summaryrefslogtreecommitdiff
path: root/src/parser-combinators/scala/util/parsing/combinator/Parsers.scala
diff options
context:
space:
mode:
Diffstat (limited to 'src/parser-combinators/scala/util/parsing/combinator/Parsers.scala')
-rw-r--r--src/parser-combinators/scala/util/parsing/combinator/Parsers.scala919
1 files changed, 919 insertions, 0 deletions
diff --git a/src/parser-combinators/scala/util/parsing/combinator/Parsers.scala b/src/parser-combinators/scala/util/parsing/combinator/Parsers.scala
new file mode 100644
index 0000000000..16754646fd
--- /dev/null
+++ b/src/parser-combinators/scala/util/parsing/combinator/Parsers.scala
@@ -0,0 +1,919 @@
+/* __ *\
+** ________ ___ / / ___ Scala API **
+** / __/ __// _ | / / / _ | (c) 2006-2013, LAMP/EPFL **
+** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
+** /____/\___/_/ |_/____/_/ | | **
+** |/ **
+\* */
+
+package scala
+package util.parsing.combinator
+
+import scala.util.parsing.input._
+import scala.collection.mutable.ListBuffer
+import scala.annotation.tailrec
+import scala.annotation.migration
+import scala.language.implicitConversions
+import scala.util.DynamicVariable
+
+// TODO: better error handling (labelling like parsec's <?>)
+
+/** `Parsers` is a component that ''provides'' generic parser combinators.
+ *
+ * There are two abstract members that must be defined in order to
+ * produce parsers: the type `Elem` and
+ * [[scala.util.parsing.combinator.Parsers.Parser]]. There are helper
+ * methods that produce concrete `Parser` implementations -- see ''primitive
+ * parser'' below.
+ *
+ * A `Parsers` may define multiple `Parser` instances, which are combined
+ * to produced the desired parser.
+ *
+ * The type of the elements these parsers should parse must be defined
+ * by declaring `Elem`
+ * (each parser is polymorphic in the type of result it produces).
+ *
+ * There are two aspects to the result of a parser:
+ * 1. success or failure
+ * 1. the result.
+ *
+ * A [[scala.util.parsing.combinator.Parsers.Parser]] produces both kinds of information,
+ * by returning a [[scala.util.parsing.combinator.Parsers.ParseResult]] when its `apply`
+ * method is called on an input.
+ *
+ * The term ''parser combinator'' refers to the fact that these parsers
+ * are constructed from primitive parsers and composition operators, such
+ * as sequencing, alternation, optionality, repetition, lifting, and so on. For example,
+ * given `p1` and `p2` of type [[scala.util.parsing.combinator.Parsers.Parser]]:
+ *
+ * {{{
+ * p1 ~ p2 // sequencing: must match p1 followed by p2
+ * p1 | p2 // alternation: must match either p1 or p2, with preference given to p1
+ * p1.? // optionality: may match p1 or not
+ * p1.* // repetition: matches any number of repetitions of p1
+ * }}}
+ *
+ * These combinators are provided as methods on [[scala.util.parsing.combinator.Parsers.Parser]],
+ * or as methods taking one or more `Parsers` and returning a `Parser` provided in
+ * this class.
+ *
+ * A ''primitive parser'' is a parser that accepts or rejects a single
+ * piece of input, based on a certain criterion, such as whether the
+ * input...
+ * - is equal to some given object (see method `accept`),
+ * - satisfies a certain predicate (see method `acceptIf`),
+ * - is in the domain of a given partial function (see method `acceptMatch`)
+ * - or other conditions, by using one of the other methods available, or subclassing `Parser`
+ *
+ * Even more primitive parsers always produce the same result, irrespective of the input. See
+ * methods `success`, `err` and `failure` as examples.
+ *
+ * @see [[scala.util.parsing.combinator.RegexParsers]] and other known subclasses for practical examples.
+ *
+ * @author Martin Odersky
+ * @author Iulian Dragos
+ * @author Adriaan Moors
+ */
+trait Parsers {
+ /** the type of input elements the provided parsers consume (When consuming
+ * invidual characters, a parser is typically called a ''scanner'', which
+ * produces ''tokens'' that are consumed by what is normally called a ''parser''.
+ * Nonetheless, the same principles apply, regardless of the input type.) */
+ type Elem
+
+ /** The parser input is an abstract reader of input elements, i.e. the type
+ * of input the parsers in this component expect. */
+ type Input = Reader[Elem]
+
+ /** A base class for parser results. A result is either successful or not
+ * (failure may be fatal, i.e., an Error, or not, i.e., a Failure). On
+ * success, provides a result of type `T` which consists of some result
+ * (and the rest of the input). */
+ sealed abstract class ParseResult[+T] {
+ /** Functional composition of ParseResults.
+ *
+ * @param f the function to be lifted over this result
+ * @return `f` applied to the result of this `ParseResult`, packaged up as a new `ParseResult`
+ */
+ def map[U](f: T => U): ParseResult[U]
+
+ /** Partial functional composition of ParseResults.
+ *
+ * @param f the partial function to be lifted over this result
+ * @param error a function that takes the same argument as `f` and
+ * produces an error message to explain why `f` wasn't applicable
+ * (it is called when this is the case)
+ * @return if `f` f is defined at the result in this `ParseResult`, `f`
+ * applied to the result of this `ParseResult`, packaged up as
+ * a new `ParseResult`. If `f` is not defined, `Failure`.
+ */
+ def mapPartial[U](f: PartialFunction[T, U], error: T => String): ParseResult[U]
+
+ def flatMapWithNext[U](f: T => Input => ParseResult[U]): ParseResult[U]
+
+ def filterWithError(p: T => Boolean, error: T => String, position: Input): ParseResult[T]
+
+ def append[U >: T](a: => ParseResult[U]): ParseResult[U]
+
+ def isEmpty = !successful
+
+ /** Returns the embedded result. */
+ def get: T
+
+ def getOrElse[B >: T](default: => B): B =
+ if (isEmpty) default else this.get
+
+ val next: Input
+
+ val successful: Boolean
+ }
+
+ /** The success case of `ParseResult`: contains the result and the remaining input.
+ *
+ * @param result The parser's output
+ * @param next The parser's remaining input
+ */
+ case class Success[+T](result: T, override val next: Input) extends ParseResult[T] {
+ def map[U](f: T => U) = Success(f(result), next)
+ def mapPartial[U](f: PartialFunction[T, U], error: T => String): ParseResult[U]
+ = if(f.isDefinedAt(result)) Success(f(result), next)
+ else Failure(error(result), next)
+
+ def flatMapWithNext[U](f: T => Input => ParseResult[U]): ParseResult[U]
+ = f(result)(next)
+
+ def filterWithError(p: T => Boolean, error: T => String, position: Input): ParseResult[T] =
+ if (p(result)) this
+ else Failure(error(result), position)
+
+ def append[U >: T](a: => ParseResult[U]): ParseResult[U] = this
+
+ def get: T = result
+
+ /** The toString method of a Success. */
+ override def toString = "["+next.pos+"] parsed: "+result
+
+ val successful = true
+ }
+
+ private lazy val lastNoSuccessVar = new DynamicVariable[Option[NoSuccess]](None)
+
+ /** A common super-class for unsuccessful parse results. */
+ sealed abstract class NoSuccess(val msg: String, override val next: Input) extends ParseResult[Nothing] { // when we don't care about the difference between Failure and Error
+ val successful = false
+
+ if (lastNoSuccessVar.value forall (v => !(next.pos < v.next.pos)))
+ lastNoSuccessVar.value = Some(this)
+
+ def map[U](f: Nothing => U) = this
+ def mapPartial[U](f: PartialFunction[Nothing, U], error: Nothing => String): ParseResult[U] = this
+
+ def flatMapWithNext[U](f: Nothing => Input => ParseResult[U]): ParseResult[U]
+ = this
+
+ def filterWithError(p: Nothing => Boolean, error: Nothing => String, position: Input): ParseResult[Nothing] = this
+
+ def get: Nothing = scala.sys.error("No result when parsing failed")
+ }
+ /** An extractor so `NoSuccess(msg, next)` can be used in matches. */
+ object NoSuccess {
+ def unapply[T](x: ParseResult[T]) = x match {
+ case Failure(msg, next) => Some((msg, next))
+ case Error(msg, next) => Some((msg, next))
+ case _ => None
+ }
+ }
+
+ /** The failure case of `ParseResult`: contains an error-message and the remaining input.
+ * Parsing will back-track when a failure occurs.
+ *
+ * @param msg An error message string describing the failure.
+ * @param next The parser's unconsumed input at the point where the failure occurred.
+ */
+ case class Failure(override val msg: String, override val next: Input) extends NoSuccess(msg, next) {
+ /** The toString method of a Failure yields an error message. */
+ override def toString = "["+next.pos+"] failure: "+msg+"\n\n"+next.pos.longString
+
+ def append[U >: Nothing](a: => ParseResult[U]): ParseResult[U] = { val alt = a; alt match {
+ case Success(_, _) => alt
+ case ns: NoSuccess => if (alt.next.pos < next.pos) this else alt
+ }}
+ }
+
+ /** The fatal failure case of ParseResult: contains an error-message and
+ * the remaining input.
+ * No back-tracking is done when a parser returns an `Error`.
+ *
+ * @param msg An error message string describing the error.
+ * @param next The parser's unconsumed input at the point where the error occurred.
+ */
+ case class Error(override val msg: String, override val next: Input) extends NoSuccess(msg, next) {
+ /** The toString method of an Error yields an error message. */
+ override def toString = "["+next.pos+"] error: "+msg+"\n\n"+next.pos.longString
+ def append[U >: Nothing](a: => ParseResult[U]): ParseResult[U] = this
+ }
+
+ def Parser[T](f: Input => ParseResult[T]): Parser[T]
+ = new Parser[T]{ def apply(in: Input) = f(in) }
+
+ def OnceParser[T](f: Input => ParseResult[T]): Parser[T] with OnceParser[T]
+ = new Parser[T] with OnceParser[T] { def apply(in: Input) = f(in) }
+
+ /** The root class of parsers.
+ * Parsers are functions from the Input type to ParseResult.
+ */
+ abstract class Parser[+T] extends (Input => ParseResult[T]) {
+ private var name: String = ""
+ def named(n: String): this.type = {name=n; this}
+ override def toString() = "Parser ("+ name +")"
+
+ /** An unspecified method that defines the behaviour of this parser. */
+ def apply(in: Input): ParseResult[T]
+
+ def flatMap[U](f: T => Parser[U]): Parser[U]
+ = Parser{ in => this(in) flatMapWithNext(f)}
+
+ def map[U](f: T => U): Parser[U] //= flatMap{x => success(f(x))}
+ = Parser{ in => this(in) map(f)}
+
+ def filter(p: T => Boolean): Parser[T]
+ = withFilter(p)
+
+ def withFilter(p: T => Boolean): Parser[T]
+ = Parser{ in => this(in) filterWithError(p, "Input doesn't match filter: "+_, in)}
+
+ // no filter yet, dealing with zero is tricky!
+
+ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
+ def append[U >: T](p0: => Parser[U]): Parser[U] = { lazy val p = p0 // lazy argument
+ Parser{ in => this(in) append p(in)}
+ }
+
+ // the operator formerly known as +++, ++, &, but now, behold the venerable ~
+ // it's short, light (looks like whitespace), has few overloaded meaning (thanks to the recent change from ~ to unary_~)
+ // and we love it! (or do we like `,` better?)
+
+ /** A parser combinator for sequential composition.
+ *
+ * `p ~ q` succeeds if `p` succeeds and `q` succeeds on the input left over by `p`.
+ *
+ * @param q a parser that will be executed after `p` (this parser)
+ * succeeds -- evaluated at most once, and only when necessary.
+ * @return a `Parser` that -- on success -- returns a `~` (like a `Pair`,
+ * but easier to pattern match on) that contains the result of `p` and
+ * that of `q`. The resulting parser fails if either `p` or `q` fails.
+ */
+ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
+ def ~ [U](q: => Parser[U]): Parser[~[T, U]] = { lazy val p = q // lazy argument
+ (for(a <- this; b <- p) yield new ~(a,b)).named("~")
+ }
+
+ /** A parser combinator for sequential composition which keeps only the right result.
+ *
+ * `p ~> q` succeeds if `p` succeeds and `q` succeeds on the input left over by `p`.
+ *
+ * @param q a parser that will be executed after `p` (this parser)
+ * succeeds -- evaluated at most once, and only when necessary.
+ * @return a `Parser` that -- on success -- returns the result of `q`.
+ */
+ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
+ def ~> [U](q: => Parser[U]): Parser[U] = { lazy val p = q // lazy argument
+ (for(a <- this; b <- p) yield b).named("~>")
+ }
+
+ /** A parser combinator for sequential composition which keeps only the left result.
+ *
+ * `p <~ q` succeeds if `p` succeeds and `q` succeeds on the input
+ * left over by `p`.
+ *
+ * @note <~ has lower operator precedence than ~ or ~>.
+ *
+ * @param q a parser that will be executed after `p` (this parser) succeeds -- evaluated at most once, and only when necessary
+ * @return a `Parser` that -- on success -- returns the result of `p`.
+ */
+ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
+ def <~ [U](q: => Parser[U]): Parser[T] = { lazy val p = q // lazy argument
+ (for(a <- this; b <- p) yield a).named("<~")
+ }
+
+ /* not really useful: V cannot be inferred because Parser is covariant in first type parameter (V is always trivially Nothing)
+ def ~~ [U, V](q: => Parser[U])(implicit combine: (T, U) => V): Parser[V] = new Parser[V] {
+ def apply(in: Input) = seq(Parser.this, q)((x, y) => combine(x,y))(in)
+ } */
+
+ /** A parser combinator for non-back-tracking sequential composition.
+ *
+ * `p ~! q` succeeds if `p` succeeds and `q` succeeds on the input left over by `p`.
+ * In case of failure, no back-tracking is performed (in an earlier parser produced by the `|` combinator).
+ *
+ * @param p a parser that will be executed after `p` (this parser) succeeds
+ * @return a `Parser` that -- on success -- returns a `~` (like a Pair, but easier to pattern match on)
+ * that contains the result of `p` and that of `q`.
+ * The resulting parser fails if either `p` or `q` fails, this failure is fatal.
+ */
+ def ~! [U](p: => Parser[U]): Parser[~[T, U]]
+ = OnceParser{ (for(a <- this; b <- commit(p)) yield new ~(a,b)).named("~!") }
+
+ /** A parser combinator for alternative composition.
+ *
+ * `p | q` succeeds if `p` succeeds or `q` succeeds.
+ * Note that `q` is only tried if `p`s failure is non-fatal (i.e., back-tracking is allowed).
+ *
+ * @param q a parser that will be executed if `p` (this parser) fails (and allows back-tracking)
+ * @return a `Parser` that returns the result of the first parser to succeed (out of `p` and `q`)
+ * The resulting parser succeeds if (and only if)
+ * - `p` succeeds, ''or''
+ * - if `p` fails allowing back-tracking and `q` succeeds.
+ */
+ def | [U >: T](q: => Parser[U]): Parser[U] = append(q).named("|")
+
+ // TODO
+ /** A parser combinator for alternative with longest match composition.
+ *
+ * `p ||| q` succeeds if `p` succeeds or `q` succeeds.
+ * If `p` and `q` both succeed, the parser that consumed the most characters accepts.
+ *
+ * @param q0 a parser that accepts if p consumes less characters. -- evaluated at most once, and only when necessary
+ * @return a `Parser` that returns the result of the parser consuming the most characters (out of `p` and `q`).
+ */
+ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
+ def ||| [U >: T](q0: => Parser[U]): Parser[U] = new Parser[U] {
+ lazy val q = q0 // lazy argument
+ def apply(in: Input) = {
+ val res1 = Parser.this(in)
+ val res2 = q(in)
+
+ (res1, res2) match {
+ case (s1 @ Success(_, next1), s2 @ Success(_, next2)) => if (next2.pos < next1.pos) s1 else s2
+ case (s1 @ Success(_, _), _) => s1
+ case (_, s2 @ Success(_, _)) => s2
+ case (e1 @ Error(_, _), _) => e1
+ case (f1 @ Failure(_, next1), ns2 @ NoSuccess(_, next2)) => if (next2.pos < next1.pos) f1 else ns2
+ }
+ }
+ override def toString = "|||"
+ }
+
+ /** A parser combinator for function application.
+ *
+ * `p ^^ f` succeeds if `p` succeeds; it returns `f` applied to the result of `p`.
+ *
+ * @param f a function that will be applied to this parser's result (see `map` in `ParseResult`).
+ * @return a parser that has the same behaviour as the current parser, but whose result is
+ * transformed by `f`.
+ */
+ def ^^ [U](f: T => U): Parser[U] = map(f).named(toString+"^^")
+
+ /** A parser combinator that changes a successful result into the specified value.
+ *
+ * `p ^^^ v` succeeds if `p` succeeds; discards its result, and returns `v` instead.
+ *
+ * @param v The new result for the parser, evaluated at most once (if `p` succeeds), not evaluated at all if `p` fails.
+ * @return a parser that has the same behaviour as the current parser, but whose successful result is `v`
+ */
+ @migration("The call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
+ def ^^^ [U](v: => U): Parser[U] = new Parser[U] {
+ lazy val v0 = v // lazy argument
+ def apply(in: Input) = Parser.this(in) map (x => v0)
+ }.named(toString+"^^^")
+
+ /** A parser combinator for partial function application.
+ *
+ * `p ^? (f, error)` succeeds if `p` succeeds AND `f` is defined at the result of `p`;
+ * in that case, it returns `f` applied to the result of `p`. If `f` is not applicable,
+ * error(the result of `p`) should explain why.
+ *
+ * @param f a partial function that will be applied to this parser's result
+ * (see `mapPartial` in `ParseResult`).
+ * @param error a function that takes the same argument as `f` and produces an error message
+ * to explain why `f` wasn't applicable
+ * @return a parser that succeeds if the current parser succeeds <i>and</i> `f` is applicable
+ * to the result. If so, the result will be transformed by `f`.
+ */
+ def ^? [U](f: PartialFunction[T, U], error: T => String): Parser[U] = Parser{ in =>
+ this(in).mapPartial(f, error)}.named(toString+"^?")
+
+ /** A parser combinator for partial function application.
+ *
+ * `p ^? f` succeeds if `p` succeeds AND `f` is defined at the result of `p`;
+ * in that case, it returns `f` applied to the result of `p`.
+ *
+ * @param f a partial function that will be applied to this parser's result
+ * (see `mapPartial` in `ParseResult`).
+ * @return a parser that succeeds if the current parser succeeds <i>and</i> `f` is applicable
+ * to the result. If so, the result will be transformed by `f`.
+ */
+ def ^? [U](f: PartialFunction[T, U]): Parser[U] = ^?(f, r => "Constructor function not defined at "+r)
+
+ /** A parser combinator that parameterizes a subsequent parser with the
+ * result of this one.
+ *
+ * Use this combinator when a parser depends on the result of a previous
+ * parser. `p` should be a function that takes the result from the first
+ * parser and returns the second parser.
+ *
+ * `p into fq` (with `fq` typically `{x => q}`) first applies `p`, and
+ * then, if `p` successfully returned result `r`, applies `fq(r)` to the
+ * rest of the input.
+ *
+ * ''From: G. Hutton. Higher-order functions for parsing. J. Funct. Program., 2(3):323--343, 1992.''
+ *
+ * @example {{{
+ * def perlRE = "m" ~> (".".r into (separator => """[^%s]*""".format(separator).r <~ separator))
+ * }}}
+ *
+ * @param fq a function that, given the result from this parser, returns
+ * the second parser to be applied
+ * @return a parser that succeeds if this parser succeeds (with result `x`)
+ * and if then `fq(x)` succeeds
+ */
+ def into[U](fq: T => Parser[U]): Parser[U] = flatMap(fq)
+
+ // shortcuts for combinators:
+
+ /** Returns `into(fq)`. */
+ def >>[U](fq: T => Parser[U])=into(fq)
+
+ /** Returns a parser that repeatedly parses what this parser parses.
+ *
+ * @return rep(this)
+ */
+ def * = rep(this)
+
+ /** Returns a parser that repeatedly parses what this parser parses,
+ * interleaved with the `sep` parser. The `sep` parser specifies how
+ * the results parsed by this parser should be combined.
+ *
+ * @return chainl1(this, sep)
+ */
+ def *[U >: T](sep: => Parser[(U, U) => U]) = chainl1(this, sep)
+
+ // TODO: improve precedence? a ~ b*(",") = a ~ (b*(",")) should be true
+
+ /** Returns a parser that repeatedly (at least once) parses what this parser parses.
+ *
+ * @return rep1(this)
+ */
+ def + = rep1(this)
+
+ /** Returns a parser that optionally parses what this parser parses.
+ *
+ * @return opt(this)
+ */
+ def ? = opt(this)
+
+ /** Changes the failure message produced by a parser.
+ *
+ * This doesn't change the behavior of a parser on neither
+ * success nor error, just on failure. The semantics are
+ * slightly different than those obtained by doing `| failure(msg)`,
+ * in that the message produced by this method will always
+ * replace the message produced, which is not guaranteed
+ * by that idiom.
+ *
+ * For example, parser `p` below will always produce the
+ * designated failure message, while `q` will not produce
+ * it if `sign` is parsed but `number` is not.
+ *
+ * {{{
+ * def p = sign.? ~ number withFailureMessage "Number expected!"
+ * def q = sign.? ~ number | failure("Number expected!")
+ * }}}
+ *
+ * @param msg The message that will replace the default failure message.
+ * @return A parser with the same properties and different failure message.
+ */
+ def withFailureMessage(msg: String) = Parser{ in =>
+ this(in) match {
+ case Failure(_, next) => Failure(msg, next)
+ case other => other
+ }
+ }
+
+ /** Changes the error message produced by a parser.
+ *
+ * This doesn't change the behavior of a parser on neither
+ * success nor failure, just on error. The semantics are
+ * slightly different than those obtained by doing `| error(msg)`,
+ * in that the message produced by this method will always
+ * replace the message produced, which is not guaranteed
+ * by that idiom.
+ *
+ * For example, parser `p` below will always produce the
+ * designated error message, while `q` will not produce
+ * it if `sign` is parsed but `number` is not.
+ *
+ * {{{
+ * def p = sign.? ~ number withErrorMessage "Number expected!"
+ * def q = sign.? ~ number | error("Number expected!")
+ * }}}
+ *
+ * @param msg The message that will replace the default error message.
+ * @return A parser with the same properties and different error message.
+ */
+ def withErrorMessage(msg: String) = Parser{ in =>
+ this(in) match {
+ case Error(_, next) => Error(msg, next)
+ case other => other
+ }
+ }
+ }
+
+ /** Wrap a parser so that its failures become errors (the `|` combinator
+ * will give up as soon as it encounters an error, on failure it simply
+ * tries the next alternative).
+ */
+ def commit[T](p: => Parser[T]) = Parser{ in =>
+ p(in) match{
+ case s @ Success(_, _) => s
+ case e @ Error(_, _) => e
+ case f @ Failure(msg, next) => Error(msg, next)
+ }
+ }
+
+ /** A parser matching input elements that satisfy a given predicate.
+ *
+ * `elem(kind, p)` succeeds if the input starts with an element `e` for which `p(e)` is true.
+ *
+ * @param kind The element kind, used for error messages
+ * @param p A predicate that determines which elements match.
+ * @return
+ */
+ def elem(kind: String, p: Elem => Boolean) = acceptIf(p)(inEl => kind+" expected")
+
+ /** A parser that matches only the given element `e`.
+ *
+ * `elem(e)` succeeds if the input starts with an element `e`.
+ *
+ * @param e the `Elem` that must be the next piece of input for the returned parser to succeed
+ * @return a `Parser` that succeeds if `e` is the next available input (and returns it).
+ */
+ def elem(e: Elem): Parser[Elem] = accept(e)
+
+ /** A parser that matches only the given element `e`.
+ *
+ * The method is implicit so that elements can automatically be lifted to their parsers.
+ * For example, when parsing `Token`s, `Identifier("new")` (which is a `Token`) can be used directly,
+ * instead of first creating a `Parser` using `accept(Identifier("new"))`.
+ *
+ * @param e the `Elem` that must be the next piece of input for the returned parser to succeed
+ * @return a `tParser` that succeeds if `e` is the next available input.
+ */
+
+ implicit def accept(e: Elem): Parser[Elem] = acceptIf(_ == e)("`"+e+"' expected but " + _ + " found")
+
+ /** A parser that matches only the given list of element `es`.
+ *
+ * `accept(es)` succeeds if the input subsequently provides the elements in the list `es`.
+ *
+ * @param es the list of expected elements
+ * @return a Parser that recognizes a specified list of elements
+ */
+ def accept[ES <% List[Elem]](es: ES): Parser[List[Elem]] = acceptSeq(es)
+
+ /** The parser that matches an element in the domain of the partial function `f`.
+ *
+ * If `f` is defined on the first element in the input, `f` is applied
+ * to it to produce this parser's result.
+ *
+ * Example: The parser `accept("name", {case Identifier(n) => Name(n)})`
+ * accepts an `Identifier(n)` and returns a `Name(n)`
+ *
+ * @param expected a description of the kind of element this parser expects (for error messages)
+ * @param f a partial function that determines when this parser is successful and what its output is
+ * @return A parser that succeeds if `f` is applicable to the first element of the input,
+ * applying `f` to it to produce the result.
+ */
+ def accept[U](expected: String, f: PartialFunction[Elem, U]): Parser[U] = acceptMatch(expected, f)
+
+ /** A parser matching input elements that satisfy a given predicate.
+ *
+ * `acceptIf(p)(el => "Unexpected "+el)` succeeds if the input starts with an element `e` for which `p(e)` is true.
+ *
+ * @param err A function from the received element into an error message.
+ * @param p A predicate that determines which elements match.
+ * @return A parser for elements satisfying p(e).
+ */
+ def acceptIf(p: Elem => Boolean)(err: Elem => String): Parser[Elem] = Parser { in =>
+ if (in.atEnd) Failure("end of input", in)
+ else if (p(in.first)) Success(in.first, in.rest)
+ else Failure(err(in.first), in)
+ }
+
+ /** The parser that matches an element in the domain of the partial function `f`.
+ *
+ * If `f` is defined on the first element in the input, `f` is applied
+ * to it to produce this parser's result.
+ *
+ * Example: The parser `acceptMatch("name", {case Identifier(n) => Name(n)})`
+ * accepts an `Identifier(n)` and returns a `Name(n)`
+ *
+ * @param expected a description of the kind of element this parser expects (for error messages)
+ * @param f a partial function that determines when this parser is successful and what its output is
+ * @return A parser that succeeds if `f` is applicable to the first element of the input,
+ * applying `f` to it to produce the result.
+ */
+ def acceptMatch[U](expected: String, f: PartialFunction[Elem, U]): Parser[U] = Parser{ in =>
+ if (in.atEnd) Failure("end of input", in)
+ else if (f.isDefinedAt(in.first)) Success(f(in.first), in.rest)
+ else Failure(expected+" expected", in)
+ }
+
+ /** A parser that matches only the given [[scala.collection.Iterable]] collection of elements `es`.
+ *
+ * `acceptSeq(es)` succeeds if the input subsequently provides the elements in the iterable `es`.
+ *
+ * @param es the list of expected elements
+ * @return a Parser that recognizes a specified list of elements
+ */
+ def acceptSeq[ES <% Iterable[Elem]](es: ES): Parser[List[Elem]] =
+ es.foldRight[Parser[List[Elem]]](success(Nil)){(x, pxs) => accept(x) ~ pxs ^^ mkList}
+
+ /** A parser that always fails.
+ *
+ * @param msg The error message describing the failure.
+ * @return A parser that always fails with the specified error message.
+ */
+ def failure(msg: String) = Parser{ in => Failure(msg, in) }
+
+ /** A parser that results in an error.
+ *
+ * @param msg The error message describing the failure.
+ * @return A parser that always fails with the specified error message.
+ */
+ def err(msg: String) = Parser{ in => Error(msg, in) }
+
+ /** A parser that always succeeds.
+ *
+ * @param v The result for the parser
+ * @return A parser that always succeeds, with the given result `v`
+ */
+ def success[T](v: T) = Parser{ in => Success(v, in) }
+
+ /** A helper method that turns a `Parser` into one that will
+ * print debugging information to stdout before and after
+ * being applied.
+ */
+ def log[T](p: => Parser[T])(name: String): Parser[T] = Parser{ in =>
+ println("trying "+ name +" at "+ in)
+ val r = p(in)
+ println(name +" --> "+ r)
+ r
+ }
+
+ /** A parser generator for repetitions.
+ *
+ * `rep(p)` repeatedly uses `p` to parse the input until `p` fails
+ * (the result is a List of the consecutive results of `p`).
+ *
+ * @param p a `Parser` that is to be applied successively to the input
+ * @return A parser that returns a list of results produced by repeatedly applying `p` to the input.
+ */
+ def rep[T](p: => Parser[T]): Parser[List[T]] = rep1(p) | success(List())
+
+ /** A parser generator for interleaved repetitions.
+ *
+ * `repsep(p, q)` repeatedly uses `p` interleaved with `q` to parse the input, until `p` fails.
+ * (The result is a `List` of the results of `p`.)
+ *
+ * Example: `repsep(term, ",")` parses a comma-separated list of term's, yielding a list of these terms.
+ *
+ * @param p a `Parser` that is to be applied successively to the input
+ * @param q a `Parser` that parses the elements that separate the elements parsed by `p`
+ * @return A parser that returns a list of results produced by repeatedly applying `p` (interleaved with `q`) to the input.
+ * The results of `p` are collected in a list. The results of `q` are discarded.
+ */
+ def repsep[T](p: => Parser[T], q: => Parser[Any]): Parser[List[T]] =
+ rep1sep(p, q) | success(List())
+
+ /** A parser generator for non-empty repetitions.
+ *
+ * `rep1(p)` repeatedly uses `p` to parse the input until `p` fails -- `p` must succeed at least
+ * once (the result is a `List` of the consecutive results of `p`)
+ *
+ * @param p a `Parser` that is to be applied successively to the input
+ * @return A parser that returns a list of results produced by repeatedly applying `p` to the input
+ * (and that only succeeds if `p` matches at least once).
+ */
+ def rep1[T](p: => Parser[T]): Parser[List[T]] = rep1(p, p)
+
+ /** A parser generator for non-empty repetitions.
+ *
+ * `rep1(f, p)` first uses `f` (which must succeed) and then repeatedly
+ * uses `p` to parse the input until `p` fails
+ * (the result is a `List` of the consecutive results of `f` and `p`)
+ *
+ * @param first a `Parser` that parses the first piece of input
+ * @param p0 a `Parser` that is to be applied successively to the rest of the input (if any) -- evaluated at most once, and only when necessary
+ * @return A parser that returns a list of results produced by first applying `f` and then
+ * repeatedly `p` to the input (it only succeeds if `f` matches).
+ */
+ @migration("The `p0` call-by-name arguments is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.", "2.9.0")
+ def rep1[T](first: => Parser[T], p0: => Parser[T]): Parser[List[T]] = Parser { in =>
+ lazy val p = p0 // lazy argument
+ val elems = new ListBuffer[T]
+
+ def continue(in: Input): ParseResult[List[T]] = {
+ val p0 = p // avoid repeatedly re-evaluating by-name parser
+ @tailrec def applyp(in0: Input): ParseResult[List[T]] = p0(in0) match {
+ case Success(x, rest) => elems += x ; applyp(rest)
+ case e @ Error(_, _) => e // still have to propagate error
+ case _ => Success(elems.toList, in0)
+ }
+
+ applyp(in)
+ }
+
+ first(in) match {
+ case Success(x, rest) => elems += x ; continue(rest)
+ case ns: NoSuccess => ns
+ }
+ }
+
+ /** A parser generator for a specified number of repetitions.
+ *
+ * `repN(n, p)` uses `p` exactly `n` time to parse the input
+ * (the result is a `List` of the `n` consecutive results of `p`).
+ *
+ * @param p a `Parser` that is to be applied successively to the input
+ * @param num the exact number of times `p` must succeed
+ * @return A parser that returns a list of results produced by repeatedly applying `p` to the input
+ * (and that only succeeds if `p` matches exactly `n` times).
+ */
+ def repN[T](num: Int, p: => Parser[T]): Parser[List[T]] =
+ if (num == 0) success(Nil) else Parser { in =>
+ val elems = new ListBuffer[T]
+ val p0 = p // avoid repeatedly re-evaluating by-name parser
+
+ @tailrec def applyp(in0: Input): ParseResult[List[T]] =
+ if (elems.length == num) Success(elems.toList, in0)
+ else p0(in0) match {
+ case Success(x, rest) => elems += x ; applyp(rest)
+ case ns: NoSuccess => ns
+ }
+
+ applyp(in)
+ }
+
+ /** A parser generator for non-empty repetitions.
+ *
+ * `rep1sep(p, q)` repeatedly applies `p` interleaved with `q` to parse the
+ * input, until `p` fails. The parser `p` must succeed at least once.
+ *
+ * @param p a `Parser` that is to be applied successively to the input
+ * @param q a `Parser` that parses the elements that separate the elements parsed by `p`
+ * (interleaved with `q`)
+ * @return A parser that returns a list of results produced by repeatedly applying `p` to the input
+ * (and that only succeeds if `p` matches at least once).
+ * The results of `p` are collected in a list. The results of `q` are discarded.
+ */
+ def rep1sep[T](p : => Parser[T], q : => Parser[Any]): Parser[List[T]] =
+ p ~ rep(q ~> p) ^^ {case x~y => x::y}
+
+ /** A parser generator that, roughly, generalises the rep1sep generator so
+ * that `q`, which parses the separator, produces a left-associative
+ * function that combines the elements it separates.
+ *
+ * ''From: J. Fokker. Functional parsers. In J. Jeuring and E. Meijer, editors, Advanced Functional Programming,
+ * volume 925 of Lecture Notes in Computer Science, pages 1--23. Springer, 1995.''
+ *
+ * @param p a parser that parses the elements
+ * @param q a parser that parses the token(s) separating the elements, yielding a left-associative function that
+ * combines two elements into one
+ */
+ def chainl1[T](p: => Parser[T], q: => Parser[(T, T) => T]): Parser[T]
+ = chainl1(p, p, q)
+
+ /** A parser generator that, roughly, generalises the `rep1sep` generator
+ * so that `q`, which parses the separator, produces a left-associative
+ * function that combines the elements it separates.
+ *
+ * @param first a parser that parses the first element
+ * @param p a parser that parses the subsequent elements
+ * @param q a parser that parses the token(s) separating the elements,
+ * yielding a left-associative function that combines two elements
+ * into one
+ */
+ def chainl1[T, U](first: => Parser[T], p: => Parser[U], q: => Parser[(T, U) => T]): Parser[T]
+ = first ~ rep(q ~ p) ^^ {
+ case x ~ xs => xs.foldLeft(x: T){case (a, f ~ b) => f(a, b)} // x's type annotation is needed to deal with changed type inference due to SI-5189
+ }
+
+ /** A parser generator that generalises the `rep1sep` generator so that `q`,
+ * which parses the separator, produces a right-associative function that
+ * combines the elements it separates. Additionally, the right-most (last)
+ * element and the left-most combining function have to be supplied.
+ *
+ * rep1sep(p: Parser[T], q) corresponds to chainr1(p, q ^^ cons, cons, Nil) (where val cons = (x: T, y: List[T]) => x :: y)
+ *
+ * @param p a parser that parses the elements
+ * @param q a parser that parses the token(s) separating the elements, yielding a right-associative function that
+ * combines two elements into one
+ * @param combine the "last" (left-most) combination function to be applied
+ * @param first the "first" (right-most) element to be combined
+ */
+ def chainr1[T, U](p: => Parser[T], q: => Parser[(T, U) => U], combine: (T, U) => U, first: U): Parser[U]
+ = p ~ rep(q ~ p) ^^ {
+ case x ~ xs => (new ~(combine, x) :: xs).foldRight(first){case (f ~ a, b) => f(a, b)}
+ }
+
+ /** A parser generator for optional sub-phrases.
+ *
+ * `opt(p)` is a parser that returns `Some(x)` if `p` returns `x` and `None` if `p` fails.
+ *
+ * @param p A `Parser` that is tried on the input
+ * @return a `Parser` that always succeeds: either with the result provided by `p` or
+ * with the empty result
+ */
+ def opt[T](p: => Parser[T]): Parser[Option[T]] =
+ p ^^ (x => Some(x)) | success(None)
+
+ /** Wrap a parser so that its failures and errors become success and
+ * vice versa -- it never consumes any input.
+ */
+ def not[T](p: => Parser[T]): Parser[Unit] = Parser { in =>
+ p(in) match {
+ case Success(_, _) => Failure("Expected failure", in)
+ case _ => Success((), in)
+ }
+ }
+
+ /** A parser generator for guard expressions. The resulting parser will
+ * fail or succeed just like the one given as parameter but it will not
+ * consume any input.
+ *
+ * @param p a `Parser` that is to be applied to the input
+ * @return A parser that returns success if and only if `p` succeeds but
+ * never consumes any input
+ */
+ def guard[T](p: => Parser[T]): Parser[T] = Parser { in =>
+ p(in) match{
+ case s@ Success(s1,_) => Success(s1, in)
+ case e => e
+ }
+ }
+
+ /** `positioned` decorates a parser's result with the start position of the
+ * input it consumed.
+ *
+ * @param p a `Parser` whose result conforms to `Positional`.
+ * @return A parser that has the same behaviour as `p`, but which marks its
+ * result with the start position of the input it consumed,
+ * if it didn't already have a position.
+ */
+ def positioned[T <: Positional](p: => Parser[T]): Parser[T] = Parser { in =>
+ p(in) match {
+ case Success(t, in1) => Success(if (t.pos == NoPosition) t setPos in.pos else t, in1)
+ case ns: NoSuccess => ns
+ }
+ }
+
+ /** A parser generator delimiting whole phrases (i.e. programs).
+ *
+ * `phrase(p)` succeeds if `p` succeeds and no input is left over after `p`.
+ *
+ * @param p the parser that must consume all input for the resulting parser
+ * to succeed.
+ * @return a parser that has the same result as `p`, but that only succeeds
+ * if `p` consumed all the input.
+ */
+ def phrase[T](p: Parser[T]) = new Parser[T] {
+ def apply(in: Input) = lastNoSuccessVar.withValue(None) {
+ p(in) match {
+ case s @ Success(out, in1) =>
+ if (in1.atEnd)
+ s
+ else
+ lastNoSuccessVar.value filterNot { _.next.pos < in1.pos } getOrElse Failure("end of input expected", in1)
+ case ns => lastNoSuccessVar.value.getOrElse(ns)
+ }
+ }
+ }
+
+ /** Given a concatenation with a repetition (list), move the concatenated element into the list */
+ def mkList[T] = (_: ~[T, List[T]]) match { case x ~ xs => x :: xs }
+
+ /** A wrapper over sequence of matches.
+ *
+ * Given `p1: Parser[A]` and `p2: Parser[B]`, a parser composed with
+ * `p1 ~ p2` will have type `Parser[~[A, B]]`. The successful result
+ * of the parser can be extracted from this case class.
+ *
+ * It also enables pattern matching, so something like this is possible:
+ *
+ * {{{
+ * def concat(p1: Parser[String], p2: Parser[String]): Parser[String] =
+ * p1 ~ p2 ^^ { case a ~ b => a + b }
+ * }}}
+ */
+ case class ~[+a, +b](_1: a, _2: b) {
+ override def toString = "("+ _1 +"~"+ _2 +")"
+ }
+
+ /** A parser whose `~` combinator disallows back-tracking.
+ */
+ trait OnceParser[+T] extends Parser[T] {
+ override def ~ [U](p: => Parser[U]): Parser[~[T, U]]
+ = OnceParser{ (for(a <- this; b <- commit(p)) yield new ~(a,b)).named("~") }
+ }
+}