuleClass) errorNotStatic()
+
+ def ensureModule(sym: Symbol) =
+ if (!sym.isModule) errorNotStatic()
+
+ tree match {
+ case TypeApply(fun, _) =>
+ loop(fun)
+ case Super(qual, _) =>
+ ensureRoot(macroDef.owner)
+ loop(qual)
+ case This(_) =>
+ ensureRoot(tree.symbol)
+ case Select(qual, name) if name.isTypeName =>
+ loop(qual)
+ case Select(qual, name) if name.isTermName =>
+ if (tree.symbol != rhs1.symbol) ensureModule(tree.symbol)
+ loop(qual)
+ case Ident(name) if name.isTypeName =>
+ ;
+ case Ident(name) if name.isTermName =>
+ if (tree.symbol != rhs1.symbol) ensureModule(tree.symbol)
+ case _ =>
+ invalidBodyError()
+ }
+ }
+
+ loop(rhs1)
+ }
+
+ val rhs = ddef.rhs
+ validatePreTyper(rhs)
+ if (hasErrors) macroTrace("macro def failed to satisfy trivial preconditions: ")(macroDef)
+
+ // we use typed1 instead of typed, because otherwise adapt is going to mess us up
+ // if adapt sees <qualifier>.<method>, it will want to perform eta-expansion and will fail
+ // unfortunately, this means that we have to manually trigger macro expansion
+ // because it's adapt which is responsible for automatic expansion during typechecking
+ def typecheckRhs(rhs: Tree): Tree = {
+ try {
+ val prevNumErrors = reporter.ERROR.count // [Eugene] funnily enough, the isErroneous check is not enough
+ var rhs1 = if (hasErrors) EmptyTree else typer.typed1(rhs, EXPRmode, WildcardType)
+ def typecheckedWithErrors = (rhs1 exists (_.isErroneous)) || reporter.ERROR.count != prevNumErrors
+ def rhsNeedsMacroExpansion = rhs1.symbol != null && rhs1.symbol.isTermMacro && !rhs1.symbol.isErroneous
+ while (!typecheckedWithErrors && rhsNeedsMacroExpansion) {
+ rhs1 = macroExpand1(typer, rhs1) match {
+ case Success(expanded) =>
+ try {
+ val typechecked = typer.typed1(expanded, EXPRmode, WildcardType)
+ if (macroDebug) {
+ println("typechecked1:")
+ println(typechecked)
+ println(showRaw(typechecked))
+ }
+
+ typechecked
+ } finally {
+ openMacros = openMacros.tail
+ }
+ case Fallback(fallback) =>
+ typer.typed1(fallback, EXPRmode, WildcardType)
+ case Other(result) =>
+ result
+ }
+ }
+ rhs1
+ } catch {
+ case ex: TypeError =>
+ typer.reportTypeError(context, rhs.pos, ex)
+ typer.infer.setError(rhs)
+ }
+ }
+
+ val prevNumErrors = reporter.ERROR.count // funnily enough, the isErroneous check is not enough
+ var rhs1 = typecheckRhs(rhs)
+ def typecheckedWithErrors = (rhs1 exists (_.isErroneous)) || reporter.ERROR.count != prevNumErrors
+ hasErrors = hasErrors || typecheckedWithErrors
+ if (typecheckedWithErrors) macroTrace("body of a macro def failed to typecheck: ")(ddef)
+
+ val macroImpl = rhs1.symbol
+ macroDef withAnnotation AnnotationInfo(MacroImplAnnotation.tpe, List(rhs1), Nil)
+ if (!hasErrors) {
+ if (macroImpl == null) {
+ invalidBodyError()
+ } else {
+ if (!macroImpl.isMethod)
+ invalidBodyError()
+ if (macroImpl.isOverloaded)
+ reportError(implpos, "macro implementation cannot be overloaded")
+ if (!macroImpl.typeParams.isEmpty && (!rhs1.isInstanceOf[TypeApply]))
+ reportError(implpos, "macro implementation reference needs type arguments")
+ if (!hasErrors)
+ validatePostTyper(rhs1)
+ }
+ if (hasErrors)
+ macroTrace("macro def failed to satisfy trivial preconditions: ")(macroDef)
+ }
+
+ if (!hasErrors) {
+ def checkCompatibility(reqparamss: List[List[Symbol]], actparamss: List[List[Symbol]], reqres: Type, actres: Type): List[String] = {
+ var hasErrors = false
+ var errors = List[String]()
+ def compatibilityError(msg: String) {
+ hasErrors = true
+ errors :+= msg
+ }
+
+ val flatreqparams = reqparamss.flatten
+ val flatactparams = actparamss.flatten
+ val tparams = macroImpl.typeParams
+ val tvars = tparams map freshVar
+ def lengthMsg(which: String, extra: Symbol) =
+ "parameter lists have different length, "+which+" extra parameter "+extra.defString
+ if (actparamss.length != reqparamss.length)
+ compatibilityError("number of parameter sections differ")
+
+ if (!hasErrors) {
+ try {
+ for ((rparams, aparams) <- reqparamss zip actparamss) {
+ if (rparams.length < aparams.length)
+ compatibilityError(lengthMsg("found", aparams(rparams.length)))
+ if (aparams.length < rparams.length)
+ compatibilityError(lengthMsg("required", rparams(aparams.length)).abbreviateCoreAliases)
+ }
+ // if the implementation signature is already deemed to be incompatible, we bail out
+ // otherwise, high-order type magic employed below might crash in weird ways
+ if (!hasErrors) {
+ for ((rparams, aparams) <- reqparamss zip actparamss) {
+ for ((rparam, aparam) <- rparams zip aparams) {
+ def isRepeated(param: Symbol) = param.tpe.typeSymbol == RepeatedParamClass
+ if (rparam.name != aparam.name && !rparam.isSynthetic) {
+ val rparam1 = rparam
+ val aparam1 = aparam
+ compatibilityError("parameter names differ: "+rparam.name+" != "+aparam.name)
+ }
+ if (isRepeated(rparam) && !isRepeated(aparam))
+ compatibilityError("types incompatible for parameter "+rparam.name+": corresponding is not a vararg parameter")
+ if (!isRepeated(rparam) && isRepeated(aparam))
+ compatibilityError("types incompatible for parameter "+aparam.name+": corresponding is not a vararg parameter")
+ if (!hasErrors) {
+ var atpe = aparam.tpe.substSym(flatactparams, flatreqparams).instantiateTypeParams(tparams, tvars)
+
+ // strip the { type PrefixType = ... } refinement off the Context or otherwise we get compatibility errors
+ atpe = atpe match {
+ case RefinedType(List(tpe), Scope(sym)) if tpe == MacroContextClass.tpe && sym.allOverriddenSymbols.contains(MacroContextPrefixType) => tpe
+ case _ => atpe
+ }
+
+ val ok = if (macroDebug) withTypesExplained(rparam.tpe <:< atpe) else rparam.tpe <:< atpe
+ if (!ok) {
+ compatibilityError("type mismatch for parameter "+rparam.name+": "+rparam.tpe.toString.abbreviateCoreAliases+" does not conform to "+atpe)
+ }
+ }
+ }
+ }
+ }
+ if (!hasErrors) {
+ val atpe = actres.substSym(flatactparams, flatreqparams).instantiateTypeParams(tparams, tvars)
+ val ok = if (macroDebug) withTypesExplained(atpe <:< reqres) else atpe <:< reqres
+ if (!ok) {
+ compatibilityError("type mismatch for return type : "+reqres.toString.abbreviateCoreAliases+" does not conform to "+(if (ddef.tpt.tpe != null) atpe.toString else atpe.toString.abbreviateCoreAliases))
+ }
+ }
+ if (!hasErrors) {
+ val targs = solvedTypes(tvars, tparams, tparams map varianceInType(actres), false,
+ lubDepth(flatactparams map (_.tpe)) max lubDepth(flatreqparams map (_.tpe)))
+ val boundsOk = typer.silent(_.infer.checkBounds(ddef, NoPrefix, NoSymbol, tparams, targs, ""))
+ boundsOk match {
+ case SilentResultValue(true) => ;
+ case SilentResultValue(false) | SilentTypeError(_) =>
+ val bounds = tparams map (tp => tp.info.instantiateTypeParams(tparams, targs).bounds)
+ compatibilityError("type arguments " + targs.mkString("[", ",", "]") +
+ " do not conform to " + tparams.head.owner + "'s type parameter bounds " +
+ (tparams map (_.defString)).mkString("[", ",", "]"))
+ }
+ }
+ } catch {
+ case ex: NoInstance =>
+ compatibilityError(
+ "type parameters "+(tparams map (_.defString) mkString ", ")+" cannot be instantiated\n"+
+ ex.getMessage)
+ }
+ }
+
+ errors.toList
+ }
+
+ var actparamss = macroImpl.paramss
+ actparamss = transformTypeTagEvidenceParams(actparamss, (param, tparam) => None)
+
+ val rettpe = if (ddef.tpt.tpe != null) ddef.tpt.tpe else computeMacroDefTypeFromMacroImpl(ddef, macroDef, macroImpl)
+ val (reqparamsss0, reqres0) = macroImplSigs(macroDef, ddef.tparams, ddef.vparamss, rettpe)
+ var reqparamsss = reqparamsss0
+
+ // prohibit implicit params on macro implementations
+ // we don't have to do this, but it appears to be more clear than allowing them
+ val implicitParams = actparamss.flatten filter (_.isImplicit)
+ if (implicitParams.length > 0) {
+ reportError(implicitParams.head.pos, "macro implementations cannot have implicit parameters other than TypeTag evidences")
+ macroTrace("macro def failed to satisfy trivial preconditions: ")(macroDef)
+ }
+
+ if (!hasErrors) {
+ val reqres = reqres0
+ val actres = macroImpl.tpe.finalResultType
+ def showMeth(pss: List[List[Symbol]], restpe: Type, abbreviate: Boolean) = {
+ var argsPart = (pss map (ps => ps map (_.defString) mkString ("(", ", ", ")"))).mkString
+ if (abbreviate) argsPart = argsPart.abbreviateCoreAliases
+ var retPart = restpe.toString
+ if (abbreviate || ddef.tpt.tpe == null) retPart = retPart.abbreviateCoreAliases
+ argsPart + ": " + retPart
+ }
+ def compatibilityError(addendum: String) =
+ reportError(implpos,
+ "macro implementation has wrong shape:"+
+ "\n required: "+showMeth(reqparamsss.head, reqres, true) +
+ (reqparamsss.tail map (paramss => "\n or : "+showMeth(paramss, reqres, true)) mkString "")+
+ "\n found : "+showMeth(actparamss, actres, false)+
+ "\n"+addendum)
+
+ macroTrace("considering " + reqparamsss.length + " possibilities of compatible macro impl signatures for macro def: ")(ddef.name)
+ val results = reqparamsss map (checkCompatibility(_, actparamss, reqres, actres))
+ if (macroDebug) (reqparamsss zip results) foreach { case (reqparamss, result) =>
+ println("%s %s".format(if (result.isEmpty) "[ OK ]" else "[FAILED]", reqparamss))
+ result foreach (errorMsg => println(" " + errorMsg))
+ }
+
+ if (results forall (!_.isEmpty)) {
+ var index = reqparamsss indexWhere (_.length == actparamss.length)
+ if (index == -1) index = 0
+ val mostRelevantMessage = results(index).head
+ compatibilityError(mostRelevantMessage)
+ } else {
+ assert((results filter (_.isEmpty)).length == 1, results)
+ if (macroDebug) (reqparamsss zip results) filter (_._2.isEmpty) foreach { case (reqparamss, result) =>
+ println("typechecked macro impl as: " + reqparamss)
+ }
+ }
+ }
+ }
+
+ // if this macro definition is erroneous, then there's no sense in expanding its usages
+ // in the previous prototype macro implementations were magically generated from macro definitions
+ // so macro definitions and its usages couldn't be compiled in the same compilation run
+ // however, now definitions and implementations are decoupled, so it's everything is possible
+ // hence, we now use IS_ERROR flag to serve as an indicator that given macro definition is broken
+ if (hasErrors) {
+ macroDef setFlag IS_ERROR
+ }
+
+ rhs1
}
- def addMacroMethods(templ: Template, namer: Namer): Unit = {
- for (ddef @ DefDef(mods, _, _, _, _, _) <- templ.body if mods hasFlag MACRO) {
- val trace = scala.tools.nsc.util.trace when settings.Ymacrodebug.value
- val sym = namer.enterSyntheticSym(trace("macro def: ")(macroMethDef(ddef)))
- trace("added to "+namer.context.owner.enclClass+": ")(sym)
+ def computeMacroDefTypeFromMacroImpl(macroDdef: DefDef, macroDef: Symbol, macroImpl: Symbol): Type = {
+ // get return type from method type
+ def unwrapRet(tpe: Type): Type = {
+ def loop(tpe: Type) = tpe match {
+ case NullaryMethodType(ret) => ret
+ case mtpe @ MethodType(_, ret) => unwrapRet(ret)
+ case _ => tpe
+ }
+
+ tpe match {
+ case PolyType(_, tpe) => loop(tpe)
+ case _ => loop(tpe)
+ }
+ }
+ var metaType = unwrapRet(macroImpl.tpe)
+
+ // downgrade from metalevel-0 to metalevel-1
+ def inferRuntimeType(metaType: Type): Type = metaType match {
+ case TypeRef(pre, sym, args) if sym.name == tpnme.Expr && args.length == 1 =>
+ args.head
+ case _ =>
+ AnyClass.tpe
+ }
+ var runtimeType = inferRuntimeType(metaType)
+
+ // transform type parameters of a macro implementation into type parameters of a macro definition
+ runtimeType = runtimeType map {
+ case TypeRef(pre, sym, args) =>
+ // [Eugene] not sure which of these deSkolemizes are necessary
+ // sym.paramPos is unreliable (see another case below)
+ val tparams = macroImpl.typeParams map (_.deSkolemize)
+ val paramPos = tparams indexOf sym.deSkolemize
+ val sym1 = if (paramPos == -1) sym else {
+ val ann = macroDef.getAnnotation(MacroImplAnnotation)
+ ann match {
+ case Some(ann) =>
+ val TypeApply(_, implRefTargs) = ann.args(0)
+ val implRefTarg = implRefTargs(paramPos).tpe.typeSymbol
+ implRefTarg
+ case None =>
+ sym
+ }
+ }
+ TypeRef(pre, sym1, args)
+ case tpe =>
+ tpe
+ }
+
+ // as stated in the spec, before being matched to macroimpl, type and value parameters of macrodef
+ // undergo a special transformation, sigma, that adapts them to the different metalevel macroimpl lives in
+ // as a result, we need to reverse this transformation when inferring macrodef ret from macroimpl ret
+ def unsigma(tpe: Type): Type = {
+ // unfortunately, we cannot dereference ``paramss'', because we're in the middle of inferring a type for ``macroDef''
+// val defParamss = macroDef.paramss
+ val defParamss = macroDdef.vparamss map (_ map (_.symbol))
+ var implParamss = macroImpl.paramss
+ implParamss = transformTypeTagEvidenceParams(implParamss, (param, tparam) => None)
+
+ val implCtxParam = if (implParamss.length > 0 && implParamss(0).length > 0) implParamss(0)(0) else null
+ def implParamToDefParam(implParam: Symbol): Symbol = {
+ val indices = (implParamss drop 1 zipWithIndex) map { case (implParams, index) => (index, implParams indexOf implParam) } filter (_._2 != -1) headOption;
+ val defParam = indices flatMap {
+ case (plistIndex, pIndex) =>
+ if (defParamss.length <= plistIndex) None
+ else if (defParamss(plistIndex).length <= pIndex) None
+ else Some(defParamss(plistIndex)(pIndex))
+ }
+ defParam orNull
+ }
+
+ class UnsigmaTypeMap extends TypeMap {
+ def apply(tp: Type): Type = tp match {
+ case TypeRef(pre, sym, args) =>
+ val pre1 = pre match {
+ case SingleType(SingleType(SingleType(NoPrefix, param), prefix), value) if param == implCtxParam && prefix == MacroContextPrefix && value == ExprValue =>
+ ThisType(macroDef.owner)
+ case SingleType(SingleType(NoPrefix, param), value) if implParamToDefParam(param) != null && value == ExprValue =>
+ val macroDefParam = implParamToDefParam(param)
+ SingleType(NoPrefix, macroDefParam)
+ case _ =>
+ pre
+ }
+ val args1 = args map mapOver
+ TypeRef(pre1, sym, args1)
+ case _ =>
+ mapOver(tp)
+ }
+ }
+
+ new UnsigmaTypeMap() apply tpe
}
+ runtimeType = unsigma(runtimeType)
+
+ runtimeType
}
- lazy val mirror = new scala.reflect.runtime.Mirror {
- lazy val libraryClassLoader = {
- // todo. this is more or less okay, but not completely correct
- // see https://issues.scala-lang.org/browse/SI-5433 for more info
- val classpath = global.classPath.asURLs
- var loader: ClassLoader = ScalaClassLoader.fromURLs(classpath, self.getClass.getClassLoader)
-
- // an heuristic to detect REPL
- if (global.settings.exposeEmptyPackage.value) {
- import scala.tools.nsc.interpreter._
- val virtualDirectory = global.settings.outputDirs.getSingleOutput.get
- loader = new AbstractFileClassLoader(virtualDirectory, loader) {}
+ /** Primary mirror that is used to resolve and run macro implementations.
+ * Loads classes from -Xmacro-primary-classpath, or from -cp if the option is not specified.
+ */
+ private lazy val primaryMirror: Mirror = {
+ if (global.forMSIL)
+ throw new UnsupportedOperationException("Scala reflection not available on this platform")
+
+ val libraryClassLoader = {
+ if (settings.XmacroPrimaryClasspath.value != "") {
+ if (macroDebug) println("primary macro mirror: initializing from -Xmacro-primary-classpath: %s".format(settings.XmacroPrimaryClasspath.value))
+ val classpath = toURLs(settings.XmacroFallbackClasspath.value)
+ ScalaClassLoader.fromURLs(classpath, self.getClass.getClassLoader)
+ } else {
+ if (macroDebug) println("primary macro mirror: initializing from -cp: %s".format(global.classPath.asURLs))
+ val classpath = global.classPath.asURLs
+ var loader: ClassLoader = ScalaClassLoader.fromURLs(classpath, self.getClass.getClassLoader)
+
+ // [Eugene] a heuristic to detect REPL
+ if (global.settings.exposeEmptyPackage.value) {
+ import scala.tools.nsc.interpreter._
+ val virtualDirectory = global.settings.outputDirs.getSingleOutput.get
+ loader = new AbstractFileClassLoader(virtualDirectory, loader) {}
+ }
+
+ loader
}
+ }
+
+ new Mirror(libraryClassLoader) { override def toString = "<primary macro mirror>" }
+ }
- loader
+ /** Fallback mirror that is used to resolve and run macro implementations.
+ * Loads classes from -Xmacro-fallback-classpath aka "macro fallback classpath".
+ */
+ private lazy val fallbackMirror: Mirror = {
+ if (global.forMSIL)
+ throw new UnsupportedOperationException("Scala reflection not available on this platform")
+
+ val fallbackClassLoader = {
+ if (macroDebug) println("fallback macro mirror: initializing from -Xmacro-fallback-classpath: %s".format(settings.XmacroFallbackClasspath.value))
+ val classpath = toURLs(settings.XmacroFallbackClasspath.value)
+ ScalaClassLoader.fromURLs(classpath, self.getClass.getClassLoader)
}
- override def defaultReflectiveClassLoader() = libraryClassLoader
+ new Mirror(fallbackClassLoader) { override def toString = "<fallback macro mirror>" }
}
- /** Return optionally address of companion object and implementation method symbol
- * of given macro; or None if implementation classfile cannot be loaded or does
- * not contain the macro implementation.
+ /** Produces a function that can be used to invoke macro implementation for a given macro definition:
+ * 1) Looks up macro implementation symbol in this universe.
+ * 2) Loads its enclosing class from the primary mirror.
+ * 3) Loads the companion of that enclosing class from the primary mirror.
+ * 4) Resolves macro implementation within the loaded companion.
+ * 5) If 2-4 fails, repeats them for the fallback mirror.
+ *
+ * @return Some(runtime) if macro implementation can be loaded successfully from either of the mirrors,
+ * None otherwise.
*/
- def macroImpl(mac: Symbol): Option[(AnyRef, mirror.Symbol)] = {
- val debug = settings.Ymacrodebug.value
- val trace = scala.tools.nsc.util.trace when debug
- trace("looking for macro implementation: ")(mac.fullNameString)
-
- try {
- val mmeth = macroMeth(mac)
- trace("found implementation at: ")(mmeth.fullNameString)
-
- if (mmeth == NoSymbol) None
- else {
- trace("loading implementation class: ")(mmeth.owner.fullName)
- trace("classloader is: ")("%s of type %s".format(mirror.libraryClassLoader, mirror.libraryClassLoader.getClass))
+ private def macroRuntime(macroDef: Symbol): Option[List[Any] => Any] = {
+ macroTrace("looking for macro implementation: ")(macroDef)
+ macroTrace("macroDef is annotated with: ")(macroDef.annotations)
+
+ val ann = macroDef.getAnnotation(MacroImplAnnotation)
+ if (ann == None) {
+ macroTrace("@macroImpl annotation is missing (this means that macro definition failed to typecheck)")(macroDef)
+ return None
+ }
+
+ val macroImpl = ann.get.args(0).symbol
+ if (macroImpl == NoSymbol) {
+ macroTrace("@macroImpl annotation is malformed (this means that macro definition failed to typecheck)")(macroDef)
+ return None
+ }
+
+ if (macroDebug) println("resolved implementation %s at %s".format(macroImpl, macroImpl.pos))
+ if (macroImpl.isErroneous) {
+ macroTrace("macro implementation is erroneous (this means that either macro body or macro implementation signature failed to typecheck)")(macroDef)
+ return None
+ }
+
+ def loadMacroImpl(macroMirror: Mirror): Option[(Object, macroMirror.Symbol)] = {
+ try {
+ // this logic relies on the assumptions that were valid for the old macro prototype
+ // namely that macro implementations can only be defined in top-level classes and modules
+ // with the new prototype that materialized in a SIP, macros need to be statically accessible, which is different
+ // for example, a macro def could be defined in a trait that is implemented by an object
+ // there are some more clever cases when seemingly non-static method ends up being statically accessible
+ // however, the code below doesn't account for these guys, because it'd take a look of time to get it right
+ // for now I leave it as a todo and move along to more the important stuff
+
+ macroTrace("loading implementation class from %s: ".format(macroMirror))(macroImpl.owner.fullName)
+ macroTrace("classloader is: ")("%s of type %s".format(macroMirror.classLoader, if (macroMirror.classLoader != null) macroMirror.classLoader.getClass.toString else "primordial classloader"))
def inferClasspath(cl: ClassLoader) = cl match {
case cl: java.net.URLClassLoader => "[" + (cl.getURLs mkString ",") + "]"
+ case null => "[" + scala.tools.util.PathResolver.Environment.javaBootClassPath + "]"
case _ => "<unknown>"
}
- trace("classpath is: ")(inferClasspath(mirror.libraryClassLoader))
+ macroTrace("classpath is: ")(inferClasspath(macroMirror.classLoader))
- // @xeno.by: relies on the fact that macros can only be defined in static classes
+ // [Eugene] relies on the fact that macro implementations can only be defined in static classes
+ // [Martin to Eugene] There's similar logic buried in Symbol#flatname. Maybe we can refactor?
def classfile(sym: Symbol): String = {
def recur(sym: Symbol): String = sym match {
case sym if sym.owner.isPackageClass =>
@@ -146,145 +693,535 @@ trait Macros { self: Analyzer =>
else recur(sym.enclClass)
}
- // @xeno.by: this doesn't work for inner classes
- // neither does mmeth.owner.javaClassName, so I had to roll my own implementation
- //val receiverName = mmeth.owner.fullName
- val receiverName = classfile(mmeth.owner)
- val receiverClass: mirror.Symbol = mirror.symbolForName(receiverName)
+ // [Eugene] this doesn't work for inner classes
+ // neither does macroImpl.owner.javaClassName, so I had to roll my own implementation
+ //val receiverName = macroImpl.owner.fullName
+ val implClassName = classfile(macroImpl.owner)
+ val implClassSymbol: macroMirror.Symbol = macroMirror.symbolForName(implClassName)
- if (debug) {
- println("receiverClass is: " + receiverClass.fullNameString)
+ if (macroDebug) {
+ println("implClassSymbol is: " + implClassSymbol.fullNameString)
- val jreceiverClass = mirror.classToJava(receiverClass)
- val jreceiverSource = jreceiverClass.getProtectionDomain.getCodeSource
- println("jreceiverClass is %s from %s".format(jreceiverClass, jreceiverSource))
- println("jreceiverClassLoader is %s with classpath %s".format(jreceiverClass.getClassLoader, inferClasspath(jreceiverClass.getClassLoader)))
+ if (implClassSymbol != macroMirror.NoSymbol) {
+ val implClass = macroMirror.classToJava(implClassSymbol)
+ val implSource = implClass.getProtectionDomain.getCodeSource
+ println("implClass is %s from %s".format(implClass, implSource))
+ println("implClassLoader is %s with classpath %s".format(implClass.getClassLoader, inferClasspath(implClass.getClassLoader)))
+ }
}
- val receiverObj = receiverClass.companionModule
- trace("receiverObj is: ")(receiverObj.fullNameString)
+ val implObjSymbol = implClassSymbol.companionModule
+ macroTrace("implObjSymbol is: ")(implObjSymbol.fullNameString)
- if (receiverObj == mirror.NoSymbol) None
+ if (implObjSymbol == macroMirror.NoSymbol) None
else {
- // @xeno.by: yet another reflection method that doesn't work for inner classes
- //val receiver = mirror.companionInstance(receiverClass)
- val clazz = java.lang.Class.forName(receiverName, true, mirror.libraryClassLoader)
- val receiver = clazz getField "MODULE$" get null
-
- val rmeth = receiverObj.info.member(mirror.newTermName(mmeth.name.toString))
- if (debug) {
- println("rmeth is: " + rmeth.fullNameString)
- println("jrmeth is: " + mirror.methodToJava(rmeth))
+ // yet another reflection method that doesn't work for inner classes
+ //val receiver = macroMirror.companionInstance(receiverClass)
+ val implObj = try {
+ val implObjClass = java.lang.Class.forName(implClassName, true, macroMirror.classLoader)
+ implObjClass getField "MODULE$" get null
+ } catch {
+ case ex: NoSuchFieldException => macroTrace("exception when loading implObj: ")(ex); null
+ case ex: NoClassDefFoundError => macroTrace("exception when loading implObj: ")(ex); null
+ case ex: ClassNotFoundException => macroTrace("exception when loading implObj: ")(ex); null
}
- if (rmeth == mirror.NoSymbol) None
+ if (implObj == null) None
else {
- Some((receiver, rmeth))
+ val implMethSymbol = implObjSymbol.info.member(macroMirror.newTermName(macroImpl.name.toString))
+ if (macroDebug) {
+ println("implMethSymbol is: " + implMethSymbol.fullNameString)
+ println("jimplMethSymbol is: " + macroMirror.methodToJava(implMethSymbol))
+ }
+
+ if (implMethSymbol == macroMirror.NoSymbol) None
+ else {
+ if (macroDebug) println("successfully loaded macro impl as (%s, %s)".format(implObj, implMethSymbol))
+ Some((implObj, implMethSymbol))
+ }
}
}
+ } catch {
+ case ex: ClassNotFoundException =>
+ macroTrace("implementation class failed to load: ")(ex.toString)
+ None
}
- } catch {
- case ex: ClassNotFoundException =>
- trace("implementation class failed to load: ")(ex.toString)
- None
+ }
+
+ val primary = loadMacroImpl(primaryMirror)
+ primary match {
+ case Some((implObj, implMethSymbol)) =>
+ def runtime(args: List[Any]) = primaryMirror.invoke(implObj, implMethSymbol)(args: _*).asInstanceOf[Any]
+ Some(runtime)
+ case None =>
+ if (settings.XmacroFallbackClasspath.value != "") {
+ if (macroDebug) println("trying to load macro implementation from the fallback mirror: %s".format(settings.XmacroFallbackClasspath.value))
+ val fallback = loadMacroImpl(fallbackMirror)
+ fallback match {
+ case Some((implObj, implMethSymbol)) =>
+ def runtime(args: List[Any]) = fallbackMirror.invoke(implObj, implMethSymbol)(args: _*).asInstanceOf[Any]
+ Some(runtime)
+ case None =>
+ None
+ }
+ } else {
+ None
+ }
}
}
- /** Return result of macro expansion.
- * Or, if that fails, and the macro overrides a method return
- * tree that calls this method instead of the macro.
+ /** Should become private again once we're done with migrating typetag generation from implicits */
+ def macroContext(typer: Typer, prefixTree: Tree, expandeeTree: Tree): MacroContext { val mirror: global.type } =
+ new {
+ val mirror: global.type = global
+ val callsiteTyper: mirror.analyzer.Typer = typer.asInstanceOf[global.analyzer.Typer]
+ // todo. infer precise typetag for this Expr, namely the PrefixType member of the Context refinement
+ val prefix = Expr(prefixTree)(TypeTag.Nothing)
+ val expandee = expandeeTree
+ } with MacroContext {
+ override def toString = "MacroContext(%s@%s +%d)".format(expandee.symbol.name, expandee.pos, openMacros.length - 1 /* exclude myself */)
+ }
+
+ /** Calculate the arguments to pass to a macro implementation when expanding the provided tree.
+ *
+ * This includes inferring the exact type and instance of the macro context to pass, and also
+ * allowing for missing parameter sections in macro implementation (see ``macroImplParamsss'' for more info).
+ *
+ * @return list of runtime objects to pass to the implementation obtained by ``macroRuntime''
*/
- def macroExpand(tree: Tree, typer: Typer): Option[Any] = {
- val trace = scala.tools.nsc.util.trace when settings.Ymacrodebug.value
- trace("macroExpand: ")(tree)
-
- val macroDef = tree.symbol
- macroImpl(macroDef) match {
- case Some((receiver, rmeth)) =>
- val argss = List(global) :: macroArgs(tree)
- val paramss = macroMeth(macroDef).paramss
- trace("paramss: ")(paramss)
- val rawArgss = for ((as, ps) <- argss zip paramss) yield {
- if (isVarArgsList(ps)) as.take(ps.length - 1) :+ as.drop(ps.length - 1)
- else as
- }
- val rawArgs: Seq[Any] = rawArgss.flatten
- trace("rawArgs: ")(rawArgs)
- val savedInfolevel = nodePrinters.infolevel
+ private def macroArgs(typer: Typer, expandee: Tree): Option[List[Any]] = {
+ var prefixTree: Tree = EmptyTree
+ var typeArgs = List[Tree]()
+ val exprArgs = new ListBuffer[List[Expr[_]]]
+ def collectMacroArgs(tree: Tree): Unit = tree match {
+ case Apply(fn, args) =>
+ // todo. infer precise typetag for this Expr, namely the declared type of the corresponding macro impl argument
+ exprArgs.prepend(args map (Expr(_)(TypeTag.Nothing)))
+ collectMacroArgs(fn)
+ case TypeApply(fn, args) =>
+ typeArgs = args
+ collectMacroArgs(fn)
+ case Select(qual, name) =>
+ prefixTree = qual
+ case _ =>
+ }
+ collectMacroArgs(expandee)
+ val context = macroContext(typer, prefixTree, expandee)
+ var argss: List[List[Any]] = List(context) :: exprArgs.toList
+ macroTrace("argss: ")(argss)
+
+ val macroDef = expandee.symbol
+ val ann = macroDef.getAnnotation(MacroImplAnnotation).getOrElse(throw new Error("assertion failed. %s: %s".format(macroDef, macroDef.annotations)))
+ val macroImpl = ann.args(0).symbol
+ var paramss = macroImpl.paramss
+ val tparams = macroImpl.typeParams
+ macroTrace("paramss: ")(paramss)
+
+ // we need to take care of all possible combos of nullary/empty-paramlist macro defs vs nullary/empty-arglist invocations
+ // nullary def + nullary invocation => paramss and argss match, everything is okay
+ // nullary def + empty-arglist invocation => illegal Scala code, impossible, everything is okay
+ // empty-paramlist def + nullary invocation => uh-oh, we need to append a List() to argss
+ // empty-paramlist def + empty-arglist invocation => paramss and argss match, everything is okay
+ // that's almost it, but we need to account for the fact that paramss might have context bounds that mask the empty last paramlist
+ val paramss_without_evidences = transformTypeTagEvidenceParams(paramss, (param, tparam) => None)
+ val isEmptyParamlistDef = paramss_without_evidences.length != 0 && paramss_without_evidences.last.isEmpty
+ val isEmptyArglistInvocation = argss.length != 0 && argss.last.isEmpty
+ if (isEmptyParamlistDef && !isEmptyArglistInvocation) {
+ if (macroDebug) println("isEmptyParamlistDef && !isEmptyArglistInvocation: appending a List() to argss")
+ argss = argss :+ Nil
+ }
+
+ // nb! check partial application against paramss without evidences
+ val numParamLists = paramss_without_evidences.length
+ val numArgLists = argss.length
+ if (numParamLists != numArgLists) {
+ typer.context.error(expandee.pos, "macros cannot be partially applied")
+ return None
+ }
+
+ // if paramss have typetag context bounds, add an arglist to argss if necessary and instantiate the corresponding evidences
+ // consider the following example:
+ //
+ // class D[T] {
+ // class C[U] {
+ // def foo[V] = macro Impls.foo[T, U, V]
+ // }
+ // }
+ //
+ // val outer1 = new D[Int]
+ // val outer2 = new outer1.C[String]
+ // outer2.foo[Boolean]
+ //
+ // then T and U need to be inferred from the lexical scope of the call using ``asSeenFrom''
+ // whereas V won't be resolved by asSeenFrom and need to be loaded directly from ``expandee'' which needs to contain a TypeApply node
+ // also, macro implementation reference may contain a regular type as a type argument, then we pass it verbatim
+ paramss = transformTypeTagEvidenceParams(paramss, (param, tparam) => Some(tparam))
+ if (paramss.lastOption map (params => !params.isEmpty && params.forall(_.isType)) getOrElse false) argss = argss :+ Nil
+ val evidences = paramss.last takeWhile (_.isType) map (tparam => {
+ val TypeApply(_, implRefTargs) = ann.args(0)
+ var implRefTarg = implRefTargs(tparam.paramPos).tpe.typeSymbol
+ val tpe = if (implRefTarg.isTypeParameterOrSkolem) {
+ if (implRefTarg.owner == macroDef) {
+ // [Eugene] doesn't work when macro def is compiled separately from its usages
+ // then implRefTarg is not a skolem and isn't equal to any of macroDef.typeParams
+// val paramPos = implRefTarg.deSkolemize.paramPos
+ val paramPos = macroDef.typeParams.indexWhere(_.name == implRefTarg.name)
+ typeArgs(paramPos).tpe
+ } else
+ implRefTarg.tpe.asSeenFrom(
+ if (prefixTree == EmptyTree) macroDef.owner.tpe else prefixTree.tpe,
+ macroDef.owner)
+ } else
+ implRefTarg.tpe
+ if (macroDebug) println("resolved tparam %s as %s".format(tparam, tpe))
+ tpe
+ }) map (tpe => {
+ val ttag = TypeTag(tpe)
+ if (ttag.isGround) ttag.toGround else ttag
+ })
+ argss = argss.dropRight(1) :+ (evidences ++ argss.last)
+
+ assert(argss.length == paramss.length, "argss: %s, paramss: %s".format(argss, paramss))
+ val rawArgss = for ((as, ps) <- argss zip paramss) yield {
+ if (isVarArgsList(ps)) as.take(ps.length - 1) :+ as.drop(ps.length - 1)
+ else as
+ }
+ val rawArgs = rawArgss.flatten
+ macroTrace("rawArgs: ")(rawArgs)
+ Some(rawArgs)
+ }
+
+ /** Keeps track of macros in-flight.
+ * See more informations in comments to ``openMacros'' in ``scala.reflect.makro.Context''.
+ */
+ var openMacros = List[MacroContext]()
+
+ /** Performs macro expansion:
+ * 1) Checks whether the expansion needs to be delayed (see ``mustDelayMacroExpansion'')
+ * 2) Loads macro implementation using ``macroMirror''
+ * 3) Synthesizes invocation arguments for the macro implementation
+ * 4) Checks that the result is a tree bound to this universe
+ * 5) Typechecks the result against the return type of the macro definition
+ *
+ * If -Ymacro-debug is enabled, you will get detailed log of how exactly this function
+ * performs class loading and method resolution in order to load the macro implementation.
+ * The log will also include other non-trivial steps of macro expansion.
+ *
+ * If -Ymacro-copypaste is enabled along with -Ymacro-debug, you will get macro expansions
+ * logged in the form that can be copy/pasted verbatim into REPL (useful for debugging!).
+ *
+ * @return
+ * the expansion result if the expansion has been successful,
+ * the fallback method invocation if the expansion has been unsuccessful, but there is a fallback,
+ * the expandee unchanged if the expansion has been delayed,
+ * the expandee fully expanded if the expansion has been delayed before and has been expanded now,
+ * the expandee with an error marker set if the expansion has been cancelled due malformed arguments or implementation
+ * the expandee with an error marker set if there has been an error
+ */
+ def macroExpand(typer: Typer, expandee: Tree, pt: Type): Tree =
+ macroExpand1(typer, expandee) match {
+ case Success(expanded) =>
try {
- // @xeno.by: InfoLevel.Verbose examines and prints out infos of symbols
- // by the means of this'es these symbols can climb up the lexical scope
- // when these symbols will be examined by a node printer
- // they will enumerate and analyze their children (ask for infos and tpes)
- // if one of those children involves macro expansion, things might get nasty
- // that's why I'm temporarily turning this behavior off
- nodePrinters.infolevel = nodePrinters.InfoLevel.Quiet
- val expanded = mirror.invoke(receiver, rmeth)(rawArgs: _*)
- expanded match {
- case expanded: Tree =>
- val expectedTpe = tree.tpe
- val typed = typer.typed(expanded, EXPRmode, expectedTpe)
- Some(typed)
- case expanded if expanded.isInstanceOf[Tree] =>
- typer.context.unit.error(tree.pos, "macro must return a compiler-specific tree; returned value is Tree, but it doesn't belong to this compiler's universe")
- None
- case expanded =>
- typer.context.unit.error(tree.pos, "macro must return a compiler-specific tree; returned value is of class: " + expanded.getClass)
- None
+ var expectedTpe = expandee.tpe
+
+ // [Eugene] weird situation. what's the conventional way to deal with it?
+ val isNullaryInvocation = expandee match {
+ case TypeApply(Select(_, _), _) => true
+ case Select(_, _) => true
+ case _ => false
}
- } catch {
- case ex =>
- val realex = ReflectionUtils.unwrapThrowable(ex)
- val msg = if (settings.Ymacrodebug.value) {
- val stacktrace = new java.io.StringWriter()
- realex.printStackTrace(new java.io.PrintWriter(stacktrace))
- System.getProperty("line.separator") + stacktrace
- } else {
- realex.getMessage
- }
- typer.context.unit.error(tree.pos, "exception during macro expansion: " + msg)
- None
+ if (isNullaryInvocation) expectedTpe match {
+ case MethodType(Nil, restpe) =>
+ macroTrace("nullary invocation of a method with an empty parameter list. unwrapping expectedTpe from " + expectedTpe + " to:")(restpe)
+ expectedTpe = restpe
+ case _ => ;
+ }
+
+ var typechecked = typer.context.withImplicitsEnabled(typer.typed(expanded, EXPRmode, expectedTpe))
+ if (macroDebug) {
+ println("typechecked1:")
+ println(typechecked)
+ println(showRaw(typechecked))
+ }
+
+ typechecked = typer.context.withImplicitsEnabled(typer.typed(typechecked, EXPRmode, pt))
+ if (macroDebug) {
+ println("typechecked2:")
+ println(typechecked)
+ println(showRaw(typechecked))
+ }
+
+ typechecked
} finally {
- nodePrinters.infolevel = savedInfolevel
+ openMacros = openMacros.tail
}
- case None =>
- def notFound() = {
- typer.context.unit.error(tree.pos, "macro implementation not found: " + macroDef.name)
- None
- }
- def fallBackToOverridden(tree: Tree): Option[Tree] = {
- tree match {
- case Select(qual, name) if (macroDef.isMacro) =>
- macroDef.allOverriddenSymbols match {
- case first :: _ =>
- Some(Select(qual, name) setPos tree.pos setSymbol first)
+ case Fallback(fallback) =>
+ typer.context.withImplicitsEnabled(typer.typed(fallback, EXPRmode, pt))
+ case Other(result) =>
+ result
+ }
+
+ private sealed abstract class MacroExpansionResult extends Product with Serializable
+ private case class Success(expanded: Tree) extends MacroExpansionResult
+ private case class Fallback(fallback: Tree) extends MacroExpansionResult
+ private case class Other(result: Tree) extends MacroExpansionResult
+ private def Delay(expandee: Tree) = Other(expandee)
+ private def Skip(expanded: Tree) = Other(expanded)
+ private def Cancel(expandee: Tree) = Other(expandee)
+ private def Failure(expandee: Tree) = Other(expandee)
+ private def fail(typer: Typer, expandee: Tree, msg: String = null) = {
+ if (macroDebug || macroCopypaste) {
+ var msg1 = if (msg contains "exception during macro expansion") msg.split(EOL).drop(1).headOption.getOrElse("?") else msg
+ if (macroDebug) msg1 = msg
+ println("macro expansion has failed: %s".format(msg1))
+ }
+ val pos = if (expandee.pos != NoPosition) expandee.pos else openMacros.find(c => c.expandee.pos != NoPosition).map(_.expandee.pos).getOrElse(NoPosition)
+ if (msg != null) typer.context.error(pos, msg)
+ typer.infer.setError(expandee)
+ Failure(expandee)
+ }
+
+ /** Does the same as ``macroExpand'', but without typechecking the expansion
+ * Meant for internal use within the macro infrastructure, don't use it elsewhere.
+ */
+ private def macroExpand1(typer: Typer, expandee: Tree): MacroExpansionResult = {
+ // if a macro implementation is incompatible or any of the arguments are erroneous
+ // there is no sense to expand the macro itself => it will only make matters worse
+ if (expandee.symbol.isErroneous || (expandee exists (_.isErroneous))) {
+ val reason = if (expandee.symbol.isErroneous) "incompatible macro implementation" else "erroneous arguments"
+ macroTrace("cancelled macro expansion because of %s: ".format(reason))(expandee)
+ return Cancel(typer.infer.setError(expandee))
+ }
+
+ if (!isDelayed(expandee)) {
+ if (macroDebug || macroCopypaste) println("typechecking macro expansion %s at %s".format(expandee, expandee.pos))
+
+ val undetparams = calculateUndetparams(expandee)
+ if (undetparams.size != 0) {
+ macroTrace("macro expansion is delayed: ")(expandee)
+ delayed += expandee -> (typer.context, undetparams)
+ Delay(expandee)
+ } else {
+ val macroDef = expandee.symbol
+ macroRuntime(macroDef) match {
+ case Some(runtime) =>
+ val savedInfolevel = nodePrinters.infolevel
+ try {
+ // InfoLevel.Verbose examines and prints out infos of symbols
+ // by the means of this'es these symbols can climb up the lexical scope
+ // when these symbols will be examined by a node printer
+ // they will enumerate and analyze their children (ask for infos and tpes)
+ // if one of those children involves macro expansion, things might get nasty
+ // that's why I'm temporarily turning this behavior off
+ nodePrinters.infolevel = nodePrinters.InfoLevel.Quiet
+ val args = macroArgs(typer, expandee)
+ args match {
+ case Some(args) =>
+ // adding stuff to openMacros is easy, but removing it is a nightmare
+ // it needs to be sprinkled over several different code locations
+ val (context: MacroContext) :: _ = args
+ openMacros = context :: openMacros
+ val expanded: MacroExpansionResult = try {
+ val prevNumErrors = reporter.ERROR.count
+ val expanded = runtime(args)
+ val currNumErrors = reporter.ERROR.count
+ if (currNumErrors != prevNumErrors) {
+ fail(typer, expandee) // errors have been reported by the macro itself
+ } else {
+ expanded match {
+ case expanded: Expr[_] =>
+ if (macroDebug || macroCopypaste) {
+ if (macroDebug) println("original:")
+ println(expanded.tree)
+ println(showRaw(expanded.tree))
+ }
+
+ freeTerms(expanded.tree) foreach (fte => typer.context.error(expandee.pos,
+ ("macro expansion contains free term variable %s %s. "+
+ "have you forgot to use eval when splicing this variable into a reifee? " +
+ "if you have troubles tracking free term variables, consider using -Xlog-free-terms").format(fte.name, fte.origin)))
+ freeTypes(expanded.tree) foreach (fty => typer.context.error(expandee.pos,
+ ("macro expansion contains free type variable %s %s. "+
+ "have you forgot to use c.TypeTag annotation for this type parameter? " +
+ "if you have troubles tracking free type variables, consider using -Xlog-free-types").format(fty.name, fty.origin)))
+
+ val currNumErrors = reporter.ERROR.count
+ if (currNumErrors != prevNumErrors) {
+ fail(typer, expandee)
+ } else {
+ // inherit the position from the first position-ful expandee in macro callstack
+ // this is essential for sane error messages
+ var tree = expanded.tree
+ var position = openMacros.find(c => c.expandee.pos != NoPosition).map(_.expandee.pos).getOrElse(NoPosition)
+ tree = atPos(position.focus)(tree)
+
+ // now macro expansion gets typechecked against the macro definition return type
+ // however, this happens in macroExpand, not here in macroExpand1
+ Success(tree)
+ }
+ case expanded if expanded.isInstanceOf[Expr[_]] =>
+ val msg = "macro must return a compiler-specific expr; returned value is Expr, but it doesn't belong to this compiler's universe"
+ fail(typer, expandee, msg)
+ case expanded =>
+ val msg = "macro must return a compiler-specific expr; returned value is of class: %s".format(expanded.getClass)
+ fail(typer, expandee, msg)
+ }
+ }
+ } catch {
+ case ex: Throwable =>
+ openMacros = openMacros.tail
+ throw ex
+ }
+ if (!expanded.isInstanceOf[Success]) openMacros = openMacros.tail
+ expanded
+ case None =>
+ fail(typer, expandee) // error has been reported by macroArgs
+ }
+ } catch {
+ case ex =>
+ // [Eugene] any ideas about how to improve this one?
+ val realex = ReflectionUtils.unwrapThrowable(ex)
+ realex match {
+ case realex: reflect.makro.runtime.AbortMacroException =>
+ if (macroDebug || macroCopypaste) println("macro expansion has failed: %s".format(realex.msg))
+ fail(typer, expandee) // error has been reported by abort
+ case _ =>
+ val message = {
+ try {
+ // the most reliable way of obtaining currently executing method
+ // http://stackoverflow.com/questions/442747/getting-the-name-of-the-current-executing-method
+ val currentMethodName = new Object(){}.getClass().getEnclosingMethod().getName
+ val relevancyThreshold = realex.getStackTrace().indexWhere(este => este.getMethodName == currentMethodName)
+ if (relevancyThreshold == -1) None
+ else {
+ var relevantElements = realex.getStackTrace().take(relevancyThreshold + 1)
+ var framesTillReflectiveInvocationOfMacroImpl = relevantElements.reverse.indexWhere(_.isNativeMethod) + 1
+ relevantElements = relevantElements dropRight framesTillReflectiveInvocationOfMacroImpl
+
+ realex.setStackTrace(relevantElements)
+ val message = new java.io.StringWriter()
+ realex.printStackTrace(new java.io.PrintWriter(message))
+ Some(EOL + message)
+ }
+ } catch {
+ // if the magic above goes boom, just fall back to uninformative, but better than nothing, getMessage
+ case ex: Throwable =>
+ None
+ }
+ } getOrElse realex.getMessage
+ fail(typer, expandee, "exception during macro expansion: " + message)
+ }
+ } finally {
+ nodePrinters.infolevel = savedInfolevel
+ }
+ case None =>
+ def notFound() = {
+ typer.context.error(expandee.pos, "macro implementation not found: " + macroDef.name + " " +
+ "(the most common reason for that is that you cannot use macro implementations in the same compilation run that defines them)\n" +
+ "if you do need to define macro implementations along with the rest of your program, consider two-phase compilation with -Xmacro-fallback-classpath " +
+ "in the second phase pointing to the output of the first phase")
+ None
+ }
+ def fallBackToOverridden(tree: Tree): Option[Tree] = {
+ tree match {
+ case Select(qual, name) if (macroDef.isTermMacro) =>
+ macroDef.allOverriddenSymbols match {
+ case first :: _ =>
+ Some(Select(qual, name) setPos tree.pos setSymbol first)
+ case _ =>
+ macroTrace("macro is not overridden: ")(tree)
+ notFound()
+ }
+ case Apply(fn, args) =>
+ fallBackToOverridden(fn) match {
+ case Some(fn1) => Some(Apply(fn1, args) setPos tree.pos)
+ case _ => None
+ }
+ case TypeApply(fn, args) =>
+ fallBackToOverridden(fn) match {
+ case Some(fn1) => Some(TypeApply(fn1, args) setPos tree.pos)
+ case _ => None
+ }
case _ =>
- trace("macro is not overridden: ")(tree)
+ macroTrace("unexpected tree in fallback: ")(tree)
notFound()
}
- case Apply(fn, args) =>
- fallBackToOverridden(fn) match {
- case Some(fn1) => Some(Apply(fn1, args) setPos tree.pos)
- case _ => None
- }
- case TypeApply(fn, args) =>
- fallBackToOverridden(fn) match {
- case Some(fn1) => Some(TypeApply(fn1, args) setPos tree.pos)
- case _ => None
- }
- case _ =>
- trace("unexpected tree in fallback: ")(tree)
- notFound()
- }
- }
- fallBackToOverridden(tree) match {
- case Some(tree1) =>
- trace("falling back to ")(tree1)
- currentRun.macroExpansionFailed = true
- Some(tree1)
- case None =>
- None
+ }
+ fallBackToOverridden(expandee) match {
+ case Some(tree1) =>
+ macroTrace("falling back to ")(tree1)
+ currentRun.macroExpansionFailed = true
+ Fallback(tree1)
+ case None =>
+ fail(typer, expandee)
+ }
}
+ }
+ } else {
+ val undetparams = calculateUndetparams(expandee)
+ if (undetparams.size != 0)
+ Delay(expandee)
+ else
+ Skip(macroExpandAll(typer, expandee))
}
}
+
+ /** Without any restrictions on macro expansion, macro applications will expand at will,
+ * and when type inference is involved, expansions will end up using yet uninferred type params.
+ *
+ * For some macros this might be ok (thanks to TreeTypeSubstituter that replaces
+ * the occurrences of undetparams with their inferred values), but in general case this won't work.
+ * E.g. for reification simple substitution is not enough - we actually need to re-reify inferred types.
+ *
+ * Luckily, there exists a very simple way to fix the problem: delay macro expansion until everything is inferred.
+ * Here are the exact rules. Macro application gets delayed if any of its subtrees contain:
+ * 1) type vars (tpe.isInstanceOf[TypeVar]) // [Eugene] this check is disabled right now, because TypeVars seem to be created from undetparams anyways
+ * 2) undetparams (sym.isTypeParameter && !sym.isSkolem)
+ */
+ var hasPendingMacroExpansions = false
+ private val delayed = perRunCaches.newWeakMap[Tree, (Context, collection.mutable.Set[Int])]
+ private def isDelayed(expandee: Tree) = delayed contains expandee
+ private def calculateUndetparams(expandee: Tree): collection.mutable.Set[Int] =
+ delayed.get(expandee).map(_._2).getOrElse {
+ val calculated = collection.mutable.Set[Int]()
+ expandee foreach (sub => {
+ def traverse(sym: Symbol) = if (sym != null && (undetparams contains sym.id)) calculated += sym.id
+ if (sub.symbol != null) traverse(sub.symbol)
+ if (sub.tpe != null) sub.tpe foreach (sub => traverse(sub.typeSymbol))
+ })
+ calculated
+ }
+ private val undetparams = perRunCaches.newSet[Int]
+ def notifyUndetparamsAdded(newUndets: List[Symbol]): Unit = undetparams ++= newUndets map (_.id)
+ def notifyUndetparamsInferred(undetNoMore: List[Symbol], inferreds: List[Type]): Unit = {
+ undetparams --= undetNoMore map (_.id)
+ if (!delayed.isEmpty)
+ delayed.toList foreach {
+ case (expandee, (_, undetparams)) if !undetparams.isEmpty =>
+ undetparams --= undetNoMore map (_.id)
+ if (undetparams.isEmpty) {
+ hasPendingMacroExpansions = true
+ macroTrace("macro expansion is pending: ")(expandee)
+ }
+ case _ =>
+ // do nothing
+ }
+ }
+
+ /** Performs macro expansion on all subtrees of a given tree.
+ * Innermost macros are expanded first, outermost macros are expanded last.
+ * See the documentation for ``macroExpand'' for more information.
+ */
+ def macroExpandAll(typer: Typer, expandee: Tree): Tree =
+ new Transformer {
+ override def transform(tree: Tree) = super.transform(tree match {
+ // todo. expansion should work from the inside out
+ case wannabe if (delayed contains wannabe) && calculateUndetparams(wannabe).isEmpty =>
+ val (context, _) = delayed(wannabe)
+ delayed -= wannabe
+ macroExpand(newTyper(context), wannabe, WildcardType)
+ case _ =>
+ tree
+ })
+ }.transform(expandee)
}