summaryrefslogtreecommitdiff
path: root/src/library/scala/concurrent/ExecutionContext.scala
diff options
context:
space:
mode:
Diffstat (limited to 'src/library/scala/concurrent/ExecutionContext.scala')
-rw-r--r--src/library/scala/concurrent/ExecutionContext.scala79
1 files changed, 44 insertions, 35 deletions
diff --git a/src/library/scala/concurrent/ExecutionContext.scala b/src/library/scala/concurrent/ExecutionContext.scala
index e380c55880..f46f294387 100644
--- a/src/library/scala/concurrent/ExecutionContext.scala
+++ b/src/library/scala/concurrent/ExecutionContext.scala
@@ -11,7 +11,6 @@ package scala.concurrent
import java.util.concurrent.{ ExecutorService, Executor }
import scala.annotation.implicitNotFound
-import scala.util.Try
/**
* An `ExecutionContext` can execute program logic asynchronously,
@@ -26,21 +25,20 @@ import scala.util.Try
* and an implicit `ExecutionContext`. The implicit `ExecutionContext`
* will be used to execute the callback.
*
- * It is possible to simply import
+ * While it is possible to simply import
* `scala.concurrent.ExecutionContext.Implicits.global` to obtain an
- * implicit `ExecutionContext`. This global context is a reasonable
- * default thread pool.
- *
- * However, application developers should carefully consider where they
- * want to set policy; ideally, one place per application (or per
- * logically-related section of code) will make a decision about
- * which `ExecutionContext` to use. That is, you might want to avoid
- * hardcoding `scala.concurrent.ExecutionContext.Implicits.global` all
- * over the place in your code.
- * One approach is to add `(implicit ec: ExecutionContext)`
- * to methods which need an `ExecutionContext`. Then import a specific
- * context in one place for the entire application or module,
- * passing it implicitly to individual methods.
+ * implicit `ExecutionContext`, application developers should carefully
+ * consider where they want to set execution policy;
+ * ideally, one place per application—or per logically related section of code—
+ * will make a decision about which `ExecutionContext` to use.
+ * That is, you will mostly want to avoid hardcoding, especially via an import,
+ * `scala.concurrent.ExecutionContext.Implicits.global`.
+ * The recommended approach is to add `(implicit ec: ExecutionContext)` to methods,
+ * or class constructor parameters, which need an `ExecutionContext`.
+ *
+ * Then locally import a specific `ExecutionContext` in one place for the entire
+ * application or module, passing it implicitly to individual methods.
+ * Alternatively define a local implicit val with the required `ExecutionContext`.
*
* A custom `ExecutionContext` may be appropriate to execute code
* which blocks on IO or performs long-running computations.
@@ -72,22 +70,24 @@ trait ExecutionContext {
*/
def reportFailure(@deprecatedName('t) cause: Throwable): Unit
- /** Prepares for the execution of a task. Returns the prepared execution context.
- *
- * `prepare` should be called at the site where an `ExecutionContext` is received (for
- * example, through an implicit method parameter). The returned execution context may
- * then be used to execute tasks. The role of `prepare` is to save any context relevant
- * to an execution's ''call site'', so that this context may be restored at the
- * ''execution site''. (These are often different: for example, execution may be
- * suspended through a `Promise`'s future until the `Promise` is completed, which may
- * be done in another thread, on another stack.)
- *
- * Note: a valid implementation of `prepare` is one that simply returns `this`.
- *
- * @return the prepared execution context
- */
+ /** Prepares for the execution of a task. Returns the prepared
+ * execution context. The recommended implementation of
+ * `prepare` is to return `this`.
+ *
+ * This method should no longer be overridden or called. It was
+ * originally expected that `prepare` would be called by
+ * all libraries that consume ExecutionContexts, in order to
+ * capture thread local context. However, this usage has proven
+ * difficult to implement in practice and instead it is
+ * now better to avoid using `prepare` entirely.
+ *
+ * Instead, if an `ExecutionContext` needs to capture thread
+ * local context, it should capture that context when it is
+ * constructed, so that it doesn't need any additional
+ * preparation later.
+ */
+ @deprecated("preparation of ExecutionContexts will be removed", "2.12.0")
def prepare(): ExecutionContext = this
-
}
/**
@@ -110,13 +110,22 @@ object ExecutionContext {
* The explicit global `ExecutionContext`. Invoke `global` when you want to provide the global
* `ExecutionContext` explicitly.
*
- * The default `ExecutionContext` implementation is backed by a work-stealing thread pool. By default,
- * the thread pool uses a target number of worker threads equal to the number of
- * [[https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors-- available processors]].
+ * The default `ExecutionContext` implementation is backed by a work-stealing thread pool.
+ * It can be configured via the following [[scala.sys.SystemProperties]]:
+ *
+ * `scala.concurrent.context.minThreads` = defaults to "1"
+ * `scala.concurrent.context.numThreads` = defaults to "x1" (i.e. the current number of available processors * 1)
+ * `scala.concurrent.context.maxThreads` = defaults to "x1" (i.e. the current number of available processors * 1)
+ * `scala.concurrent.context.maxExtraThreads` = defaults to "256"
+ *
+ * The pool size of threads is then `numThreads` bounded by `minThreads` on the lower end and `maxThreads` on the high end.
+ *
+ * The `maxExtraThreads` is the maximum number of extra threads to have at any given time to evade deadlock,
+ * see [[scala.concurrent.BlockContext]].
*
* @return the global `ExecutionContext`
*/
- def global: ExecutionContextExecutor = Implicits.global
+ def global: ExecutionContextExecutor = Implicits.global.asInstanceOf[ExecutionContextExecutor]
object Implicits {
/**
@@ -127,7 +136,7 @@ object ExecutionContext {
* the thread pool uses a target number of worker threads equal to the number of
* [[https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors-- available processors]].
*/
- implicit lazy val global: ExecutionContextExecutor = impl.ExecutionContextImpl.fromExecutor(null: Executor)
+ implicit lazy val global: ExecutionContext = impl.ExecutionContextImpl.fromExecutor(null: Executor)
}
/** Creates an `ExecutionContext` from the given `ExecutorService`.