summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/compiler/scala/reflect/macros/runtime/Reifiers.scala4
-rw-r--r--src/compiler/scala/reflect/reify/Reifier.scala2
-rw-r--r--src/compiler/scala/reflect/reify/Taggers.scala12
-rw-r--r--src/compiler/scala/reflect/reify/package.scala1
-rw-r--r--src/compiler/scala/reflect/reify/phases/Reshape.scala6
-rw-r--r--src/compiler/scala/reflect/reify/utils/Extractors.scala12
-rw-r--r--src/compiler/scala/reflect/reify/utils/NodePrinters.scala2
-rw-r--r--src/compiler/scala/tools/nsc/ast/parser/Scanners.scala4
-rw-r--r--src/compiler/scala/tools/nsc/backend/icode/GenICode.scala101
-rw-r--r--src/compiler/scala/tools/nsc/backend/icode/analysis/TypeFlowAnalysis.scala2
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/GenASM.scala68
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/GenJVM.scala6
-rw-r--r--src/compiler/scala/tools/nsc/doc/Settings.scala18
-rw-r--r--src/compiler/scala/tools/nsc/interpreter/ReplVals.scala4
-rw-r--r--src/compiler/scala/tools/nsc/symtab/classfile/ClassfileParser.scala6
-rw-r--r--src/compiler/scala/tools/nsc/symtab/classfile/Pickler.scala6
-rw-r--r--src/compiler/scala/tools/nsc/transform/CleanUp.scala153
-rw-r--r--src/compiler/scala/tools/nsc/transform/Constructors.scala7
-rw-r--r--src/compiler/scala/tools/nsc/transform/LambdaLift.scala2
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/ContextErrors.scala8
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/Contexts.scala2
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/Implicits.scala10
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/Infer.scala8
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala34
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/Tags.scala6
-rw-r--r--src/compiler/scala/tools/nsc/typechecker/Typers.scala30
-rw-r--r--src/compiler/scala/tools/nsc/util/ClassPath.scala6
-rw-r--r--src/compiler/scala/tools/reflect/FastTrack.scala8
-rw-r--r--src/compiler/scala/tools/reflect/FrontEnds.scala10
-rw-r--r--src/compiler/scala/tools/reflect/StdTags.scala8
-rw-r--r--src/compiler/scala/tools/reflect/ToolBox.scala5
-rw-r--r--src/compiler/scala/tools/reflect/ToolBoxFactory.scala22
-rw-r--r--src/library/scala/App.scala10
-rw-r--r--src/library/scala/Option.scala4
-rw-r--r--src/library/scala/PartialFunction.scala18
-rw-r--r--src/library/scala/annotation/static.scala20
-rw-r--r--src/library/scala/collection/SeqLike.scala4
-rw-r--r--src/library/scala/collection/concurrent/TrieMap.scala87
-rw-r--r--src/library/scala/collection/immutable/Range.scala6
-rw-r--r--src/library/scala/collection/immutable/RedBlackTree.scala25
-rw-r--r--src/library/scala/collection/immutable/Vector.scala25
-rw-r--r--src/library/scala/collection/mutable/FlatHashTable.scala12
-rw-r--r--src/library/scala/collection/mutable/HashMap.scala29
-rw-r--r--src/library/scala/collection/mutable/HashSet.scala6
-rw-r--r--src/library/scala/collection/mutable/HashTable.scala58
-rw-r--r--src/library/scala/collection/mutable/LinkedHashMap.scala43
-rw-r--r--src/library/scala/collection/mutable/LinkedHashSet.scala85
-rw-r--r--src/library/scala/collection/mutable/PriorityQueue.scala12
-rw-r--r--src/library/scala/collection/parallel/mutable/ParHashMap.scala27
-rw-r--r--src/library/scala/collection/parallel/mutable/ParHashSet.scala10
-rw-r--r--src/library/scala/reflect/ClassTag.scala25
-rw-r--r--src/library/scala/reflect/base/Annotations.scala46
-rw-r--r--src/library/scala/reflect/base/Base.scala769
-rw-r--r--src/library/scala/reflect/base/Constants.scala20
-rw-r--r--src/library/scala/reflect/base/FlagSets.scala16
-rw-r--r--src/library/scala/reflect/base/Mirrors.scala12
-rw-r--r--src/library/scala/reflect/base/Names.scala58
-rw-r--r--src/library/scala/reflect/base/Positions.scala17
-rw-r--r--src/library/scala/reflect/base/StandardDefinitions.scala72
-rw-r--r--src/library/scala/reflect/base/StandardNames.scala34
-rw-r--r--src/library/scala/reflect/base/Symbols.scala289
-rw-r--r--src/library/scala/reflect/base/TagInterop.scala15
-rw-r--r--src/library/scala/reflect/base/TreeCreator.scala6
-rw-r--r--src/library/scala/reflect/base/Trees.scala1445
-rw-r--r--src/library/scala/reflect/base/TypeCreator.scala6
-rw-r--r--src/library/scala/reflect/base/Types.scala426
-rw-r--r--src/library/scala/reflect/base/Universe.scala67
-rw-r--r--src/library/scala/reflect/macros/internal/package.scala14
-rw-r--r--src/library/scala/reflect/package.scala13
-rw-r--r--src/library/scala/runtime/ScalaRunTime.scala22
-rw-r--r--src/partest/scala/tools/partest/CompilerTest.scala4
-rw-r--r--src/partest/scala/tools/partest/package.scala35
-rw-r--r--src/reflect/scala/reflect/api/Annotations.scala105
-rw-r--r--src/reflect/scala/reflect/api/Attachments.scala (renamed from src/library/scala/reflect/base/Attachments.scala)25
-rw-r--r--src/reflect/scala/reflect/api/BuildUtils.scala (renamed from src/library/scala/reflect/base/BuildUtils.scala)9
-rw-r--r--src/reflect/scala/reflect/api/Constants.scala27
-rw-r--r--src/reflect/scala/reflect/api/Exprs.scala (renamed from src/library/scala/reflect/base/Exprs.scala)77
-rw-r--r--src/reflect/scala/reflect/api/FlagSets.scala11
-rw-r--r--src/reflect/scala/reflect/api/JavaUniverse.scala27
-rw-r--r--src/reflect/scala/reflect/api/MirrorOf.scala (renamed from src/library/scala/reflect/base/MirrorOf.scala)27
-rw-r--r--src/reflect/scala/reflect/api/Mirrors.scala18
-rw-r--r--src/reflect/scala/reflect/api/Names.scala65
-rw-r--r--src/reflect/scala/reflect/api/Positions.scala15
-rw-r--r--src/reflect/scala/reflect/api/Scopes.scala (renamed from src/library/scala/reflect/base/Scopes.scala)31
-rw-r--r--src/reflect/scala/reflect/api/StandardDefinitions.scala99
-rw-r--r--src/reflect/scala/reflect/api/StandardNames.scala26
-rw-r--r--src/reflect/scala/reflect/api/Symbols.scala290
-rw-r--r--src/reflect/scala/reflect/api/TagInterop.scala47
-rw-r--r--src/reflect/scala/reflect/api/TreeCreator.scala26
-rw-r--r--src/reflect/scala/reflect/api/Trees.scala1423
-rw-r--r--src/reflect/scala/reflect/api/TypeCreator.scala26
-rw-r--r--src/reflect/scala/reflect/api/TypeTags.scala (renamed from src/library/scala/reflect/base/TypeTags.scala)180
-rw-r--r--src/reflect/scala/reflect/api/Types.scala451
-rw-r--r--src/reflect/scala/reflect/api/Universe.scala75
-rw-r--r--src/reflect/scala/reflect/api/package.scala84
-rw-r--r--src/reflect/scala/reflect/internal/BuildUtils.scala6
-rw-r--r--src/reflect/scala/reflect/internal/Chars.scala2
-rw-r--r--src/reflect/scala/reflect/internal/Definitions.scala54
-rw-r--r--src/reflect/scala/reflect/internal/Scopes.scala2
-rw-r--r--src/reflect/scala/reflect/internal/StdAttachments.scala2
-rw-r--r--src/reflect/scala/reflect/internal/StdCreators.scala8
-rw-r--r--src/reflect/scala/reflect/internal/StdNames.scala4
-rw-r--r--src/reflect/scala/reflect/internal/Symbols.scala10
-rw-r--r--src/reflect/scala/reflect/internal/TreeGen.scala3
-rw-r--r--src/reflect/scala/reflect/internal/Trees.scala27
-rw-r--r--src/reflect/scala/reflect/internal/Types.scala8
-rw-r--r--src/reflect/scala/reflect/internal/package.scala2
-rw-r--r--src/reflect/scala/reflect/internal/util/Position.scala2
-rw-r--r--src/reflect/scala/reflect/internal/util/ThreeValues.scala4
-rw-r--r--src/reflect/scala/reflect/macros/Reifiers.scala7
-rw-r--r--src/reflect/scala/reflect/macros/Universe.scala2
-rw-r--r--src/reflect/scala/reflect/macros/package.scala2
-rw-r--r--src/reflect/scala/reflect/runtime/JavaMirrors.scala16
113 files changed, 3498 insertions, 4292 deletions
diff --git a/src/compiler/scala/reflect/macros/runtime/Reifiers.scala b/src/compiler/scala/reflect/macros/runtime/Reifiers.scala
index ab1de4288b..f15a7ad502 100644
--- a/src/compiler/scala/reflect/macros/runtime/Reifiers.scala
+++ b/src/compiler/scala/reflect/macros/runtime/Reifiers.scala
@@ -13,17 +13,17 @@ trait Reifiers {
import universe._
import definitions._
- lazy val basisUniverse: Tree = gen.mkBasisUniverseRef
-
lazy val runtimeUniverse: Tree = gen.mkRuntimeUniverseRef
def reifyTree(universe: Tree, mirror: Tree, tree: Tree): Tree = {
+ assert(ExprClass != NoSymbol)
val result = scala.reflect.reify.`package`.reifyTree(self.universe)(callsiteTyper, universe, mirror, tree)
logFreeVars(enclosingPosition, result)
result
}
def reifyType(universe: Tree, mirror: Tree, tpe: Type, concrete: Boolean = false): Tree = {
+ assert(TypeTagsClass != NoSymbol)
val result = scala.reflect.reify.`package`.reifyType(self.universe)(callsiteTyper, universe, mirror, tpe, concrete)
logFreeVars(enclosingPosition, result)
result
diff --git a/src/compiler/scala/reflect/reify/Reifier.scala b/src/compiler/scala/reflect/reify/Reifier.scala
index f602fe9b99..6f779be17d 100644
--- a/src/compiler/scala/reflect/reify/Reifier.scala
+++ b/src/compiler/scala/reflect/reify/Reifier.scala
@@ -109,7 +109,7 @@ abstract class Reifier extends States
// maybe try `resetLocalAttrs` once the dust settles
var importantSymbols = Set[Symbol](
NothingClass, AnyClass, SingletonClass, PredefModule, ScalaRunTimeModule, TypeCreatorClass, TreeCreatorClass, MirrorOfClass,
- BaseUniverseClass, JavaUniverseClass, ReflectRuntimePackage, ReflectRuntimeCurrentMirror)
+ ApiUniverseClass, JavaUniverseClass, ReflectRuntimePackage, ReflectRuntimeCurrentMirror)
importantSymbols ++= importantSymbols map (_.companionSymbol)
importantSymbols ++= importantSymbols map (_.moduleClass)
importantSymbols ++= importantSymbols map (_.linkedClassOfClass)
diff --git a/src/compiler/scala/reflect/reify/Taggers.scala b/src/compiler/scala/reflect/reify/Taggers.scala
index bc12d383a4..7db6394734 100644
--- a/src/compiler/scala/reflect/reify/Taggers.scala
+++ b/src/compiler/scala/reflect/reify/Taggers.scala
@@ -27,9 +27,9 @@ abstract class Taggers {
NothingTpe -> nme.Nothing,
NullTpe -> nme.Null)
- def materializeClassTag(prefix: Tree, tpe: Type): Tree = {
+ def materializeClassTag(tpe: Type): Tree = {
val tagModule = ClassTagModule
- materializeTag(prefix, tpe, tagModule, {
+ materializeTag(EmptyTree, tpe, tagModule, {
val erasure = c.reifyRuntimeClass(tpe, concrete = true)
val factory = TypeApply(Select(Ident(tagModule), nme.apply), List(TypeTree(tpe)))
Apply(factory, List(erasure))
@@ -38,13 +38,13 @@ abstract class Taggers {
def materializeTypeTag(universe: Tree, mirror: Tree, tpe: Type, concrete: Boolean): Tree = {
val tagType = if (concrete) TypeTagClass else WeakTypeTagClass
- // what we need here is to compose a type BaseUniverse # TypeTag[$tpe]
+ // what we need here is to compose a type Universe # TypeTag[$tpe]
// to look for an implicit that conforms to this type
// that's why neither appliedType(tagType, List(tpe)) aka TypeRef(TypeTagsClass.thisType, tagType, List(tpe))
- // nor TypeRef(BaseUniverseClass.thisType, tagType, List(tpe)) won't fit here
- // scala> :type -v def foo: scala.reflect.base.Universe#TypeTag[Int] = ???
+ // nor TypeRef(ApiUniverseClass.thisType, tagType, List(tpe)) won't fit here
+ // scala> :type -v def foo: scala.reflect.api.Universe#TypeTag[Int] = ???
// NullaryMethodType(TypeRef(pre = TypeRef(TypeSymbol(Universe)), TypeSymbol(TypeTag), args = List($tpe))))
- val unaffiliatedTagTpe = TypeRef(BaseUniverseClass.typeConstructor, tagType, List(tpe))
+ val unaffiliatedTagTpe = TypeRef(ApiUniverseClass.typeConstructor, tagType, List(tpe))
val unaffiliatedTag = c.inferImplicitValue(unaffiliatedTagTpe, silent = true, withMacrosDisabled = true)
unaffiliatedTag match {
case success if !success.isEmpty =>
diff --git a/src/compiler/scala/reflect/reify/package.scala b/src/compiler/scala/reflect/reify/package.scala
index a76f147dc4..2600956805 100644
--- a/src/compiler/scala/reflect/reify/package.scala
+++ b/src/compiler/scala/reflect/reify/package.scala
@@ -1,7 +1,6 @@
package scala.reflect
import scala.language.implicitConversions
-import scala.reflect.base.{Universe => BaseUniverse}
import scala.reflect.macros.{Context, ReificationError, UnexpectedReificationError}
import scala.tools.nsc.Global
diff --git a/src/compiler/scala/reflect/reify/phases/Reshape.scala b/src/compiler/scala/reflect/reify/phases/Reshape.scala
index baeea8cd9d..b5894e8eb6 100644
--- a/src/compiler/scala/reflect/reify/phases/Reshape.scala
+++ b/src/compiler/scala/reflect/reify/phases/Reshape.scala
@@ -101,11 +101,11 @@ trait Reshape {
// hence we cannot reify references to them, because noone will be able to see them later
// when implicit macros are fixed, these sneaky macros will move to corresponding companion objects
// of, say, ClassTag or TypeTag
- case Apply(TypeApply(_, List(tt)), _) if original.symbol == MacroInternal_materializeClassTag =>
+ case Apply(TypeApply(_, List(tt)), _) if original.symbol == materializeClassTag =>
gen.mkNullaryCall(Predef_implicitly, List(appliedType(ClassTagClass, tt.tpe)))
- case Apply(TypeApply(_, List(tt)), List(pre)) if original.symbol == MacroInternal_materializeWeakTypeTag =>
+ case Apply(TypeApply(_, List(tt)), List(pre)) if original.symbol == materializeWeakTypeTag =>
gen.mkNullaryCall(Predef_implicitly, List(typeRef(pre.tpe, WeakTypeTagClass, List(tt.tpe))))
- case Apply(TypeApply(_, List(tt)), List(pre)) if original.symbol == MacroInternal_materializeTypeTag =>
+ case Apply(TypeApply(_, List(tt)), List(pre)) if original.symbol == materializeTypeTag =>
gen.mkNullaryCall(Predef_implicitly, List(typeRef(pre.tpe, TypeTagClass, List(tt.tpe))))
case _ =>
original
diff --git a/src/compiler/scala/reflect/reify/utils/Extractors.scala b/src/compiler/scala/reflect/reify/utils/Extractors.scala
index 1df9efbb82..bf211ceec4 100644
--- a/src/compiler/scala/reflect/reify/utils/Extractors.scala
+++ b/src/compiler/scala/reflect/reify/utils/Extractors.scala
@@ -14,12 +14,12 @@ trait Extractors {
// val $u: reflect.runtime.universe.type = scala.reflect.runtime.`package`.universe;
// val $m: $u.Mirror = $u.runtimeMirror(Test.this.getClass().getClassLoader());
// $u.Expr[List[Int]]($m, {
- // final class $treecreator1 extends scala.reflect.base.TreeCreator {
+ // final class $treecreator1 extends scala.reflect.api.TreeCreator {
// def <init>(): $treecreator1 = {
// $treecreator1.super.<init>();
// ()
// };
- // def apply[U >: Nothing <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Tree = {
+ // def apply[U >: Nothing <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Tree = {
// val $u: U = $m$untyped.universe;
// val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
// $u.Apply($u.Select($u.Select($u.build.This($m.staticPackage("scala.collection.immutable").moduleClass), $u.newTermName("List")), $u.newTermName("apply")), List($u.Literal($u.Constant(1)), $u.Literal($u.Constant(2))))
@@ -27,12 +27,12 @@ trait Extractors {
// };
// new $treecreator1()
// })($u.TypeTag[List[Int]]($m, {
- // final class $typecreator1 extends scala.reflect.base.TypeCreator {
+ // final class $typecreator1 extends scala.reflect.api.TypeCreator {
// def <init>(): $typecreator1 = {
// $typecreator1.super.<init>();
// ()
// };
- // def apply[U >: Nothing <: scala.reflect.base.Universe with Singleton]($m$untyped: scala.reflect.base.MirrorOf[U]): U#Type = {
+ // def apply[U >: Nothing <: scala.reflect.api.Universe with Singleton]($m$untyped: scala.reflect.api.MirrorOf[U]): U#Type = {
// val $u: U = $m$untyped.universe;
// val $m: $u.Mirror = $m$untyped.asInstanceOf[$u.Mirror];
// $u.TypeRef($u.ThisType($m.staticPackage("scala.collection.immutable").moduleClass), $m.staticClass("scala.collection.immutable.List"), List($m.staticClass("scala.Int").toTypeConstructor))
@@ -45,8 +45,8 @@ trait Extractors {
private def mkCreator(flavor: TypeName, symtab: SymbolTable, rtree: Tree): Tree = {
val tparamu = newTypeName("U")
val (reifierBase, reifierName, reifierTpt, reifierUniverse) = flavor match {
- case tpnme.REIFY_TYPECREATOR_PREFIX => (TypeCreatorClass, nme.apply, SelectFromTypeTree(Ident(tparamu), tpnme.Type), BaseUniverseClass)
- case tpnme.REIFY_TREECREATOR_PREFIX => (TreeCreatorClass, nme.apply, SelectFromTypeTree(Ident(tparamu), tpnme.Tree), BaseUniverseClass)
+ case tpnme.REIFY_TYPECREATOR_PREFIX => (TypeCreatorClass, nme.apply, SelectFromTypeTree(Ident(tparamu), tpnme.Type), ApiUniverseClass)
+ case tpnme.REIFY_TREECREATOR_PREFIX => (TreeCreatorClass, nme.apply, SelectFromTypeTree(Ident(tparamu), tpnme.Tree), ApiUniverseClass)
case _ => throw new Error(s"unexpected flavor $flavor")
}
val reifierBody = {
diff --git a/src/compiler/scala/reflect/reify/utils/NodePrinters.scala b/src/compiler/scala/reflect/reify/utils/NodePrinters.scala
index b2999c3c1c..f0480e0699 100644
--- a/src/compiler/scala/reflect/reify/utils/NodePrinters.scala
+++ b/src/compiler/scala/reflect/reify/utils/NodePrinters.scala
@@ -75,7 +75,7 @@ trait NodePrinters {
val printout = scala.collection.mutable.ListBuffer[String]();
printout += universe.trim
- if (mirrorIsUsed) printout += mirror.replace("MirrorOf[", "scala.reflect.base.MirrorOf[").trim
+ if (mirrorIsUsed) printout += mirror.replace("MirrorOf[", "scala.reflect.api.MirrorOf[").trim
val imports = scala.collection.mutable.ListBuffer[String]();
imports += nme.UNIVERSE_SHORT
// if (buildIsUsed) imports += nme.build
diff --git a/src/compiler/scala/tools/nsc/ast/parser/Scanners.scala b/src/compiler/scala/tools/nsc/ast/parser/Scanners.scala
index ba8da3b0ec..a1785e5262 100644
--- a/src/compiler/scala/tools/nsc/ast/parser/Scanners.scala
+++ b/src/compiler/scala/tools/nsc/ast/parser/Scanners.scala
@@ -182,13 +182,13 @@ trait Scanners extends ScannersCommon {
/** Are we directly in a string interpolation expression?
*/
- @inline private def inStringInterpolation =
+ private def inStringInterpolation =
sepRegions.nonEmpty && sepRegions.head == STRINGLIT
/** Are we directly in a multiline string interpolation expression?
* @pre inStringInterpolation
*/
- @inline private def inMultiLineInterpolation =
+ private def inMultiLineInterpolation =
inStringInterpolation && sepRegions.tail.nonEmpty && sepRegions.tail.head == STRINGPART
/** read next token and return last offset
diff --git a/src/compiler/scala/tools/nsc/backend/icode/GenICode.scala b/src/compiler/scala/tools/nsc/backend/icode/GenICode.scala
index bab658e141..2fa9c076dd 100644
--- a/src/compiler/scala/tools/nsc/backend/icode/GenICode.scala
+++ b/src/compiler/scala/tools/nsc/backend/icode/GenICode.scala
@@ -121,44 +121,26 @@ abstract class GenICode extends SubComponent {
m.native = m.symbol.hasAnnotation(definitions.NativeAttr)
if (!m.isAbstractMethod && !m.native) {
- val staticfield = if (m.symbol.isAccessor && m.symbol.accessed.hasStaticAnnotation) {
- val compClass = m.symbol.owner.companionClass
- compClass.info.findMember(m.symbol.accessed.name, NoFlags, NoFlags, false)
- } else NoSymbol
- if (staticfield != NoSymbol) {
- // in companion object accessors to @static fields, we access the static field directly
- val hostClass = m.symbol.owner.companionClass
- if (m.symbol.isGetter) {
- ctx1.bb.emit(LOAD_FIELD(staticfield, true) setHostClass hostClass, tree.pos)
- ctx1.bb.closeWith(RETURN(m.returnType))
- } else if (m.symbol.isSetter) {
- ctx1.bb.emit(LOAD_LOCAL(m.locals.head), tree.pos)
- ctx1.bb.emit(STORE_FIELD(staticfield, true), tree.pos)
+ ctx1 = genLoad(rhs, ctx1, m.returnType);
+
+ // reverse the order of the local variables, to match the source-order
+ m.locals = m.locals.reverse
+
+ rhs match {
+ case Block(_, Return(_)) => ()
+ case Return(_) => ()
+ case EmptyTree =>
+ globalError("Concrete method has no definition: " + tree + (
+ if (settings.debug.value) "(found: " + m.symbol.owner.info.decls.toList.mkString(", ") + ")"
+ else "")
+ )
+ case _ => if (ctx1.bb.isEmpty)
+ ctx1.bb.closeWith(RETURN(m.returnType), rhs.pos)
+ else
ctx1.bb.closeWith(RETURN(m.returnType))
- } else assert(false, "unreachable")
- } else {
- ctx1 = genLoad(rhs, ctx1, m.returnType);
-
- // reverse the order of the local variables, to match the source-order
- m.locals = m.locals.reverse
-
- rhs match {
- case Block(_, Return(_)) => ()
- case Return(_) => ()
- case EmptyTree =>
- globalError("Concrete method has no definition: " + tree + (
- if (settings.debug.value) "(found: " + m.symbol.owner.info.decls.toList.mkString(", ") + ")"
- else "")
- )
- case _ =>
- if (ctx1.bb.isEmpty)
- ctx1.bb.closeWith(RETURN(m.returnType), rhs.pos)
- else
- ctx1.bb.closeWith(RETURN(m.returnType))
- }
- if (!ctx1.bb.closed) ctx1.bb.close
- prune(ctx1.method)
}
+ if (!ctx1.bb.closed) ctx1.bb.close
+ prune(ctx1.method)
} else
ctx1.method.setCode(NoCode)
ctx1
@@ -900,47 +882,6 @@ abstract class GenICode extends SubComponent {
generatedType = toTypeKind(fun.symbol.tpe.resultType)
ctx1
- case app @ Apply(fun @ Select(qual, _), args)
- if !ctx.method.symbol.isStaticConstructor
- && fun.symbol.isAccessor && fun.symbol.accessed.hasStaticAnnotation
- && qual.tpe.typeSymbol.orElse(fun.symbol.owner).companionClass != NoSymbol =>
- // bypass the accessor to the companion object and load the static field directly
- // this bypass is not done:
- // - if the static intializer for the static field itself
- // - if there is no companion class of the object owner - this happens in the REPL
- def genLoadApply5 = {
- val sym = fun.symbol
- generatedType = toTypeKind(sym.accessed.info)
- val hostOwner = qual.tpe.typeSymbol.orElse(sym.owner)
- val hostClass = hostOwner.companionClass
- val staticfield = hostClass.info.findMember(sym.accessed.name, NoFlags, NoFlags, false) orElse {
- if (!currentRun.compiles(hostOwner)) {
- // hostOwner was separately compiled -- the static field symbol needs to be recreated in hostClass
- import Flags._
- debuglog("recreating sym.accessed.name: " + sym.accessed.name)
- val objectfield = hostOwner.info.findMember(sym.accessed.name, NoFlags, NoFlags, false)
- val staticfield = hostClass.newVariable(newTermName(sym.accessed.name.toString), tree.pos, STATIC | SYNTHETIC | FINAL) setInfo objectfield.tpe
- staticfield.addAnnotation(definitions.StaticClass)
- hostClass.info.decls enter staticfield
- staticfield
- } else NoSymbol
- }
-
- if (sym.isGetter) {
- ctx.bb.emit(LOAD_FIELD(staticfield, true) setHostClass hostClass, tree.pos)
- ctx
- } else if (sym.isSetter) {
- val ctx1 = genLoadArguments(args, sym.info.paramTypes, ctx)
- ctx1.bb.emit(STORE_FIELD(staticfield, true), tree.pos)
- ctx1.bb.emit(CONSTANT(Constant(false)), tree.pos)
- ctx1
- } else {
- assert(false, "supposedly unreachable")
- ctx
- }
- }
- genLoadApply5
-
case app @ Apply(fun, args) =>
def genLoadApply6 = {
val sym = fun.symbol
@@ -1732,12 +1673,8 @@ abstract class GenICode extends SubComponent {
* backend emits them as static).
* No code is needed for this module symbol.
*/
- for (
- f <- cls.info.decls;
- if !f.isMethod && f.isTerm && !f.isModule && !(f.owner.isModuleClass && f.hasStaticAnnotation)
- ) {
+ for (f <- cls.info.decls ; if !f.isMethod && f.isTerm && !f.isModule)
ctx.clazz addField new IField(f)
- }
}
/**
diff --git a/src/compiler/scala/tools/nsc/backend/icode/analysis/TypeFlowAnalysis.scala b/src/compiler/scala/tools/nsc/backend/icode/analysis/TypeFlowAnalysis.scala
index 31c2077097..5d81109ac9 100644
--- a/src/compiler/scala/tools/nsc/backend/icode/analysis/TypeFlowAnalysis.scala
+++ b/src/compiler/scala/tools/nsc/backend/icode/analysis/TypeFlowAnalysis.scala
@@ -480,7 +480,7 @@ abstract class TypeFlowAnalysis {
val knownUnsafe = mutable.Set.empty[Symbol]
val knownSafe = mutable.Set.empty[Symbol]
val knownNever = mutable.Set.empty[Symbol] // `knownNever` needs be cleared only at the very end of the inlining phase (unlike `knownUnsafe` and `knownSafe`)
- @inline final def blackballed(msym: Symbol): Boolean = { knownUnsafe(msym) || knownNever(msym) }
+ final def blackballed(msym: Symbol): Boolean = { knownUnsafe(msym) || knownNever(msym) }
val relevantBBs = mutable.Set.empty[BasicBlock]
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/GenASM.scala b/src/compiler/scala/tools/nsc/backend/jvm/GenASM.scala
index 1653ca9c2a..5a5059d58c 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/GenASM.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/GenASM.scala
@@ -229,11 +229,9 @@ abstract class GenASM extends SubComponent with BytecodeWriters {
binarynme.RuntimeNull.toString() -> RuntimeNullClass
)
- private def mkFlags(args: Int*) = args.foldLeft(0)(_ | _)
-
- @inline final private def hasPublicBitSet(flags: Int) = ((flags & asm.Opcodes.ACC_PUBLIC) != 0)
-
- @inline final private def isRemote(s: Symbol) = (s hasAnnotation RemoteAttr)
+ private def mkFlags(args: Int*) = args.foldLeft(0)(_ | _)
+ private def hasPublicBitSet(flags: Int) = (flags & asm.Opcodes.ACC_PUBLIC) != 0
+ private def isRemote(s: Symbol) = s hasAnnotation RemoteAttr
/**
* Return the Java modifiers for the given symbol.
@@ -386,8 +384,7 @@ abstract class GenASM extends SubComponent with BytecodeWriters {
fcs
}
- @inline final private def jvmWiseLUB(a: Symbol, b: Symbol): Symbol = {
-
+ private def jvmWiseLUB(a: Symbol, b: Symbol): Symbol = {
assert(a.isClass)
assert(b.isClass)
@@ -1190,9 +1187,7 @@ abstract class GenASM extends SubComponent with BytecodeWriters {
log(s"No forwarder for non-public member $m")
else {
log("Adding static forwarder for '%s' from %s to '%s'".format(m, jclassName, moduleClass))
- if (m.isAccessor && m.accessed.hasStaticAnnotation) {
- log("@static: accessor " + m + ", accessed: " + m.accessed)
- } else addForwarder(isRemoteClass, jclass, moduleClass, m)
+ addForwarder(isRemoteClass, jclass, moduleClass, m)
}
}
}
@@ -1546,7 +1541,7 @@ abstract class GenASM extends SubComponent with BytecodeWriters {
var jmethod: asm.MethodVisitor = _
var jMethodName: String = _
- @inline final def emit(opc: Int) { jmethod.visitInsn(opc) }
+ final def emit(opc: Int) { jmethod.visitInsn(opc) }
def genMethod(m: IMethod, isJInterface: Boolean) {
@@ -1697,7 +1692,6 @@ abstract class GenASM extends SubComponent with BytecodeWriters {
jmethod = clinitMethod
jMethodName = CLASS_CONSTRUCTOR_NAME
jmethod.visitCode()
- computeLocalVarsIndex(m)
genCode(m, false, true)
jmethod.visitMaxs(0, 0) // just to follow protocol, dummy arguments
jmethod.visitEnd()
@@ -1784,7 +1778,7 @@ abstract class GenASM extends SubComponent with BytecodeWriters {
else { jmethod.visitLdcInsn(cst) }
}
- @inline final def boolconst(b: Boolean) { iconst(if(b) 1 else 0) }
+ final def boolconst(b: Boolean) { iconst(if(b) 1 else 0) }
def iconst(cst: Int) {
if (cst >= -1 && cst <= 5) {
@@ -1850,44 +1844,44 @@ abstract class GenASM extends SubComponent with BytecodeWriters {
}
- @inline def load( idx: Int, tk: TypeKind) { emitVarInsn(Opcodes.ILOAD, idx, tk) }
- @inline def store(idx: Int, tk: TypeKind) { emitVarInsn(Opcodes.ISTORE, idx, tk) }
+ def load( idx: Int, tk: TypeKind) { emitVarInsn(Opcodes.ILOAD, idx, tk) }
+ def store(idx: Int, tk: TypeKind) { emitVarInsn(Opcodes.ISTORE, idx, tk) }
- @inline def aload( tk: TypeKind) { emitTypeBased(aloadOpcodes, tk) }
- @inline def astore(tk: TypeKind) { emitTypeBased(astoreOpcodes, tk) }
+ def aload( tk: TypeKind) { emitTypeBased(aloadOpcodes, tk) }
+ def astore(tk: TypeKind) { emitTypeBased(astoreOpcodes, tk) }
- @inline def neg(tk: TypeKind) { emitPrimitive(negOpcodes, tk) }
- @inline def add(tk: TypeKind) { emitPrimitive(addOpcodes, tk) }
- @inline def sub(tk: TypeKind) { emitPrimitive(subOpcodes, tk) }
- @inline def mul(tk: TypeKind) { emitPrimitive(mulOpcodes, tk) }
- @inline def div(tk: TypeKind) { emitPrimitive(divOpcodes, tk) }
- @inline def rem(tk: TypeKind) { emitPrimitive(remOpcodes, tk) }
+ def neg(tk: TypeKind) { emitPrimitive(negOpcodes, tk) }
+ def add(tk: TypeKind) { emitPrimitive(addOpcodes, tk) }
+ def sub(tk: TypeKind) { emitPrimitive(subOpcodes, tk) }
+ def mul(tk: TypeKind) { emitPrimitive(mulOpcodes, tk) }
+ def div(tk: TypeKind) { emitPrimitive(divOpcodes, tk) }
+ def rem(tk: TypeKind) { emitPrimitive(remOpcodes, tk) }
- @inline def invokespecial(owner: String, name: String, desc: String) {
+ def invokespecial(owner: String, name: String, desc: String) {
jmethod.visitMethodInsn(Opcodes.INVOKESPECIAL, owner, name, desc)
}
- @inline def invokestatic(owner: String, name: String, desc: String) {
+ def invokestatic(owner: String, name: String, desc: String) {
jmethod.visitMethodInsn(Opcodes.INVOKESTATIC, owner, name, desc)
}
- @inline def invokeinterface(owner: String, name: String, desc: String) {
+ def invokeinterface(owner: String, name: String, desc: String) {
jmethod.visitMethodInsn(Opcodes.INVOKEINTERFACE, owner, name, desc)
}
- @inline def invokevirtual(owner: String, name: String, desc: String) {
+ def invokevirtual(owner: String, name: String, desc: String) {
jmethod.visitMethodInsn(Opcodes.INVOKEVIRTUAL, owner, name, desc)
}
- @inline def goTo(label: asm.Label) { jmethod.visitJumpInsn(Opcodes.GOTO, label) }
- @inline def emitIF(cond: TestOp, label: asm.Label) { jmethod.visitJumpInsn(cond.opcodeIF, label) }
- @inline def emitIF_ICMP(cond: TestOp, label: asm.Label) { jmethod.visitJumpInsn(cond.opcodeIFICMP, label) }
- @inline def emitIF_ACMP(cond: TestOp, label: asm.Label) {
+ def goTo(label: asm.Label) { jmethod.visitJumpInsn(Opcodes.GOTO, label) }
+ def emitIF(cond: TestOp, label: asm.Label) { jmethod.visitJumpInsn(cond.opcodeIF, label) }
+ def emitIF_ICMP(cond: TestOp, label: asm.Label) { jmethod.visitJumpInsn(cond.opcodeIFICMP, label) }
+ def emitIF_ACMP(cond: TestOp, label: asm.Label) {
assert((cond == EQ) || (cond == NE), cond)
val opc = (if(cond == EQ) Opcodes.IF_ACMPEQ else Opcodes.IF_ACMPNE)
jmethod.visitJumpInsn(opc, label)
}
- @inline def emitIFNONNULL(label: asm.Label) { jmethod.visitJumpInsn(Opcodes.IFNONNULL, label) }
- @inline def emitIFNULL (label: asm.Label) { jmethod.visitJumpInsn(Opcodes.IFNULL, label) }
+ def emitIFNONNULL(label: asm.Label) { jmethod.visitJumpInsn(Opcodes.IFNONNULL, label) }
+ def emitIFNULL (label: asm.Label) { jmethod.visitJumpInsn(Opcodes.IFNULL, label) }
- @inline def emitRETURN(tk: TypeKind) {
+ def emitRETURN(tk: TypeKind) {
if(tk == UNIT) { jmethod.visitInsn(Opcodes.RETURN) }
else { emitTypeBased(returnOpcodes, tk) }
}
@@ -2164,8 +2158,8 @@ abstract class GenASM extends SubComponent with BytecodeWriters {
case class LocVarEntry(local: Local, start: asm.Label, end: asm.Label) // start is inclusive while end exclusive.
case class Interval(lstart: asm.Label, lend: asm.Label) {
- @inline final def start = lstart.getOffset
- @inline final def end = lend.getOffset
+ final def start = lstart.getOffset
+ final def end = lend.getOffset
def precedes(that: Interval): Boolean = { this.end < that.start }
@@ -2955,7 +2949,7 @@ abstract class GenASM extends SubComponent with BytecodeWriters {
// indexOf(local)
// }
- @inline final def indexOf(local: Local): Int = {
+ final def indexOf(local: Local): Int = {
assert(local.index >= 0, "Invalid index for: " + local + "{" + local.## + "}: ")
local.index
}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/GenJVM.scala b/src/compiler/scala/tools/nsc/backend/jvm/GenJVM.scala
index a2151633a7..62c281b82f 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/GenJVM.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/GenJVM.scala
@@ -1023,8 +1023,6 @@ abstract class GenJVM extends SubComponent with GenJVMUtil with GenAndroid with
method = m
jmethod = clinitMethod
-
- computeLocalVarsIndex(m)
genCode(m)
case None =>
legacyStaticInitializer(cls, clinit)
@@ -1126,9 +1124,7 @@ abstract class GenJVM extends SubComponent with GenJVMUtil with GenAndroid with
log("No forwarder for " + m + " due to conflict with " + linkedClass.info.member(m.name))
else {
log("Adding static forwarder for '%s' from %s to '%s'".format(m, className, moduleClass))
- if (m.isAccessor && m.accessed.hasStaticAnnotation) {
- log("@static: accessor " + m + ", accessed: " + m.accessed)
- } else addForwarder(jclass, moduleClass, m)
+ addForwarder(jclass, moduleClass, m)
}
}
}
diff --git a/src/compiler/scala/tools/nsc/doc/Settings.scala b/src/compiler/scala/tools/nsc/doc/Settings.scala
index f5df772d7d..dbbc573299 100644
--- a/src/compiler/scala/tools/nsc/doc/Settings.scala
+++ b/src/compiler/scala/tools/nsc/doc/Settings.scala
@@ -250,15 +250,15 @@ class Settings(error: String => Unit, val printMsg: String => Unit = println(_))
* the function result should be a humanly-understandable description of the type class
*/
val knownTypeClasses: Map[String, String => String] = Map() +
- ("scala.math.Numeric" -> ((tparam: String) => tparam + " is a numeric class, such as Int, Long, Float or Double")) +
- ("scala.math.Integral" -> ((tparam: String) => tparam + " is an integral numeric class, such as Int or Long")) +
- ("scala.math.Fractional" -> ((tparam: String) => tparam + " is a fractional numeric class, such as Float or Double")) +
- ("scala.reflect.Manifest" -> ((tparam: String) => tparam + " is accompanied by a Manifest, which is a runtime representation of its type that survives erasure")) +
- ("scala.reflect.ClassManifest" -> ((tparam: String) => tparam + " is accompanied by a ClassManifest, which is a runtime representation of its type that survives erasure")) +
- ("scala.reflect.OptManifest" -> ((tparam: String) => tparam + " is accompanied by an OptManifest, which can be either a runtime representation of its type or the NoManifest, which means the runtime type is not available")) +
- ("scala.reflect.ClassTag" -> ((tparam: String) => tparam + " is accompanied by a ClassTag, which is a runtime representation of its type that survives erasure")) +
- ("scala.reflect.WeakTypeTag" -> ((tparam: String) => tparam + " is accompanied by an WeakTypeTag, which is a runtime representation of its type that survives erasure")) +
- ("scala.reflect.base.TypeTags.TypeTag" -> ((tparam: String) => tparam + " is accompanied by a TypeTag, which is a runtime representation of its type that survives erasure"))
+ ("scala.math.Numeric" -> ((tparam: String) => tparam + " is a numeric class, such as Int, Long, Float or Double")) +
+ ("scala.math.Integral" -> ((tparam: String) => tparam + " is an integral numeric class, such as Int or Long")) +
+ ("scala.math.Fractional" -> ((tparam: String) => tparam + " is a fractional numeric class, such as Float or Double")) +
+ ("scala.reflect.Manifest" -> ((tparam: String) => tparam + " is accompanied by a Manifest, which is a runtime representation of its type that survives erasure")) +
+ ("scala.reflect.ClassManifest" -> ((tparam: String) => tparam + " is accompanied by a ClassManifest, which is a runtime representation of its type that survives erasure")) +
+ ("scala.reflect.OptManifest" -> ((tparam: String) => tparam + " is accompanied by an OptManifest, which can be either a runtime representation of its type or the NoManifest, which means the runtime type is not available")) +
+ ("scala.reflect.ClassTag" -> ((tparam: String) => tparam + " is accompanied by a ClassTag, which is a runtime representation of its type that survives erasure")) +
+ ("scala.reflect.api.TypeTags.WeakTypeTag" -> ((tparam: String) => tparam + " is accompanied by an WeakTypeTag, which is a runtime representation of its type that survives erasure")) +
+ ("scala.reflect.api.TypeTags.TypeTag" -> ((tparam: String) => tparam + " is accompanied by a TypeTag, which is a runtime representation of its type that survives erasure"))
/**
* Set of classes to exclude from index and diagrams
diff --git a/src/compiler/scala/tools/nsc/interpreter/ReplVals.scala b/src/compiler/scala/tools/nsc/interpreter/ReplVals.scala
index f27c4a8123..9503c7d970 100644
--- a/src/compiler/scala/tools/nsc/interpreter/ReplVals.scala
+++ b/src/compiler/scala/tools/nsc/interpreter/ReplVals.scala
@@ -7,7 +7,7 @@ package scala.tools.nsc
package interpreter
import scala.language.implicitConversions
-import scala.reflect.base.{Universe => BaseUniverse}
+import scala.reflect.api.{Universe => ApiUniverse}
import scala.reflect.runtime.{universe => ru}
/** A class which the repl utilizes to expose predefined objects.
@@ -65,7 +65,7 @@ object ReplVals {
* I have this forwarder which widens the type and then cast the result back
* to the dependent type.
*/
- def compilerTypeFromTag(t: BaseUniverse # WeakTypeTag[_]): Global#Type =
+ def compilerTypeFromTag(t: ApiUniverse # WeakTypeTag[_]): Global#Type =
definitions.compilerTypeFromTag(t)
class AppliedTypeFromTags(sym: Symbol) {
diff --git a/src/compiler/scala/tools/nsc/symtab/classfile/ClassfileParser.scala b/src/compiler/scala/tools/nsc/symtab/classfile/ClassfileParser.scala
index 903b3095de..a356b70e62 100644
--- a/src/compiler/scala/tools/nsc/symtab/classfile/ClassfileParser.scala
+++ b/src/compiler/scala/tools/nsc/symtab/classfile/ClassfileParser.scala
@@ -1273,7 +1273,7 @@ abstract class ClassfileParser {
sym.privateWithin = sym.enclosingTopLevelClass.owner
}
- @inline private def isPrivate(flags: Int) = (flags & JAVA_ACC_PRIVATE) != 0
- @inline private def isStatic(flags: Int) = (flags & JAVA_ACC_STATIC) != 0
- @inline private def hasAnnotation(flags: Int) = (flags & JAVA_ACC_ANNOTATION) != 0
+ private def isPrivate(flags: Int) = (flags & JAVA_ACC_PRIVATE) != 0
+ private def isStatic(flags: Int) = (flags & JAVA_ACC_STATIC) != 0
+ private def hasAnnotation(flags: Int) = (flags & JAVA_ACC_ANNOTATION) != 0
}
diff --git a/src/compiler/scala/tools/nsc/symtab/classfile/Pickler.scala b/src/compiler/scala/tools/nsc/symtab/classfile/Pickler.scala
index b30969d451..29b238c4cb 100644
--- a/src/compiler/scala/tools/nsc/symtab/classfile/Pickler.scala
+++ b/src/compiler/scala/tools/nsc/symtab/classfile/Pickler.scala
@@ -69,7 +69,11 @@ abstract class Pickler extends SubComponent {
}
if (!t.isDef && t.hasSymbol && t.symbol.isTermMacro) {
- unit.error(t.pos, "macro has not been expanded")
+ unit.error(t.pos, t.symbol.typeParams.length match {
+ case 0 => "macro has not been expanded"
+ case 1 => "type parameter not specified"
+ case _ => "type parameters not specified"
+ })
return
}
}
diff --git a/src/compiler/scala/tools/nsc/transform/CleanUp.scala b/src/compiler/scala/tools/nsc/transform/CleanUp.scala
index dff9a65649..fa7a53f888 100644
--- a/src/compiler/scala/tools/nsc/transform/CleanUp.scala
+++ b/src/compiler/scala/tools/nsc/transform/CleanUp.scala
@@ -23,12 +23,9 @@ abstract class CleanUp extends Transform with ast.TreeDSL {
new CleanUpTransformer(unit)
class CleanUpTransformer(unit: CompilationUnit) extends Transformer {
- private val newStaticMembers = mutable.Buffer.empty[Tree]
- private val newStaticInits = mutable.Buffer.empty[Tree]
- private val symbolsStoredAsStatic = mutable.Map.empty[String, Symbol]
- private val staticBodies = mutable.Map.empty[(Symbol, Symbol), Tree]
- private val syntheticClasses = mutable.Map.empty[Symbol, mutable.Set[Tree]] // package and trees
- private val classNames = mutable.Map.empty[Symbol, Set[Name]]
+ private val newStaticMembers = mutable.Buffer.empty[Tree]
+ private val newStaticInits = mutable.Buffer.empty[Tree]
+ private val symbolsStoredAsStatic = mutable.Map.empty[String, Symbol]
private def clearStatics() {
newStaticMembers.clear()
newStaticInits.clear()
@@ -48,9 +45,8 @@ abstract class CleanUp extends Transform with ast.TreeDSL {
result
}
private def transformTemplate(tree: Tree) = {
- val t @ Template(parents, self, body) = tree
+ val Template(parents, self, body) = tree
clearStatics()
-
val newBody = transformTrees(body)
val templ = deriveTemplate(tree)(_ => transformTrees(newStaticMembers.toList) ::: newBody)
try addStaticInits(templ) // postprocess to include static ctors
@@ -550,80 +546,6 @@ abstract class CleanUp extends Transform with ast.TreeDSL {
else tree
}
- case DefDef(mods, name, tps, vps, tp, rhs) if tree.symbol.hasStaticAnnotation =>
- reporter.error(tree.pos, "The @static annotation is not allowed on method definitions.")
- super.transform(tree)
-
- case ValDef(mods, name, tpt, rhs) if tree.symbol.hasStaticAnnotation =>
- def transformStaticValDef = {
- log("moving @static valdef field: " + name + ", in: " + tree.symbol.owner)
- val sym = tree.symbol
- val owner = sym.owner
-
- val staticBeforeLifting = atPhase(currentRun.erasurePhase) { owner.isStatic }
- val isPrivate = atPhase(currentRun.typerPhase) { sym.getter(owner).hasFlag(PRIVATE) }
- val isProtected = atPhase(currentRun.typerPhase) { sym.getter(owner).hasFlag(PROTECTED) }
- val isLazy = atPhase(currentRun.typerPhase) { sym.getter(owner).hasFlag(LAZY) }
- if (!owner.isModuleClass || !staticBeforeLifting) {
- if (!sym.isSynthetic) {
- reporter.error(tree.pos, "Only members of top-level objects and their nested objects can be annotated with @static.")
- tree.symbol.removeAnnotation(StaticClass)
- }
- super.transform(tree)
- } else if (isPrivate || isProtected) {
- reporter.error(tree.pos, "The @static annotation is only allowed on public members.")
- tree.symbol.removeAnnotation(StaticClass)
- super.transform(tree)
- } else if (isLazy) {
- reporter.error(tree.pos, "The @static annotation is not allowed on lazy members.")
- tree.symbol.removeAnnotation(StaticClass)
- super.transform(tree)
- } else if (owner.isModuleClass) {
- val linkedClass = owner.companionClass match {
- case NoSymbol =>
- // create the companion class if it does not exist
- val enclosing = owner.owner
- val compclass = enclosing.newClass(newTypeName(owner.name.toString))
- compclass setInfo ClassInfoType(List(ObjectClass.tpe), newScope, compclass)
- enclosing.info.decls enter compclass
-
- val compclstree = ClassDef(compclass, NoMods, ListOfNil, ListOfNil, List(), tree.pos)
-
- syntheticClasses.getOrElseUpdate(enclosing, mutable.Set()) += compclstree
-
- compclass
- case comp => comp
- }
-
- // create a static field in the companion class for this @static field
- val stfieldSym = linkedClass.newValue(newTermName(name), tree.pos, STATIC | SYNTHETIC | FINAL) setInfo sym.tpe
- if (sym.isMutable) stfieldSym.setFlag(MUTABLE)
- stfieldSym.addAnnotation(StaticClass)
-
- val names = classNames.getOrElseUpdate(linkedClass, linkedClass.info.decls.collect {
- case sym if sym.name.isTermName => sym.name
- } toSet)
- if (names(stfieldSym.name)) {
- reporter.error(
- tree.pos,
- "@static annotated field " + tree.symbol.name + " has the same name as a member of class " + linkedClass.name
- )
- } else {
- linkedClass.info.decls enter stfieldSym
-
- val initializerBody = rhs
-
- // static field was previously initialized in the companion object itself, like this:
- // staticBodies((linkedClass, stfieldSym)) = Select(This(owner), sym.getter(owner))
- // instead, we move the initializer to the static ctor of the companion class
- // we save the entire ValDef/DefDef to extract the rhs later
- staticBodies((linkedClass, stfieldSym)) = tree
- }
- }
- super.transform(tree)
- }
- transformStaticValDef
-
/* MSIL requires that the stack is empty at the end of a try-block.
* Hence, we here rewrite all try blocks with a result != {Unit, All} such that they
* store their result in a local variable. The catch blocks are adjusted as well.
@@ -738,11 +660,6 @@ abstract class CleanUp extends Transform with ast.TreeDSL {
if (newStaticInits.isEmpty)
template
else {
- val ctorBody = newStaticInits.toList flatMap {
- case Block(stats, expr) => stats :+ expr
- case t => List(t)
- }
-
val newCtor = findStaticCtor(template) match {
// in case there already were static ctors - augment existing ones
// currently, however, static ctors aren't being generated anywhere else
@@ -751,15 +668,15 @@ abstract class CleanUp extends Transform with ast.TreeDSL {
deriveDefDef(ctor) {
case block @ Block(stats, expr) =>
// need to add inits to existing block
- treeCopy.Block(block, ctorBody ::: stats, expr)
+ treeCopy.Block(block, newStaticInits.toList ::: stats, expr)
case term: TermTree =>
// need to create a new block with inits and the old term
- treeCopy.Block(term, ctorBody, term)
+ treeCopy.Block(term, newStaticInits.toList, term)
}
case _ =>
// create new static ctor
val staticCtorSym = currentClass.newStaticConstructor(template.pos)
- val rhs = Block(ctorBody, Literal(Constant(())))
+ val rhs = Block(newStaticInits.toList, Literal(Constant(())))
localTyper.typedPos(template.pos)(DefDef(staticCtorSym, rhs))
}
@@ -767,62 +684,6 @@ abstract class CleanUp extends Transform with ast.TreeDSL {
}
}
- private def addStaticDeclarations(tree: Template, clazz: Symbol) {
- // add static field initializer statements for each static field in clazz
- if (!clazz.isModuleClass) for {
- staticSym <- clazz.info.decls
- if staticSym.hasStaticAnnotation
- } staticSym match {
- case stfieldSym if (stfieldSym.isValue && !stfieldSym.isMethod) || stfieldSym.isVariable =>
- log(stfieldSym + " is value: " + stfieldSym.isValue)
- val valdef = staticBodies((clazz, stfieldSym))
- val ValDef(_, _, _, rhs) = valdef
- val fixedrhs = rhs.changeOwner((valdef.symbol, clazz.info.decl(nme.CONSTRUCTOR)))
-
- val stfieldDef = localTyper.typedPos(tree.pos)(VAL(stfieldSym) === EmptyTree)
- val flattenedInit = fixedrhs match {
- case Block(stats, expr) => Block(stats, REF(stfieldSym) === expr)
- case rhs => REF(stfieldSym) === rhs
- }
- val stfieldInit = localTyper.typedPos(tree.pos)(flattenedInit)
-
- // add field definition to new defs
- newStaticMembers append stfieldDef
- newStaticInits append stfieldInit
- case _ => // ignore @static on other members
- }
- }
-
-
-
- override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = {
- super.transformStats(stats, exprOwner) ++ {
- // flush pending synthetic classes created in this owner
- val synthclassdefs = syntheticClasses.get(exprOwner).toList.flatten
- syntheticClasses -= exprOwner
- synthclassdefs map {
- cdef => localTyper.typedPos(cdef.pos)(cdef)
- }
- } map {
- case clsdef @ ClassDef(mods, name, tparams, t @ Template(parent, self, body)) =>
- // process all classes in the package again to add static initializers
- clearStatics()
-
- addStaticDeclarations(t, clsdef.symbol)
-
- val templ = deriveTemplate(t)(_ => transformTrees(newStaticMembers.toList) ::: body)
- val ntempl =
- try addStaticInits(templ)
- finally clearStatics()
-
- val derived = deriveClassDef(clsdef)(_ => ntempl)
- classNames.remove(clsdef.symbol)
- derived
-
- case stat => stat
- }
- }
-
} // CleanUpTransformer
}
diff --git a/src/compiler/scala/tools/nsc/transform/Constructors.scala b/src/compiler/scala/tools/nsc/transform/Constructors.scala
index afc109c47a..23b15a9033 100644
--- a/src/compiler/scala/tools/nsc/transform/Constructors.scala
+++ b/src/compiler/scala/tools/nsc/transform/Constructors.scala
@@ -186,15 +186,12 @@ abstract class Constructors extends Transform with ast.TreeDSL {
// before the superclass constructor call, otherwise it goes after.
// Lazy vals don't get the assignment in the constructor.
if (!stat.symbol.tpe.isInstanceOf[ConstantType]) {
- if (stat.symbol.hasStaticAnnotation) {
- debuglog("@static annotated field initialization skipped.")
- defBuf += deriveValDef(stat)(tree => tree)
- } else if (rhs != EmptyTree && !stat.symbol.isLazy) {
+ if (rhs != EmptyTree && !stat.symbol.isLazy) {
val rhs1 = intoConstructor(stat.symbol, rhs);
(if (canBeMoved(stat)) constrPrefixBuf else constrStatBuf) += mkAssign(
stat.symbol, rhs1)
- defBuf += deriveValDef(stat)(_ => EmptyTree)
}
+ defBuf += deriveValDef(stat)(_ => EmptyTree)
}
case ClassDef(_, _, _, _) =>
// classes are treated recursively, and left in the template
diff --git a/src/compiler/scala/tools/nsc/transform/LambdaLift.scala b/src/compiler/scala/tools/nsc/transform/LambdaLift.scala
index b6d54f114e..c41ff20229 100644
--- a/src/compiler/scala/tools/nsc/transform/LambdaLift.scala
+++ b/src/compiler/scala/tools/nsc/transform/LambdaLift.scala
@@ -154,7 +154,7 @@ abstract class LambdaLift extends InfoTransform {
private def markCalled(sym: Symbol, owner: Symbol) {
debuglog("mark called: " + sym + " of " + sym.owner + " is called by " + owner)
symSet(called, owner) addEntry sym
- if (sym.enclClass != owner.enclClass) calledFromInner addEntry sym
+ if (sym.enclClass != owner.enclClass) calledFromInner += sym
}
/** The traverse function */
diff --git a/src/compiler/scala/tools/nsc/typechecker/ContextErrors.scala b/src/compiler/scala/tools/nsc/typechecker/ContextErrors.scala
index 144cc841b4..d78efd8280 100644
--- a/src/compiler/scala/tools/nsc/typechecker/ContextErrors.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/ContextErrors.scala
@@ -515,9 +515,16 @@ trait ContextErrors {
def ApplyWithoutArgsError(tree: Tree, fun: Tree) =
NormalTypeError(tree, fun.tpe+" does not take parameters")
+ // Dynamic
def DynamicVarArgUnsupported(tree: Tree, name: String) =
issueNormalTypeError(tree, name+ " does not support passing a vararg parameter")
+ def DynamicRewriteError(tree: Tree, err: AbsTypeError) = {
+ issueTypeError(PosAndMsgTypeError(err.errPos, err.errMsg +
+ s"\nerror after rewriting to $tree\npossible cause: maybe a wrong Dynamic method signature?"))
+ setError(tree)
+ }
+
//checkClassType
def TypeNotAStablePrefixError(tpt: Tree, pre: Type) = {
issueNormalTypeError(tpt, "type "+pre+" is not a stable prefix")
@@ -830,7 +837,6 @@ trait ContextErrors {
}
// side-effect on the tree, break the overloaded type cycle in infer
- @inline
private def setErrorOnLastTry(lastTry: Boolean, tree: Tree) = if (lastTry) setError(tree)
def NoBestMethodAlternativeError(tree: Tree, argtpes: List[Type], pt: Type, lastTry: Boolean) = {
diff --git a/src/compiler/scala/tools/nsc/typechecker/Contexts.scala b/src/compiler/scala/tools/nsc/typechecker/Contexts.scala
index dbf769c79f..211da044e6 100644
--- a/src/compiler/scala/tools/nsc/typechecker/Contexts.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/Contexts.scala
@@ -487,7 +487,7 @@ trait Contexts { self: Analyzer =>
lastAccessCheckDetails = ""
// Console.println("isAccessible(%s, %s, %s)".format(sym, pre, superAccess))
- @inline def accessWithinLinked(ab: Symbol) = {
+ def accessWithinLinked(ab: Symbol) = {
val linked = ab.linkedClassOfClass
// don't have access if there is no linked class
// (before adding the `ne NoSymbol` check, this was a no-op when linked eq NoSymbol,
diff --git a/src/compiler/scala/tools/nsc/typechecker/Implicits.scala b/src/compiler/scala/tools/nsc/typechecker/Implicits.scala
index dd7f26861f..7852ff49e1 100644
--- a/src/compiler/scala/tools/nsc/typechecker/Implicits.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/Implicits.scala
@@ -1150,9 +1150,9 @@ trait Implicits {
private def TagSymbols = TagMaterializers.keySet
private val TagMaterializers = Map[Symbol, Symbol](
- ClassTagClass -> MacroInternal_materializeClassTag,
- WeakTypeTagClass -> MacroInternal_materializeWeakTypeTag,
- TypeTagClass -> MacroInternal_materializeTypeTag
+ ClassTagClass -> materializeClassTag,
+ WeakTypeTagClass -> materializeWeakTypeTag,
+ TypeTagClass -> materializeTypeTag
)
/** Creates a tree will produce a tag of the requested flavor.
@@ -1183,7 +1183,7 @@ trait Implicits {
val prefix = (
// ClassTags are not path-dependent, so their materializer doesn't care about prefixes
- if (tagClass eq ClassTagClass) gen.mkBasisUniverseRef
+ if (tagClass eq ClassTagClass) EmptyTree
else pre match {
case SingleType(prePre, preSym) =>
gen.mkAttributedRef(prePre, preSym) setType pre
@@ -1205,7 +1205,7 @@ trait Implicits {
}
)
// todo. migrate hardcoded materialization in Implicits to corresponding implicit macros
- var materializer = atPos(pos.focus)(gen.mkMethodCall(TagMaterializers(tagClass), List(tp), List(prefix)))
+ var materializer = atPos(pos.focus)(gen.mkMethodCall(TagMaterializers(tagClass), List(tp), if (prefix != EmptyTree) List(prefix) else List()))
if (settings.XlogImplicits.value) println("materializing requested %s.%s[%s] using %s".format(pre, tagClass.name, tp, materializer))
if (context.macrosEnabled) success(materializer)
// don't call `failure` here. if macros are disabled, we just fail silently
diff --git a/src/compiler/scala/tools/nsc/typechecker/Infer.scala b/src/compiler/scala/tools/nsc/typechecker/Infer.scala
index 294470d40e..22077303a4 100644
--- a/src/compiler/scala/tools/nsc/typechecker/Infer.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/Infer.scala
@@ -77,7 +77,7 @@ trait Infer {
val isUnapplySeq = unappSym.name == nme.unapplySeq
val booleanExtractor = resTp.typeSymbolDirect == BooleanClass
- @inline def seqToRepeatedChecked(tp: Type) = {
+ def seqToRepeatedChecked(tp: Type) = {
val toRepeated = seqToRepeated(tp)
if (tp eq toRepeated) throw new TypeError("(the last tuple-component of) the result type of an unapplySeq must be a Seq[_]")
else toRepeated
@@ -548,9 +548,9 @@ trait Infer {
})
}
- @inline private def toLists[A1, A2](pxs: (Iterable[A1], Iterable[A2])) = (pxs._1.toList, pxs._2.toList)
- @inline private def toLists[A1, A2, A3](pxs: (Iterable[A1], Iterable[A2], Iterable[A3])) = (pxs._1.toList, pxs._2.toList, pxs._3.toList)
- @inline private def toLists[A1, A2, A3, A4](pxs: (Iterable[A1], Iterable[A2], Iterable[A3], Iterable[A4])) = (pxs._1.toList, pxs._2.toList, pxs._3.toList, pxs._4.toList)
+ private def toLists[A1, A2](pxs: (Iterable[A1], Iterable[A2])) = (pxs._1.toList, pxs._2.toList)
+ private def toLists[A1, A2, A3](pxs: (Iterable[A1], Iterable[A2], Iterable[A3])) = (pxs._1.toList, pxs._2.toList, pxs._3.toList)
+ private def toLists[A1, A2, A3, A4](pxs: (Iterable[A1], Iterable[A2], Iterable[A3], Iterable[A4])) = (pxs._1.toList, pxs._2.toList, pxs._3.toList, pxs._4.toList)
}
/** Retract arguments that were inferred to Nothing because inference failed. Correct types for repeated params.
diff --git a/src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala b/src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala
index 2dc3dc3dbd..d0b715d502 100644
--- a/src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/PatternMatching.scala
@@ -387,8 +387,8 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
def translatePattern(patBinder: Symbol, patTree: Tree): List[TreeMaker] = {
// a list of TreeMakers that encode `patTree`, and a list of arguments for recursive invocations of `translatePattern` to encode its subpatterns
type TranslationStep = (List[TreeMaker], List[(Symbol, Tree)])
- @inline def withSubPats(treeMakers: List[TreeMaker], subpats: (Symbol, Tree)*): TranslationStep = (treeMakers, subpats.toList)
- @inline def noFurtherSubPats(treeMakers: TreeMaker*): TranslationStep = (treeMakers.toList, Nil)
+ def withSubPats(treeMakers: List[TreeMaker], subpats: (Symbol, Tree)*): TranslationStep = (treeMakers, subpats.toList)
+ def noFurtherSubPats(treeMakers: TreeMaker*): TranslationStep = (treeMakers.toList, Nil)
val pos = patTree.pos
@@ -860,7 +860,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// since about half of the typedSubst's end up being no-ops, the check below shaves off 5% of the time spent in typedSubst
if (!tree.exists { case i@Ident(_) => from contains i.symbol case _ => false}) tree
else (new Transformer {
- @inline private def typedIfOrigTyped(to: Tree, origTp: Type): Tree =
+ private def typedIfOrigTyped(to: Tree, origTp: Type): Tree =
if (origTp == null || origTp == NoType) to
// important: only type when actually substing and when original tree was typed
// (don't need to use origTp as the expected type, though, and can't always do this anyway due to unknown type params stemming from polymorphic extractors)
@@ -1208,7 +1208,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
else typeTest(testedBinder, expectedTp)
// propagate expected type
- @inline def expTp(t: Tree): t.type = t setType expectedTp
+ def expTp(t: Tree): t.type = t setType expectedTp
// true when called to type-test the argument to an extractor
// don't do any fancy equality checking, just test the type
@@ -1694,8 +1694,8 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
final def binderToUniqueTree(b: Symbol) =
unique(accumSubst(normalize(CODE.REF(b))), b.tpe)
- @inline def /\(conds: Iterable[Cond]) = if (conds.isEmpty) TrueCond else conds.reduceLeft(AndCond(_, _))
- @inline def \/(conds: Iterable[Cond]) = if (conds.isEmpty) FalseCond else conds.reduceLeft(OrCond(_, _))
+ def /\(conds: Iterable[Cond]) = if (conds.isEmpty) TrueCond else conds.reduceLeft(AndCond(_, _))
+ def \/(conds: Iterable[Cond]) = if (conds.isEmpty) FalseCond else conds.reduceLeft(OrCond(_, _))
// note that the sequencing of operations is important: must visit in same order as match execution
// binderToUniqueTree uses the type of the first symbol that was encountered as the type for all future binders
@@ -1903,8 +1903,8 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
private def nextSymId = {_symId += 1; _symId}; private var _symId = 0
- @inline def /\(props: Iterable[Prop]) = if (props.isEmpty) True else props.reduceLeft(And(_, _))
- @inline def \/(props: Iterable[Prop]) = if (props.isEmpty) False else props.reduceLeft(Or(_, _))
+ def /\(props: Iterable[Prop]) = if (props.isEmpty) True else props.reduceLeft(And(_, _))
+ def \/(props: Iterable[Prop]) = if (props.isEmpty) False else props.reduceLeft(Or(_, _))
trait PropTraverser {
@@ -1980,7 +1980,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
val pure = props map rewriteEqualsToProp.apply
var eqAxioms: Prop = True
- @inline def addAxiom(p: Prop) = eqAxioms = And(eqAxioms, p)
+ def addAxiom(p: Prop) = eqAxioms = And(eqAxioms, p)
patmatDebug("removeVarEq vars: "+ vars)
vars.foreach { v =>
@@ -2051,7 +2051,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// a clause is a disjunction of distinct literals
type Clause = Set[Lit]
def clause(l: Lit*): Clause = l.toSet
- @inline private def merge(a: Clause, b: Clause) = a ++ b
+ private def merge(a: Clause, b: Clause) = a ++ b
type Lit
def Lit(sym: Sym, pos: Boolean = true): Lit
@@ -2189,8 +2189,8 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
findAllModels(f, Nil)
}
- @inline private def withLit(res: Model, l: Lit): Model = if (res eq NoModel) NoModel else res + (l.sym -> l.pos)
- @inline private def dropUnit(f: Formula, unitLit: Lit) = {
+ private def withLit(res: Model, l: Lit): Model = if (res eq NoModel) NoModel else res + (l.sym -> l.pos)
+ private def dropUnit(f: Formula, unitLit: Lit) = {
val negated = -unitLit
// drop entire clauses that are trivially true
// (i.e., disjunctions that contain the literal we're making true in the returned model),
@@ -2268,9 +2268,9 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
private[this] val id: Int = Var.nextId
// private[this] var canModify: Option[Array[StackTraceElement]] = None
- @inline private[this] def ensureCanModify = {} //if (canModify.nonEmpty) patmatDebug("BUG!"+ this +" modified after having been observed: "+ canModify.get.mkString("\n"))
+ private[this] def ensureCanModify = {} //if (canModify.nonEmpty) patmatDebug("BUG!"+ this +" modified after having been observed: "+ canModify.get.mkString("\n"))
- @inline private[this] def observed = {} //canModify = Some(Thread.currentThread.getStackTrace)
+ private[this] def observed = {} //canModify = Some(Thread.currentThread.getStackTrace)
// don't access until all potential equalities have been registered using registerEquality
private[this] val symForEqualsTo = new scala.collection.mutable.HashMap[Const, Sym]
@@ -2735,7 +2735,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
// a type is "uncheckable" (for exhaustivity) if we don't statically know its subtypes (i.e., it's unsealed)
// we consider tuple types with at least one component of a checkable type as a checkable type
def uncheckableType(tp: Type): Boolean = {
- @inline def tupleComponents(tp: Type) = tp.normalize.typeArgs
+ def tupleComponents(tp: Type) = tp.normalize.typeArgs
val checkable = (
(isTupleType(tp) && tupleComponents(tp).exists(tp => !uncheckableType(tp)))
|| enumerateSubtypes(tp).nonEmpty)
@@ -2868,7 +2868,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
case object WildcardExample extends CounterExample { override def toString = "_" }
case object NoExample extends CounterExample { override def toString = "??" }
- @inline def modelToVarAssignment(model: Model): Map[Var, (Seq[Const], Seq[Const])] =
+ def modelToVarAssignment(model: Model): Map[Var, (Seq[Const], Seq[Const])] =
model.toSeq.groupBy{f => f match {case (sym, value) => sym.variable} }.mapValues{ xs =>
val (trues, falses) = xs.partition(_._2)
(trues map (_._1.const), falses map (_._1.const))
@@ -2974,7 +2974,7 @@ trait PatternMatching extends Transform with TypingTransformers with ast.TreeDSL
( uniqueEqualTo.nonEmpty
|| (fields.nonEmpty && prunedEqualTo.isEmpty && notEqualTo.isEmpty)) =>
- @inline def args(brevity: Boolean = beBrief) = {
+ def args(brevity: Boolean = beBrief) = {
// figure out the constructor arguments from the field assignment
val argLen = (caseFieldAccs.length min ctorParams.length)
diff --git a/src/compiler/scala/tools/nsc/typechecker/Tags.scala b/src/compiler/scala/tools/nsc/typechecker/Tags.scala
index 167bf5c857..0dbeafadbe 100644
--- a/src/compiler/scala/tools/nsc/typechecker/Tags.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/Tags.scala
@@ -48,8 +48,8 @@ trait Tags {
* @param pos Position for error reporting. Please, provide meaningful value.
* @param pre Prefix that represents a universe this type tag will be bound to.
* If `pre` is set to `NoType`, then any type tag in scope will do, regardless of its affiliation.
- * If `pre` is set to `NoType`, and tag resolution involves materialization, then `mkBasisPrefix` will be used.
- * @param tp Type we're looking a TypeTag for, e.g. resolveTypeTag(pos, reflectBasisPrefix, IntClass.tpe, false) will look for scala.reflect.basis.TypeTag[Int].
+ * If `pre` is set to `NoType`, and tag resolution involves materialization, then `mkRuntimeUniverseRef` will be used.
+ * @param tp Type we're looking a TypeTag for, e.g. resolveTypeTag(pos, mkRuntimeUniverseRef, IntClass.tpe, false) will look for scala.reflect.runtime.universe.TypeTag[Int].
* @param concrete If true then the result must not contain unresolved (i.e. not spliced) type parameters and abstract type members.
* If false then the function will always succeed (abstract types will be reified as free types).
* @param allowMaterialization If true (default) then the resolver is allowed to launch materialization macros when there's no type tag in scope.
@@ -61,7 +61,7 @@ trait Tags {
*/
def resolveTypeTag(pos: Position, pre: Type, tp: Type, concrete: Boolean, allowMaterialization: Boolean = true): Tree = {
val tagSym = if (concrete) TypeTagClass else WeakTypeTagClass
- val tagTp = if (pre == NoType) TypeRef(BaseUniverseClass.toTypeConstructor, tagSym, List(tp)) else singleType(pre, pre member tagSym.name)
+ val tagTp = if (pre == NoType) TypeRef(ApiUniverseClass.toTypeConstructor, tagSym, List(tp)) else singleType(pre, pre member tagSym.name)
val taggedTp = appliedType(tagTp, List(tp))
resolveTag(pos, taggedTp, allowMaterialization)
}
diff --git a/src/compiler/scala/tools/nsc/typechecker/Typers.scala b/src/compiler/scala/tools/nsc/typechecker/Typers.scala
index de9a56c99c..9b93c7a214 100644
--- a/src/compiler/scala/tools/nsc/typechecker/Typers.scala
+++ b/src/compiler/scala/tools/nsc/typechecker/Typers.scala
@@ -91,7 +91,7 @@ trait Typers extends Modes with Adaptations with Tags {
// - we may virtualize matches (if -Xexperimental and there's a suitable __match in scope)
// - we synthesize PartialFunction implementations for `x => x match {...}` and `match {...}` when the expected type is PartialFunction
// this is disabled by: -Xoldpatmat or interactive compilation (we run it for scaladoc due to SI-5933)
- @inline private def newPatternMatching = opt.virtPatmat && !forInteractive //&& !forScaladoc && (phase.id < currentRun.uncurryPhase.id)
+ private def newPatternMatching = opt.virtPatmat && !forInteractive //&& !forScaladoc && (phase.id < currentRun.uncurryPhase.id)
abstract class Typer(context0: Context) extends TyperDiagnostics with Adaptation with Tag with TyperContextErrors {
import context0.unit
@@ -478,7 +478,6 @@ trait Typers extends Modes with Adaptations with Tags {
/** The typer for an expression, depending on where we are. If we are before a superclass
* call, this is a typer over a constructor context; otherwise it is the current typer.
*/
- @inline
final def constrTyperIf(inConstr: Boolean): Typer =
if (inConstr) {
assert(context.undetparams.isEmpty, context.undetparams)
@@ -1568,7 +1567,7 @@ trait Typers extends Modes with Adaptations with Tags {
*/
def validateParentClasses(parents: List[Tree], selfType: Type) {
val pending = ListBuffer[AbsTypeError]()
- @inline def validateDynamicParent(parent: Symbol) =
+ def validateDynamicParent(parent: Symbol) =
if (parent == DynamicClass) checkFeature(parent.pos, DynamicsFeature)
def validateParentClass(parent: Tree, superclazz: Symbol) =
@@ -3817,7 +3816,8 @@ trait Typers extends Modes with Adaptations with Tags {
case AssignOrNamedArg(Ident(name), rhs) => gen.mkTuple(List(CODE.LIT(name.toString), rhs))
case _ => gen.mkTuple(List(CODE.LIT(""), arg))
}
- typed(treeCopy.Apply(orig, fun, args map argToBinding), mode, pt)
+ val t = treeCopy.Apply(orig, fun, args map argToBinding)
+ wrapErrors(t, _.typed(t, mode, pt))
}
/** Translate selection that does not typecheck according to the normal rules into a selectDynamic/applyDynamic.
@@ -3856,7 +3856,7 @@ trait Typers extends Modes with Adaptations with Tags {
case Apply(TypeApply(fun, targs), args) => (Apply(fun, args), targs)
case t => (t, Nil)
}
- @inline def hasNamedArg(as: List[Tree]) = as.collectFirst{case AssignOrNamedArg(lhs, rhs) =>}.nonEmpty
+ def hasNamedArg(as: List[Tree]) = as.collectFirst{case AssignOrNamedArg(lhs, rhs) =>}.nonEmpty
def desugaredApply = tree match {
case Select(`qual`, nme.apply) => true
@@ -3885,10 +3885,17 @@ trait Typers extends Modes with Adaptations with Tags {
atPos(qual.pos)(Apply(tappSel, List(Literal(Constant(name.decode)))))
}
}
+
+ def wrapErrors(tree: Tree, typeTree: Typer => Tree): Tree = {
+ silent(typeTree) match {
+ case SilentResultValue(r) => r
+ case SilentTypeError(err) => DynamicRewriteError(tree, err)
+ }
+ }
}
- @inline final def deindentTyping() = context.typingIndentLevel -= 2
- @inline final def indentTyping() = context.typingIndentLevel += 2
+ final def deindentTyping() = context.typingIndentLevel -= 2
+ final def indentTyping() = context.typingIndentLevel += 2
@inline final def printTyping(s: => String) = {
if (printTypings)
println(context.typingIndent + s.replaceAll("\n", "\n" + context.typingIndent))
@@ -4078,7 +4085,8 @@ trait Typers extends Modes with Adaptations with Tags {
}
else if(dyna.isDynamicallyUpdatable(lhs1)) {
val rhs1 = typed(rhs, EXPRmode | BYVALmode, WildcardType)
- typed1(Apply(lhs1, List(rhs1)), mode, pt)
+ val t = Apply(lhs1, List(rhs1))
+ dyna.wrapErrors(t, _.typed1(t, mode, pt))
}
else fail()
}
@@ -4546,7 +4554,9 @@ trait Typers extends Modes with Adaptations with Tags {
* @return ...
*/
def typedSelect(tree: Tree, qual: Tree, name: Name): Tree = {
- def asDynamicCall = dyna.mkInvoke(context.tree, tree, qual, name) map (typed1(_, mode, pt))
+ def asDynamicCall = dyna.mkInvoke(context.tree, tree, qual, name) map { t =>
+ dyna.wrapErrors(t, (_.typed1(t, mode, pt)))
+ }
val sym = tree.symbol orElse member(qual, name) orElse {
// symbol not found? --> try to convert implicitly to a type that does have the required
@@ -4707,12 +4717,10 @@ trait Typers extends Modes with Adaptations with Tags {
*/
def typedIdent(tree: Tree, name: Name): Tree = {
var errorContainer: AbsTypeError = null
- @inline
def ambiguousError(msg: String) = {
assert(errorContainer == null, "Cannot set ambiguous error twice for identifier")
errorContainer = AmbiguousIdentError(tree, name, msg)
}
- @inline
def identError(tree: AbsTypeError) = {
assert(errorContainer == null, "Cannot set ambiguous error twice for identifier")
errorContainer = tree
diff --git a/src/compiler/scala/tools/nsc/util/ClassPath.scala b/src/compiler/scala/tools/nsc/util/ClassPath.scala
index 1c7a723f7f..65aba2b721 100644
--- a/src/compiler/scala/tools/nsc/util/ClassPath.scala
+++ b/src/compiler/scala/tools/nsc/util/ClassPath.scala
@@ -160,9 +160,9 @@ object ClassPath {
override def isValidName(name: String) = !isTraitImplementation(name)
}
- @inline private def endsClass(s: String) = s.length > 6 && s.substring(s.length - 6) == ".class"
- @inline private def endsScala(s: String) = s.length > 6 && s.substring(s.length - 6) == ".scala"
- @inline private def endsJava(s: String) = s.length > 5 && s.substring(s.length - 5) == ".java"
+ private def endsClass(s: String) = s.length > 6 && s.substring(s.length - 6) == ".class"
+ private def endsScala(s: String) = s.length > 6 && s.substring(s.length - 6) == ".scala"
+ private def endsJava(s: String) = s.length > 5 && s.substring(s.length - 5) == ".java"
/** From the source file to its identifier.
*/
diff --git a/src/compiler/scala/tools/reflect/FastTrack.scala b/src/compiler/scala/tools/reflect/FastTrack.scala
index 38e4e3c9f1..d35ac43424 100644
--- a/src/compiler/scala/tools/reflect/FastTrack.scala
+++ b/src/compiler/scala/tools/reflect/FastTrack.scala
@@ -30,10 +30,10 @@ trait FastTrack {
lazy val fastTrack: Map[Symbol, FastTrackEntry] = {
var registry = Map[Symbol, FastTrackEntry]()
implicit class BindTo(sym: Symbol) { def bindTo(expander: FastTrackExpander): Unit = if (sym != NoSymbol) registry += sym -> FastTrackEntry(sym, expander) }
- MacroInternal_materializeClassTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeClassTag(u, tt.tpe) }
- MacroInternal_materializeWeakTypeTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeTypeTag(u, EmptyTree, tt.tpe, concrete = false) }
- MacroInternal_materializeTypeTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeTypeTag(u, EmptyTree, tt.tpe, concrete = true) }
- BaseUniverseReify bindTo { case (c, Apply(TypeApply(_, List(tt)), List(expr))) => c.materializeExpr(c.prefix.tree, EmptyTree, expr) }
+ materializeClassTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List())) => c.materializeClassTag(tt.tpe) }
+ materializeWeakTypeTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeTypeTag(u, EmptyTree, tt.tpe, concrete = false) }
+ materializeTypeTag bindTo { case (c, Apply(TypeApply(_, List(tt)), List(u))) => c.materializeTypeTag(u, EmptyTree, tt.tpe, concrete = true) }
+ ApiUniverseReify bindTo { case (c, Apply(TypeApply(_, List(tt)), List(expr))) => c.materializeExpr(c.prefix.tree, EmptyTree, expr) }
ReflectRuntimeCurrentMirror bindTo { case (c, _) => scala.reflect.runtime.Macros.currentMirror(c).tree }
StringContext_f bindTo { case (c, app@Apply(Select(Apply(_, parts), _), args)) => c.macro_StringInterpolation_f(parts, args, app.pos) }
registry
diff --git a/src/compiler/scala/tools/reflect/FrontEnds.scala b/src/compiler/scala/tools/reflect/FrontEnds.scala
index d8f07fb2e5..d0c3c1c774 100644
--- a/src/compiler/scala/tools/reflect/FrontEnds.scala
+++ b/src/compiler/scala/tools/reflect/FrontEnds.scala
@@ -36,6 +36,16 @@ trait FrontEnds extends scala.reflect.api.FrontEnds {
def displayPrompt(): Unit =
frontEnd.interactive()
+
+ override def flush(): Unit = {
+ super.flush()
+ frontEnd.flush()
+ }
+
+ override def reset(): Unit = {
+ super.reset()
+ frontEnd.reset()
+ }
}
def wrapFrontEnd(frontEnd: FrontEnd): Reporter = new FrontEndToReporterProxy(frontEnd) {
diff --git a/src/compiler/scala/tools/reflect/StdTags.scala b/src/compiler/scala/tools/reflect/StdTags.scala
index 0704189ddc..94fd8e1fe8 100644
--- a/src/compiler/scala/tools/reflect/StdTags.scala
+++ b/src/compiler/scala/tools/reflect/StdTags.scala
@@ -3,21 +3,21 @@ package reflect
import java.lang.{Class => jClass}
import scala.reflect.{ClassTag, classTag}
-import scala.reflect.base.{MirrorOf, TypeCreator, Universe => BaseUniverse}
+import scala.reflect.api.{MirrorOf, TypeCreator, Universe => ApiUniverse}
// [Eugene++] Before 2.10 is released, I suggest we don't rely on automated type tag generation
// sure, it's convenient, but then refactoring reflection / reification becomes a pain
// `ClassTag` tags are fine, because they don't need a reifier to be generated
trait StdTags {
- val u: BaseUniverse with Singleton
+ val u: ApiUniverse with Singleton
val m: MirrorOf[u.type]
lazy val tagOfListOfString: u.TypeTag[List[String]] =
u.TypeTag[List[String]](
m,
new TypeCreator {
- def apply[U <: BaseUniverse with Singleton](m: MirrorOf[U]): U # Type = {
+ def apply[U <: ApiUniverse with Singleton](m: MirrorOf[U]): U # Type = {
val u = m.universe
val pre = u.ThisType(m.staticPackage("scala.collection.immutable").moduleClass.asInstanceOf[u.Symbol])
u.TypeRef(pre, u.definitions.ListClass, List(u.definitions.StringClass.toTypeConstructor))
@@ -28,7 +28,7 @@ trait StdTags {
u.TypeTag[T](
m,
new TypeCreator {
- def apply[U <: BaseUniverse with Singleton](m: MirrorOf[U]): U # Type =
+ def apply[U <: ApiUniverse with Singleton](m: MirrorOf[U]): U # Type =
m.staticClass(classTag[T].runtimeClass.getName).toTypeConstructor.asInstanceOf[U # Type]
})
lazy val tagOfInt = u.TypeTag.Int
diff --git a/src/compiler/scala/tools/reflect/ToolBox.scala b/src/compiler/scala/tools/reflect/ToolBox.scala
index 9e7d230a6a..f627699597 100644
--- a/src/compiler/scala/tools/reflect/ToolBox.scala
+++ b/src/compiler/scala/tools/reflect/ToolBox.scala
@@ -1,10 +1,7 @@
package scala.tools
package reflect
-import scala.reflect.api.Universe
-import scala.reflect.base.MirrorOf
-
-trait ToolBox[U <: Universe] {
+trait ToolBox[U <: scala.reflect.api.Universe] {
/** Underlying universe of a ToolBox
*/
diff --git a/src/compiler/scala/tools/reflect/ToolBoxFactory.scala b/src/compiler/scala/tools/reflect/ToolBoxFactory.scala
index d941519958..6300297f65 100644
--- a/src/compiler/scala/tools/reflect/ToolBoxFactory.scala
+++ b/src/compiler/scala/tools/reflect/ToolBoxFactory.scala
@@ -14,7 +14,6 @@ import java.lang.{Class => jClass}
import scala.compat.Platform.EOL
import scala.reflect.NameTransformer
import scala.reflect.api.JavaUniverse
-import scala.reflect.base.MirrorOf
abstract class ToolBoxFactory[U <: JavaUniverse](val u: U) { factorySelf =>
@@ -70,6 +69,14 @@ abstract class ToolBoxFactory[U <: JavaUniverse](val u: U) { factorySelf =>
}
}
+ def wrapIntoTerm(tree: Tree): Tree =
+ if (!tree.isTerm) Block(List(tree), Literal(Constant(()))) else tree
+
+ def unwrapFromTerm(tree: Tree): Tree = tree match {
+ case Block(List(tree), Literal(Constant(()))) => tree
+ case tree => tree
+ }
+
def extractFreeTerms(expr0: Tree, wrapFreeTermRefs: Boolean): (Tree, scala.collection.mutable.LinkedHashMap[FreeTermSymbol, TermName]) = {
val freeTerms = expr0.freeTerms
val freeTermNames = scala.collection.mutable.LinkedHashMap[FreeTermSymbol, TermName]()
@@ -102,7 +109,7 @@ abstract class ToolBoxFactory[U <: JavaUniverse](val u: U) { factorySelf =>
// need to wrap the expr, because otherwise you won't be able to typecheck macros against something that contains free vars
var (expr, freeTerms) = extractFreeTerms(expr0, wrapFreeTermRefs = false)
val dummies = freeTerms.map{ case (freeTerm, name) => ValDef(NoMods, name, TypeTree(freeTerm.info), Select(Ident(PredefModule), newTermName("$qmark$qmark$qmark"))) }.toList
- expr = Block(dummies, expr)
+ expr = Block(dummies, wrapIntoTerm(expr))
// [Eugene] how can we implement that?
// !!! Why is this is in the empty package? If it's only to make
@@ -137,6 +144,7 @@ abstract class ToolBoxFactory[U <: JavaUniverse](val u: U) { factorySelf =>
}
}.transform(unwrapped)
new TreeTypeSubstituter(dummies1 map (_.symbol), dummies1 map (dummy => SingleType(NoPrefix, invertedIndex(dummy.symbol.name)))).traverse(unwrapped)
+ unwrapped = if (expr0.isTerm) unwrapped else unwrapFromTerm(unwrapped)
unwrapped
}
@@ -170,12 +178,14 @@ abstract class ToolBoxFactory[U <: JavaUniverse](val u: U) { factorySelf =>
}
})
- def compile(expr: Tree): () => Any = {
+ def compile(expr0: Tree): () => Any = {
+ val expr = wrapIntoTerm(expr0)
+
val freeTerms = expr.freeTerms // need to calculate them here, because later on they will be erased
val thunks = freeTerms map (fte => () => fte.value) // need to be lazy in order not to distort evaluation order
verify(expr)
- def wrap(expr0: Tree): Tree = {
+ def wrap(expr0: Tree): ModuleDef = {
val (expr, freeTerms) = extractFreeTerms(expr0, wrapFreeTermRefs = true)
val (obj, mclazz) = rootMirror.EmptyPackageClass.newModuleAndClassSymbol(
@@ -213,11 +223,11 @@ abstract class ToolBoxFactory[U <: JavaUniverse](val u: U) { factorySelf =>
var cleanedUp = resetLocalAttrs(moduledef)
trace("cleaned up: ")(showAttributed(cleanedUp, true, true, settings.Yshowsymkinds.value))
- cleanedUp
+ cleanedUp.asInstanceOf[ModuleDef]
}
val mdef = wrap(expr)
- val pdef = PackageDef(Ident(nme.EMPTY_PACKAGE_NAME), List(mdef))
+ val pdef = PackageDef(Ident(mdef.name), List(mdef))
val unit = new CompilationUnit(NoSourceFile)
unit.body = pdef
diff --git a/src/library/scala/App.scala b/src/library/scala/App.scala
index 85d2f9075e..a1e5e74e2f 100644
--- a/src/library/scala/App.scala
+++ b/src/library/scala/App.scala
@@ -22,6 +22,16 @@ import scala.collection.mutable.ListBuffer
*
* `args` returns the current command line arguments as an array.
*
+ * ==Caveats==
+ *
+ * '''''It should be noted that this trait is implemented using the [[DelayedInit]]
+ * functionality, which means that fields of the object will not have been initialized
+ * before the main method has been executed.'''''
+ *
+ * It should also be noted that the `main` method will not normally need to be overridden:
+ * the purpose is to turn the whole class body into the “main method”. You should only
+ * chose to override it if you know what you are doing.
+ *
* @author Martin Odersky
* @version 2.1, 15/02/2011
*/
diff --git a/src/library/scala/Option.scala b/src/library/scala/Option.scala
index 945b0a0c3b..880f3f4623 100644
--- a/src/library/scala/Option.scala
+++ b/src/library/scala/Option.scala
@@ -196,7 +196,7 @@ sealed abstract class Option[+A] extends Product with Serializable {
/** Necessary to keep $option from being implicitly converted to
* [[scala.collection.Iterable]] in `for` comprehensions.
*/
- def withFilter(p: A => Boolean): WithFilter = new WithFilter(p)
+ @inline final def withFilter(p: A => Boolean): WithFilter = new WithFilter(p)
/** We need a whole WithFilter class to honor the "doesn't create a new
* collection" contract even though it seems unlikely to matter much in a
@@ -246,7 +246,7 @@ sealed abstract class Option[+A] extends Product with Serializable {
* @return the result of applying `pf` to this $option's
* value (if possible), or $none.
*/
- def collect[B](pf: PartialFunction[A, B]): Option[B] =
+ @inline final def collect[B](pf: PartialFunction[A, B]): Option[B] =
if (!isEmpty && pf.isDefinedAt(this.get)) Some(pf(this.get)) else None
/** Returns this $option if it is nonempty,
diff --git a/src/library/scala/PartialFunction.scala b/src/library/scala/PartialFunction.scala
index 7c6e2d2e3e..ce109626cc 100644
--- a/src/library/scala/PartialFunction.scala
+++ b/src/library/scala/PartialFunction.scala
@@ -156,7 +156,7 @@ trait PartialFunction[-A, +B] extends (A => B) { self =>
object PartialFunction {
/** Composite function produced by `PartialFunction#orElse` method
*/
- private final class OrElse[-A, +B] (f1: PartialFunction[A, B], f2: PartialFunction[A, B]) extends PartialFunction[A, B] {
+ private class OrElse[-A, +B] (f1: PartialFunction[A, B], f2: PartialFunction[A, B]) extends PartialFunction[A, B] {
def isDefinedAt(x: A) = f1.isDefinedAt(x) || f2.isDefinedAt(x)
def apply(x: A): B = f1.applyOrElse(x, f2)
@@ -175,7 +175,7 @@ object PartialFunction {
/** Composite function produced by `PartialFunction#andThen` method
*/
- private final class AndThen[-A, B, +C] (pf: PartialFunction[A, B], k: B => C) extends PartialFunction[A, C] {
+ private class AndThen[-A, B, +C] (pf: PartialFunction[A, B], k: B => C) extends PartialFunction[A, C] {
def isDefinedAt(x: A) = pf.isDefinedAt(x)
def apply(x: A): C = k(pf(x))
@@ -207,11 +207,11 @@ object PartialFunction {
*
* Here `fallback_pf` is used as both unique marker object and special fallback function that returns it.
*/
- private[this] final val fallback_pf: PartialFunction[Any, Any] = { case _ => fallback_pf }
- @inline private final def checkFallback[B] = fallback_pf.asInstanceOf[PartialFunction[Any, B]]
- @inline private final def fallbackOccurred[B](x: B) = (fallback_pf eq x.asInstanceOf[AnyRef])
+ private[this] val fallback_pf: PartialFunction[Any, Any] = { case _ => fallback_pf }
+ private def checkFallback[B] = fallback_pf.asInstanceOf[PartialFunction[Any, B]]
+ private def fallbackOccurred[B](x: B) = (fallback_pf eq x.asInstanceOf[AnyRef])
- private final class Lifted[-A, +B] (val pf: PartialFunction[A, B])
+ private class Lifted[-A, +B] (val pf: PartialFunction[A, B])
extends scala.runtime.AbstractFunction1[A, Option[B]] {
def apply(x: A): Option[B] = {
@@ -220,7 +220,7 @@ object PartialFunction {
}
}
- private final class Unlifted[A, B] (f: A => Option[B]) extends scala.runtime.AbstractPartialFunction[A, B] {
+ private class Unlifted[A, B] (f: A => Option[B]) extends scala.runtime.AbstractPartialFunction[A, B] {
def isDefinedAt(x: A): Boolean = f(x).isDefined
override def applyOrElse[A1 <: A, B1 >: B](x: A1, default: A1 => B1): B1 = {
@@ -241,9 +241,9 @@ object PartialFunction {
*/
def apply[A, B](f: A => B): PartialFunction[A, B] = { case x => f(x) }
- private[this] final val constFalse: Any => Boolean = { _ => false}
+ private[this] val constFalse: Any => Boolean = { _ => false}
- private[this] final val empty_pf: PartialFunction[Any, Nothing] = new PartialFunction[Any, Nothing] {
+ private[this] val empty_pf: PartialFunction[Any, Nothing] = new PartialFunction[Any, Nothing] {
def isDefinedAt(x: Any) = false
def apply(x: Any) = throw new MatchError(x)
override def orElse[A1, B1](that: PartialFunction[A1, B1]) = that
diff --git a/src/library/scala/annotation/static.scala b/src/library/scala/annotation/static.scala
deleted file mode 100644
index f2955c756c..0000000000
--- a/src/library/scala/annotation/static.scala
+++ /dev/null
@@ -1,20 +0,0 @@
-/* __ *\
-** ________ ___ / / ___ Scala API **
-** / __/ __// _ | / / / _ | (c) 2002-2011, LAMP/EPFL **
-** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
-** /____/\___/_/ |_/____/_/ | | **
-** |/ **
-\* */
-
-package scala.annotation
-
-/**
- * An annotation that marks a member in the companion object as static
- * and ensures that the compiler generates static fields/methods for it.
- * This is important for Java interoperability and performance reasons.
- *
- * @since 2.10
- */
-final class static extends StaticAnnotation {
- // TODO document exact semantics above!
-}
diff --git a/src/library/scala/collection/SeqLike.scala b/src/library/scala/collection/SeqLike.scala
index a3ff812024..cda8b1a0e4 100644
--- a/src/library/scala/collection/SeqLike.scala
+++ b/src/library/scala/collection/SeqLike.scala
@@ -735,8 +735,8 @@ object SeqLike {
*/
private def kmpSearch[B](S: Seq[B], m0: Int, m1: Int, W: Seq[B], n0: Int, n1: Int, forward: Boolean): Int = {
// Check for redundant case when target has single valid element
- @inline def clipR(x: Int, y: Int) = if (x<y) x else -1
- @inline def clipL(x: Int, y: Int) = if (x>y) x else -1
+ def clipR(x: Int, y: Int) = if (x < y) x else -1
+ def clipL(x: Int, y: Int) = if (x > y) x else -1
if (n1 == n0+1) {
if (forward)
diff --git a/src/library/scala/collection/concurrent/TrieMap.scala b/src/library/scala/collection/concurrent/TrieMap.scala
index 070497c19e..4f9f13c794 100644
--- a/src/library/scala/collection/concurrent/TrieMap.scala
+++ b/src/library/scala/collection/concurrent/TrieMap.scala
@@ -25,13 +25,13 @@ private[collection] final class INode[K, V](bn: MainNode[K, V], g: Gen) extends
def this(g: Gen) = this(null, g)
- @inline final def WRITE(nval: MainNode[K, V]) = INodeBase.updater.set(this, nval)
+ def WRITE(nval: MainNode[K, V]) = INodeBase.updater.set(this, nval)
- @inline final def CAS(old: MainNode[K, V], n: MainNode[K, V]) = INodeBase.updater.compareAndSet(this, old, n)
+ def CAS(old: MainNode[K, V], n: MainNode[K, V]) = INodeBase.updater.compareAndSet(this, old, n)
- final def gcasRead(ct: TrieMap[K, V]): MainNode[K, V] = GCAS_READ(ct)
+ def gcasRead(ct: TrieMap[K, V]): MainNode[K, V] = GCAS_READ(ct)
- @inline final def GCAS_READ(ct: TrieMap[K, V]): MainNode[K, V] = {
+ def GCAS_READ(ct: TrieMap[K, V]): MainNode[K, V] = {
val m = /*READ*/mainnode
val prevval = /*READ*/m.prev
if (prevval eq null) m
@@ -70,7 +70,7 @@ private[collection] final class INode[K, V](bn: MainNode[K, V], g: Gen) extends
}
}
- @inline final def GCAS(old: MainNode[K, V], n: MainNode[K, V], ct: TrieMap[K, V]): Boolean = {
+ def GCAS(old: MainNode[K, V], n: MainNode[K, V], ct: TrieMap[K, V]): Boolean = {
n.WRITE_PREV(old)
if (CAS(old, n)) {
GCAS_Complete(n, ct)
@@ -78,16 +78,15 @@ private[collection] final class INode[K, V](bn: MainNode[K, V], g: Gen) extends
} else false
}
- @inline
private def equal(k1: K, k2: K, ct: TrieMap[K, V]) = ct.equality.equiv(k1, k2)
- @inline private def inode(cn: MainNode[K, V]) = {
+ private def inode(cn: MainNode[K, V]) = {
val nin = new INode[K, V](gen)
nin.WRITE(cn)
nin
}
- final def copyToGen(ngen: Gen, ct: TrieMap[K, V]) = {
+ def copyToGen(ngen: Gen, ct: TrieMap[K, V]) = {
val nin = new INode[K, V](ngen)
val main = GCAS_READ(ct)
nin.WRITE(main)
@@ -98,7 +97,7 @@ private[collection] final class INode[K, V](bn: MainNode[K, V], g: Gen) extends
*
* @return true if successful, false otherwise
*/
- @tailrec final def rec_insert(k: K, v: V, hc: Int, lev: Int, parent: INode[K, V], startgen: Gen, ct: TrieMap[K, V]): Boolean = {
+ @tailrec def rec_insert(k: K, v: V, hc: Int, lev: Int, parent: INode[K, V], startgen: Gen, ct: TrieMap[K, V]): Boolean = {
val m = GCAS_READ(ct) // use -Yinline!
m match {
@@ -144,7 +143,7 @@ private[collection] final class INode[K, V](bn: MainNode[K, V], g: Gen) extends
* @param cond null - don't care if the key was there; KEY_ABSENT - key wasn't there; KEY_PRESENT - key was there; other value `v` - key must be bound to `v`
* @return null if unsuccessful, Option[V] otherwise (indicating previous value bound to the key)
*/
- @tailrec final def rec_insertif(k: K, v: V, hc: Int, cond: AnyRef, lev: Int, parent: INode[K, V], startgen: Gen, ct: TrieMap[K, V]): Option[V] = {
+ @tailrec def rec_insertif(k: K, v: V, hc: Int, cond: AnyRef, lev: Int, parent: INode[K, V], startgen: Gen, ct: TrieMap[K, V]): Option[V] = {
val m = GCAS_READ(ct) // use -Yinline!
m match {
@@ -203,7 +202,7 @@ private[collection] final class INode[K, V](bn: MainNode[K, V], g: Gen) extends
clean(parent, ct, lev - 5)
null
case ln: LNode[K, V] => // 3) an l-node
- @inline def insertln() = {
+ def insertln() = {
val nn = ln.inserted(k, v)
GCAS(ln, nn, ct)
}
@@ -234,7 +233,7 @@ private[collection] final class INode[K, V](bn: MainNode[K, V], g: Gen) extends
*
* @return null if no value has been found, RESTART if the operation wasn't successful, or any other value otherwise
*/
- @tailrec final def rec_lookup(k: K, hc: Int, lev: Int, parent: INode[K, V], startgen: Gen, ct: TrieMap[K, V]): AnyRef = {
+ @tailrec def rec_lookup(k: K, hc: Int, lev: Int, parent: INode[K, V], startgen: Gen, ct: TrieMap[K, V]): AnyRef = {
val m = GCAS_READ(ct) // use -Yinline!
m match {
@@ -277,7 +276,7 @@ private[collection] final class INode[K, V](bn: MainNode[K, V], g: Gen) extends
* @param v if null, will remove the key irregardless of the value; otherwise removes only if binding contains that exact key and value
* @return null if not successful, an Option[V] indicating the previous value otherwise
*/
- final def rec_remove(k: K, v: V, hc: Int, lev: Int, parent: INode[K, V], startgen: Gen, ct: TrieMap[K, V]): Option[V] = {
+ def rec_remove(k: K, v: V, hc: Int, lev: Int, parent: INode[K, V], startgen: Gen, ct: TrieMap[K, V]): Option[V] = {
val m = GCAS_READ(ct) // use -Yinline!
m match {
@@ -361,9 +360,9 @@ private[collection] final class INode[K, V](bn: MainNode[K, V], g: Gen) extends
}
}
- final def isNullInode(ct: TrieMap[K, V]) = GCAS_READ(ct) eq null
+ def isNullInode(ct: TrieMap[K, V]) = GCAS_READ(ct) eq null
- final def cachedSize(ct: TrieMap[K, V]): Int = {
+ def cachedSize(ct: TrieMap[K, V]): Int = {
val m = GCAS_READ(ct)
m.cachedSize(ct)
}
@@ -448,11 +447,9 @@ extends MainNode[K, V] {
}
-private[collection] final class CNode[K, V](final val bitmap: Int, final val array: Array[BasicNode], final val gen: Gen)
-extends CNodeBase[K, V] {
-
+private[collection] final class CNode[K, V](val bitmap: Int, val array: Array[BasicNode], val gen: Gen) extends CNodeBase[K, V] {
// this should only be called from within read-only snapshots
- final def cachedSize(ct: AnyRef) = {
+ def cachedSize(ct: AnyRef) = {
val currsz = READ_SIZE()
if (currsz != -1) currsz
else {
@@ -486,7 +483,7 @@ extends CNodeBase[K, V] {
sz
}
- final def updatedAt(pos: Int, nn: BasicNode, gen: Gen) = {
+ def updatedAt(pos: Int, nn: BasicNode, gen: Gen) = {
val len = array.length
val narr = new Array[BasicNode](len)
Array.copy(array, 0, narr, 0, len)
@@ -494,7 +491,7 @@ extends CNodeBase[K, V] {
new CNode[K, V](bitmap, narr, gen)
}
- final def removedAt(pos: Int, flag: Int, gen: Gen) = {
+ def removedAt(pos: Int, flag: Int, gen: Gen) = {
val arr = array
val len = arr.length
val narr = new Array[BasicNode](len - 1)
@@ -503,7 +500,7 @@ extends CNodeBase[K, V] {
new CNode[K, V](bitmap ^ flag, narr, gen)
}
- final def insertedAt(pos: Int, flag: Int, nn: BasicNode, gen: Gen) = {
+ def insertedAt(pos: Int, flag: Int, nn: BasicNode, gen: Gen) = {
val len = array.length
val bmp = bitmap
val narr = new Array[BasicNode](len + 1)
@@ -516,7 +513,7 @@ extends CNodeBase[K, V] {
/** Returns a copy of this cnode such that all the i-nodes below it are copied
* to the specified generation `ngen`.
*/
- final def renewed(ngen: Gen, ct: TrieMap[K, V]) = {
+ def renewed(ngen: Gen, ct: TrieMap[K, V]) = {
var i = 0
val arr = array
val len = arr.length
@@ -536,7 +533,7 @@ extends CNodeBase[K, V] {
case _ => inode
}
- final def toContracted(lev: Int): MainNode[K, V] = if (array.length == 1 && lev > 0) array(0) match {
+ def toContracted(lev: Int): MainNode[K, V] = if (array.length == 1 && lev > 0) array(0) match {
case sn: SNode[K, V] => sn.copyTombed
case _ => this
} else this
@@ -547,7 +544,7 @@ extends CNodeBase[K, V] {
// returns the version of this node with at least some null-inodes
// removed (those existing when the op began)
// - if there are only null-i-nodes below, returns null
- final def toCompressed(ct: TrieMap[K, V], lev: Int, gen: Gen) = {
+ def toCompressed(ct: TrieMap[K, V], lev: Int, gen: Gen) = {
var bmp = bitmap
var i = 0
val arr = array
@@ -571,7 +568,7 @@ extends CNodeBase[K, V] {
private[concurrent] def string(lev: Int): String = "CNode %x\n%s".format(bitmap, array.map(_.string(lev + 1)).mkString("\n"))
/* quiescently consistent - don't call concurrently to anything involving a GCAS!! */
- protected def collectElems: Seq[(K, V)] = array flatMap {
+ private def collectElems: Seq[(K, V)] = array flatMap {
case sn: SNode[K, V] => Some(sn.kvPair)
case in: INode[K, V] => in.mainnode match {
case tn: TNode[K, V] => Some(tn.kvPair)
@@ -580,7 +577,7 @@ extends CNodeBase[K, V] {
}
}
- protected def collectLocalElems: Seq[String] = array flatMap {
+ private def collectLocalElems: Seq[String] = array flatMap {
case sn: SNode[K, V] => Some(sn.kvPair._2.toString)
case in: INode[K, V] => Some(in.toString.drop(14) + "(" + in.gen + ")")
}
@@ -687,11 +684,11 @@ extends scala.collection.concurrent.Map[K, V]
} while (obj != TrieMapSerializationEnd)
}
- @inline final def CAS_ROOT(ov: AnyRef, nv: AnyRef) = rootupdater.compareAndSet(this, ov, nv)
+ def CAS_ROOT(ov: AnyRef, nv: AnyRef) = rootupdater.compareAndSet(this, ov, nv)
- final def readRoot(abort: Boolean = false): INode[K, V] = RDCSS_READ_ROOT(abort)
+ def readRoot(abort: Boolean = false): INode[K, V] = RDCSS_READ_ROOT(abort)
- @inline final def RDCSS_READ_ROOT(abort: Boolean = false): INode[K, V] = {
+ def RDCSS_READ_ROOT(abort: Boolean = false): INode[K, V] = {
val r = /*READ*/root
r match {
case in: INode[K, V] => in
@@ -781,9 +778,9 @@ extends scala.collection.concurrent.Map[K, V]
override def empty: TrieMap[K, V] = new TrieMap[K, V]
- final def isReadOnly = rootupdater eq null
+ def isReadOnly = rootupdater eq null
- final def nonReadOnly = rootupdater ne null
+ def nonReadOnly = rootupdater ne null
/** Returns a snapshot of this TrieMap.
* This operation is lock-free and linearizable.
@@ -794,7 +791,7 @@ extends scala.collection.concurrent.Map[K, V]
* TrieMap is distributed across all the threads doing updates or accesses
* subsequent to the snapshot creation.
*/
- @tailrec final def snapshot(): TrieMap[K, V] = {
+ @tailrec def snapshot(): TrieMap[K, V] = {
val r = RDCSS_READ_ROOT()
val expmain = r.gcasRead(this)
if (RDCSS_ROOT(r, expmain, r.copyToGen(new Gen, this))) new TrieMap(r.copyToGen(new Gen, this), rootupdater, hashing, equality)
@@ -813,34 +810,34 @@ extends scala.collection.concurrent.Map[K, V]
*
* This method is used by other methods such as `size` and `iterator`.
*/
- @tailrec final def readOnlySnapshot(): scala.collection.Map[K, V] = {
+ @tailrec def readOnlySnapshot(): scala.collection.Map[K, V] = {
val r = RDCSS_READ_ROOT()
val expmain = r.gcasRead(this)
if (RDCSS_ROOT(r, expmain, r.copyToGen(new Gen, this))) new TrieMap(r, null, hashing, equality)
else readOnlySnapshot()
}
- @tailrec final override def clear() {
+ @tailrec override def clear() {
val r = RDCSS_READ_ROOT()
if (!RDCSS_ROOT(r, r.gcasRead(this), INode.newRootNode[K, V])) clear()
}
- @inline
+
def computeHash(k: K) = hashingobj.hash(k)
- final def lookup(k: K): V = {
+ def lookup(k: K): V = {
val hc = computeHash(k)
lookuphc(k, hc).asInstanceOf[V]
}
- final override def apply(k: K): V = {
+ override def apply(k: K): V = {
val hc = computeHash(k)
val res = lookuphc(k, hc)
if (res eq null) throw new NoSuchElementException
else res.asInstanceOf[V]
}
- final def get(k: K): Option[V] = {
+ def get(k: K): Option[V] = {
val hc = computeHash(k)
Option(lookuphc(k, hc)).asInstanceOf[Option[V]]
}
@@ -850,22 +847,22 @@ extends scala.collection.concurrent.Map[K, V]
insertifhc(key, hc, value, null)
}
- final override def update(k: K, v: V) {
+ override def update(k: K, v: V) {
val hc = computeHash(k)
inserthc(k, hc, v)
}
- final def +=(kv: (K, V)) = {
+ def +=(kv: (K, V)) = {
update(kv._1, kv._2)
this
}
- final override def remove(k: K): Option[V] = {
+ override def remove(k: K): Option[V] = {
val hc = computeHash(k)
removehc(k, null.asInstanceOf[V], hc)
}
- final def -=(k: K) = {
+ def -=(k: K) = {
remove(k)
this
}
@@ -960,12 +957,12 @@ private[collection] class TrieMapIterator[K, V](var level: Int, private var ct:
current = null
}
- @inline private def checkSubiter() = if (!subiter.hasNext) {
+ private def checkSubiter() = if (!subiter.hasNext) {
subiter = null
advance()
}
- @inline private def initialize() {
+ private def initialize() {
assert(ct.isReadOnly)
val r = ct.RDCSS_READ_ROOT()
diff --git a/src/library/scala/collection/immutable/Range.scala b/src/library/scala/collection/immutable/Range.scala
index a2875ec3fb..92ea5d3f04 100644
--- a/src/library/scala/collection/immutable/Range.scala
+++ b/src/library/scala/collection/immutable/Range.scala
@@ -127,7 +127,7 @@ extends scala.collection.AbstractSeq[Int]
}
}
- @inline final def apply(idx: Int): Int = {
+ final def apply(idx: Int): Int = {
validateMaxLength()
if (idx < 0 || idx >= numRangeElements) throw new IndexOutOfBoundsException(idx.toString)
else start + (step * idx)
@@ -346,11 +346,11 @@ object Range {
/** Make an inclusive range from `start` to `end` with given step value.
* @note step != 0
*/
- @inline def inclusive(start: Int, end: Int, step: Int): Range.Inclusive = new Inclusive(start, end, step)
+ def inclusive(start: Int, end: Int, step: Int): Range.Inclusive = new Inclusive(start, end, step)
/** Make an inclusive range from `start` to `end` with step value 1.
*/
- @inline def inclusive(start: Int, end: Int): Range.Inclusive = new Inclusive(start, end, 1)
+ def inclusive(start: Int, end: Int): Range.Inclusive = new Inclusive(start, end, 1)
// BigInt and Long are straightforward generic ranges.
object BigInt {
diff --git a/src/library/scala/collection/immutable/RedBlackTree.scala b/src/library/scala/collection/immutable/RedBlackTree.scala
index 5bdba26d02..bb489dd80a 100644
--- a/src/library/scala/collection/immutable/RedBlackTree.scala
+++ b/src/library/scala/collection/immutable/RedBlackTree.scala
@@ -132,6 +132,15 @@ object RedBlackTree {
else if (overwrite || k != tree.key) mkTree(isBlackTree(tree), k, v, tree.left, tree.right)
else tree
}
+ private[this] def updNth[A, B, B1 >: B](tree: Tree[A, B], idx: Int, k: A, v: B1, overwrite: Boolean): Tree[A, B1] = if (tree eq null) {
+ RedTree(k, v, null, null)
+ } else {
+ val rank = count(tree.left) + 1
+ if (idx < rank) balanceLeft(isBlackTree(tree), tree.key, tree.value, updNth(tree.left, idx, k, v, overwrite), tree.right)
+ else if (idx > rank) balanceRight(isBlackTree(tree), tree.key, tree.value, tree.left, updNth(tree.right, idx - rank, k, v, overwrite))
+ else if (overwrite) mkTree(isBlackTree(tree), k, v, tree.left, tree.right)
+ else tree
+ }
/* Based on Stefan Kahrs' Haskell version of Okasaki's Red&Black Trees
* http://www.cse.unsw.edu.au/~dons/data/RedBlackTree.html */
@@ -249,27 +258,27 @@ object RedBlackTree {
else rebalance(tree, newLeft, newRight)
}
- private[this] def doDrop[A: Ordering, B](tree: Tree[A, B], n: Int): Tree[A, B] = {
+ private[this] def doDrop[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = {
if (n <= 0) return tree
if (n >= this.count(tree)) return null
val count = this.count(tree.left)
if (n > count) return doDrop(tree.right, n - count - 1)
val newLeft = doDrop(tree.left, n)
if (newLeft eq tree.left) tree
- else if (newLeft eq null) upd(tree.right, tree.key, tree.value, false)
+ else if (newLeft eq null) updNth(tree.right, n - count - 1, tree.key, tree.value, false)
else rebalance(tree, newLeft, tree.right)
}
- private[this] def doTake[A: Ordering, B](tree: Tree[A, B], n: Int): Tree[A, B] = {
+ private[this] def doTake[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = {
if (n <= 0) return null
if (n >= this.count(tree)) return tree
val count = this.count(tree.left)
if (n <= count) return doTake(tree.left, n)
val newRight = doTake(tree.right, n - count - 1)
if (newRight eq tree.right) tree
- else if (newRight eq null) upd(tree.left, tree.key, tree.value, false)
+ else if (newRight eq null) updNth(tree.left, n, tree.key, tree.value, false)
else rebalance(tree, tree.left, newRight)
}
- private[this] def doSlice[A: Ordering, B](tree: Tree[A, B], from: Int, until: Int): Tree[A, B] = {
+ private[this] def doSlice[A, B](tree: Tree[A, B], from: Int, until: Int): Tree[A, B] = {
if (tree eq null) return null
val count = this.count(tree.left)
if (from > count) return doSlice(tree.right, from - count - 1, until - count - 1)
@@ -277,8 +286,8 @@ object RedBlackTree {
val newLeft = doDrop(tree.left, from)
val newRight = doTake(tree.right, until - count - 1)
if ((newLeft eq tree.left) && (newRight eq tree.right)) tree
- else if (newLeft eq null) upd(newRight, tree.key, tree.value, false)
- else if (newRight eq null) upd(newLeft, tree.key, tree.value, false)
+ else if (newLeft eq null) updNth(newRight, from - count - 1, tree.key, tree.value, false)
+ else if (newRight eq null) updNth(newLeft, until, tree.key, tree.value, false)
else rebalance(tree, newLeft, newRight)
}
@@ -380,7 +389,7 @@ object RedBlackTree {
@(inline @getter) final val left: Tree[A, B],
@(inline @getter) final val right: Tree[A, B])
extends Serializable {
- final val count: Int = 1 + RedBlackTree.count(left) + RedBlackTree.count(right)
+ @(inline @getter) final val count: Int = 1 + RedBlackTree.count(left) + RedBlackTree.count(right)
def black: Tree[A, B]
def red: Tree[A, B]
}
diff --git a/src/library/scala/collection/immutable/Vector.scala b/src/library/scala/collection/immutable/Vector.scala
index 98b5aa6d9f..a33bf2c9c5 100644
--- a/src/library/scala/collection/immutable/Vector.scala
+++ b/src/library/scala/collection/immutable/Vector.scala
@@ -25,11 +25,11 @@ object Vector extends SeqFactory[Vector] {
private val VectorReusableCBF: GenericCanBuildFrom[Nothing] = new VectorReusableCBF
- @inline implicit def canBuildFrom[A]: CanBuildFrom[Coll, A, Vector[A]] =
+ implicit def canBuildFrom[A]: CanBuildFrom[Coll, A, Vector[A]] =
VectorReusableCBF.asInstanceOf[CanBuildFrom[Coll, A, Vector[A]]]
def newBuilder[A]: Builder[A, Vector[A]] = new VectorBuilder[A]
private[immutable] val NIL = new Vector[Nothing](0, 0, 0)
- @inline override def empty[A]: Vector[A] = NIL
+ override def empty[A]: Vector[A] = NIL
}
// in principle, most members should be private. however, access privileges must
@@ -94,7 +94,7 @@ override def companion: GenericCompanion[Vector] = Vector
if (s.depth > 1) s.gotoPos(startIndex, startIndex ^ focus)
}
- @inline override def iterator: VectorIterator[A] = {
+ override def iterator: VectorIterator[A] = {
val s = new VectorIterator[A](startIndex, endIndex)
initIterator(s)
s
@@ -120,16 +120,6 @@ override def companion: GenericCompanion[Vector] = Vector
// In principle, escape analysis could even remove the iterator/builder allocations and do it
// with local variables exclusively. But we're not quite there yet ...
- @deprecated("this method is experimental and will be removed in a future release", "2.8.0")
- @inline def foreachFast[U](f: A => U): Unit = iterator.foreachFast(f)
- @deprecated("this method is experimental and will be removed in a future release", "2.8.0")
- @inline def mapFast[B, That](f: A => B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That = {
- val b = bf(repr)
- foreachFast(x => b += f(x))
- b.result
- }
-
-
def apply(index: Int): A = {
val idx = checkRangeConvert(index)
//println("get elem: "+index + "/"+idx + "(focus:" +focus+" xor:"+(idx^focus)+" depth:"+depth+")")
@@ -147,17 +137,17 @@ override def companion: GenericCompanion[Vector] = Vector
// SeqLike api
- @inline override def updated[B >: A, That](index: Int, elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That = bf match {
+ override def updated[B >: A, That](index: Int, elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That = bf match {
case _: Vector.VectorReusableCBF => updateAt(index, elem).asInstanceOf[That] // just ignore bf
case _ => super.updated(index, elem)(bf)
}
- @inline override def +:[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That = bf match {
+ override def +:[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That = bf match {
case _: Vector.VectorReusableCBF => appendFront(elem).asInstanceOf[That] // just ignore bf
case _ => super.+:(elem)(bf)
}
- @inline override def :+[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That = bf match {
+ override def :+[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That = bf match {
case _: Vector.VectorReusableCBF => appendBack(elem).asInstanceOf[That] // just ignore bf
case _ => super.:+(elem)(bf)
}
@@ -696,9 +686,6 @@ extends AbstractIterator[A]
v.initFrom(this)
v
}
-
- @deprecated("this method is experimental and will be removed in a future release", "2.8.0")
- @inline def foreachFast[U](f: A => U) { while (hasNext) f(next()) }
}
diff --git a/src/library/scala/collection/mutable/FlatHashTable.scala b/src/library/scala/collection/mutable/FlatHashTable.scala
index 12066055e9..74f576b0f7 100644
--- a/src/library/scala/collection/mutable/FlatHashTable.scala
+++ b/src/library/scala/collection/mutable/FlatHashTable.scala
@@ -44,7 +44,7 @@ trait FlatHashTable[A] extends FlatHashTable.HashUtils[A] {
*/
@transient protected var sizemap: Array[Int] = null
- @transient var seedvalue: Int = tableSizeSeed
+ @transient protected var seedvalue: Int = tableSizeSeed
import HashTable.powerOfTwo
@@ -109,7 +109,7 @@ trait FlatHashTable[A] extends FlatHashTable.HashUtils[A] {
}
/** Finds an entry in the hash table if such an element exists. */
- def findEntry(elem: A): Option[A] = {
+ protected def findEntry(elem: A): Option[A] = {
var h = index(elemHashCode(elem))
var entry = table(h)
while (null != entry && entry != elem) {
@@ -120,7 +120,7 @@ trait FlatHashTable[A] extends FlatHashTable.HashUtils[A] {
}
/** Checks whether an element is contained in the hash table. */
- def containsEntry(elem: A): Boolean = {
+ protected def containsEntry(elem: A): Boolean = {
var h = index(elemHashCode(elem))
var entry = table(h)
while (null != entry && entry != elem) {
@@ -133,7 +133,7 @@ trait FlatHashTable[A] extends FlatHashTable.HashUtils[A] {
/** Add entry if not yet in table.
* @return Returns `true` if a new entry was added, `false` otherwise.
*/
- def addEntry(elem: A) : Boolean = {
+ protected def addEntry(elem: A) : Boolean = {
var h = index(elemHashCode(elem))
var entry = table(h)
while (null != entry) {
@@ -150,7 +150,7 @@ trait FlatHashTable[A] extends FlatHashTable.HashUtils[A] {
}
/** Removes an entry from the hash table, returning an option value with the element, or `None` if it didn't exist. */
- def removeEntry(elem: A) : Option[A] = {
+ protected def removeEntry(elem: A) : Option[A] = {
if (tableDebug) checkConsistent()
def precedes(i: Int, j: Int) = {
val d = table.length >> 1
@@ -185,7 +185,7 @@ trait FlatHashTable[A] extends FlatHashTable.HashUtils[A] {
None
}
- def iterator: Iterator[A] = new AbstractIterator[A] {
+ protected def iterator: Iterator[A] = new AbstractIterator[A] {
private var i = 0
def hasNext: Boolean = {
while (i < table.length && (null == table(i))) i += 1
diff --git a/src/library/scala/collection/mutable/HashMap.scala b/src/library/scala/collection/mutable/HashMap.scala
index da486f4042..be85df3c28 100644
--- a/src/library/scala/collection/mutable/HashMap.scala
+++ b/src/library/scala/collection/mutable/HashMap.scala
@@ -49,7 +49,7 @@ extends AbstractMap[A, B]
type Entry = DefaultEntry[A, B]
override def empty: HashMap[A, B] = HashMap.empty[A, B]
- override def clear() = clearTable()
+ override def clear() { clearTable() }
override def size: Int = tableSize
def this() = this(null)
@@ -57,22 +57,23 @@ extends AbstractMap[A, B]
override def par = new ParHashMap[A, B](hashTableContents)
// contains and apply overridden to avoid option allocations.
- override def contains(key: A) = findEntry(key) != null
+ override def contains(key: A): Boolean = findEntry(key) != null
+
override def apply(key: A): B = {
val result = findEntry(key)
- if (result == null) default(key)
+ if (result eq null) default(key)
else result.value
}
def get(key: A): Option[B] = {
val e = findEntry(key)
- if (e == null) None
+ if (e eq null) None
else Some(e.value)
}
override def put(key: A, value: B): Option[B] = {
- val e = findEntry(key)
- if (e == null) { addEntry(new Entry(key, value)); None }
+ val e = findOrAddEntry(key, value)
+ if (e eq null) None
else { val v = e.value; e.value = value; Some(v) }
}
@@ -85,9 +86,8 @@ extends AbstractMap[A, B]
}
def += (kv: (A, B)): this.type = {
- val e = findEntry(kv._1)
- if (e == null) addEntry(new Entry(kv._1, kv._2))
- else e.value = kv._2
+ val e = findOrAddEntry(kv._1, kv._2)
+ if (e ne null) e.value = kv._2
this
}
@@ -127,12 +127,19 @@ extends AbstractMap[A, B]
if (!isSizeMapDefined) sizeMapInitAndRebuild
} else sizeMapDisable
+ protected def createNewEntry[B1](key: A, value: B1): Entry = {
+ new Entry(key, value.asInstanceOf[B])
+ }
+
private def writeObject(out: java.io.ObjectOutputStream) {
- serializeTo(out, _.value)
+ serializeTo(out, { entry =>
+ out.writeObject(entry.key)
+ out.writeObject(entry.value)
+ })
}
private def readObject(in: java.io.ObjectInputStream) {
- init[B](in, new Entry(_, _))
+ init(in, createNewEntry(in.readObject().asInstanceOf[A], in.readObject()))
}
}
diff --git a/src/library/scala/collection/mutable/HashSet.scala b/src/library/scala/collection/mutable/HashSet.scala
index b263b46d36..a5b636c83d 100644
--- a/src/library/scala/collection/mutable/HashSet.scala
+++ b/src/library/scala/collection/mutable/HashSet.scala
@@ -53,7 +53,7 @@ extends AbstractSet[A]
override def companion: GenericCompanion[HashSet] = HashSet
- override def size = tableSize
+ override def size: Int = tableSize
def contains(elem: A): Boolean = containsEntry(elem)
@@ -67,7 +67,9 @@ extends AbstractSet[A]
override def remove(elem: A): Boolean = removeEntry(elem).isDefined
- override def clear() = clearTable()
+ override def clear() { clearTable() }
+
+ override def iterator: Iterator[A] = super[FlatHashTable].iterator
override def foreach[U](f: A => U) {
var i = 0
diff --git a/src/library/scala/collection/mutable/HashTable.scala b/src/library/scala/collection/mutable/HashTable.scala
index 968d99d042..eb6717393b 100644
--- a/src/library/scala/collection/mutable/HashTable.scala
+++ b/src/library/scala/collection/mutable/HashTable.scala
@@ -32,6 +32,9 @@ package mutable
* @tparam A type of the elements contained in this hash table.
*/
trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashUtils[A] {
+ // Replacing Entry type parameter by abstract type member here allows to not expose to public
+ // implementation-specific entry classes such as `DefaultEntry` or `LinkedEntry`.
+ // However, I'm afraid it's too late now for such breaking change.
import HashTable._
@transient protected var _loadFactor = defaultLoadFactor
@@ -52,7 +55,7 @@ trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashU
*/
@transient protected var sizemap: Array[Int] = null
- @transient var seedvalue: Int = tableSizeSeed
+ @transient protected var seedvalue: Int = tableSizeSeed
protected def tableSizeSeed = Integer.bitCount(table.length - 1)
@@ -75,11 +78,10 @@ trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashU
}
/**
- * Initializes the collection from the input stream. `f` will be called for each key/value pair
- * read from the input stream in the order determined by the stream. This is useful for
- * structures where iteration order is important (e.g. LinkedHashMap).
+ * Initializes the collection from the input stream. `readEntry` will be called for each
+ * entry to be read from the input stream.
*/
- private[collection] def init[B](in: java.io.ObjectInputStream, f: (A, B) => Entry) {
+ private[collection] def init(in: java.io.ObjectInputStream, readEntry: => Entry) {
in.defaultReadObject
_loadFactor = in.readInt()
@@ -100,35 +102,34 @@ trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashU
var index = 0
while (index < size) {
- addEntry(f(in.readObject().asInstanceOf[A], in.readObject().asInstanceOf[B]))
+ addEntry(readEntry)
index += 1
}
}
/**
* Serializes the collection to the output stream by saving the load factor, collection
- * size, collection keys and collection values. `value` is responsible for providing a value
- * from an entry.
+ * size and collection entries. `writeEntry` is responsible for writing an entry to the stream.
*
- * `foreach` determines the order in which the key/value pairs are saved to the stream. To
+ * `foreachEntry` determines the order in which the key/value pairs are saved to the stream. To
* deserialize, `init` should be used.
*/
- private[collection] def serializeTo[B](out: java.io.ObjectOutputStream, value: Entry => B) {
+ private[collection] def serializeTo(out: java.io.ObjectOutputStream, writeEntry: Entry => Unit) {
out.defaultWriteObject
out.writeInt(_loadFactor)
out.writeInt(tableSize)
out.writeInt(seedvalue)
out.writeBoolean(isSizeMapDefined)
- foreachEntry { entry =>
- out.writeObject(entry.key)
- out.writeObject(value(entry))
- }
+
+ foreachEntry(writeEntry)
}
/** Find entry with given key in table, null if not found.
*/
- protected def findEntry(key: A): Entry = {
- val h = index(elemHashCode(key))
+ protected def findEntry(key: A): Entry =
+ findEntry0(key, index(elemHashCode(key)))
+
+ private[this] def findEntry0(key: A, h: Int): Entry = {
var e = table(h).asInstanceOf[Entry]
while (e != null && !elemEquals(e.key, key)) e = e.next
e
@@ -138,7 +139,10 @@ trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashU
* pre: no entry with same key exists
*/
protected def addEntry(e: Entry) {
- val h = index(elemHashCode(e.key))
+ addEntry0(e, index(elemHashCode(e.key)))
+ }
+
+ private[this] def addEntry0(e: Entry, h: Int) {
e.next = table(h).asInstanceOf[Entry]
table(h) = e
tableSize = tableSize + 1
@@ -147,6 +151,24 @@ trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashU
resize(2 * table.length)
}
+ /** Find entry with given key in table, or add new one if not found.
+ * May be somewhat faster then `findEntry`/`addEntry` pair as it
+ * computes entry's hash index only once.
+ * Returns entry found in table or null.
+ * New entries are created by calling `createNewEntry` method.
+ */
+ protected def findOrAddEntry[B](key: A, value: B): Entry = {
+ val h = index(elemHashCode(key))
+ val e = findEntry0(key, h)
+ if (e ne null) e else { addEntry0(createNewEntry(key, value), h); null }
+ }
+
+ /** Creates new entry to be immediately inserted into the hashtable.
+ * This method is guaranteed to be called only once and in case that the entry
+ * will be added. In other words, an implementation may be side-effecting.
+ */
+ protected def createNewEntry[B](key: A, value: B): Entry
+
/** Remove entry from table if present.
*/
protected def removeEntry(key: A) : Entry = {
@@ -195,7 +217,7 @@ trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashU
}
/** Avoid iterator for a 2x faster traversal. */
- protected def foreachEntry[C](f: Entry => C) {
+ protected def foreachEntry[U](f: Entry => U) {
val iterTable = table
var idx = lastPopulatedIndex
var es = iterTable(idx)
diff --git a/src/library/scala/collection/mutable/LinkedHashMap.scala b/src/library/scala/collection/mutable/LinkedHashMap.scala
index 5643e070f8..5028884a8e 100644
--- a/src/library/scala/collection/mutable/LinkedHashMap.scala
+++ b/src/library/scala/collection/mutable/LinkedHashMap.scala
@@ -67,23 +67,9 @@ class LinkedHashMap[A, B] extends AbstractMap[A, B]
}
override def put(key: A, value: B): Option[B] = {
- val e = findEntry(key)
- if (e == null) {
- val e = new Entry(key, value)
- addEntry(e)
- updateLinkedEntries(e)
- None
- } else {
- val v = e.value
- e.value = value
- Some(v)
- }
- }
-
- private def updateLinkedEntries(e: Entry) {
- if (firstEntry == null) firstEntry = e
- else { lastEntry.later = e; e.earlier = lastEntry }
- lastEntry = e
+ val e = findOrAddEntry(key, value)
+ if (e eq null) None
+ else { val v = e.value; e.value = value; Some(v) }
}
override def remove(key: A): Option[B] = {
@@ -143,7 +129,7 @@ class LinkedHashMap[A, B] extends AbstractMap[A, B]
else Iterator.empty.next
}
- override def foreach[U](f: ((A, B)) => U) = {
+ override def foreach[U](f: ((A, B)) => U) {
var cur = firstEntry
while (cur ne null) {
f((cur.key, cur.value))
@@ -151,7 +137,7 @@ class LinkedHashMap[A, B] extends AbstractMap[A, B]
}
}
- protected override def foreachEntry[C](f: Entry => C) {
+ protected override def foreachEntry[U](f: Entry => U) {
var cur = firstEntry
while (cur ne null) {
f(cur)
@@ -159,22 +145,29 @@ class LinkedHashMap[A, B] extends AbstractMap[A, B]
}
}
+ protected def createNewEntry[B1](key: A, value: B1): Entry = {
+ val e = new Entry(key, value.asInstanceOf[B])
+ if (firstEntry eq null) firstEntry = e
+ else { lastEntry.later = e; e.earlier = lastEntry }
+ lastEntry = e
+ e
+ }
+
override def clear() {
clearTable()
firstEntry = null
}
private def writeObject(out: java.io.ObjectOutputStream) {
- serializeTo(out, _.value)
+ serializeTo(out, { entry =>
+ out.writeObject(entry.key)
+ out.writeObject(entry.value)
+ })
}
private def readObject(in: java.io.ObjectInputStream) {
firstEntry = null
lastEntry = null
- init[B](in, { (key, value) =>
- val entry = new Entry(key, value)
- updateLinkedEntries(entry)
- entry
- })
+ init(in, createNewEntry(in.readObject().asInstanceOf[A], in.readObject()))
}
}
diff --git a/src/library/scala/collection/mutable/LinkedHashSet.scala b/src/library/scala/collection/mutable/LinkedHashSet.scala
index 3f789f9fa2..88bad5ff9b 100644
--- a/src/library/scala/collection/mutable/LinkedHashSet.scala
+++ b/src/library/scala/collection/mutable/LinkedHashSet.scala
@@ -19,6 +19,7 @@ import generic._
*
* @author Matthias Zenger
* @author Martin Odersky
+ * @author Pavel Pavlov
* @version 2.0, 31/12/2006
* @since 1
*
@@ -43,46 +44,82 @@ class LinkedHashSet[A] extends AbstractSet[A]
with Set[A]
with GenericSetTemplate[A, LinkedHashSet]
with SetLike[A, LinkedHashSet[A]]
- with FlatHashTable[A]
+ with HashTable[A, LinkedHashSet.Entry[A]]
with Serializable
{
override def companion: GenericCompanion[LinkedHashSet] = LinkedHashSet
- @transient private[this] var ordered = new ListBuffer[A]
+ type Entry = LinkedHashSet.Entry[A]
- override def size = tableSize
+ @transient protected var firstEntry: Entry = null
+ @transient protected var lastEntry: Entry = null
- def contains(elem: A): Boolean = containsEntry(elem)
+ override def size: Int = tableSize
+
+ def contains(elem: A): Boolean = findEntry(elem) ne null
def += (elem: A): this.type = { add(elem); this }
def -= (elem: A): this.type = { remove(elem); this }
- override def add(elem: A): Boolean =
- if (addEntry(elem)) { ordered += elem; true }
- else false
+ override def add(elem: A): Boolean = findOrAddEntry(elem, null) eq null
+
+ override def remove(elem: A): Boolean = {
+ val e = removeEntry(elem)
+ if (e eq null) false
+ else {
+ if (e.earlier eq null) firstEntry = e.later
+ else e.earlier.later = e.later
+ if (e.later eq null) lastEntry = e.earlier
+ else e.later.earlier = e.earlier
+ true
+ }
+ }
- override def remove(elem: A): Boolean =
- removeEntry(elem) match {
- case None => false
- case _ => ordered -= elem; true
+ def iterator: Iterator[A] = new AbstractIterator[A] {
+ private var cur = firstEntry
+ def hasNext = cur ne null
+ def next =
+ if (hasNext) { val res = cur.key; cur = cur.later; res }
+ else Iterator.empty.next
+ }
+
+ override def foreach[U](f: A => U) {
+ var cur = firstEntry
+ while (cur ne null) {
+ f(cur.key)
+ cur = cur.later
}
+ }
- override def clear() {
- ordered.clear()
- clearTable()
+ protected override def foreachEntry[U](f: Entry => U) {
+ var cur = firstEntry
+ while (cur ne null) {
+ f(cur)
+ cur = cur.later
+ }
}
- override def iterator: Iterator[A] = ordered.iterator
+ protected def createNewEntry[B](key: A, dummy: B): Entry = {
+ val e = new Entry(key)
+ if (firstEntry eq null) firstEntry = e
+ else { lastEntry.later = e; e.earlier = lastEntry }
+ lastEntry = e
+ e
+ }
- override def foreach[U](f: A => U) = ordered foreach f
+ override def clear() {
+ clearTable()
+ firstEntry = null
+ }
- private def writeObject(s: java.io.ObjectOutputStream) {
- serializeTo(s)
+ private def writeObject(out: java.io.ObjectOutputStream) {
+ serializeTo(out, { e => out.writeObject(e.key) })
}
private def readObject(in: java.io.ObjectInputStream) {
- ordered = new ListBuffer[A]
- init(in, ordered += _)
+ firstEntry = null
+ lastEntry = null
+ init(in, createNewEntry(in.readObject().asInstanceOf[A], null))
}
}
@@ -93,5 +130,13 @@ class LinkedHashSet[A] extends AbstractSet[A]
object LinkedHashSet extends MutableSetFactory[LinkedHashSet] {
implicit def canBuildFrom[A]: CanBuildFrom[Coll, A, LinkedHashSet[A]] = setCanBuildFrom[A]
override def empty[A]: LinkedHashSet[A] = new LinkedHashSet[A]
+
+ /** Class for the linked hash set entry, used internally.
+ * @since 2.10
+ */
+ private[scala] final class Entry[A](val key: A) extends HashEntry[A, Entry[A]] with Serializable {
+ var earlier: Entry[A] = null
+ var later: Entry[A] = null
+ }
}
diff --git a/src/library/scala/collection/mutable/PriorityQueue.scala b/src/library/scala/collection/mutable/PriorityQueue.scala
index abd8c1cdff..1fc3928531 100644
--- a/src/library/scala/collection/mutable/PriorityQueue.scala
+++ b/src/library/scala/collection/mutable/PriorityQueue.scala
@@ -43,12 +43,12 @@ class PriorityQueue[A](implicit val ord: Ordering[A])
{
import ord._
- private final class ResizableArrayAccess[A] extends AbstractSeq[A] with ResizableArray[A] {
- @inline def p_size0 = size0
- @inline def p_size0_=(s: Int) = size0 = s
- @inline def p_array = array
- @inline def p_ensureSize(n: Int) = super.ensureSize(n)
- @inline def p_swap(a: Int, b: Int) = super.swap(a, b)
+ private class ResizableArrayAccess[A] extends AbstractSeq[A] with ResizableArray[A] {
+ def p_size0 = size0
+ def p_size0_=(s: Int) = size0 = s
+ def p_array = array
+ def p_ensureSize(n: Int) = super.ensureSize(n)
+ def p_swap(a: Int, b: Int) = super.swap(a, b)
}
protected[this] override def newBuilder = new PriorityQueue[A]
diff --git a/src/library/scala/collection/parallel/mutable/ParHashMap.scala b/src/library/scala/collection/parallel/mutable/ParHashMap.scala
index 1921727ce3..fad7ddad59 100644
--- a/src/library/scala/collection/parallel/mutable/ParHashMap.scala
+++ b/src/library/scala/collection/parallel/mutable/ParHashMap.scala
@@ -67,13 +67,13 @@ self =>
def get(key: K): Option[V] = {
val e = findEntry(key)
- if (e == null) None
+ if (e eq null) None
else Some(e.value)
}
def put(key: K, value: V): Option[V] = {
- val e = findEntry(key)
- if (e == null) { addEntry(new Entry(key, value)); None }
+ val e = findOrAddEntry(key, value)
+ if (e eq null) None
else { val v = e.value; e.value = value; Some(v) }
}
@@ -86,9 +86,8 @@ self =>
}
def += (kv: (K, V)): this.type = {
- val e = findEntry(kv._1)
- if (e == null) addEntry(new Entry(kv._1, kv._2))
- else e.value = kv._2
+ val e = findOrAddEntry(kv._1, kv._2)
+ if (e ne null) e.value = kv._2
this
}
@@ -103,12 +102,19 @@ self =>
new ParHashMapIterator(idxFrom, idxUntil, totalSz, es)
}
+ protected def createNewEntry[V1](key: K, value: V1): Entry = {
+ new Entry(key, value.asInstanceOf[V])
+ }
+
private def writeObject(out: java.io.ObjectOutputStream) {
- serializeTo(out, _.value)
+ serializeTo(out, { entry =>
+ out.writeObject(entry.key)
+ out.writeObject(entry.value)
+ })
}
private def readObject(in: java.io.ObjectInputStream) {
- init[V](in, new Entry(_, _))
+ init(in, createNewEntry(in.readObject().asInstanceOf[K], in.readObject()))
}
private[parallel] override def brokenInvariants = {
@@ -190,7 +196,9 @@ extends scala.collection.parallel.BucketCombiner[(K, V), ParHashMap[K, V], Defau
// construct a normal table and fill it sequentially
// TODO parallelize by keeping separate sizemaps and merging them
object table extends HashTable[K, DefaultEntry[K, V]] {
- def insertEntry(e: DefaultEntry[K, V]) = if (super.findEntry(e.key) eq null) super.addEntry(e)
+ type Entry = DefaultEntry[K, V]
+ def insertEntry(e: Entry) { super.findOrAddEntry(e.key, e) }
+ def createNewEntry[E](key: K, entry: E): Entry = entry.asInstanceOf[Entry]
sizeMapInit(table.length)
}
var i = 0
@@ -251,6 +259,7 @@ extends scala.collection.parallel.BucketCombiner[(K, V), ParHashMap[K, V], Defau
assert(h >= block * blocksize && h < (block + 1) * blocksize)
}
}
+ protected def createNewEntry[X](key: K, x: X) = ???
}
/* tasks */
diff --git a/src/library/scala/collection/parallel/mutable/ParHashSet.scala b/src/library/scala/collection/parallel/mutable/ParHashSet.scala
index 7b5b8e3ceb..aef9f6856b 100644
--- a/src/library/scala/collection/parallel/mutable/ParHashSet.scala
+++ b/src/library/scala/collection/parallel/mutable/ParHashSet.scala
@@ -158,12 +158,12 @@ with scala.collection.mutable.FlatHashTable.HashUtils[T] {
val tbl = new FlatHashTable[T] {
sizeMapInit(table.length)
seedvalue = ParHashSetCombiner.this.seedvalue
+ for {
+ buffer <- buckets;
+ if buffer ne null;
+ elem <- buffer
+ } addEntry(elem.asInstanceOf[T])
}
- for {
- buffer <- buckets;
- if buffer ne null;
- elem <- buffer
- } tbl.addEntry(elem.asInstanceOf[T])
tbl.hashTableContents
}
diff --git a/src/library/scala/reflect/ClassTag.scala b/src/library/scala/reflect/ClassTag.scala
index 8a595473cc..5c2067a548 100644
--- a/src/library/scala/reflect/ClassTag.scala
+++ b/src/library/scala/reflect/ClassTag.scala
@@ -5,19 +5,19 @@ import java.lang.{ Class => jClass }
import scala.language.{implicitConversions, existentials}
import scala.runtime.ScalaRunTime.{ arrayClass, arrayElementClass }
-/** A `ClassTag[T]` wraps a runtime class, which can be accessed via the `runtimeClass` method.
+/** A `ClassTag[T]` wraps a runtime class (the erasure) and can create array instances.
*
- * This is useful in itself, but also enables very important use case.
- * Having this knowledge ClassTag can instantiate `Arrays`
- * in those cases where the element type is unknown at compile time.
+ * If an implicit value of type ClassTag[T] is requested, the compiler will create one.
+ * The runtime class (i.e. the erasure, a java.lang.Class on the JVM) of T can be accessed
+ * via the `runtimeClass` field. References to type parameters or abstract type members are
+ * replaced by the concrete types if ClassTags are available for them.
*
- * If an implicit value of type u.ClassTag[T] is required, the compiler will make one up on demand.
- * The implicitly created value contains in its `runtimeClass` field the runtime class that is the result of erasing type T.
- * In that value, any occurrences of type parameters or abstract types U which come themselves with a ClassTag
- * are represented by the type referenced by that tag.
- * If the type T contains unresolved references to type parameters or abstract types, a static error results.
+ * Besides accessing the erasure, a ClassTag knows how to instantiate single- and multi-
+ * dimensional `Arrays` where the element type is unknown at compile time.
*
- * @see [[scala.reflect.base.TypeTags]]
+ * [[scala.reflect.ClassTag]] corresponds to a previous concept of [[scala.reflect.ClassManifest]].
+ *
+ * @see [[scala.reflect.api.TypeTags]]
*/
@scala.annotation.implicitNotFound(msg = "No ClassTag available for ${T}")
trait ClassTag[T] extends ClassManifestDeprecatedApis[T] with Equals with Serializable {
@@ -76,7 +76,7 @@ trait ClassTag[T] extends ClassManifestDeprecatedApis[T] with Equals with Serial
if (conforms) Some(x.asInstanceOf[T]) else None
}
- /** case class accessories */
+ // case class accessories
override def canEqual(x: Any) = x.isInstanceOf[ClassTag[_]]
override def equals(x: Any) = x.isInstanceOf[ClassTag[_]] && this.runtimeClass == x.asInstanceOf[ClassTag[_]].runtimeClass
override def hashCode = scala.runtime.ScalaRunTime.hash(runtimeClass)
@@ -88,6 +88,9 @@ trait ClassTag[T] extends ClassManifestDeprecatedApis[T] with Equals with Serial
}
}
+/**
+ * Class tags corresponding to primitive types and constructor/extractor for ClassTags.
+ */
object ClassTag {
private val ObjectTYPE = classOf[java.lang.Object]
private val NothingTYPE = classOf[scala.runtime.Nothing$]
diff --git a/src/library/scala/reflect/base/Annotations.scala b/src/library/scala/reflect/base/Annotations.scala
deleted file mode 100644
index e3453b1cdf..0000000000
--- a/src/library/scala/reflect/base/Annotations.scala
+++ /dev/null
@@ -1,46 +0,0 @@
-package scala.reflect
-package base
-
-import scala.collection.immutable.ListMap
-
-trait Annotations { self: Universe =>
-
- type Annotation >: Null <: AnyRef
- implicit val AnnotationTag: ClassTag[Annotation]
- val Annotation: AnnotationExtractor
-
- abstract class AnnotationExtractor {
- def apply(tpe: Type, scalaArgs: List[Tree], javaArgs: ListMap[Name, JavaArgument]): Annotation
- def unapply(ann: Annotation): Option[(Type, List[Tree], ListMap[Name, JavaArgument])]
- }
-
- type JavaArgument >: Null <: AnyRef
- implicit val JavaArgumentTag: ClassTag[JavaArgument]
-
- type LiteralArgument >: Null <: AnyRef with JavaArgument
- implicit val LiteralArgumentTag: ClassTag[LiteralArgument]
- val LiteralArgument: LiteralArgumentExtractor
-
- abstract class LiteralArgumentExtractor {
- def apply(value: Constant): LiteralArgument
- def unapply(arg: LiteralArgument): Option[Constant]
- }
-
- type ArrayArgument >: Null <: AnyRef with JavaArgument
- implicit val ArrayArgumentTag: ClassTag[ArrayArgument]
- val ArrayArgument: ArrayArgumentExtractor
-
- abstract class ArrayArgumentExtractor {
- def apply(args: Array[JavaArgument]): ArrayArgument
- def unapply(arg: ArrayArgument): Option[Array[JavaArgument]]
- }
-
- type NestedArgument >: Null <: AnyRef with JavaArgument
- implicit val NestedArgumentTag: ClassTag[NestedArgument]
- val NestedArgument: NestedArgumentExtractor
-
- abstract class NestedArgumentExtractor {
- def apply(annotation: Annotation): NestedArgument
- def unapply(arg: NestedArgument): Option[Annotation]
- }
-} \ No newline at end of file
diff --git a/src/library/scala/reflect/base/Base.scala b/src/library/scala/reflect/base/Base.scala
deleted file mode 100644
index 29bf2df656..0000000000
--- a/src/library/scala/reflect/base/Base.scala
+++ /dev/null
@@ -1,769 +0,0 @@
-package scala.reflect
-package base
-
-import java.io.PrintWriter
-import scala.annotation.switch
-import scala.ref.WeakReference
-import scala.collection.mutable
-import scala.collection.immutable.ListMap
-
-class Base extends Universe { self =>
-
- private var nextId = 0
-
- abstract class Symbol(val name: Name, val flags: FlagSet) extends SymbolBase {
- val id = { nextId += 1; nextId }
- def owner: Symbol
- def fullName: String =
- if (isEffectiveRoot || owner.isEffectiveRoot) name.toString else owner.fullName + "." + name
- private def isEffectiveRoot =
- this == NoSymbol || this == rootMirror.RootClass || this == rootMirror.EmptyPackageClass
-
- def newTermSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TermSymbol =
- new TermSymbol(this, name, flags)
-
- def newModuleAndClassSymbol(name: Name, pos: Position = NoPosition, flags: FlagSet = NoFlags): (ModuleSymbol, ClassSymbol) = {
- val c = new ModuleClassSymbol(this, name.toTypeName, flags)
- val m = new ModuleSymbol(this, name.toTermName, flags, c)
- (m, c)
- }
-
- def newMethodSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): MethodSymbol
- = new MethodSymbol(this, name, flags)
-
- def newTypeSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TypeSymbol =
- new TypeSymbol(this, name, flags)
-
- def newClassSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): ClassSymbol =
- new ClassSymbol(this, name, flags)
-
- def newFreeTermSymbol(name: TermName, value: => Any, flags: FlagSet = NoFlags, origin: String = null) =
- new FreeTermSymbol(this, name, flags)
-
- def newFreeTypeSymbol(name: TypeName, flags: FlagSet = NoFlags, origin: String = null) =
- new FreeTypeSymbol(this, name, flags)
-
- private def kindString: String =
- if (isModule) "module"
- else if (isClass) "class"
- else if (isFreeType) "free type"
- else if (isType) "type"
- else if (isMethod) "method"
- else if (isFreeTerm) "free term"
- else if (isTerm) "value"
- else "symbol"
- override def toString() = s"$kindString $name"
- }
- implicit val SymbolTag = ClassTag[Symbol](classOf[Symbol])
-
- class TermSymbol(val owner: Symbol, override val name: TermName, flags: FlagSet)
- extends Symbol(name, flags) with TermSymbolBase
- implicit val TermSymbolTag = ClassTag[TermSymbol](classOf[TermSymbol])
-
- class TypeSymbol(val owner: Symbol, override val name: TypeName, flags: FlagSet)
- extends Symbol(name, flags) with TypeSymbolBase {
- override def toTypeConstructor = TypeRef(ThisType(owner), this, Nil)
- override def toType = TypeRef(ThisType(owner), this, Nil)
- override def toTypeIn(site: Type) = TypeRef(ThisType(owner), this, Nil)
- }
- implicit val TypeSymbolTag = ClassTag[TypeSymbol](classOf[TypeSymbol])
-
- class MethodSymbol(owner: Symbol, name: TermName, flags: FlagSet)
- extends TermSymbol(owner, name, flags) with MethodSymbolBase
- implicit val MethodSymbolTag = ClassTag[MethodSymbol](classOf[MethodSymbol])
-
- class ModuleSymbol(owner: Symbol, name: TermName, flags: FlagSet, override val moduleClass: Symbol)
- extends TermSymbol(owner, name, flags) with ModuleSymbolBase
- implicit val ModuleSymbolTag = ClassTag[ModuleSymbol](classOf[ModuleSymbol])
-
- class ClassSymbol(owner: Symbol, name: TypeName, flags: FlagSet)
- extends TypeSymbol(owner, name, flags) with ClassSymbolBase
- class ModuleClassSymbol(owner: Symbol, name: TypeName, flags: FlagSet)
- extends ClassSymbol(owner, name, flags) { override def isModuleClass = true }
- implicit val ClassSymbolTag = ClassTag[ClassSymbol](classOf[ClassSymbol])
-
- class FreeTermSymbol(owner: Symbol, name: TermName, flags: FlagSet)
- extends TermSymbol(owner, name, flags) with FreeTermSymbolBase
- implicit val FreeTermSymbolTag = ClassTag[FreeTermSymbol](classOf[FreeTermSymbol])
-
- class FreeTypeSymbol(owner: Symbol, name: TypeName, flags: FlagSet)
- extends TypeSymbol(owner, name, flags) with FreeTypeSymbolBase
- implicit val FreeTypeSymbolTag = ClassTag[FreeTypeSymbol](classOf[FreeTypeSymbol])
-
-
- object NoSymbol extends Symbol(nme.NO_NAME, NoFlags) {
- override def owner = throw new UnsupportedOperationException("NoSymbol.owner")
- }
-
- // todo. write a decent toString that doesn't crash on recursive types
- class Type extends TypeBase {
- def termSymbol: Symbol = NoSymbol
- def typeSymbol: Symbol = NoSymbol
- }
- implicit val TypeTagg = ClassTag[Type](classOf[Type])
-
- val NoType = new Type { override def toString = "NoType" }
- val NoPrefix = new Type { override def toString = "NoPrefix" }
-
- class SingletonType extends Type
- implicit val SingletonTypeTag = ClassTag[SingletonType](classOf[SingletonType])
-
- case class ThisType(sym: Symbol) extends SingletonType { override val typeSymbol = sym }
- object ThisType extends ThisTypeExtractor
- implicit val ThisTypeTag = ClassTag[ThisType](classOf[ThisType])
-
- case class SingleType(pre: Type, sym: Symbol) extends SingletonType { override val termSymbol = sym }
- object SingleType extends SingleTypeExtractor
- implicit val SingleTypeTag = ClassTag[SingleType](classOf[SingleType])
-
- case class SuperType(thistpe: Type, supertpe: Type) extends SingletonType
- object SuperType extends SuperTypeExtractor
- implicit val SuperTypeTag = ClassTag[SuperType](classOf[SuperType])
-
- case class ConstantType(value: Constant) extends SingletonType
- object ConstantType extends ConstantTypeExtractor
- implicit val ConstantTypeTag = ClassTag[ConstantType](classOf[ConstantType])
-
- case class TypeRef(pre: Type, sym: Symbol, args: List[Type]) extends Type { override val typeSymbol = sym }
- object TypeRef extends TypeRefExtractor
- implicit val TypeRefTag = ClassTag[TypeRef](classOf[TypeRef])
-
- abstract class CompoundType extends Type
- implicit val CompoundTypeTag = ClassTag[CompoundType](classOf[CompoundType])
-
- case class RefinedType(parents: List[Type], decls: Scope) extends CompoundType
- object RefinedType extends RefinedTypeExtractor {
- def apply(parents: List[Type], decls: Scope, clazz: Symbol): RefinedType =
- RefinedType(parents, decls)
- }
- implicit val RefinedTypeTag = ClassTag[RefinedType](classOf[RefinedType])
-
- case class ClassInfoType(parents: List[Type], decls: Scope, override val typeSymbol: Symbol) extends CompoundType
- object ClassInfoType extends ClassInfoTypeExtractor
- implicit val ClassInfoTypeTag = ClassTag[ClassInfoType](classOf[ClassInfoType])
-
- case class MethodType(params: List[Symbol], resultType: Type) extends Type
- object MethodType extends MethodTypeExtractor
- implicit val MethodTypeTag = ClassTag[MethodType](classOf[MethodType])
-
- case class NullaryMethodType(resultType: Type) extends Type
- object NullaryMethodType extends NullaryMethodTypeExtractor
- implicit val NullaryMethodTypeTag = ClassTag[NullaryMethodType](classOf[NullaryMethodType])
-
- case class PolyType(typeParams: List[Symbol], resultType: Type) extends Type
- object PolyType extends PolyTypeExtractor
- implicit val PolyTypeTag = ClassTag[PolyType](classOf[PolyType])
-
- case class ExistentialType(quantified: List[Symbol], underlying: Type) extends Type { override def typeSymbol = underlying.typeSymbol }
- object ExistentialType extends ExistentialTypeExtractor
- implicit val ExistentialTypeTag = ClassTag[ExistentialType](classOf[ExistentialType])
-
- case class AnnotatedType(annotations: List[Annotation], underlying: Type, selfsym: Symbol) extends Type { override def typeSymbol = underlying.typeSymbol }
- object AnnotatedType extends AnnotatedTypeExtractor
- implicit val AnnotatedTypeTag = ClassTag[AnnotatedType](classOf[AnnotatedType])
-
- case class TypeBounds(lo: Type, hi: Type) extends Type
- object TypeBounds extends TypeBoundsExtractor
- implicit val TypeBoundsTag = ClassTag[TypeBounds](classOf[TypeBounds])
-
- val WildcardType = new Type
-
- case class BoundedWildcardType(bounds: TypeBounds) extends Type
- object BoundedWildcardType extends BoundedWildcardTypeExtractor
- implicit val BoundedWildcardTypeTag = ClassTag[BoundedWildcardType](classOf[BoundedWildcardType])
-
- class Scope(elems: Iterable[Symbol]) extends ScopeBase with MemberScopeBase {
- def iterator = elems.iterator
- def sorted = elems.toList
- }
- type MemberScope = Scope
- implicit val ScopeTag = ClassTag[Scope](classOf[Scope])
- implicit val MemberScopeTag = ClassTag[MemberScope](classOf[MemberScope])
-
- def newScope: Scope = newScopeWith()
- def newNestedScope(outer: Scope): Scope = newScope
- def newScopeWith(elems: Symbol*): Scope = new Scope(elems)
-
- abstract class Name(str: String) extends NameBase {
- override def toString = str
- }
- implicit val NameTag = ClassTag[Name](classOf[Name])
-
- class TermName(str: String) extends Name(str) {
- def isTermName = true
- def isTypeName = false
- def toTermName = this
- def toTypeName = new TypeName(str)
- }
- implicit val TermNameTag = ClassTag[TermName](classOf[TermName])
-
- class TypeName(str: String) extends Name(str) {
- def isTermName = false
- def isTypeName = true
- def toTermName = new TermName(str)
- def toTypeName = this
- }
- implicit val TypeNameTag = ClassTag[TypeName](classOf[TypeName])
-
- def newTermName(str: String) = new TermName(str)
- def newTypeName(str: String) = new TypeName(str)
-
- object nme extends TermNamesBase {
- type NameType = TermName
- val WILDCARD = newTermName("_")
- val CONSTRUCTOR = newTermName("<init>")
- val ROOTPKG = newTermName("_root_")
- val EMPTY = newTermName("")
- val EMPTY_PACKAGE_NAME = newTermName("<empty>")
- val ROOT = newTermName("<root>")
- val NO_NAME = newTermName("<none>")
- }
-
- object tpnme extends TypeNamesBase {
- type NameType = TypeName
- val WILDCARD = nme.WILDCARD.toTypeName
- val EMPTY = nme.EMPTY.toTypeName
- val WILDCARD_STAR = newTypeName("_*")
- val EMPTY_PACKAGE_NAME = nme.EMPTY_PACKAGE_NAME.toTypeName
- val ROOT = nme.ROOT.toTypeName
- }
-
- type FlagSet = Long
- val NoFlags = 0L
- implicit val FlagSetTag = ClassTag[FlagSet](classOf[FlagSet])
-
- class Modifiers(override val flags: FlagSet,
- override val privateWithin: Name,
- override val annotations: List[Tree]) extends ModifiersBase {
- def hasFlag(flags: FlagSet) = (this.flags & flags) != 0
- }
-
- implicit val ModifiersTag = ClassTag[Modifiers](classOf[Modifiers])
-
- object Modifiers extends ModifiersCreator {
- def apply(flags: Long,
- privateWithin: Name,
- annotations: List[Tree]) = new Modifiers(flags, privateWithin, annotations)
- }
-
- case class Constant(value: Any)
- object Constant extends ConstantExtractor
- implicit val ConstantTag = ClassTag[Constant](classOf[Constant])
-
- case class Annotation(tpe: Type, scalaArgs: List[Tree], javaArgs: ListMap[Name, JavaArgument])
- object Annotation extends AnnotationExtractor
- implicit val AnnotationTag = ClassTag[Annotation](classOf[Annotation])
-
- abstract class JavaArgument
- implicit val JavaArgumentTag = ClassTag[JavaArgument](classOf[JavaArgument])
-
- case class LiteralArgument(value: Constant) extends JavaArgument
- object LiteralArgument extends LiteralArgumentExtractor
- implicit val LiteralArgumentTag = ClassTag[LiteralArgument](classOf[LiteralArgument])
-
- case class ArrayArgument(args: Array[JavaArgument]) extends JavaArgument
- object ArrayArgument extends ArrayArgumentExtractor
- implicit val ArrayArgumentTag = ClassTag[ArrayArgument](classOf[ArrayArgument])
-
- case class NestedArgument(annotation: Annotation) extends JavaArgument
- object NestedArgument extends NestedArgumentExtractor
- implicit val NestedArgumentTag = ClassTag[NestedArgument](classOf[NestedArgument])
-
- class Position extends Attachments {
- override type Pos = Position
- def pos = this
- def withPos(newPos: Position) = newPos
- def isRange = false
- def focus = this
- }
- implicit val PositionTag = ClassTag[Position](classOf[Position])
-
- val NoPosition = new Position
-
- private val generated = new mutable.HashMap[String, WeakReference[Symbol]]
-
- private def cached(name: String)(symExpr: => Symbol): Symbol =
- generated get name match {
- case Some(WeakReference(sym)) =>
- sym
- case _ =>
- val sym = symExpr
- generated(name) = WeakReference(sym)
- sym
- }
-
- object build extends BuildBase {
- def selectType(owner: Symbol, name: String): TypeSymbol = {
- val clazz = new ClassSymbol(owner, newTypeName(name), NoFlags)
- cached(clazz.fullName)(clazz).asType
- }
-
- def selectTerm(owner: Symbol, name: String): TermSymbol = {
- val valu = new MethodSymbol(owner, newTermName(name), NoFlags)
- cached(valu.fullName)(valu).asTerm
- }
-
- def selectOverloadedMethod(owner: Symbol, name: String, index: Int): MethodSymbol =
- selectTerm(owner, name).asMethod
-
- def newNestedSymbol(owner: Symbol, name: Name, pos: Position, flags: Long, isClass: Boolean): Symbol =
- if (name.isTypeName)
- if (isClass) new ClassSymbol(owner, name.toTypeName, flags)
- else new TypeSymbol(owner, name.toTypeName, flags)
- else new TermSymbol(owner, name.toTermName, flags)
-
- def newFreeTerm(name: String, value: => Any, flags: Long = 0L, origin: String = null): FreeTermSymbol =
- new FreeTermSymbol(rootMirror.RootClass, newTermName(name), flags)
-
- def newFreeType(name: String, flags: Long = 0L, origin: String = null): FreeTypeSymbol =
- new FreeTypeSymbol(rootMirror.RootClass, newTypeName(name), flags)
-
- def setTypeSignature[S <: Symbol](sym: S, tpe: Type): S = sym
-
- def setAnnotations[S <: Symbol](sym: S, annots: List[Annotation]): S = sym
-
- def flagsFromBits(bits: Long): FlagSet = bits
-
- object emptyValDef extends ValDef(NoMods, nme.WILDCARD, TypeTree(NoType), EmptyTree) {
- override def isEmpty = true
- }
-
- def This(sym: Symbol): Tree = self.This(sym.name.toTypeName)
-
- def Select(qualifier: Tree, sym: Symbol): Select = self.Select(qualifier, sym.name)
-
- def Ident(sym: Symbol): Ident = self.Ident(sym.name)
-
- def TypeTree(tp: Type): TypeTree = self.TypeTree()
-
- def thisPrefix(sym: Symbol): Type = SingleType(NoPrefix, sym)
-
- def setType[T <: Tree](tree: T, tpe: Type): T = tree
-
- def setSymbol[T <: Tree](tree: T, sym: Symbol): T = tree
- }
-
- import build._
-
- class Mirror extends MirrorOf[self.type] {
- val universe: self.type = self
-
- lazy val RootClass = new ClassSymbol(NoSymbol, tpnme.ROOT, NoFlags) { override def isModuleClass = true }
- lazy val RootPackage = new ModuleSymbol(NoSymbol, nme.ROOT, NoFlags, RootClass)
- lazy val EmptyPackageClass = new ClassSymbol(RootClass, tpnme.EMPTY_PACKAGE_NAME, NoFlags) { override def isModuleClass = true }
- lazy val EmptyPackage = new ModuleSymbol(RootClass, nme.EMPTY_PACKAGE_NAME, NoFlags, EmptyPackageClass)
-
- def staticClass(fullName: String): ClassSymbol =
- mkStatic[ClassSymbol](fullName)
-
- def staticModule(fullName: String): ModuleSymbol =
- mkStatic[ModuleSymbol](fullName)
-
- def staticPackage(fullName: String): ModuleSymbol =
- staticModule(fullName) // this toy universe doesn't care about the distinction between packages and modules
-
- private def mkStatic[S <: Symbol : ClassTag](fullName: String): S =
- cached(fullName) {
- val point = fullName lastIndexOf '.'
- val owner =
- if (point > 0) staticModule(fullName take point).moduleClass
- else rootMirror.RootClass
- val name = fullName drop point + 1
- val symtag = implicitly[ClassTag[S]]
- if (symtag == ClassSymbolTag) new ClassSymbol(owner, newTypeName(name), NoFlags)
- else owner.newModuleAndClassSymbol(newTermName(name))._1
- }.asInstanceOf[S]
- }
-
- lazy val rootMirror = new Mirror
-
- import rootMirror._
-
- object definitions extends DefinitionsBase {
- lazy val ScalaPackage = staticModule("scala")
- lazy val ScalaPackageClass = ScalaPackage.moduleClass.asClass
-
- lazy val AnyClass = staticClass("scala.Any")
- lazy val AnyValClass = staticClass("scala.Any")
- lazy val ObjectClass = staticClass("java.lang.Object")
- lazy val AnyRefClass = ObjectClass
-
- lazy val NullClass = staticClass("scala.Null")
- lazy val NothingClass = staticClass("scala.Nothing")
-
- lazy val UnitClass = staticClass("scala.Unit")
- lazy val ByteClass = staticClass("scala.Byte")
- lazy val ShortClass = staticClass("scala.Short")
- lazy val CharClass = staticClass("scala.Char")
- lazy val IntClass = staticClass("scala.Int")
- lazy val LongClass = staticClass("scala.Long")
- lazy val FloatClass = staticClass("scala.Float")
- lazy val DoubleClass = staticClass("scala.Double")
- lazy val BooleanClass = staticClass("scala.Boolean")
-
- lazy val StringClass = staticClass("java.lang.String")
- lazy val ClassClass = staticClass("java.lang.Class")
- lazy val ArrayClass = staticClass("scala.Array")
- lazy val ListClass = staticClass("scala.List")
-
- lazy val PredefModule = staticModule("scala.Predef")
-
- lazy val ByteTpe = TypeRef(ScalaPrefix, ByteClass, Nil)
- lazy val ShortTpe = TypeRef(ScalaPrefix, ShortClass, Nil)
- lazy val CharTpe = TypeRef(ScalaPrefix, CharClass, Nil)
- lazy val IntTpe = TypeRef(ScalaPrefix, IntClass, Nil)
- lazy val LongTpe = TypeRef(ScalaPrefix, LongClass, Nil)
- lazy val FloatTpe = TypeRef(ScalaPrefix, FloatClass, Nil)
- lazy val DoubleTpe = TypeRef(ScalaPrefix, DoubleClass, Nil)
- lazy val BooleanTpe = TypeRef(ScalaPrefix, BooleanClass, Nil)
- lazy val UnitTpe = TypeRef(ScalaPrefix, UnitClass, Nil)
- lazy val AnyTpe = TypeRef(ScalaPrefix, AnyClass, Nil)
- lazy val AnyValTpe = TypeRef(ScalaPrefix, AnyValClass, Nil)
- lazy val NothingTpe = TypeRef(ScalaPrefix, NothingClass, Nil)
- lazy val NullTpe = TypeRef(ScalaPrefix, NullClass, Nil)
- lazy val ObjectTpe = TypeRef(JavaLangPrefix, ObjectClass, Nil)
- lazy val AnyRefTpe = ObjectTpe
- }
-
- import definitions._
-
- private def thisModuleType(fullName: String): Type = ThisType(staticModule(fullName).moduleClass)
- private lazy val ScalaPrefix = thisModuleType("scala")
- private lazy val JavaLangPrefix = thisModuleType("java.lang")
-
- private var nodeCount = 0 // not synchronized
-
- abstract class Tree extends TreeBase with Product {
- def isDef: Boolean = false
- def isEmpty: Boolean = false
-
- /** The canonical way to test if a Tree represents a term.
- */
- def isTerm: Boolean = this match {
- case _: TermTree => true
- case Bind(name, _) => name.isTermName
- case Select(_, name) => name.isTermName
- case Ident(name) => name.isTermName
- case Annotated(_, arg) => arg.isTerm
- case _ => false
- }
-
- /** The canonical way to test if a Tree represents a type.
- */
- def isType: Boolean = this match {
- case _: TypTree => true
- case Bind(name, _) => name.isTypeName
- case Select(_, name) => name.isTypeName
- case Ident(name) => name.isTypeName
- case Annotated(_, arg) => arg.isType
- case _ => false
- }
- }
-
- def treeToString(tree: Tree) = s"<tree ${tree.getClass}>"
-
- def treeType(tree: Tree) = NoType
-
- trait TermTree extends Tree
-
- trait TypTree extends Tree
-
- trait SymTree extends Tree
-
- trait NameTree extends Tree {
- def name: Name
- }
-
- trait RefTree extends SymTree with NameTree {
- def qualifier: Tree // empty for Idents
- def name: Name
- }
-
- abstract class DefTree extends SymTree with NameTree {
- def name: Name
- override def isDef = true
- }
-
- case object EmptyTree extends TermTree {
- val asList = List(this)
- override def isEmpty = true
- }
-
- abstract class MemberDef extends DefTree {
- def mods: Modifiers
- }
-
- case class PackageDef(pid: RefTree, stats: List[Tree])
- extends MemberDef {
- def name = pid.name
- def mods = NoMods
- }
- object PackageDef extends PackageDefExtractor
-
- abstract class ImplDef extends MemberDef {
- def impl: Template
- }
-
- case class ClassDef(mods: Modifiers, name: TypeName, tparams: List[TypeDef], impl: Template)
- extends ImplDef
- object ClassDef extends ClassDefExtractor
-
- case class ModuleDef(mods: Modifiers, name: TermName, impl: Template)
- extends ImplDef
- object ModuleDef extends ModuleDefExtractor
-
- abstract class ValOrDefDef extends MemberDef {
- val name: Name
- val tpt: Tree
- val rhs: Tree
- }
-
- case class ValDef(mods: Modifiers, name: TermName, tpt: Tree, rhs: Tree) extends ValOrDefDef
- object ValDef extends ValDefExtractor
-
- case class DefDef(mods: Modifiers, name: Name, tparams: List[TypeDef],
- vparamss: List[List[ValDef]], tpt: Tree, rhs: Tree) extends ValOrDefDef
- object DefDef extends DefDefExtractor
-
- case class TypeDef(mods: Modifiers, name: TypeName, tparams: List[TypeDef], rhs: Tree)
- extends MemberDef
- object TypeDef extends TypeDefExtractor
-
- case class LabelDef(name: TermName, params: List[Ident], rhs: Tree)
- extends DefTree with TermTree
- object LabelDef extends LabelDefExtractor
-
- case class ImportSelector(name: Name, namePos: Int, rename: Name, renamePos: Int)
- object ImportSelector extends ImportSelectorExtractor
-
- case class Import(expr: Tree, selectors: List[ImportSelector])
- extends SymTree
- object Import extends ImportExtractor
-
- case class Template(parents: List[Tree], self: ValDef, body: List[Tree])
- extends SymTree
- object Template extends TemplateExtractor
-
- case class Block(stats: List[Tree], expr: Tree)
- extends TermTree
- object Block extends BlockExtractor
-
- case class CaseDef(pat: Tree, guard: Tree, body: Tree)
- extends Tree
- object CaseDef extends CaseDefExtractor
-
- case class Alternative(trees: List[Tree])
- extends TermTree
- object Alternative extends AlternativeExtractor
-
- case class Star(elem: Tree)
- extends TermTree
- object Star extends StarExtractor
-
- case class Bind(name: Name, body: Tree)
- extends DefTree
- object Bind extends BindExtractor
-
- case class UnApply(fun: Tree, args: List[Tree])
- extends TermTree
- object UnApply extends UnApplyExtractor
-
- case class ArrayValue(elemtpt: Tree, elems: List[Tree])
- extends TermTree
- object ArrayValue extends ArrayValueExtractor
-
- case class Function(vparams: List[ValDef], body: Tree)
- extends TermTree with SymTree
- object Function extends FunctionExtractor
-
- case class Assign(lhs: Tree, rhs: Tree)
- extends TermTree
- object Assign extends AssignExtractor
-
- case class AssignOrNamedArg(lhs: Tree, rhs: Tree)
- extends TermTree
- object AssignOrNamedArg extends AssignOrNamedArgExtractor
-
- case class If(cond: Tree, thenp: Tree, elsep: Tree)
- extends TermTree
- object If extends IfExtractor
-
- case class Match(selector: Tree, cases: List[CaseDef])
- extends TermTree
- object Match extends MatchExtractor
-
- case class Return(expr: Tree)
- extends TermTree with SymTree
- object Return extends ReturnExtractor
-
- case class Try(block: Tree, catches: List[CaseDef], finalizer: Tree)
- extends TermTree
- object Try extends TryExtractor
-
- case class Throw(expr: Tree)
- extends TermTree
- object Throw extends ThrowExtractor
-
- case class New(tpt: Tree) extends TermTree
- object New extends NewExtractor
-
- case class Typed(expr: Tree, tpt: Tree)
- extends TermTree
- object Typed extends TypedExtractor
-
- abstract class GenericApply extends TermTree {
- val fun: Tree
- val args: List[Tree]
- }
-
- case class TypeApply(fun: Tree, args: List[Tree])
- extends GenericApply
- object TypeApply extends TypeApplyExtractor
-
- case class Apply(fun: Tree, args: List[Tree])
- extends GenericApply
- object Apply extends ApplyExtractor
-
- case class Super(qual: Tree, mix: TypeName) extends TermTree
- object Super extends SuperExtractor
-
- case class This(qual: TypeName)
- extends TermTree with SymTree
- object This extends ThisExtractor
-
- case class Select(qualifier: Tree, name: Name)
- extends RefTree
- object Select extends SelectExtractor
-
- case class Ident(name: Name) extends RefTree {
- def qualifier: Tree = EmptyTree
- }
- object Ident extends IdentExtractor
-
- case class ReferenceToBoxed(ident: Ident) extends TermTree
- object ReferenceToBoxed extends ReferenceToBoxedExtractor
-
- case class Literal(value: Constant)
- extends TermTree {
- assert(value ne null)
- }
- object Literal extends LiteralExtractor
-
- case class Annotated(annot: Tree, arg: Tree) extends Tree
- object Annotated extends AnnotatedExtractor
-
- case class SingletonTypeTree(ref: Tree)
- extends TypTree
- object SingletonTypeTree extends SingletonTypeTreeExtractor
-
- case class SelectFromTypeTree(qualifier: Tree, name: TypeName)
- extends TypTree with RefTree
- object SelectFromTypeTree extends SelectFromTypeTreeExtractor
-
- case class CompoundTypeTree(templ: Template)
- extends TypTree
- object CompoundTypeTree extends CompoundTypeTreeExtractor
-
- case class AppliedTypeTree(tpt: Tree, args: List[Tree])
- extends TypTree
- object AppliedTypeTree extends AppliedTypeTreeExtractor
-
- case class TypeBoundsTree(lo: Tree, hi: Tree)
- extends TypTree
- object TypeBoundsTree extends TypeBoundsTreeExtractor
-
- case class ExistentialTypeTree(tpt: Tree, whereClauses: List[Tree])
- extends TypTree
- object ExistentialTypeTree extends ExistentialTypeTreeExtractor
-
- case class TypeTree() extends TypTree {
- val original: Tree = null
- override def isEmpty = true
- }
- object TypeTree extends TypeTreeExtractor
-
- implicit val TreeTag = ClassTag[Tree](classOf[Tree])
- implicit val TermTreeTag = ClassTag[TermTree](classOf[TermTree])
- implicit val TypTreeTag = ClassTag[TypTree](classOf[TypTree])
- implicit val SymTreeTag = ClassTag[SymTree](classOf[SymTree])
- implicit val NameTreeTag = ClassTag[NameTree](classOf[NameTree])
- implicit val RefTreeTag = ClassTag[RefTree](classOf[RefTree])
- implicit val DefTreeTag = ClassTag[DefTree](classOf[DefTree])
- implicit val MemberDefTag = ClassTag[MemberDef](classOf[MemberDef])
- implicit val PackageDefTag = ClassTag[PackageDef](classOf[PackageDef])
- implicit val ImplDefTag = ClassTag[ImplDef](classOf[ImplDef])
- implicit val ClassDefTag = ClassTag[ClassDef](classOf[ClassDef])
- implicit val ModuleDefTag = ClassTag[ModuleDef](classOf[ModuleDef])
- implicit val ValOrDefDefTag = ClassTag[ValOrDefDef](classOf[ValOrDefDef])
- implicit val ValDefTag = ClassTag[ValDef](classOf[ValDef])
- implicit val DefDefTag = ClassTag[DefDef](classOf[DefDef])
- implicit val TypeDefTag = ClassTag[TypeDef](classOf[TypeDef])
- implicit val LabelDefTag = ClassTag[LabelDef](classOf[LabelDef])
- implicit val ImportSelectorTag = ClassTag[ImportSelector](classOf[ImportSelector])
- implicit val ImportTag = ClassTag[Import](classOf[Import])
- implicit val TemplateTag = ClassTag[Template](classOf[Template])
- implicit val BlockTag = ClassTag[Block](classOf[Block])
- implicit val CaseDefTag = ClassTag[CaseDef](classOf[CaseDef])
- implicit val AlternativeTag = ClassTag[Alternative](classOf[Alternative])
- implicit val StarTag = ClassTag[Star](classOf[Star])
- implicit val BindTag = ClassTag[Bind](classOf[Bind])
- implicit val UnApplyTag = ClassTag[UnApply](classOf[UnApply])
- implicit val ArrayValueTag = ClassTag[ArrayValue](classOf[ArrayValue])
- implicit val FunctionTag = ClassTag[Function](classOf[Function])
- implicit val AssignTag = ClassTag[Assign](classOf[Assign])
- implicit val AssignOrNamedArgTag = ClassTag[AssignOrNamedArg](classOf[AssignOrNamedArg])
- implicit val IfTag = ClassTag[If](classOf[If])
- implicit val MatchTag = ClassTag[Match](classOf[Match])
- implicit val ReturnTag = ClassTag[Return](classOf[Return])
- implicit val TryTag = ClassTag[Try](classOf[Try])
- implicit val ThrowTag = ClassTag[Throw](classOf[Throw])
- implicit val NewTag = ClassTag[New](classOf[New])
- implicit val TypedTag = ClassTag[Typed](classOf[Typed])
- implicit val GenericApplyTag = ClassTag[GenericApply](classOf[GenericApply])
- implicit val TypeApplyTag = ClassTag[TypeApply](classOf[TypeApply])
- implicit val ApplyTag = ClassTag[Apply](classOf[Apply])
- implicit val SuperTag = ClassTag[Super](classOf[Super])
- implicit val ThisTag = ClassTag[This](classOf[This])
- implicit val SelectTag = ClassTag[Select](classOf[Select])
- implicit val IdentTag = ClassTag[Ident](classOf[Ident])
- implicit val ReferenceToBoxedTag = ClassTag[ReferenceToBoxed](classOf[ReferenceToBoxed])
- implicit val LiteralTag = ClassTag[Literal](classOf[Literal])
- implicit val AnnotatedTag = ClassTag[Annotated](classOf[Annotated])
- implicit val SingletonTypeTreeTag = ClassTag[SingletonTypeTree](classOf[SingletonTypeTree])
- implicit val SelectFromTypeTreeTag = ClassTag[SelectFromTypeTree](classOf[SelectFromTypeTree])
- implicit val CompoundTypeTreeTag = ClassTag[CompoundTypeTree](classOf[CompoundTypeTree])
- implicit val AppliedTypeTreeTag = ClassTag[AppliedTypeTree](classOf[AppliedTypeTree])
- implicit val TypeBoundsTreeTag = ClassTag[TypeBoundsTree](classOf[TypeBoundsTree])
- implicit val ExistentialTypeTreeTag = ClassTag[ExistentialTypeTree](classOf[ExistentialTypeTree])
- implicit val TypeTreeTag = ClassTag[TypeTree](classOf[TypeTree])
-
- def ClassDef(sym: Symbol, impl: Template): ClassDef = ???
- def ModuleDef(sym: Symbol, impl: Template): ModuleDef = ???
- def ValDef(sym: Symbol, rhs: Tree): ValDef = ???
- def ValDef(sym: Symbol): ValDef = ???
- def DefDef(sym: Symbol, mods: Modifiers, vparamss: List[List[ValDef]], rhs: Tree): DefDef = ???
- def DefDef(sym: Symbol, vparamss: List[List[ValDef]], rhs: Tree): DefDef = ???
- def DefDef(sym: Symbol, mods: Modifiers, rhs: Tree): DefDef = ???
- def DefDef(sym: Symbol, rhs: Tree): DefDef = ???
- def DefDef(sym: Symbol, rhs: List[List[Symbol]] => Tree): DefDef = ???
- def TypeDef(sym: Symbol, rhs: Tree): TypeDef = ???
- def TypeDef(sym: Symbol): TypeDef = ???
- def LabelDef(sym: Symbol, params: List[Symbol], rhs: Tree): LabelDef = ???
- def CaseDef(pat: Tree, body: Tree): CaseDef = ???
- def Bind(sym: Symbol, body: Tree): Bind = ???
- def Try(body: Tree, cases: (Tree, Tree)*): Try = ???
- def Throw(tpe: Type, args: Tree*): Throw = ???
- def Apply(sym: Symbol, args: Tree*): Tree = ???
- def New(tpt: Tree, argss: List[List[Tree]]): Tree = ???
- def New(tpe: Type, args: Tree*): Tree = ???
- def New(sym: Symbol, args: Tree*): Tree = ???
- def ApplyConstructor(tpt: Tree, args: List[Tree]): Tree = ???
- def Super(sym: Symbol, mix: TypeName): Tree = ???
- def This(sym: Symbol): Tree = ???
- def Select(qualifier: Tree, name: String): Select = ???
- def Select(qualifier: Tree, sym: Symbol): Select = ???
- def Ident(name: String): Ident = ???
- def Ident(sym: Symbol): Ident = ???
- def Block(stats: Tree*): Block = ???
- def TypeTree(tp: Type): TypeTree = ???
-}
diff --git a/src/library/scala/reflect/base/Constants.scala b/src/library/scala/reflect/base/Constants.scala
deleted file mode 100644
index ba12b02e92..0000000000
--- a/src/library/scala/reflect/base/Constants.scala
+++ /dev/null
@@ -1,20 +0,0 @@
-/* NSC -- new Scala compiler
- * Copyright 2005-2012 LAMP/EPFL
- * @author Martin Odersky
- */
-
-package scala.reflect
-package base
-
-trait Constants {
- self: Universe =>
-
- type Constant >: Null <: AnyRef
- implicit val ConstantTag: ClassTag[Constant]
- val Constant: ConstantExtractor
-
- abstract class ConstantExtractor {
- def apply(value: Any): Constant
- def unapply(arg: Constant): Option[Any]
- }
-}
diff --git a/src/library/scala/reflect/base/FlagSets.scala b/src/library/scala/reflect/base/FlagSets.scala
deleted file mode 100644
index 96cdbe894c..0000000000
--- a/src/library/scala/reflect/base/FlagSets.scala
+++ /dev/null
@@ -1,16 +0,0 @@
-package scala.reflect
-package base
-
-trait FlagSets { self: Universe =>
-
- /** An abstract type representing sets of flags that apply to definition trees and symbols */
- type FlagSet
-
- /** A tag that preserves the identity of the `FlagSet` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val FlagSetTag: ClassTag[FlagSet]
-
- /** The empty set of flags */
- val NoFlags: FlagSet
-}
diff --git a/src/library/scala/reflect/base/Mirrors.scala b/src/library/scala/reflect/base/Mirrors.scala
deleted file mode 100644
index 50866ef000..0000000000
--- a/src/library/scala/reflect/base/Mirrors.scala
+++ /dev/null
@@ -1,12 +0,0 @@
-package scala.reflect
-package base
-
-trait Mirrors {
- self: Universe =>
-
- /** .. */
- type Mirror >: Null <: MirrorOf[self.type]
-
- /** .. */
- val rootMirror: Mirror
-}
diff --git a/src/library/scala/reflect/base/Names.scala b/src/library/scala/reflect/base/Names.scala
deleted file mode 100644
index ad99f54fb3..0000000000
--- a/src/library/scala/reflect/base/Names.scala
+++ /dev/null
@@ -1,58 +0,0 @@
-package scala.reflect
-package base
-
-import scala.language.implicitConversions
-
-/** A trait that manages names.
- * A name is a string in one of two name universes: terms and types.
- * The same string can be a name in both universes.
- * Two names are equal if they represent the same string and they are
- * members of the same universe.
- *
- * Names are interned. That is, for two names `name11 and `name2`,
- * `name1 == name2` implies `name1 eq name2`.
- */
-trait Names {
- /** Intentionally no implicit from String => Name. */
- implicit def stringToTermName(s: String): TermName = newTermName(s)
- implicit def stringToTypeName(s: String): TypeName = newTypeName(s)
-
- /** The abstract type of names */
- type Name >: Null <: NameBase
- implicit val NameTag: ClassTag[Name]
-
- /** The abstract type of names representing terms */
- type TypeName >: Null <: Name
- implicit val TypeNameTag: ClassTag[TypeName]
-
- /** The abstract type of names representing types */
- type TermName >: Null <: Name
- implicit val TermNameTag: ClassTag[TermName]
-
- /** The base API that all names support */
- abstract class NameBase {
- /** Is this name a term name? */
- def isTermName: Boolean
-
- /** Is this name a type name? */
- def isTypeName: Boolean
-
- /** Returns a term name that represents the same string as this name */
- def toTermName: TermName
-
- /** Returns a type name that represents the same string as this name */
- def toTypeName: TypeName
- }
-
- /** Create a new term name.
- */
- def newTermName(s: String): TermName
-
- /** Creates a new type name.
- */
- def newTypeName(s: String): TypeName
-
- def EmptyTermName: TermName = newTermName("")
-
- def EmptyTypeName: TypeName = EmptyTermName.toTypeName
-}
diff --git a/src/library/scala/reflect/base/Positions.scala b/src/library/scala/reflect/base/Positions.scala
deleted file mode 100644
index 76a7382e9e..0000000000
--- a/src/library/scala/reflect/base/Positions.scala
+++ /dev/null
@@ -1,17 +0,0 @@
-package scala.reflect
-package base
-
-trait Positions {
- self: Universe =>
-
- /** .. */
- type Position >: Null <: Attachments { type Pos = Position }
-
- /** A tag that preserves the identity of the `FlagSet` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val PositionTag: ClassTag[Position]
-
- /** .. */
- val NoPosition: Position
-}
diff --git a/src/library/scala/reflect/base/StandardDefinitions.scala b/src/library/scala/reflect/base/StandardDefinitions.scala
deleted file mode 100644
index 8f1c96ea3f..0000000000
--- a/src/library/scala/reflect/base/StandardDefinitions.scala
+++ /dev/null
@@ -1,72 +0,0 @@
-/* NSC -- new Scala compiler
- * Copyright 2005-2012 LAMP/EPFL
- * @author Martin Odersky
- */
-
-package scala.reflect
-package base
-
-trait StandardDefinitions {
- self: Universe =>
-
- val definitions: DefinitionsBase
-
- trait DefinitionsBase extends StandardTypes {
- // packages
- def ScalaPackageClass: ClassSymbol
- def ScalaPackage: ModuleSymbol
-
- // top types
- def AnyClass : ClassSymbol
- def AnyValClass: ClassSymbol
- def ObjectClass: ClassSymbol
- def AnyRefClass: TypeSymbol
-
- // bottom types
- def NullClass : ClassSymbol
- def NothingClass: ClassSymbol
-
- // the scala value classes
- def UnitClass : ClassSymbol
- def ByteClass : ClassSymbol
- def ShortClass : ClassSymbol
- def CharClass : ClassSymbol
- def IntClass : ClassSymbol
- def LongClass : ClassSymbol
- def FloatClass : ClassSymbol
- def DoubleClass : ClassSymbol
- def BooleanClass: ClassSymbol
-
- // some special classes
- def StringClass : ClassSymbol
- def ClassClass : ClassSymbol
- def ArrayClass : ClassSymbol
- def ListClass : ClassSymbol
-
- // the Predef object
- def PredefModule: ModuleSymbol
- }
-
- trait StandardTypes {
- // the scala value classes
- val UnitTpe: Type
- val ByteTpe: Type
- val ShortTpe: Type
- val CharTpe: Type
- val IntTpe: Type
- val LongTpe: Type
- val FloatTpe: Type
- val DoubleTpe: Type
- val BooleanTpe: Type
-
- // top types
- val AnyTpe: Type
- val AnyValTpe: Type
- val AnyRefTpe: Type
- val ObjectTpe: Type
-
- // bottom types
- val NothingTpe: Type
- val NullTpe: Type
- }
-}
diff --git a/src/library/scala/reflect/base/StandardNames.scala b/src/library/scala/reflect/base/StandardNames.scala
deleted file mode 100644
index 3e569cd523..0000000000
--- a/src/library/scala/reflect/base/StandardNames.scala
+++ /dev/null
@@ -1,34 +0,0 @@
-/* NSC -- new Scala compiler
-* Copyright 2005-2012 LAMP/EPFL
-* @author Martin Odersky
-*/
-
-package scala.reflect
-package base
-
-// Q: I have a pretty name. Where do I put it - into base.StandardNames or into api.StandardNames?
-// A: Is it necessary to construct trees (like EMPTY or WILDCARD_STAR)? If yes, then it goes to base.StandardNames.
-// Is it necessary to perform reflection (like ERROR or LOCAL_SUFFIX_STRING)? If yes, then it goes to api.StandardNames.
-// Otherwise it goes nowhere - reflection API should stay minimalistic.
-
-trait StandardNames {
- self: Universe =>
-
- val nme: TermNamesBase
- val tpnme: TypeNamesBase
-
- trait NamesBase {
- type NameType >: Null <: Name
- val WILDCARD: NameType
- }
-
- trait TermNamesBase extends NamesBase {
- val CONSTRUCTOR: TermName
- val ROOTPKG: TermName
- }
-
- trait TypeNamesBase extends NamesBase {
- val EMPTY: NameType
- val WILDCARD_STAR: NameType
- }
-}
diff --git a/src/library/scala/reflect/base/Symbols.scala b/src/library/scala/reflect/base/Symbols.scala
deleted file mode 100644
index 3830264425..0000000000
--- a/src/library/scala/reflect/base/Symbols.scala
+++ /dev/null
@@ -1,289 +0,0 @@
-package scala.reflect
-package base
-
-trait Symbols { self: Universe =>
-
- /** The abstract type of symbols representing declarations */
- type Symbol >: Null <: SymbolBase
-
- /** A tag that preserves the identity of the `Symbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SymbolTag: ClassTag[Symbol]
-
- /** The abstract type of type symbols representing type, class, and trait declarations,
- * as well as type parameters
- */
- type TypeSymbol >: Null <: Symbol with TypeSymbolBase
-
- /** A tag that preserves the identity of the `TypeSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeSymbolTag: ClassTag[TypeSymbol]
-
- /** The abstract type of term symbols representing val, var, def, and object declarations as
- * well as packages and value parameters.
- */
- type TermSymbol >: Null <: Symbol with TermSymbolBase
-
- /** A tag that preserves the identity of the `TermSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TermSymbolTag: ClassTag[TermSymbol]
-
- /** The abstract type of method symbols representing def declarations */
- type MethodSymbol >: Null <: TermSymbol with MethodSymbolBase
-
- /** A tag that preserves the identity of the `MethodSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val MethodSymbolTag: ClassTag[MethodSymbol]
-
- /** The abstract type of module symbols representing object declarations */
- type ModuleSymbol >: Null <: TermSymbol with ModuleSymbolBase
-
- /** A tag that preserves the identity of the `ModuleSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ModuleSymbolTag: ClassTag[ModuleSymbol]
-
- /** The abstract type of class symbols representing class and trait definitions */
- type ClassSymbol >: Null <: TypeSymbol with ClassSymbolBase
-
- /** A tag that preserves the identity of the `ClassSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ClassSymbolTag: ClassTag[ClassSymbol]
-
- /** The abstract type of free terms introduced by reification */
- type FreeTermSymbol >: Null <: TermSymbol with FreeTermSymbolBase
-
- /** A tag that preserves the identity of the `FreeTermSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val FreeTermSymbolTag: ClassTag[FreeTermSymbol]
-
- /** The abstract type of free types introduced by reification */
- type FreeTypeSymbol >: Null <: TypeSymbol with FreeTypeSymbolBase
-
- /** A tag that preserves the identity of the `FreeTypeSymbol` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val FreeTypeSymbolTag: ClassTag[FreeTypeSymbol]
-
- /** A special "missing" symbol */
- val NoSymbol: Symbol
-
- /** The base API that all symbols support */
- trait SymbolBase { this: Symbol =>
-
- /** The owner of this symbol. This is the symbol
- * that directly contains the current symbol's definition.
- * The `NoSymbol` symbol does not have an owner, and calling this method
- * on one causes an internal error.
- * The owner of the Scala root class [[scala.reflect.api.mirror.RootClass]]
- * and the Scala root object [[scala.reflect.api.mirror.RootPackage]] is `NoSymbol`.
- * Every other symbol has a chain of owners that ends in
- * [[scala.reflect.api.mirror.RootClass]].
- */
- def owner: Symbol
-
- /** The type of the symbol name.
- * Can be either `TermName` or `TypeName` depending on whether this is a `TermSymbol` or a `TypeSymbol`.
- *
- * Type name namespaces do not intersect with term name namespaces.
- * This fact is reflected in different types for names of `TermSymbol` and `TypeSymbol`.
- */
- type NameType >: Null <: Name
-
- /** The name of the symbol as a member of the `Name` type.
- */
- def name: Name
-
- /** The encoded full path name of this symbol, where outer names and inner names
- * are separated by periods.
- */
- def fullName: String
-
- /** Does this symbol represent the definition of a type?
- * Note that every symbol is either a term or a type.
- * So for every symbol `sym` (except for `NoSymbol`),
- * either `sym.isTerm` is true or `sym.isType` is true.
- */
- def isType: Boolean = false
-
- /** This symbol cast to a TypeSymbol.
- * @throws ScalaReflectionException if `isType` is false.
- */
- def asType: TypeSymbol = throw new ScalaReflectionException(s"$this is not a type")
-
- /** Does this symbol represent the definition of a term?
- * Note that every symbol is either a term or a type.
- * So for every symbol `sym` (except for `NoSymbol`),
- * either `sym.isTerm` is true or `sym.isTerm` is true.
- */
- def isTerm: Boolean = false
-
- /** This symbol cast to a TermSymbol.
- * @throws ScalaReflectionException if `isTerm` is false.
- */
- def asTerm: TermSymbol = throw new ScalaReflectionException(s"$this is not a term")
-
- /** Does this symbol represent the definition of a method?
- * If yes, `isTerm` is also guaranteed to be true.
- */
- def isMethod: Boolean = false
-
- /** This symbol cast to a MethodSymbol.
- * @throws ScalaReflectionException if `isMethod` is false.
- */
- def asMethod: MethodSymbol = {
- def overloadedMsg =
- "encapsulates multiple overloaded alternatives and cannot be treated as a method. "+
- "Consider invoking `<offending symbol>.asTerm.alternatives` and manually picking the required method"
- def vanillaMsg = "is not a method"
- val msg = if (isOverloadedMethod) overloadedMsg else vanillaMsg
- throw new ScalaReflectionException(s"$this $msg")
- }
-
- /** Used to provide a better error message for `asMethod` */
- protected def isOverloadedMethod = false
-
- /** Does this symbol represent the definition of a module (i.e. it
- * results from an object definition?).
- * If yes, `isTerm` is also guaranteed to be true.
- */
- def isModule: Boolean = false
-
- /** This symbol cast to a ModuleSymbol defined by an object definition.
- * @throws ScalaReflectionException if `isModule` is false.
- */
- def asModule: ModuleSymbol = throw new ScalaReflectionException(s"$this is not a module")
-
- /** Does this symbol represent the definition of a class or trait?
- * If yes, `isType` is also guaranteed to be true.
- */
- def isClass: Boolean = false
-
- /** Does this symbol represent the definition of a class implicitly associated
- * with an object definition (module class in scala compiler parlance).
- * If yes, `isType` is also guaranteed to be true.
- */
- def isModuleClass: Boolean = false
-
- /** This symbol cast to a ClassSymbol representing a class or trait.
- * @throws ScalaReflectionException if `isClass` is false.
- */
- def asClass: ClassSymbol = throw new ScalaReflectionException(s"$this is not a class")
-
- /** Does this symbol represent a free term captured by reification?
- * If yes, `isTerm` is also guaranteed to be true.
- */
- def isFreeTerm: Boolean = false
-
- /** This symbol cast to a free term symbol.
- * @throws ScalaReflectionException if `isFreeTerm` is false.
- */
- def asFreeTerm: FreeTermSymbol = throw new ScalaReflectionException(s"$this is not a free term")
-
- /** Does this symbol represent a free type captured by reification?
- * If yes, `isType` is also guaranteed to be true.
- */
- def isFreeType: Boolean = false
-
- /** This symbol cast to a free type symbol.
- * @throws ScalaReflectionException if `isFreeType` is false.
- */
- def asFreeType: FreeTypeSymbol = throw new ScalaReflectionException(s"$this is not a free type")
-
- def newTermSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TermSymbol
- def newModuleAndClassSymbol(name: Name, pos: Position = NoPosition, flags: FlagSet = NoFlags): (ModuleSymbol, ClassSymbol)
- def newMethodSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): MethodSymbol
- def newTypeSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TypeSymbol
- def newClassSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): ClassSymbol
- }
-
- /** The base API that all type symbols support */
- trait TypeSymbolBase extends SymbolBase { this: TypeSymbol =>
- /** Type symbols have their names of type `TypeName`.
- */
- final type NameType = TypeName
-
- /** The type constructor corresponding to this type symbol.
- * This is different from `toType` in that type parameters
- * are part of results of `toType`, but not of `toTypeConstructor`.
- *
- * Example: Given a class declaration `class C[T] { ... } `, that generates a symbol
- * `C`. Then `C.toType` is the type `C[T]`, but `C.toTypeConstructor` is `C`.
- */
- def toTypeConstructor: Type
-
- /** A type reference that refers to this type symbol seen
- * as a member of given type `site`.
- */
- def toTypeIn(site: Type): Type
-
- /** A type reference that refers to this type symbol
- * Note if symbol is a member of a class, one almost always is interested
- * in `asTypeIn` with a site type instead.
- *
- * Example: Given a class declaration `class C[T] { ... } `, that generates a symbol
- * `C`. Then `C.toType` is the type `C[T]`.
- *
- * By contrast, `C.typeSignature` would be a type signature of form
- * `PolyType(ClassInfoType(...))` that describes type parameters, value
- * parameters, parent types, and members of `C`.
- */
- def toType: Type
-
- final override def isType = true
- final override def asType = this
- }
-
- /** The base API that all term symbols support */
- trait TermSymbolBase extends SymbolBase { this: TermSymbol =>
- /** Term symbols have their names of type `TermName`.
- */
- final type NameType = TermName
-
- final override def isTerm = true
- final override def asTerm = this
- }
-
- /** The base API that all method symbols support */
- trait MethodSymbolBase extends TermSymbolBase { this: MethodSymbol =>
- final override def isMethod = true
- final override def asMethod = this
- }
-
- /** The base API that all module symbols support */
- trait ModuleSymbolBase extends TermSymbolBase { this: ModuleSymbol =>
- /** The class implicitly associated with the object definition.
- * One can go back from a module class to the associated module symbol
- * by inspecting its `selfType.termSymbol`.
- */
- def moduleClass: Symbol // needed for tree traversals
- // when this becomes `moduleClass: ClassSymbol`, it will be the happiest day in my life
-
- final override def isModule = true
- final override def asModule = this
- }
-
- /** The base API that all class symbols support */
- trait ClassSymbolBase extends TypeSymbolBase { this: ClassSymbol =>
- final override def isClass = true
- final override def asClass = this
- }
-
- /** The base API that all free type symbols support */
- trait FreeTypeSymbolBase extends TypeSymbolBase { this: FreeTypeSymbol =>
- final override def isFreeType = true
- final override def asFreeType = this
- }
-
- /** The base API that all free term symbols support */
- trait FreeTermSymbolBase extends TermSymbolBase { this: FreeTermSymbol =>
- final override def isFreeTerm = true
- final override def asFreeTerm = this
- }
-}
diff --git a/src/library/scala/reflect/base/TagInterop.scala b/src/library/scala/reflect/base/TagInterop.scala
deleted file mode 100644
index ec054106eb..0000000000
--- a/src/library/scala/reflect/base/TagInterop.scala
+++ /dev/null
@@ -1,15 +0,0 @@
-package scala.reflect
-package base
-
-import scala.runtime.ScalaRunTime._
-
-trait TagInterop { self: Universe =>
- // todo. `mirror` parameters are now of type `Any`, because I can't make these path-dependent types work
- // if you're brave enough, replace `Any` with `Mirror`, recompile and run interop_typetags_are_manifests.scala
-
- def typeTagToManifest[T: ClassTag](mirror: Any, tag: base.Universe # TypeTag[T]): Manifest[T] =
- throw new UnsupportedOperationException("This universe does not support tag -> manifest conversions. Use scala.reflect.runtime.universe from scala-reflect.jar.")
-
- def manifestToTypeTag[T](mirror: Any, manifest: Manifest[T]): base.Universe # TypeTag[T] =
- throw new UnsupportedOperationException("This universe does not support manifest -> tag conversions. Use scala.reflect.runtime.universe from scala-reflect.jar.")
-}
diff --git a/src/library/scala/reflect/base/TreeCreator.scala b/src/library/scala/reflect/base/TreeCreator.scala
deleted file mode 100644
index c9c8de2307..0000000000
--- a/src/library/scala/reflect/base/TreeCreator.scala
+++ /dev/null
@@ -1,6 +0,0 @@
-package scala.reflect
-package base
-
-abstract class TreeCreator {
- def apply[U <: Universe with Singleton](m: MirrorOf[U]): U # Tree
-}
diff --git a/src/library/scala/reflect/base/Trees.scala b/src/library/scala/reflect/base/Trees.scala
deleted file mode 100644
index 78174f354c..0000000000
--- a/src/library/scala/reflect/base/Trees.scala
+++ /dev/null
@@ -1,1445 +0,0 @@
-/* NSC -- new Scala compiler
- * Copyright 2005-2012 LAMP/EPFL
- * @author Martin Odersky
- */
-package scala.reflect
-package base
-
-trait Trees { self: Universe =>
-
- /** The base API that all trees support */
- abstract class TreeBase extends Product { this: Tree =>
- /** ... */
- def isDef: Boolean
-
- /** ... */
- def isEmpty: Boolean
-
- /** The canonical way to test if a Tree represents a term.
- */
- def isTerm: Boolean
-
- /** The canonical way to test if a Tree represents a type.
- */
- def isType: Boolean
-
- /** Obtains string representation of a tree */
- override def toString: String = treeToString(this)
- }
-
- /** Obtains string representation of a tree */
- protected def treeToString(tree: Tree): String
-
- /** Obtains the type of the tree (we intentionally don't expose `tree.tpe` in base) */
- protected def treeType(tree: Tree): Type
-
- /** Tree is the basis for scala's abstract syntax. The nodes are
- * implemented as case classes, and the parameters which initialize
- * a given tree are immutable: however Trees have several mutable
- * fields which are manipulated in the course of typechecking,
- * including pos, symbol, and tpe.
- *
- * Newly instantiated trees have tpe set to null (though it
- * may be set immediately thereafter depending on how it is
- * constructed.) When a tree is passed to the typer, typically via
- * `typer.typed(tree)`, under normal circumstances the tpe must be
- * null or the typer will ignore it. Furthermore, the typer is not
- * required to return the same tree it was passed.
- *
- * Trees can be easily traversed with e.g. foreach on the root node;
- * for a more nuanced traversal, subclass Traverser. Transformations
- * can be considerably trickier: see the numerous subclasses of
- * Transformer found around the compiler.
- *
- * Copying Trees should be done with care depending on whether
- * it need be done lazily or strictly (see LazyTreeCopier and
- * StrictTreeCopier) and on whether the contents of the mutable
- * fields should be copied. The tree copiers will copy the mutable
- * attributes to the new tree; calling Tree#duplicate will copy
- * symbol and tpe, but all the positions will be focused.
- *
- * Trees can be coarsely divided into four mutually exclusive categories:
- *
- * - TermTrees, representing terms
- * - TypTrees, representing types. Note that is `TypTree`, not `TypeTree`.
- * - SymTrees, which may represent types or terms.
- * - Other Trees, which have none of those as parents.
- *
- * SymTrees include important nodes Ident and Select, which are
- * used as both terms and types; they are distinguishable based on
- * whether the Name is a TermName or TypeName. The correct way for
- * to test for a type or a term (on any Tree) are the isTerm/isType
- * methods on Tree.
- *
- * "Others" are mostly syntactic or short-lived constructs. Examples
- * include CaseDef, which wraps individual match cases: they are
- * neither terms nor types, nor do they carry a symbol. Another
- * example is Parens, which is eliminated during parsing.
- */
- type Tree >: Null <: TreeBase
-
- /** A tag that preserves the identity of the `Tree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TreeTag: ClassTag[Tree]
-
- /** The empty tree */
- val EmptyTree: Tree
-
- /** A tree for a term. Not all terms are TermTrees; use isTerm
- * to reliably identify terms.
- */
- type TermTree >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `TermTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TermTreeTag: ClassTag[TermTree]
-
- /** A tree for a type. Not all types are TypTrees; use isType
- * to reliably identify types.
- */
- type TypTree >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `TypTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypTreeTag: ClassTag[TypTree]
-
- /** A tree with a mutable symbol field, initialized to NoSymbol.
- */
- type SymTree >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `SymTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SymTreeTag: ClassTag[SymTree]
-
- /** A tree with a name - effectively, a DefTree or RefTree.
- */
- type NameTree >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `NameTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val NameTreeTag: ClassTag[NameTree]
-
- /** A tree which references a symbol-carrying entity.
- * References one, as opposed to defining one; definitions
- * are in DefTrees.
- */
- type RefTree >: Null <: SymTree with NameTree
-
- /** A tag that preserves the identity of the `RefTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val RefTreeTag: ClassTag[RefTree]
-
- /** A tree which defines a symbol-carrying entity.
- */
- type DefTree >: Null <: SymTree with NameTree
-
- /** A tag that preserves the identity of the `DefTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val DefTreeTag: ClassTag[DefTree]
-
- /** Common base class for all member definitions: types, classes,
- * objects, packages, vals and vars, defs.
- */
- type MemberDef >: Null <: DefTree
-
- /** A tag that preserves the identity of the `MemberDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val MemberDefTag: ClassTag[MemberDef]
-
- /** A packaging, such as `package pid { stats }`
- */
- type PackageDef >: Null <: MemberDef
-
- /** A tag that preserves the identity of the `PackageDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val PackageDefTag: ClassTag[PackageDef]
-
- /** The constructor/deconstructor for `PackageDef` instances. */
- val PackageDef: PackageDefExtractor
-
- /** An extractor class to create and pattern match with syntax `PackageDef(pid, stats)`.
- * This AST node corresponds to the following Scala code:
- *
- * `package` pid { stats }
- */
- abstract class PackageDefExtractor {
- def apply(pid: RefTree, stats: List[Tree]): PackageDef
- def unapply(packageDef: PackageDef): Option[(RefTree, List[Tree])]
- }
-
- /** A common base class for class and object definitions.
- */
- type ImplDef >: Null <: MemberDef
-
- /** A tag that preserves the identity of the `ImplDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ImplDefTag: ClassTag[ImplDef]
-
- /** A class definition.
- */
- type ClassDef >: Null <: ImplDef
-
- /** A tag that preserves the identity of the `ClassDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ClassDefTag: ClassTag[ClassDef]
-
- /** The constructor/deconstructor for `ClassDef` instances. */
- val ClassDef: ClassDefExtractor
-
- /** An extractor class to create and pattern match with syntax `ClassDef(mods, name, tparams, impl)`.
- * This AST node corresponds to the following Scala code:
- *
- * mods `class` name [tparams] impl
- *
- * Where impl stands for:
- *
- * `extends` parents { defs }
- */
- abstract class ClassDefExtractor {
- def apply(mods: Modifiers, name: TypeName, tparams: List[TypeDef], impl: Template): ClassDef
- def unapply(classDef: ClassDef): Option[(Modifiers, TypeName, List[TypeDef], Template)]
- }
-
- /** An object definition, e.g. `object Foo`. Internally, objects are
- * quite frequently called modules to reduce ambiguity.
- * Eliminated by refcheck.
- */
- type ModuleDef >: Null <: ImplDef
-
- /** A tag that preserves the identity of the `ModuleDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ModuleDefTag: ClassTag[ModuleDef]
-
- /** The constructor/deconstructor for `ModuleDef` instances. */
- val ModuleDef: ModuleDefExtractor
-
- /** An extractor class to create and pattern match with syntax `ModuleDef(mods, name, impl)`.
- * This AST node corresponds to the following Scala code:
- *
- * mods `object` name impl
- *
- * Where impl stands for:
- *
- * `extends` parents { defs }
- */
- abstract class ModuleDefExtractor {
- def apply(mods: Modifiers, name: TermName, impl: Template): ModuleDef
- def unapply(moduleDef: ModuleDef): Option[(Modifiers, TermName, Template)]
- }
-
- /** A common base class for ValDefs and DefDefs.
- */
- type ValOrDefDef >: Null <: MemberDef
-
- /** A tag that preserves the identity of the `ValOrDefDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ValOrDefDefTag: ClassTag[ValOrDefDef]
-
- /** Broadly speaking, a value definition. All these are encoded as ValDefs:
- *
- * - immutable values, e.g. "val x"
- * - mutable values, e.g. "var x" - the MUTABLE flag set in mods
- * - lazy values, e.g. "lazy val x" - the LAZY flag set in mods
- * - method parameters, see vparamss in DefDef - the PARAM flag is set in mods
- * - explicit self-types, e.g. class A { self: Bar => } - !!! not sure what is set.
- */
- type ValDef >: Null <: ValOrDefDef
-
- /** A tag that preserves the identity of the `ValDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ValDefTag: ClassTag[ValDef]
-
- /** The constructor/deconstructor for `ValDef` instances. */
- val ValDef: ValDefExtractor
-
- /** An extractor class to create and pattern match with syntax `ValDef(mods, name, tpt, rhs)`.
- * This AST node corresponds to the following Scala code:
- *
- * mods `val` name: tpt = rhs
- *
- * mods `var` name: tpt = rhs
- *
- * mods name: tpt = rhs // in signatures of function and method definitions
- *
- * self: Bar => // self-types (!!! not sure what is set)
- *
- * If the type of a value is not specified explicitly (i.e. is meant to be inferred),
- * this is expressed by having `tpt` set to `TypeTree()` (but not to an `EmptyTree`!).
- */
- abstract class ValDefExtractor {
- def apply(mods: Modifiers, name: TermName, tpt: Tree, rhs: Tree): ValDef
- def unapply(valDef: ValDef): Option[(Modifiers, TermName, Tree, Tree)]
- }
-
- /** A method or macro definition.
- * @param name The name of the method or macro. Can be a type name in case this is a type macro
- */
- type DefDef >: Null <: ValOrDefDef
-
- /** A tag that preserves the identity of the `DefDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val DefDefTag: ClassTag[DefDef]
-
- /** The constructor/deconstructor for `DefDef` instances. */
- val DefDef: DefDefExtractor
-
- /** An extractor class to create and pattern match with syntax `DefDef(mods, name, tparams, vparamss, tpt, rhs)`.
- * This AST node corresponds to the following Scala code:
- *
- * mods `def` name[tparams](vparams_1)...(vparams_n): tpt = rhs
- *
- * If the return type is not specified explicitly (i.e. is meant to be inferred),
- * this is expressed by having `tpt` set to `TypeTree()` (but not to an `EmptyTree`!).
- */
- abstract class DefDefExtractor {
- def apply(mods: Modifiers, name: Name, tparams: List[TypeDef], vparamss: List[List[ValDef]], tpt: Tree, rhs: Tree): DefDef
- def unapply(defDef: DefDef): Option[(Modifiers, Name, List[TypeDef], List[List[ValDef]], Tree, Tree)]
- }
-
- /** An abstract type, a type parameter, or a type alias.
- * Eliminated by erasure.
- */
- type TypeDef >: Null <: MemberDef
-
- /** A tag that preserves the identity of the `TypeDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeDefTag: ClassTag[TypeDef]
-
- /** The constructor/deconstructor for `TypeDef` instances. */
- val TypeDef: TypeDefExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeDef(mods, name, tparams, rhs)`.
- * This AST node corresponds to the following Scala code:
- *
- * mods `type` name[tparams] = rhs
- *
- * mods `type` name[tparams] >: lo <: hi
- *
- * First usage illustrates `TypeDefs` representing type aliases and type parameters.
- * Second usage illustrates `TypeDefs` representing abstract types,
- * where lo and hi are both `TypeBoundsTrees` and `Modifier.deferred` is set in mods.
- */
- abstract class TypeDefExtractor {
- def apply(mods: Modifiers, name: TypeName, tparams: List[TypeDef], rhs: Tree): TypeDef
- def unapply(typeDef: TypeDef): Option[(Modifiers, TypeName, List[TypeDef], Tree)]
- }
-
- /** A labelled expression. Not expressible in language syntax, but
- * generated by the compiler to simulate while/do-while loops, and
- * also by the pattern matcher.
- *
- * The label acts much like a nested function, where `params` represents
- * the incoming parameters. The symbol given to the LabelDef should have
- * a MethodType, as if it were a nested function.
- *
- * Jumps are apply nodes attributed with a label's symbol. The
- * arguments from the apply node will be passed to the label and
- * assigned to the Idents.
- *
- * Forward jumps within a block are allowed.
- */
- type LabelDef >: Null <: DefTree with TermTree
-
- /** A tag that preserves the identity of the `LabelDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val LabelDefTag: ClassTag[LabelDef]
-
- /** The constructor/deconstructor for `LabelDef` instances. */
- val LabelDef: LabelDefExtractor
-
- /** An extractor class to create and pattern match with syntax `LabelDef(name, params, rhs)`.
- *
- * This AST node does not have direct correspondence to Scala code.
- * It is used for tailcalls and like.
- * For example, while/do are desugared to label defs as follows:
- *
- * while (cond) body ==> LabelDef($L, List(), if (cond) { body; L$() } else ())
- * do body while (cond) ==> LabelDef($L, List(), body; if (cond) L$() else ())
- */
- abstract class LabelDefExtractor {
- def apply(name: TermName, params: List[Ident], rhs: Tree): LabelDef
- def unapply(labelDef: LabelDef): Option[(TermName, List[Ident], Tree)]
- }
-
- /** Import selector
- *
- * Representation of an imported name its optional rename and their optional positions
- *
- * Eliminated by typecheck.
- *
- * @param name the imported name
- * @param namePos its position or -1 if undefined
- * @param rename the name the import is renamed to (== name if no renaming)
- * @param renamePos the position of the rename or -1 if undefined
- */
- type ImportSelector >: Null <: AnyRef
-
- /** A tag that preserves the identity of the `ImportSelector` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ImportSelectorTag: ClassTag[ImportSelector]
-
- /** The constructor/deconstructor for `ImportSelector` instances. */
- val ImportSelector: ImportSelectorExtractor
-
- /** An extractor class to create and pattern match with syntax `ImportSelector(name:, namePos, rename, renamePos)`.
- * This is not an AST node, it is used as a part of the `Import` node.
- */
- abstract class ImportSelectorExtractor {
- def apply(name: Name, namePos: Int, rename: Name, renamePos: Int): ImportSelector
- def unapply(importSelector: ImportSelector): Option[(Name, Int, Name, Int)]
- }
-
- /** Import clause
- *
- * @param expr
- * @param selectors
- */
- type Import >: Null <: SymTree
-
- /** A tag that preserves the identity of the `Import` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ImportTag: ClassTag[Import]
-
- /** The constructor/deconstructor for `Import` instances. */
- val Import: ImportExtractor
-
- /** An extractor class to create and pattern match with syntax `Import(expr, selectors)`.
- * This AST node corresponds to the following Scala code:
- *
- * import expr.{selectors}
- *
- * Selectors are a list of pairs of names (from, to). // [Eugene++] obviously, they no longer are. please, document!
- * The last (and maybe only name) may be a nme.WILDCARD. For instance:
- *
- * import qual.{x, y => z, _}
- *
- * Would be represented as:
- *
- * Import(qual, List(("x", "x"), ("y", "z"), (WILDCARD, null)))
- *
- * The symbol of an `Import` is an import symbol @see Symbol.newImport.
- * It's used primarily as a marker to check that the import has been typechecked.
- */
- abstract class ImportExtractor {
- def apply(expr: Tree, selectors: List[ImportSelector]): Import
- def unapply(import_ : Import): Option[(Tree, List[ImportSelector])]
- }
-
- /** Instantiation template of a class or trait
- *
- * @param parents
- * @param body
- */
- type Template >: Null <: SymTree
-
- /** A tag that preserves the identity of the `Template` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TemplateTag: ClassTag[Template]
-
- /** The constructor/deconstructor for `Template` instances. */
- val Template: TemplateExtractor
-
- /** An extractor class to create and pattern match with syntax `Template(parents, self, body)`.
- * This AST node corresponds to the following Scala code:
- *
- * `extends` parents { self => body }
- *
- * In case when the self-type annotation is missing, it is represented as
- * an empty value definition with nme.WILDCARD as name and NoType as type.
- *
- * The symbol of a template is a local dummy. @see Symbol.newLocalDummy
- * The owner of the local dummy is the enclosing trait or class.
- * The local dummy is itself the owner of any local blocks. For example:
- *
- * class C {
- * def foo { // owner is C
- * def bar // owner is local dummy
- * }
- * }
- */
- abstract class TemplateExtractor {
- def apply(parents: List[Tree], self: ValDef, body: List[Tree]): Template
- def unapply(template: Template): Option[(List[Tree], ValDef, List[Tree])]
- }
-
- /** Block of expressions (semicolon separated expressions) */
- type Block >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Block` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val BlockTag: ClassTag[Block]
-
- /** The constructor/deconstructor for `Block` instances. */
- val Block: BlockExtractor
-
- /** An extractor class to create and pattern match with syntax `Block(stats, expr)`.
- * This AST node corresponds to the following Scala code:
- *
- * { stats; expr }
- *
- * If the block is empty, the `expr` is set to `Literal(Constant(()))`. // [Eugene++] check this
- */
- abstract class BlockExtractor {
- def apply(stats: List[Tree], expr: Tree): Block
- def unapply(block: Block): Option[(List[Tree], Tree)]
- }
-
- /** Case clause in a pattern match, eliminated during explicitouter
- * (except for occurrences in switch statements).
- * Eliminated by patmat/explicitouter.
- */
- type CaseDef >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `CaseDef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val CaseDefTag: ClassTag[CaseDef]
-
- /** The constructor/deconstructor for `CaseDef` instances. */
- val CaseDef: CaseDefExtractor
-
- /** An extractor class to create and pattern match with syntax `CaseDef(pat, guard, body)`.
- * This AST node corresponds to the following Scala code:
- *
- * `case` pat `if` guard => body
- *
- * If the guard is not present, the `guard` is set to `EmptyTree`. // [Eugene++] check this
- * If the body is not specified, the `body` is set to `EmptyTree`. // [Eugene++] check this
- */
- abstract class CaseDefExtractor {
- def apply(pat: Tree, guard: Tree, body: Tree): CaseDef
- def unapply(caseDef: CaseDef): Option[(Tree, Tree, Tree)]
- }
-
- /** Alternatives of patterns, eliminated by explicitouter, except for
- * occurrences in encoded Switch stmt (=remaining Match(CaseDef(...)))
- * Eliminated by patmat/explicitouter.
- */
- type Alternative >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Alternative` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AlternativeTag: ClassTag[Alternative]
-
- /** The constructor/deconstructor for `Alternative` instances. */
- val Alternative: AlternativeExtractor
-
- /** An extractor class to create and pattern match with syntax `Alternative(trees)`.
- * This AST node corresponds to the following Scala code:
- *
- * pat1 | ... | patn
- */
- abstract class AlternativeExtractor {
- def apply(trees: List[Tree]): Alternative
- def unapply(alternative: Alternative): Option[List[Tree]]
- }
-
- /** Repetition of pattern.
- * Eliminated by patmat/explicitouter.
- */
- type Star >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Star` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val StarTag: ClassTag[Star]
-
- /** The constructor/deconstructor for `Star` instances. */
- val Star: StarExtractor
-
- /** An extractor class to create and pattern match with syntax `Star(elem)`.
- * This AST node corresponds to the following Scala code:
- *
- * pat*
- */
- abstract class StarExtractor {
- def apply(elem: Tree): Star
- def unapply(star: Star): Option[Tree]
- }
-
- /** Bind of a variable to a rhs pattern, eliminated by explicitouter
- * Eliminated by patmat/explicitouter.
- *
- * @param name
- * @param body
- */
- type Bind >: Null <: DefTree
-
- /** A tag that preserves the identity of the `Bind` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val BindTag: ClassTag[Bind]
-
- /** The constructor/deconstructor for `Bind` instances. */
- val Bind: BindExtractor
-
- /** An extractor class to create and pattern match with syntax `Bind(name, body)`.
- * This AST node corresponds to the following Scala code:
- *
- * pat*
- */
- abstract class BindExtractor {
- def apply(name: Name, body: Tree): Bind
- def unapply(bind: Bind): Option[(Name, Tree)]
- }
-
- /** Used to represent `unapply` methods in pattern matching.
- * Introduced by typer, eliminated by patmat/explicitouter.
- *
- * For example:
- * {{{
- * 2 match { case Foo(x) => x }
- * }}}
- *
- * Is represented as:
- * {{{
- * Match(
- * Literal(Constant(2)),
- * List(
- * CaseDef(
- * UnApply(
- * // a dummy node that carries the type of unapplication to patmat
- * // the <unapply-selector> here doesn't have an underlying symbol
- * // it only has a type assigned, therefore after `resetAllAttrs` this tree is no longer typeable
- * Apply(Select(Ident(Foo), newTermName("unapply")), List(Ident(newTermName("<unapply-selector>")))),
- * // arguments of the unapply => nothing synthetic here
- * List(Bind(newTermName("x"), Ident(nme.WILDCARD)))),
- * EmptyTree,
- * Ident(newTermName("x")))))
- * }}}
- */
- type UnApply >: Null <: TermTree
-
- /** A tag that preserves the identity of the `UnApply` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val UnApplyTag: ClassTag[UnApply]
-
- /** The constructor/deconstructor for `UnApply` instances. */
- val UnApply: UnApplyExtractor
-
- /** An extractor class to create and pattern match with syntax `UnApply(fun, args)`.
- * This AST node does not have direct correspondence to Scala code,
- * and is introduced when typechecking pattern matches and `try` blocks.
- */
- abstract class UnApplyExtractor {
- def apply(fun: Tree, args: List[Tree]): UnApply
- def unapply(unApply: UnApply): Option[(Tree, List[Tree])]
- }
-
- /** Array of expressions, needs to be translated in backend.
- * This AST node is used to pass arguments to vararg arguments.
- * Introduced by uncurry.
- */
- type ArrayValue >: Null <: TermTree
-
- /** A tag that preserves the identity of the `ArrayValue` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ArrayValueTag: ClassTag[ArrayValue]
-
- /** The constructor/deconstructor for `ArrayValue` instances. */
- val ArrayValue: ArrayValueExtractor
-
- /** An extractor class to create and pattern match with syntax `ArrayValue(elemtpt, elems)`.
- * This AST node does not have direct correspondence to Scala code,
- * and is used to pass arguments to vararg arguments. For instance:
- *
- * printf("%s%d", foo, 42)
- *
- * Is translated to after uncurry to:
- *
- * Apply(
- * Ident("printf"),
- * Literal("%s%d"),
- * ArrayValue(<Any>, List(Ident("foo"), Literal(42))))
- */
- abstract class ArrayValueExtractor {
- def apply(elemtpt: Tree, elems: List[Tree]): ArrayValue
- def unapply(arrayValue: ArrayValue): Option[(Tree, List[Tree])]
- }
-
- /** Anonymous function, eliminated by lambdalift */
- type Function >: Null <: TermTree with SymTree
-
- /** A tag that preserves the identity of the `Function` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val FunctionTag: ClassTag[Function]
-
- /** The constructor/deconstructor for `Function` instances. */
- val Function: FunctionExtractor
-
- /** An extractor class to create and pattern match with syntax `Function(vparams, body)`.
- * This AST node corresponds to the following Scala code:
- *
- * vparams => body
- *
- * The symbol of a Function is a synthetic value of name nme.ANON_FUN_NAME
- * It is the owner of the function's parameters.
- */
- abstract class FunctionExtractor {
- def apply(vparams: List[ValDef], body: Tree): Function
- def unapply(function: Function): Option[(List[ValDef], Tree)]
- }
-
- /** Assignment */
- type Assign >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Assign` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AssignTag: ClassTag[Assign]
-
- /** The constructor/deconstructor for `Assign` instances. */
- val Assign: AssignExtractor
-
- /** An extractor class to create and pattern match with syntax `Assign(lhs, rhs)`.
- * This AST node corresponds to the following Scala code:
- *
- * lhs = rhs
- */
- abstract class AssignExtractor {
- def apply(lhs: Tree, rhs: Tree): Assign
- def unapply(assign: Assign): Option[(Tree, Tree)]
- }
-
- /** Either an assignment or a named argument. Only appears in argument lists,
- * eliminated by typecheck (doTypedApply), resurrected by reifier.
- */
- type AssignOrNamedArg >: Null <: TermTree
-
- /** A tag that preserves the identity of the `AssignOrNamedArg` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AssignOrNamedArgTag: ClassTag[AssignOrNamedArg]
-
- /** The constructor/deconstructor for `AssignOrNamedArg` instances. */
- val AssignOrNamedArg: AssignOrNamedArgExtractor
-
- /** An extractor class to create and pattern match with syntax `AssignOrNamedArg(lhs, rhs)`.
- * This AST node corresponds to the following Scala code:
- *
- * @annotation(lhs = rhs)
- *
- * m.f(lhs = rhs)
- */
- abstract class AssignOrNamedArgExtractor {
- def apply(lhs: Tree, rhs: Tree): AssignOrNamedArg
- def unapply(assignOrNamedArg: AssignOrNamedArg): Option[(Tree, Tree)]
- }
-
- /** Conditional expression */
- type If >: Null <: TermTree
-
- /** A tag that preserves the identity of the `If` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val IfTag: ClassTag[If]
-
- /** The constructor/deconstructor for `If` instances. */
- val If: IfExtractor
-
- /** An extractor class to create and pattern match with syntax `If(cond, thenp, elsep)`.
- * This AST node corresponds to the following Scala code:
- *
- * `if` (cond) thenp `else` elsep
- *
- * If the alternative is not present, the `elsep` is set to `EmptyTree`. // [Eugene++] check this
- */
- abstract class IfExtractor {
- def apply(cond: Tree, thenp: Tree, elsep: Tree): If
- def unapply(if_ : If): Option[(Tree, Tree, Tree)]
- }
-
- /** - Pattern matching expression (before explicitouter)
- * - Switch statements (after explicitouter)
- *
- * After explicitouter, cases will satisfy the following constraints:
- *
- * - all guards are `EmptyTree`,
- * - all patterns will be either `Literal(Constant(x:Int))`
- * or `Alternative(lit|...|lit)`
- * - except for an "otherwise" branch, which has pattern
- * `Ident(nme.WILDCARD)`
- */
- type Match >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Match` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val MatchTag: ClassTag[Match]
-
- /** The constructor/deconstructor for `Match` instances. */
- val Match: MatchExtractor
-
- /** An extractor class to create and pattern match with syntax `Match(selector, cases)`.
- * This AST node corresponds to the following Scala code:
- *
- * selector `match` { cases }
- *
- * // [Eugene++] say something about `val (foo, bar) = baz` and likes.
- */
- abstract class MatchExtractor {
- def apply(selector: Tree, cases: List[CaseDef]): Match
- def unapply(match_ : Match): Option[(Tree, List[CaseDef])]
- }
-
- /** Return expression */
- type Return >: Null <: TermTree with SymTree
-
- /** A tag that preserves the identity of the `Return` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ReturnTag: ClassTag[Return]
-
- /** The constructor/deconstructor for `Return` instances. */
- val Return: ReturnExtractor
-
- /** An extractor class to create and pattern match with syntax `Return(expr)`.
- * This AST node corresponds to the following Scala code:
- *
- * `return` expr
- *
- * The symbol of a Return node is the enclosing method
- */
- abstract class ReturnExtractor {
- def apply(expr: Tree): Return
- def unapply(return_ : Return): Option[Tree]
- }
-
- /** [Eugene++] comment me! */
- type Try >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Try` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TryTag: ClassTag[Try]
-
- /** The constructor/deconstructor for `Try` instances. */
- val Try: TryExtractor
-
- /** An extractor class to create and pattern match with syntax `Try(block, catches, finalizer)`.
- * This AST node corresponds to the following Scala code:
- *
- * `try` block `catch` { catches } `finally` finalizer
- *
- * If the finalizer is not present, the `finalizer` is set to `EmptyTree`. // [Eugene++] check this
- */
- abstract class TryExtractor {
- def apply(block: Tree, catches: List[CaseDef], finalizer: Tree): Try
- def unapply(try_ : Try): Option[(Tree, List[CaseDef], Tree)]
- }
-
- /** Throw expression */
- type Throw >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Throw` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ThrowTag: ClassTag[Throw]
-
- /** The constructor/deconstructor for `Throw` instances. */
- val Throw: ThrowExtractor
-
- /** An extractor class to create and pattern match with syntax `Throw(expr)`.
- * This AST node corresponds to the following Scala code:
- *
- * `throw` expr
- */
- abstract class ThrowExtractor {
- def apply(expr: Tree): Throw
- def unapply(throw_ : Throw): Option[Tree]
- }
-
- /** Object instantiation
- * One should always use factory method below to build a user level new.
- *
- * @param tpt a class type
- */
- type New >: Null <: TermTree
-
- /** A tag that preserves the identity of the `New` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val NewTag: ClassTag[New]
-
- /** The constructor/deconstructor for `New` instances. */
- val New: NewExtractor
-
- /** An extractor class to create and pattern match with syntax `New(tpt)`.
- * This AST node corresponds to the following Scala code:
- *
- * `new` T
- *
- * This node always occurs in the following context:
- *
- * (`new` tpt).<init>[targs](args)
- */
- abstract class NewExtractor {
- def apply(tpt: Tree): New
- def unapply(new_ : New): Option[Tree]
- }
-
- /** Type annotation, eliminated by cleanup */
- type Typed >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Typed` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypedTag: ClassTag[Typed]
-
- /** The constructor/deconstructor for `Typed` instances. */
- val Typed: TypedExtractor
-
- /** An extractor class to create and pattern match with syntax `Typed(expr, tpt)`.
- * This AST node corresponds to the following Scala code:
- *
- * expr: tpt
- */
- abstract class TypedExtractor {
- def apply(expr: Tree, tpt: Tree): Typed
- def unapply(typed: Typed): Option[(Tree, Tree)]
- }
-
- /** Common base class for Apply and TypeApply. This could in principle
- * be a SymTree, but whether or not a Tree is a SymTree isn't used
- * to settle any interesting questions, and it would add a useless
- * field to all the instances (useless, since GenericApply forwards to
- * the underlying fun.)
- */
- type GenericApply >: Null <: TermTree
-
- /** A tag that preserves the identity of the `GenericApply` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val GenericApplyTag: ClassTag[GenericApply]
-
- /** Explicit type application.
- * @PP: All signs point toward it being a requirement that args.nonEmpty,
- * but I can't find that explicitly stated anywhere. Unless your last name
- * is odersky, you should probably treat it as true.
- */
- type TypeApply >: Null <: GenericApply
-
- /** A tag that preserves the identity of the `TypeApply` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeApplyTag: ClassTag[TypeApply]
-
- /** The constructor/deconstructor for `TypeApply` instances. */
- val TypeApply: TypeApplyExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeApply(fun, args)`.
- * This AST node corresponds to the following Scala code:
- *
- * fun[args]
- */
- abstract class TypeApplyExtractor {
- def apply(fun: Tree, args: List[Tree]): TypeApply
- def unapply(typeApply: TypeApply): Option[(Tree, List[Tree])]
- }
-
- /** Value application */
- type Apply >: Null <: GenericApply
-
- /** A tag that preserves the identity of the `Apply` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ApplyTag: ClassTag[Apply]
-
- /** The constructor/deconstructor for `Apply` instances. */
- val Apply: ApplyExtractor
-
- /** An extractor class to create and pattern match with syntax `Apply(fun, args)`.
- * This AST node corresponds to the following Scala code:
- *
- * fun(args)
- *
- * For instance:
- *
- * fun[targs](args)
- *
- * Is expressed as:
- *
- * Apply(TypeApply(fun, targs), args)
- */
- abstract class ApplyExtractor {
- def apply(fun: Tree, args: List[Tree]): Apply
- def unapply(apply: Apply): Option[(Tree, List[Tree])]
- }
-
- /** Super reference, qual = corresponding this reference
- * A super reference C.super[M] is represented as Super(This(C), M).
- */
- type Super >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Super` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SuperTag: ClassTag[Super]
-
- /** The constructor/deconstructor for `Super` instances. */
- val Super: SuperExtractor
-
- /** An extractor class to create and pattern match with syntax `Super(qual, mix)`.
- * This AST node corresponds to the following Scala code:
- *
- * C.super[M]
- *
- * Which is represented as:
- *
- * Super(This(C), M)
- *
- * If `mix` is empty, it is tpnme.EMPTY.
- *
- * The symbol of a Super is the class _from_ which the super reference is made.
- * For instance in C.super(...), it would be C.
- */
- abstract class SuperExtractor {
- def apply(qual: Tree, mix: TypeName): Super
- def unapply(super_ : Super): Option[(Tree, TypeName)]
- }
-
- /** Self reference */
- type This >: Null <: TermTree with SymTree
-
- /** A tag that preserves the identity of the `This` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ThisTag: ClassTag[This]
-
- /** The constructor/deconstructor for `This` instances. */
- val This: ThisExtractor
-
- /** An extractor class to create and pattern match with syntax `This(qual)`.
- * This AST node corresponds to the following Scala code:
- *
- * qual.this
- *
- * The symbol of a This is the class to which the this refers.
- * For instance in C.this, it would be C.
- *
- * If `mix` is empty, then ???
- */
- abstract class ThisExtractor {
- def apply(qual: TypeName): This
- def unapply(this_ : This): Option[TypeName]
- }
-
- /** Designator <qualifier> . <name> */
- type Select >: Null <: RefTree
-
- /** A tag that preserves the identity of the `Select` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SelectTag: ClassTag[Select]
-
- /** The constructor/deconstructor for `Select` instances. */
- val Select: SelectExtractor
-
- /** An extractor class to create and pattern match with syntax `Select(qual, name)`.
- * This AST node corresponds to the following Scala code:
- *
- * qualifier.selector
- */
- abstract class SelectExtractor {
- def apply(qualifier: Tree, name: Name): Select
- def unapply(select: Select): Option[(Tree, Name)]
- }
-
- /** Identifier <name> */
- type Ident >: Null <: RefTree
-
- /** A tag that preserves the identity of the `Ident` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val IdentTag: ClassTag[Ident]
-
- /** The constructor/deconstructor for `Ident` instances. */
- val Ident: IdentExtractor
-
- /** An extractor class to create and pattern match with syntax `Ident(qual, name)`.
- * This AST node corresponds to the following Scala code:
- *
- * name
- *
- * Type checker converts idents that refer to enclosing fields or methods to selects.
- * For example, name ==> this.name
- */
- abstract class IdentExtractor {
- def apply(name: Name): Ident
- def unapply(ident: Ident): Option[Name]
- }
-
- /** Marks underlying reference to id as boxed.
- * @pre id must refer to a captured variable
- * A reference such marked will refer to the boxed entity, no dereferencing
- * with `.elem` is done on it.
- * This tree node can be emitted by macros such as reify that call referenceCapturedVariable.
- * It is eliminated in LambdaLift, where the boxing conversion takes place.
- */
- type ReferenceToBoxed >: Null <: TermTree
-
- /** A tag that preserves the identity of the `ReferenceToBoxed` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ReferenceToBoxedTag: ClassTag[ReferenceToBoxed]
-
- /** The constructor/deconstructor for `ReferenceToBoxed` instances. */
- val ReferenceToBoxed: ReferenceToBoxedExtractor
-
- /** An extractor class to create and pattern match with syntax `ReferenceToBoxed(ident)`.
- * This AST node does not have direct correspondence to Scala code,
- * and is emitted by macros to reference capture vars directly without going through `elem`.
- *
- * For example:
- *
- * var x = ...
- * fun { x }
- *
- * Will emit:
- *
- * Ident(x)
- *
- * Which gets transformed to:
- *
- * Select(Ident(x), "elem")
- *
- * If `ReferenceToBoxed` were used instead of Ident, no transformation would be performed.
- */
- abstract class ReferenceToBoxedExtractor {
- def apply(ident: Ident): ReferenceToBoxed
- def unapply(referenceToBoxed: ReferenceToBoxed): Option[Ident]
- }
-
- /** Literal */
- type Literal >: Null <: TermTree
-
- /** A tag that preserves the identity of the `Literal` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val LiteralTag: ClassTag[Literal]
-
- /** The constructor/deconstructor for `Literal` instances. */
- val Literal: LiteralExtractor
-
- /** An extractor class to create and pattern match with syntax `Literal(value)`.
- * This AST node corresponds to the following Scala code:
- *
- * value
- */
- abstract class LiteralExtractor {
- def apply(value: Constant): Literal
- def unapply(literal: Literal): Option[Constant]
- }
-
- /** A tree that has an annotation attached to it. Only used for annotated types and
- * annotation ascriptions, annotations on definitions are stored in the Modifiers.
- * Eliminated by typechecker (typedAnnotated), the annotations are then stored in
- * an AnnotatedType.
- */
- type Annotated >: Null <: AnyRef with Tree
-
- /** A tag that preserves the identity of the `Annotated` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AnnotatedTag: ClassTag[Annotated]
-
- /** The constructor/deconstructor for `Annotated` instances. */
- val Annotated: AnnotatedExtractor
-
- /** An extractor class to create and pattern match with syntax `Annotated(annot, arg)`.
- * This AST node corresponds to the following Scala code:
- *
- * arg @annot // for types
- * arg: @annot // for exprs
- */
- abstract class AnnotatedExtractor {
- def apply(annot: Tree, arg: Tree): Annotated
- def unapply(annotated: Annotated): Option[(Tree, Tree)]
- }
-
- /** Singleton type, eliminated by RefCheck */
- type SingletonTypeTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `SingletonTypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SingletonTypeTreeTag: ClassTag[SingletonTypeTree]
-
- /** The constructor/deconstructor for `SingletonTypeTree` instances. */
- val SingletonTypeTree: SingletonTypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `SingletonTypeTree(ref)`.
- * This AST node corresponds to the following Scala code:
- *
- * ref.type
- */
- abstract class SingletonTypeTreeExtractor {
- def apply(ref: Tree): SingletonTypeTree
- def unapply(singletonTypeTree: SingletonTypeTree): Option[Tree]
- }
-
- /** Type selection <qualifier> # <name>, eliminated by RefCheck */
- // [Eugene++] don't see why we need it, when we have Select
- type SelectFromTypeTree >: Null <: TypTree with RefTree
-
- /** A tag that preserves the identity of the `SelectFromTypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SelectFromTypeTreeTag: ClassTag[SelectFromTypeTree]
-
- /** The constructor/deconstructor for `SelectFromTypeTree` instances. */
- val SelectFromTypeTree: SelectFromTypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `SelectFromTypeTree(qualifier, name)`.
- * This AST node corresponds to the following Scala code:
- *
- * qualifier # selector
- *
- * Note: a path-dependent type p.T is expressed as p.type # T
- */
- abstract class SelectFromTypeTreeExtractor {
- def apply(qualifier: Tree, name: TypeName): SelectFromTypeTree
- def unapply(selectFromTypeTree: SelectFromTypeTree): Option[(Tree, TypeName)]
- }
-
- /** Intersection type <parent1> with ... with <parentN> { <decls> }, eliminated by RefCheck */
- type CompoundTypeTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `CompoundTypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val CompoundTypeTreeTag: ClassTag[CompoundTypeTree]
-
- /** The constructor/deconstructor for `CompoundTypeTree` instances. */
- val CompoundTypeTree: CompoundTypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `CompoundTypeTree(templ)`.
- * This AST node corresponds to the following Scala code:
- *
- * parent1 with ... with parentN { refinement }
- */
- abstract class CompoundTypeTreeExtractor {
- def apply(templ: Template): CompoundTypeTree
- def unapply(compoundTypeTree: CompoundTypeTree): Option[Template]
- }
-
- /** Applied type <tpt> [ <args> ], eliminated by RefCheck */
- type AppliedTypeTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `AppliedTypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AppliedTypeTreeTag: ClassTag[AppliedTypeTree]
-
- /** The constructor/deconstructor for `AppliedTypeTree` instances. */
- val AppliedTypeTree: AppliedTypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `AppliedTypeTree(tpt, args)`.
- * This AST node corresponds to the following Scala code:
- *
- * tpt[args]
- */
- abstract class AppliedTypeTreeExtractor {
- def apply(tpt: Tree, args: List[Tree]): AppliedTypeTree
- def unapply(appliedTypeTree: AppliedTypeTree): Option[(Tree, List[Tree])]
- }
-
- /** Document me! */
- type TypeBoundsTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `TypeBoundsTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeBoundsTreeTag: ClassTag[TypeBoundsTree]
-
- /** The constructor/deconstructor for `TypeBoundsTree` instances. */
- val TypeBoundsTree: TypeBoundsTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeBoundsTree(lo, hi)`.
- * This AST node corresponds to the following Scala code:
- *
- * >: lo <: hi
- */
- abstract class TypeBoundsTreeExtractor {
- def apply(lo: Tree, hi: Tree): TypeBoundsTree
- def unapply(typeBoundsTree: TypeBoundsTree): Option[(Tree, Tree)]
- }
-
- /** Document me! */
- type ExistentialTypeTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `ExistentialTypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ExistentialTypeTreeTag: ClassTag[ExistentialTypeTree]
-
- /** The constructor/deconstructor for `ExistentialTypeTree` instances. */
- val ExistentialTypeTree: ExistentialTypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `ExistentialTypeTree(tpt, whereClauses)`.
- * This AST node corresponds to the following Scala code:
- *
- * tpt forSome { whereClauses }
- */
- abstract class ExistentialTypeTreeExtractor {
- def apply(tpt: Tree, whereClauses: List[Tree]): ExistentialTypeTree
- def unapply(existentialTypeTree: ExistentialTypeTree): Option[(Tree, List[Tree])]
- }
-
- /** A synthetic tree holding an arbitrary type. Not to be confused with
- * with TypTree, the trait for trees that are only used for type trees.
- * TypeTree's are inserted in several places, but most notably in
- * `RefCheck`, where the arbitrary type trees are all replaced by
- * TypeTree's. */
- type TypeTree >: Null <: TypTree
-
- /** A tag that preserves the identity of the `TypeTree` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeTreeTag: ClassTag[TypeTree]
-
- /** The constructor/deconstructor for `TypeTree` instances. */
- val TypeTree: TypeTreeExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeTree()`.
- * This AST node does not have direct correspondence to Scala code,
- * and is emitted by everywhere when we want to wrap a `Type` in a `Tree`.
- */
- abstract class TypeTreeExtractor {
- def apply(): TypeTree
- def unapply(typeTree: TypeTree): Boolean
- }
-
- /** ... */
- type Modifiers >: Null <: ModifiersBase
-
- /** A tag that preserves the identity of the `Modifiers` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ModifiersTag: ClassTag[Modifiers]
-
- /** ... */
- abstract class ModifiersBase {
- def flags: FlagSet // default: NoFlags
- def hasFlag(flag: FlagSet): Boolean
- def privateWithin: Name // default: EmptyTypeName
- def annotations: List[Tree] // default: List()
- def mapAnnotations(f: List[Tree] => List[Tree]): Modifiers =
- Modifiers(flags, privateWithin, f(annotations))
- }
-
- val Modifiers: ModifiersCreator
-
- abstract class ModifiersCreator {
- def apply(): Modifiers = Modifiers(NoFlags, EmptyTypeName, List())
- def apply(flags: FlagSet, privateWithin: Name, annotations: List[Tree]): Modifiers
- }
-
- def Modifiers(flags: FlagSet, privateWithin: Name): Modifiers = Modifiers(flags, privateWithin, List())
- def Modifiers(flags: FlagSet): Modifiers = Modifiers(flags, EmptyTypeName)
-
- /** ... */
- lazy val NoMods = Modifiers()
-
-// ---------------------- factories ----------------------------------------------
-
- /** @param sym the class symbol
- * @param impl the implementation template
- */
- def ClassDef(sym: Symbol, impl: Template): ClassDef
-
- /**
- * @param sym the class symbol
- * @param impl the implementation template
- */
- def ModuleDef(sym: Symbol, impl: Template): ModuleDef
-
- def ValDef(sym: Symbol, rhs: Tree): ValDef
-
- def ValDef(sym: Symbol): ValDef
-
- def DefDef(sym: Symbol, mods: Modifiers, vparamss: List[List[ValDef]], rhs: Tree): DefDef
-
- def DefDef(sym: Symbol, vparamss: List[List[ValDef]], rhs: Tree): DefDef
-
- def DefDef(sym: Symbol, mods: Modifiers, rhs: Tree): DefDef
-
- def DefDef(sym: Symbol, rhs: Tree): DefDef
-
- def DefDef(sym: Symbol, rhs: List[List[Symbol]] => Tree): DefDef
-
- /** A TypeDef node which defines given `sym` with given tight hand side `rhs`. */
- def TypeDef(sym: Symbol, rhs: Tree): TypeDef
-
- /** A TypeDef node which defines abstract type or type parameter for given `sym` */
- def TypeDef(sym: Symbol): TypeDef
-
- def LabelDef(sym: Symbol, params: List[Symbol], rhs: Tree): LabelDef
-
- /** Block factory that flattens directly nested blocks.
- */
- def Block(stats: Tree*): Block
-
- /** casedef shorthand */
- def CaseDef(pat: Tree, body: Tree): CaseDef
-
- def Bind(sym: Symbol, body: Tree): Bind
-
- def Try(body: Tree, cases: (Tree, Tree)*): Try
-
- def Throw(tpe: Type, args: Tree*): Throw
-
- /** Factory method for object creation `new tpt(args_1)...(args_n)`
- * A `New(t, as)` is expanded to: `(new t).<init>(as)`
- */
- def New(tpt: Tree, argss: List[List[Tree]]): Tree
-
- /** 0-1 argument list new, based on a type.
- */
- def New(tpe: Type, args: Tree*): Tree
-
- def New(sym: Symbol, args: Tree*): Tree
-
- def Apply(sym: Symbol, args: Tree*): Tree
-
- def ApplyConstructor(tpt: Tree, args: List[Tree]): Tree
-
- def Super(sym: Symbol, mix: TypeName): Tree
-
- def This(sym: Symbol): Tree
-
- def Select(qualifier: Tree, name: String): Select
-
- def Select(qualifier: Tree, sym: Symbol): Select
-
- def Ident(name: String): Ident
-
- def Ident(sym: Symbol): Ident
-
- def TypeTree(tp: Type): TypeTree
-} \ No newline at end of file
diff --git a/src/library/scala/reflect/base/TypeCreator.scala b/src/library/scala/reflect/base/TypeCreator.scala
deleted file mode 100644
index 8a14e53dd3..0000000000
--- a/src/library/scala/reflect/base/TypeCreator.scala
+++ /dev/null
@@ -1,6 +0,0 @@
-package scala.reflect
-package base
-
-abstract class TypeCreator {
- def apply[U <: Universe with Singleton](m: MirrorOf[U]): U # Type
-}
diff --git a/src/library/scala/reflect/base/Types.scala b/src/library/scala/reflect/base/Types.scala
deleted file mode 100644
index 839c49805a..0000000000
--- a/src/library/scala/reflect/base/Types.scala
+++ /dev/null
@@ -1,426 +0,0 @@
-package scala.reflect
-package base
-
-trait Types { self: Universe =>
-
- /** The type of Scala types, and also Scala type signatures.
- * (No difference is internally made between the two).
- */
- type Type >: Null <: TypeBase
-
- /** The base API that all types support */
- abstract class TypeBase
-
- /** A tag that preserves the identity of the `Type` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeTagg: ClassTag[Type]
-
- /** This constant is used as a special value that indicates that no meaningful type exists.
- */
- val NoType: Type
-
- /** This constant is used as a special value denoting the empty prefix in a path dependent type.
- * For instance `x.type` is represented as `SingleType(NoPrefix, <x>)`, where `<x>` stands for
- * the symbol for `x`.
- */
- val NoPrefix: Type
-
- /** The type of Scala singleton types, i.e. types that are inhabited
- * by only one nun-null value. These include types of the forms
- * {{{
- * C.this.type
- * C.super.type
- * x.type
- * }}}
- * as well as constant types.
- */
- type SingletonType >: Null <: Type
-
- /** A tag that preserves the identity of the `SingletonType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SingletonTypeTag: ClassTag[SingletonType]
-
- /** The `ThisType` type describes types of the form on the left with the
- * correspnding ThisType representations to the right.
- * {{{
- * C.this.type ThisType(C)
- * }}}
- */
- type ThisType >: Null <: AnyRef with SingletonType
-
- /** A tag that preserves the identity of the `ThisType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ThisTypeTag: ClassTag[ThisType]
-
- /** The constructor/deconstructor for `ThisType` instances. */
- val ThisType: ThisTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `ThisType(sym)`
- * where `sym` is the class prefix of the this type.
- */
- abstract class ThisTypeExtractor {
- def apply(sym: Symbol): Type // not ThisTypebecause of implementation details
- def unapply(tpe: ThisType): Option[Symbol]
- }
-
- /** The `SingleType` type describes types of any of the forms on the left,
- * with their TypeRef representations to the right.
- * {{{
- * (T # x).type SingleType(T, x)
- * p.x.type SingleType(p.type, x)
- * x.type SingleType(NoPrefix, x)
- * }}}
- */
- type SingleType >: Null <: AnyRef with SingletonType
-
- /** A tag that preserves the identity of the `SingleType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SingleTypeTag: ClassTag[SingleType]
-
- /** The constructor/deconstructor for `SingleType` instances. */
- val SingleType: SingleTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `SingleType(pre, sym)`
- * Here, `pre` is the prefix of the single-type, and `sym` is the stable value symbol
- * referred to by the single-type.
- */
- abstract class SingleTypeExtractor {
- def apply(pre: Type, sym: Symbol): Type // not SingleTypebecause of implementation details
- def unapply(tpe: SingleType): Option[(Type, Symbol)]
- }
-
- /** The `SuperType` type is not directly written, but arises when `C.super` is used
- * as a prefix in a `TypeRef` or `SingleType`. It's internal presentation is
- * {{{
- * SuperType(thistpe, supertpe)
- * }}}
- * Here, `thistpe` is the type of the corresponding this-type. For instance,
- * in the type arising from C.super, the `thistpe` part would be `ThisType(C)`.
- * `supertpe` is the type of the super class referred to by the `super`.
- */
- type SuperType >: Null <: AnyRef with SingletonType
-
- /** A tag that preserves the identity of the `SuperType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val SuperTypeTag: ClassTag[SuperType]
-
- /** The constructor/deconstructor for `SuperType` instances. */
- val SuperType: SuperTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `SingleType(thistpe, supertpe)`
- */
- abstract class SuperTypeExtractor {
- def apply(thistpe: Type, supertpe: Type): Type // not SuperTypebecause of implementation details
- def unapply(tpe: SuperType): Option[(Type, Type)]
- }
-
- /** The `ConstantType` type is not directly written in user programs, but arises as the type of a constant.
- * The REPL expresses constant types like Int(11). Here are some constants with their types.
- * {{{
- * 1 ConstantType(Constant(1))
- * "abc" ConstantType(Constant("abc"))
- * }}}
- */
- type ConstantType >: Null <: AnyRef with SingletonType
-
- /** A tag that preserves the identity of the `ConstantType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ConstantTypeTag: ClassTag[ConstantType]
-
- /** The constructor/deconstructor for `ConstantType` instances. */
- val ConstantType: ConstantTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `ConstantType(constant)`
- * Here, `constant` is the constant value represented by the type.
- */
- abstract class ConstantTypeExtractor {
- def apply(value: Constant): ConstantType
- def unapply(tpe: ConstantType): Option[Constant]
- }
-
- /** The `TypeRef` type describes types of any of the forms on the left,
- * with their TypeRef representations to the right.
- * {{{
- * T # C[T_1, ..., T_n] TypeRef(T, C, List(T_1, ..., T_n))
- * p.C[T_1, ..., T_n] TypeRef(p.type, C, List(T_1, ..., T_n))
- * C[T_1, ..., T_n] TypeRef(NoPrefix, C, List(T_1, ..., T_n))
- * T # C TypeRef(T, C, Nil)
- * p.C TypeRef(p.type, C, Nil)
- * C TypeRef(NoPrefix, C, Nil)
- * }}}
- */
- type TypeRef >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `TypeRef` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeRefTag: ClassTag[TypeRef]
-
- /** The constructor/deconstructor for `TypeRef` instances. */
- val TypeRef: TypeRefExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeRef(pre, sym, args)`
- * Here, `pre` is the prefix of the type reference, `sym` is the symbol
- * referred to by the type reference, and `args` is a possible empty list of
- * type argumenrts.
- */
- abstract class TypeRefExtractor {
- def apply(pre: Type, sym: Symbol, args: List[Type]): Type // not TypeRefbecause of implementation details
- def unapply(tpe: TypeRef): Option[(Type, Symbol, List[Type])]
- }
-
- /** A subtype of Type representing refined types as well as `ClassInfo` signatures.
- */
- type CompoundType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `CompoundType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val CompoundTypeTag: ClassTag[CompoundType]
-
- /** The `RefinedType` type defines types of any of the forms on the left,
- * with their RefinedType representations to the right.
- * {{{
- * P_1 with ... with P_m { D_1; ...; D_n} RefinedType(List(P_1, ..., P_m), Scope(D_1, ..., D_n))
- * P_1 with ... with P_m RefinedType(List(P_1, ..., P_m), Scope())
- * { D_1; ...; D_n} RefinedType(List(AnyRef), Scope(D_1, ..., D_n))
- * }}}
- */
- type RefinedType >: Null <: AnyRef with CompoundType
-
- /** A tag that preserves the identity of the `RefinedType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val RefinedTypeTag: ClassTag[RefinedType]
-
- /** The constructor/deconstructor for `RefinedType` instances. */
- val RefinedType: RefinedTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `RefinedType(parents, decls)`
- * Here, `parents` is the list of parent types of the class, and `decls` is the scope
- * containing all declarations in the class.
- */
- abstract class RefinedTypeExtractor {
- def apply(parents: List[Type], decls: Scope): RefinedType
-
- /** An alternative constructor that passes in the synthetic classs symbol
- * that backs the refined type. (Normally, a fresh class symbol is created automatically).
- */
- def apply(parents: List[Type], decls: Scope, clazz: Symbol): RefinedType
- def unapply(tpe: RefinedType): Option[(List[Type], Scope)]
- }
-
- /** The `ClassInfo` type signature is used to define parents and declarations
- * of classes, traits, and objects. If a class, trait, or object C is declared like this
- * {{{
- * C extends P_1 with ... with P_m { D_1; ...; D_n}
- * }}}
- * its `ClassInfo` type has the following form:
- * {{{
- * ClassInfo(List(P_1, ..., P_m), Scope(D_1, ..., D_n), C)
- * }}}
- */
- type ClassInfoType >: Null <: AnyRef with CompoundType
-
- /** A tag that preserves the identity of the `ClassInfoType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ClassInfoTypeTag: ClassTag[ClassInfoType]
-
- /** The constructor/deconstructor for `ClassInfoType` instances. */
- val ClassInfoType: ClassInfoTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `ClassInfo(parents, decls, clazz)`
- * Here, `parents` is the list of parent types of the class, `decls` is the scope
- * containing all declarations in the class, and `clazz` is the symbol of the class
- * itself.
- */
- abstract class ClassInfoTypeExtractor {
- def apply(parents: List[Type], decls: Scope, typeSymbol: Symbol): ClassInfoType
- def unapply(tpe: ClassInfoType): Option[(List[Type], Scope, Symbol)]
- }
-
- /** The `MethodType` type signature is used to indicate parameters and result type of a method
- */
- type MethodType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `MethodType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val MethodTypeTag: ClassTag[MethodType]
-
- /** The constructor/deconstructor for `MethodType` instances. */
- val MethodType: MethodTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `MethodType(params, respte)`
- * Here, `params` is a potentially empty list of parameter symbols of the method,
- * and `restpe` is the result type of the method. If the method is curried, `restpe` would
- * be another `MethodType`.
- * Note: `MethodType(Nil, Int)` would be the type of a method defined with an empty parameter list.
- * {{{
- * def f(): Int
- * }}}
- * If the method is completely parameterless, as in
- * {{{
- * def f: Int
- * }}}
- * its type is a `NullaryMethodType`.
- */
- abstract class MethodTypeExtractor {
- def apply(params: List[Symbol], resultType: Type): MethodType
- def unapply(tpe: MethodType): Option[(List[Symbol], Type)]
- }
-
- /** The `NullaryMethodType` type signature is used for parameterless methods
- * with declarations of the form `def foo: T`
- */
- type NullaryMethodType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `NullaryMethodType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val NullaryMethodTypeTag: ClassTag[NullaryMethodType]
-
- /** The constructor/deconstructor for `NullaryMethodType` instances. */
- val NullaryMethodType: NullaryMethodTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `NullaryMethodType(resultType)`.
- * Here, `resultType` is the result type of the parameterless method.
- */
- abstract class NullaryMethodTypeExtractor {
- def apply(resultType: Type): NullaryMethodType
- def unapply(tpe: NullaryMethodType): Option[(Type)]
- }
-
- /** The `PolyType` type signature is used for polymorphic methods
- * that have at least one type parameter.
- */
- type PolyType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `PolyType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val PolyTypeTag: ClassTag[PolyType]
-
- /** The constructor/deconstructor for `PolyType` instances. */
- val PolyType: PolyTypeExtractor
-
- /** An extractor class to create and pattern match with syntax `PolyType(typeParams, resultType)`.
- * Here, `typeParams` are the type parameters of the method and `resultType`
- * is the type signature following the type parameters.
- */
- abstract class PolyTypeExtractor {
- def apply(typeParams: List[Symbol], resultType: Type): PolyType
- def unapply(tpe: PolyType): Option[(List[Symbol], Type)]
- }
-
- /** The `ExistentialType` type signature is used for existential types and
- * wildcard types.
- */
- type ExistentialType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `ExistentialType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val ExistentialTypeTag: ClassTag[ExistentialType]
-
- /** The constructor/deconstructor for `ExistentialType` instances. */
- val ExistentialType: ExistentialTypeExtractor
-
- /** An extractor class to create and pattern match with syntax
- * `ExistentialType(quantified, underlying)`.
- * Here, `quantified` are the type variables bound by the existential type and `underlying`
- * is the type that's existentially quantified.
- */
- abstract class ExistentialTypeExtractor {
- def apply(quantified: List[Symbol], underlying: Type): ExistentialType
- def unapply(tpe: ExistentialType): Option[(List[Symbol], Type)]
- }
-
- /** The `AnnotatedType` type signature is used for annotated types of the
- * for `<type> @<annotation>`.
- */
- type AnnotatedType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `AnnotatedType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val AnnotatedTypeTag: ClassTag[AnnotatedType]
-
- /** The constructor/deconstructor for `AnnotatedType` instances. */
- val AnnotatedType: AnnotatedTypeExtractor
-
- /** An extractor class to create and pattern match with syntax
- * `AnnotatedType(annotations, underlying, selfsym)`.
- * Here, `annotations` are the annotations decorating the underlying type `underlying`.
- * `selfSym` is a symbol representing the annotated type itself.
- */
- abstract class AnnotatedTypeExtractor {
- def apply(annotations: List[Annotation], underlying: Type, selfsym: Symbol): AnnotatedType
- def unapply(tpe: AnnotatedType): Option[(List[Annotation], Type, Symbol)]
- }
-
- /** The `TypeBounds` type signature is used to indicate lower and upper type bounds
- * of type parameters and abstract types. It is not a first-class type.
- * If an abstract type or type parameter is declared with any of the forms
- * on the left, its type signature is the TypeBounds type on the right.
- * {{{
- * T >: L <: U TypeBounds(L, U)
- * T >: L TypeBounds(L, Any)
- * T <: U TypeBounds(Nothing, U)
- * }}}
- */
- type TypeBounds >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `TypeBounds` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val TypeBoundsTag: ClassTag[TypeBounds]
-
- /** The constructor/deconstructor for `TypeBounds` instances. */
- val TypeBounds: TypeBoundsExtractor
-
- /** An extractor class to create and pattern match with syntax `TypeBound(lower, upper)`
- * Here, `lower` is the lower bound of the `TypeBounds` pair, and `upper` is
- * the upper bound.
- */
- abstract class TypeBoundsExtractor {
- def apply(lo: Type, hi: Type): TypeBounds
- def unapply(tpe: TypeBounds): Option[(Type, Type)]
- }
-
- /** An object representing an unknown type, used during type inference.
- * If you see WildcardType outside of inference it is almost certainly a bug.
- */
- val WildcardType: Type
-
- /** BoundedWildcardTypes, used only during type inference, are created in
- * two places that I can find:
- *
- * 1. If the expected type of an expression is an existential type,
- * its hidden symbols are replaced with bounded wildcards.
- * 2. When an implicit conversion is being sought based in part on
- * the name of a method in the converted type, a HasMethodMatching
- * type is created: a MethodType with parameters typed as
- * BoundedWildcardTypes.
- */
- type BoundedWildcardType >: Null <: AnyRef with Type
-
- /** A tag that preserves the identity of the `BoundedWildcardType` abstract type from erasure.
- * Can be used for pattern matching, instance tests, serialization and likes.
- */
- implicit val BoundedWildcardTypeTag: ClassTag[BoundedWildcardType]
-
- val BoundedWildcardType: BoundedWildcardTypeExtractor
-
- abstract class BoundedWildcardTypeExtractor {
- def apply(bounds: TypeBounds): BoundedWildcardType
- def unapply(tpe: BoundedWildcardType): Option[TypeBounds]
- }
-}
diff --git a/src/library/scala/reflect/base/Universe.scala b/src/library/scala/reflect/base/Universe.scala
deleted file mode 100644
index 36b85ca714..0000000000
--- a/src/library/scala/reflect/base/Universe.scala
+++ /dev/null
@@ -1,67 +0,0 @@
-package scala.reflect
-package base
-
-abstract class Universe extends Symbols
- with Types
- with FlagSets
- with Scopes
- with Names
- with Trees
- with Constants
- with Annotations
- with Positions
- with Exprs
- with TypeTags
- with TagInterop
- with StandardDefinitions
- with StandardNames
- with BuildUtils
- with Mirrors
-{
- /** Given an expression, generate a tree that when compiled and executed produces the original tree.
- * The produced tree will be bound to the Universe it was called from.
- *
- * For instance, given the abstract syntax tree representation of the <[ x + 1 ]> expression:
- *
- * {{{
- * Apply(Select(Ident("x"), "+"), List(Literal(Constant(1))))
- * }}}
- *
- * The reifier transforms it to the following expression:
- *
- * {{{
- * <[
- * val $u: u.type = u // where u is a reference to the Universe that calls the reify
- * $u.Expr[Int]($u.Apply($u.Select($u.Ident($u.newFreeVar("x", <Int>, x), "+"), List($u.Literal($u.Constant(1))))))
- * ]>
- * }}}
- *
- * Reification performs expression splicing (when processing Expr.splice)
- * and type splicing (for every type T that has a TypeTag[T] implicit in scope):
- *
- * {{{
- * val two = mirror.reify(2) // Literal(Constant(2))
- * val four = mirror.reify(two.splice + two.splice) // Apply(Select(two.tree, newTermName("$plus")), List(two.tree))
- *
- * def macroImpl[T](c: Context) = {
- * ...
- * // T here is just a type parameter, so the tree produced by reify won't be of much use in a macro expansion
- * // however, if T were annotated with c.WeakTypeTag (which would declare an implicit parameter for macroImpl)
- * // then reification would substitute T with the TypeTree that was used in a TypeApply of this particular macro invocation
- * val factory = c.reify{ new Queryable[T] }
- * ...
- * }
- * }}}
- *
- * The transformation looks mostly straightforward, but it has its tricky parts:
- * * Reifier retains symbols and types defined outside the reified tree, however
- * locally defined entities get erased and replaced with their original trees
- * * Free variables are detected and wrapped in symbols of the type FreeVar
- * * Mutable variables that are accessed from a local function are wrapped in refs
- * * Since reified trees can be compiled outside of the scope they've been created in,
- * special measures are taken to ensure that all members accessed in the reifee remain visible
- */
- // implementation is hardwired to `scala.reflect.reify.Taggers`
- // using the mechanism implemented in `scala.tools.reflect.FastTrack`
- def reify[T](expr: T): Expr[T] = ??? // macro
-} \ No newline at end of file
diff --git a/src/library/scala/reflect/macros/internal/package.scala b/src/library/scala/reflect/macros/internal/package.scala
deleted file mode 100644
index 8457285752..0000000000
--- a/src/library/scala/reflect/macros/internal/package.scala
+++ /dev/null
@@ -1,14 +0,0 @@
-package scala.reflect.macros
-
-import scala.reflect.base.{Universe => BaseUniverse}
-import scala.reflect.ClassTag
-
-// anchors for materialization macros emitted during tag materialization in Implicits.scala
-// implementation is hardwired into `scala.reflect.reify.Taggers`
-// using the mechanism implemented in `scala.tools.reflect.FastTrack`
-// todo. once we have implicit macros for tag generation, we can remove these anchors
-package object internal {
- private[scala] def materializeClassTag[T](u: BaseUniverse): ClassTag[T] = ??? // macro
- private[scala] def materializeWeakTypeTag[T](u: BaseUniverse): u.WeakTypeTag[T] = ??? // macro
- private[scala] def materializeTypeTag[T](u: BaseUniverse): u.TypeTag[T] = ??? // macro
-}
diff --git a/src/library/scala/reflect/package.scala b/src/library/scala/reflect/package.scala
index d97f2ec633..4f1cc03dc8 100644
--- a/src/library/scala/reflect/package.scala
+++ b/src/library/scala/reflect/package.scala
@@ -2,8 +2,6 @@ package scala
package object reflect {
- lazy val basis: base.Universe = new base.Base
-
// in the new scheme of things ClassManifests are aliased to ClassTags
// this is done because we want `toArray` in collections work with ClassTags
// but changing it to use the ClassTag context bound without aliasing ClassManifest
@@ -42,13 +40,12 @@ package object reflect {
val Manifest = ManifestFactory
def classTag[T](implicit ctag: ClassTag[T]) = ctag
- // typeTag incantation is defined inside scala.reflect.basis and scala.reflect.runtime.universe
-
- // ClassTag class is defined in ClassTag.scala
- type TypeTag[T] = scala.reflect.basis.TypeTag[T]
- // ClassTag object is defined in ClassTag.scala
- lazy val TypeTag = scala.reflect.basis.TypeTag
+ // anchor for the class tag materialization macro emitted during tag materialization in Implicits.scala
+ // implementation is hardwired into `scala.reflect.reify.Taggers`
+ // using the mechanism implemented in `scala.tools.reflect.FastTrack`
+ // todo. once we have implicit macros for tag generation, we can remove this anchor
+ private[scala] def materializeClassTag[T](): ClassTag[T] = ??? // macro
@deprecated("Use `@scala.beans.BeanDescription` instead", "2.10.0")
type BeanDescription = scala.beans.BeanDescription
diff --git a/src/library/scala/runtime/ScalaRunTime.scala b/src/library/scala/runtime/ScalaRunTime.scala
index c7f1d2fcac..5c9e36450b 100644
--- a/src/library/scala/runtime/ScalaRunTime.scala
+++ b/src/library/scala/runtime/ScalaRunTime.scala
@@ -208,12 +208,12 @@ object ScalaRunTime {
// Note that these are the implementations called by ##, so they
// must not call ## themselves.
- @inline def hash(x: Any): Int =
+ def hash(x: Any): Int =
if (x == null) 0
else if (x.isInstanceOf[java.lang.Number]) BoxesRunTime.hashFromNumber(x.asInstanceOf[java.lang.Number])
else x.hashCode
- @inline def hash(dv: Double): Int = {
+ def hash(dv: Double): Int = {
val iv = dv.toInt
if (iv == dv) return iv
@@ -223,7 +223,7 @@ object ScalaRunTime {
val fv = dv.toFloat
if (fv == dv) fv.hashCode else dv.hashCode
}
- @inline def hash(fv: Float): Int = {
+ def hash(fv: Float): Int = {
val iv = fv.toInt
if (iv == fv) return iv
@@ -231,22 +231,22 @@ object ScalaRunTime {
if (lv == fv) return hash(lv)
else fv.hashCode
}
- @inline def hash(lv: Long): Int = {
+ def hash(lv: Long): Int = {
val low = lv.toInt
val lowSign = low >>> 31
val high = (lv >>> 32).toInt
low ^ (high + lowSign)
}
- @inline def hash(x: Number): Int = runtime.BoxesRunTime.hashFromNumber(x)
+ def hash(x: Number): Int = runtime.BoxesRunTime.hashFromNumber(x)
// The remaining overloads are here for completeness, but the compiler
// inlines these definitions directly so they're not generally used.
- @inline def hash(x: Int): Int = x
- @inline def hash(x: Short): Int = x.toInt
- @inline def hash(x: Byte): Int = x.toInt
- @inline def hash(x: Char): Int = x.toInt
- @inline def hash(x: Boolean): Int = if (x) true.hashCode else false.hashCode
- @inline def hash(x: Unit): Int = 0
+ def hash(x: Int): Int = x
+ def hash(x: Short): Int = x.toInt
+ def hash(x: Byte): Int = x.toInt
+ def hash(x: Char): Int = x.toInt
+ def hash(x: Boolean): Int = if (x) true.hashCode else false.hashCode
+ def hash(x: Unit): Int = 0
/** A helper method for constructing case class equality methods,
* because existential types get in the way of a clean outcome and
diff --git a/src/partest/scala/tools/partest/CompilerTest.scala b/src/partest/scala/tools/partest/CompilerTest.scala
index a1450ee876..6df0cec7fe 100644
--- a/src/partest/scala/tools/partest/CompilerTest.scala
+++ b/src/partest/scala/tools/partest/CompilerTest.scala
@@ -5,7 +5,7 @@
package scala.tools.partest
-import scala.reflect.{basis => rb}
+import scala.reflect.runtime.{universe => ru}
import scala.tools.nsc._
/** For testing compiler internals directly.
@@ -34,7 +34,7 @@ abstract class CompilerTest extends DirectTest {
// Utility functions
class MkType(sym: Symbol) {
- def apply[M](implicit t: rb.TypeTag[M]): Type =
+ def apply[M](implicit t: ru.TypeTag[M]): Type =
if (sym eq NoSymbol) NoType
else appliedType(sym, compilerTypeFromTag(t))
}
diff --git a/src/partest/scala/tools/partest/package.scala b/src/partest/scala/tools/partest/package.scala
index ebd3e46b7c..df1c296d47 100644
--- a/src/partest/scala/tools/partest/package.scala
+++ b/src/partest/scala/tools/partest/package.scala
@@ -93,11 +93,34 @@ package object partest {
import scala.reflect.macros.Context
def traceImpl[A: c.WeakTypeTag](c: Context)(a: c.Expr[A]): c.Expr[A] = {
import c.universe._
- val exprCode = c.literal(show(a.tree))
- val exprType = c.literal(show(a.actualType))
- reify {
- println(s"trace> ${exprCode.splice}\nres: ${exprType.splice} = ${a.splice}\n")
- a.splice
- }
+ import definitions._
+
+ // xeno.by: reify shouldn't be used explicitly before the final release of 2.10.0,
+ // because this impairs reflection refactorings
+ //
+ // val exprCode = c.literal(show(a.tree))
+ // val exprType = c.literal(show(a.actualType))
+ // reify {
+ // println(s"trace> ${exprCode.splice}\nres: ${exprType.splice} = ${a.splice}\n")
+ // a.splice
+ // }
+
+ c.Expr(Block(
+ List(Apply(
+ Select(Ident(PredefModule), newTermName("println")),
+ List(Apply(
+ Select(Apply(
+ Select(Ident(ScalaPackage), newTermName("StringContext")),
+ List(
+ Literal(Constant("trace> ")),
+ Literal(Constant("\\nres: ")),
+ Literal(Constant(" = ")),
+ Literal(Constant("\\n")))),
+ newTermName("s")),
+ List(
+ Literal(Constant(show(a.tree))),
+ Literal(Constant(show(a.actualType))),
+ a.tree))))),
+ a.tree))
}
}
diff --git a/src/reflect/scala/reflect/api/Annotations.scala b/src/reflect/scala/reflect/api/Annotations.scala
index 43e95f9902..37882a9f3c 100644
--- a/src/reflect/scala/reflect/api/Annotations.scala
+++ b/src/reflect/scala/reflect/api/Annotations.scala
@@ -3,26 +3,121 @@ package api
import scala.collection.immutable.ListMap
-trait Annotations extends base.Annotations { self: Universe =>
+/**
+ * Defines the type hierarchy for annotations.
+ */
+trait Annotations { self: Universe =>
+
+ /** Typed information about an annotation. It can be attached to either a symbol or an annotated type.
+ *
+ * Annotations are either ''Scala annotations'', which conform to [[scala.annotation.StaticAnnotation]]
+ * or ''Java annotations'', which conform to [[scala.annotation.ClassfileAnnotation]].
+ * Trait `ClassfileAnnotation` is automatically added to every Java annotation by the scalac classfile parser.
+ */
+ type Annotation >: Null <: AnyRef with AnnotationApi
+
+ /** A tag that preserves the identity of the `Annotation` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AnnotationTag: ClassTag[Annotation]
+
+ /** The constructor/deconstructor for `Annotation` instances. */
+ val Annotation: AnnotationExtractor
+
+ /** An extractor class to create and pattern match with syntax `Annotation(atp, scalaArgs, javaArgs)`.
+ * Here, `atp` is the annotation type, `scalaArgs` the arguments, and `javaArgs` the annotation's key-value
+ * pairs.
+ *
+ * Annotations are pickled, i.e. written to scala symtab attribute in the classfile.
+ * Annotations are written to the classfile as Java annotations if `atp` conforms to `ClassfileAnnotation`.
+ *
+ * For Scala annotations, arguments are stored in `scalaArgs` and `javaArgs` is empty. Arguments in
+ * `scalaArgs` are represented as typed trees. Note that these trees are not transformed by any phases
+ * following the type-checker. For Java annotations, `scalaArgs` is empty and arguments are stored in
+ * `javaArgs`.
+ */
+ abstract class AnnotationExtractor {
+ def apply(tpe: Type, scalaArgs: List[Tree], javaArgs: ListMap[Name, JavaArgument]): Annotation
+ def unapply(ann: Annotation): Option[(Type, List[Tree], ListMap[Name, JavaArgument])]
+ }
- override type Annotation >: Null <: AnyRef with AnnotationApi
trait AnnotationApi {
def tpe: Type
def scalaArgs: List[Tree]
def javaArgs: ListMap[Name, JavaArgument]
}
- override type LiteralArgument >: Null <: JavaArgument with LiteralArgumentApi
+ /** A Java annotation argument */
+ type JavaArgument >: Null <: AnyRef
+ implicit val JavaArgumentTag: ClassTag[JavaArgument]
+
+ /** A literal argument to a Java annotation as `"Use X instead"` in `@Deprecated("Use X instead")`*/
+ type LiteralArgument >: Null <: AnyRef with JavaArgument with LiteralArgumentApi
+
+ /** A tag that preserves the identity of the `LiteralArgument` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val LiteralArgumentTag: ClassTag[LiteralArgument]
+
+ /** The constructor/deconstructor for `LiteralArgument` instances. */
+ val LiteralArgument: LiteralArgumentExtractor
+
+ /** An extractor class to create and pattern match with syntax `LiteralArgument(value)`
+ * where `value` is the constant argument.
+ */
+ abstract class LiteralArgumentExtractor {
+ def apply(value: Constant): LiteralArgument
+ def unapply(arg: LiteralArgument): Option[Constant]
+ }
+
trait LiteralArgumentApi {
def value: Constant
}
- override type ArrayArgument >: Null <: JavaArgument with ArrayArgumentApi
+ /** An array argument to a Java annotation as in `@Target(value={TYPE,FIELD,METHOD,PARAMETER})`
+ */
+ type ArrayArgument >: Null <: AnyRef with JavaArgument with ArrayArgumentApi
+
+ /** A tag that preserves the identity of the `ArrayArgument` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ArrayArgumentTag: ClassTag[ArrayArgument]
+
+ /** The constructor/deconstructor for `ArrayArgument` instances. */
+ val ArrayArgument: ArrayArgumentExtractor
+
+ /** An extractor class to create and pattern match with syntax `ArrayArgument(args)`
+ * where `args` is the argument array.
+ */
+ abstract class ArrayArgumentExtractor {
+ def apply(args: Array[JavaArgument]): ArrayArgument
+ def unapply(arg: ArrayArgument): Option[Array[JavaArgument]]
+ }
+
trait ArrayArgumentApi {
def args: Array[JavaArgument]
}
- override type NestedArgument >: Null <: JavaArgument with NestedArgumentApi
+ /** A nested annotation argument to a Java annotation as `@Nested` in `@Outer(@Nested)`.
+ */
+ type NestedArgument >: Null <: AnyRef with JavaArgument with NestedArgumentApi
+
+ /** A tag that preserves the identity of the `NestedArgument` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val NestedArgumentTag: ClassTag[NestedArgument]
+
+ /** The constructor/deconstructor for `NestedArgument` instances. */
+ val NestedArgument: NestedArgumentExtractor
+
+ /** An extractor class to create and pattern match with syntax `NestedArgument(annotation)`
+ * where `annotation` is the nested annotation.
+ */
+ abstract class NestedArgumentExtractor {
+ def apply(annotation: Annotation): NestedArgument
+ def unapply(arg: NestedArgument): Option[Annotation]
+ }
+
trait NestedArgumentApi {
def annotation: Annotation
}
diff --git a/src/library/scala/reflect/base/Attachments.scala b/src/reflect/scala/reflect/api/Attachments.scala
index 889ac0ac14..edbb0131ca 100644
--- a/src/library/scala/reflect/base/Attachments.scala
+++ b/src/reflect/scala/reflect/api/Attachments.scala
@@ -1,35 +1,42 @@
package scala.reflect
-package base
+package api
-/** Attachments is a generalisation of Position.
- * Typically it stores a Position of a tree, but this can be extended to encompass arbitrary payloads.
+/** Attachments is a generalization of Position. Typically it stores a Position of a tree, but this can be extended to
+ * encompass arbitrary payloads. Payloads are stored in type-indexed slots, which can be read with `get[T]` and written
+ * with `update[T]` and `remove[T]`.
*
- * Attachments have to carry positions, because we don't want to introduce even a single additional field in Tree
+ * Attachments always carry positions because we don't want to introduce an additional field for attachments in `Tree`
* imposing an unnecessary memory tax because of something that will not be used in most cases.
*/
abstract class Attachments { self =>
+ /** The position type of this attachment */
type Pos >: Null
- /** Gets the underlying position */
+ /** The underlying position */
def pos: Pos
- /** Creates a copy of this attachment with its position updated */
+ /** Creates a copy of this attachment with the position replaced by `newPos` */
def withPos(newPos: Pos): Attachments { type Pos = self.Pos }
- /** Gets the underlying payload */
+ /** The underlying payload with the guarantee that no two elements have the same type. */
def all: Set[Any] = Set.empty
private def matchesTag[T: ClassTag](datum: Any) =
classTag[T].runtimeClass == datum.getClass
+ /** An underlying payload of the given class type `T`. */
def get[T: ClassTag]: Option[T] =
(all filter matchesTag[T]).headOption.asInstanceOf[Option[T]]
- /** Creates a copy of this attachment with its payload updated */
+ /** Creates a copy of this attachment with the payload slot of T added/updated with the provided value.
+ *
+ * Replaces an existing payload of the same type, if exists.
+ */
def update[T: ClassTag](attachment: T): Attachments { type Pos = self.Pos } =
new NonemptyAttachments(this.pos, remove[T].all + attachment)
+ /** Creates a copy of this attachment with the payload of the given class type `T` removed. */
def remove[T: ClassTag]: Attachments { type Pos = self.Pos } = {
val newAll = all filterNot matchesTag[T]
if (newAll.isEmpty) pos.asInstanceOf[Attachments { type Pos = self.Pos }]
@@ -41,5 +48,3 @@ abstract class Attachments { self =>
def withPos(newPos: Pos) = new NonemptyAttachments(newPos, all)
}
}
-
-
diff --git a/src/library/scala/reflect/base/BuildUtils.scala b/src/reflect/scala/reflect/api/BuildUtils.scala
index e4710316e2..2bb0cc3c76 100644
--- a/src/library/scala/reflect/base/BuildUtils.scala
+++ b/src/reflect/scala/reflect/api/BuildUtils.scala
@@ -1,15 +1,18 @@
package scala.reflect
-package base
+package api
+/**
+ * This is an internal implementation class.
+ */
trait BuildUtils { self: Universe =>
- val build: BuildBase
+ val build: BuildApi
// this API abstracts away the functionality necessary for reification
// it's too gimmicky and unstructured to be exposed directly in the universe
// but we need it in a publicly available place for reification to work
- abstract class BuildBase {
+ abstract class BuildApi {
/** Selects type symbol with given simple name `name` from the defined members of `owner`.
*/
def selectType(owner: Symbol, name: String): TypeSymbol
diff --git a/src/reflect/scala/reflect/api/Constants.scala b/src/reflect/scala/reflect/api/Constants.scala
index 6657245003..f2d8ef2eb9 100644
--- a/src/reflect/scala/reflect/api/Constants.scala
+++ b/src/reflect/scala/reflect/api/Constants.scala
@@ -6,10 +6,33 @@
package scala.reflect
package api
-trait Constants extends base.Constants {
+/**
+ * Defines the type hierachy for compile-time constants.
+ *
+ * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
+ */
+trait Constants {
self: Universe =>
- override type Constant >: Null <: AnyRef with ConstantApi
+ /** The type of compile-time constants.
+ */
+ type Constant >: Null <: AnyRef with ConstantApi
+
+ /** A tag that preserves the identity of the `Constant` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ConstantTag: ClassTag[Constant]
+
+ /** The constructor/deconstructor for `Constant` instances. */
+ val Constant: ConstantExtractor
+
+ /** An extractor class to create and pattern match with syntax `Constant(value)`
+ * where `value` is the Scala value of the constant.
+ */
+ abstract class ConstantExtractor {
+ def apply(value: Any): Constant
+ def unapply(arg: Constant): Option[Any]
+ }
abstract class ConstantApi {
val value: Any
diff --git a/src/library/scala/reflect/base/Exprs.scala b/src/reflect/scala/reflect/api/Exprs.scala
index 45598c03e2..65b0eb9301 100644
--- a/src/library/scala/reflect/base/Exprs.scala
+++ b/src/reflect/scala/reflect/api/Exprs.scala
@@ -4,20 +4,77 @@
*/
package scala.reflect
-package base
+package api
+
+import scala.reflect.runtime.{universe => ru}
trait Exprs { self: Universe =>
- /** An expression tree tagged with its type */
+ /** Expr wraps an expression tree and tags it with its type. */
trait Expr[+T] extends Equals with Serializable {
val mirror: Mirror
+ /**
+ * Migrates the expression into another mirror, jumping into a different universe if necessary.
+ *
+ * This means that all symbolic references to classes/objects/packages in the expression
+ * will be re-resolved within the new mirror (typically using that mirror's classloader).
+ */
def in[U <: Universe with Singleton](otherMirror: MirrorOf[U]): U # Expr[T]
+ /**
+ * The Scala syntax tree representing the wrapped expression.
+ */
def tree: Tree
+
+ /**
+ * Representation of the type of the wrapped expression tree as found via type tags.
+ */
def staticType: Type
+ /**
+ * Representation of the type of the wrapped expression tree as found in the tree.
+ */
def actualType: Type
+ /**
+ * A dummy method to mark expression splicing in reification.
+ *
+ * It should only be used within a `reify` call, which eliminates the `splice` call and embeds
+ * the wrapped tree into the reified surrounding expression.
+ * If used alone `splice` throws an exception when called at runtime.
+ *
+ * If you want to use an Expr in reification of some Scala code, you need to splice it in.
+ * For an expr of type `Expr[T]`, where `T` has a method `foo`, the following code
+ * {{{
+ * reify{ expr.splice.foo }
+ * }}}
+ * uses splice to turn an expr of type Expr[T] into a value of type T in the context of `reify`.
+ *
+ * It is equivalent to
+ * {{{
+ * Select( expr.tree, newTermName("foo") )
+ * }}}
+ *
+ * The following example code however does not compile
+ * {{{
+ * reify{ expr.foo }
+ * }}}
+ * because expr of type Expr[T] itself does not have a method foo.
+ */
def splice: T
+ /**
+ * A dummy value to denote cross-stage path-dependent type dependencies.
+ *
+ * For example for the following macro definition:
+ * {{{
+ * class X { type T }
+ * object Macros { def foo(x: X): x.T = macro Impls.foo_impl }
+ * }}}
+ *
+ * The corresponding macro implementation should have the following signature (note how the return type denotes path-dependency on x):
+ * {{{
+ * object Impls { def foo_impl(c: Context)(x: c.Expr[X]): c.Expr[x.value.T] = ... }
+ * }}}
+ */
val value: T
/** case class accessories */
@@ -27,6 +84,12 @@ trait Exprs { self: Universe =>
override def toString = "Expr["+staticType+"]("+tree+")"
}
+ /**
+ * Constructor/Extractor for Expr.
+ *
+ * Can be useful, when having a tree and wanting to splice it in reify call,
+ * in which case the tree first needs to be wrapped in an expr.
+ */
object Expr {
def apply[T: WeakTypeTag](mirror: MirrorOf[self.type], treec: TreeCreator): Expr[T] = new ExprImpl[T](mirror.asInstanceOf[Mirror], treec)
def unapply[T](expr: Expr[T]): Option[Tree] = Some(expr.tree)
@@ -41,7 +104,7 @@ trait Exprs { self: Universe =>
lazy val tree: Tree = treec(mirror)
lazy val staticType: Type = implicitly[WeakTypeTag[T]].tpe
- def actualType: Type = treeType(tree)
+ def actualType: Type = tree.tpe
def splice: T = throw new UnsupportedOperationException("""
|the function you're calling has not been spliced by the compiler.
@@ -54,11 +117,11 @@ trait Exprs { self: Universe =>
|if you want to get a value of the underlying expression, add scala-compiler.jar to the classpath,
|import `scala.tools.reflect.Eval` and call `<your expr>.eval` instead.""".trim.stripMargin)
- private def writeReplace(): AnyRef = new SerializedExpr(treec, implicitly[WeakTypeTag[T]].in(scala.reflect.basis.rootMirror))
+ private def writeReplace(): AnyRef = new SerializedExpr(treec, implicitly[WeakTypeTag[T]].in(ru.rootMirror))
}
}
-private[scala] class SerializedExpr(var treec: TreeCreator, var tag: scala.reflect.basis.WeakTypeTag[_]) extends Serializable {
+private[scala] class SerializedExpr(var treec: TreeCreator, var tag: ru.WeakTypeTag[_]) extends Serializable {
private def writeObject(out: java.io.ObjectOutputStream): Unit = {
out.writeObject(treec)
out.writeObject(tag)
@@ -66,11 +129,11 @@ private[scala] class SerializedExpr(var treec: TreeCreator, var tag: scala.refle
private def readObject(in: java.io.ObjectInputStream): Unit = {
treec = in.readObject().asInstanceOf[TreeCreator]
- tag = in.readObject().asInstanceOf[scala.reflect.basis.WeakTypeTag[_]]
+ tag = in.readObject().asInstanceOf[ru.WeakTypeTag[_]]
}
private def readResolve(): AnyRef = {
- import scala.reflect.basis._
+ import ru._
Expr(rootMirror, treec)(tag)
}
} \ No newline at end of file
diff --git a/src/reflect/scala/reflect/api/FlagSets.scala b/src/reflect/scala/reflect/api/FlagSets.scala
index fdd43f1883..599c4ca426 100644
--- a/src/reflect/scala/reflect/api/FlagSets.scala
+++ b/src/reflect/scala/reflect/api/FlagSets.scala
@@ -3,10 +3,16 @@ package api
import scala.language.implicitConversions
-trait FlagSets extends base.FlagSets { self: Universe =>
+trait FlagSets { self: Universe =>
+ /** An abstract type representing sets of flags (like private, final, etc.) that apply to definition trees and symbols */
type FlagSet
+ /** A tag that preserves the identity of the `FlagSet` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val FlagSetTag: ClassTag[FlagSet]
+
trait FlagOps extends Any {
def | (right: FlagSet): FlagSet
}
@@ -99,4 +105,7 @@ trait FlagSets extends base.FlagSets { self: Universe =>
/** Flag indicating that tree represents a variable or a member initialized to the default value */
val DEFAULTINIT: FlagSet
}
+
+ /** The empty set of flags */
+ val NoFlags: FlagSet
}
diff --git a/src/reflect/scala/reflect/api/JavaUniverse.scala b/src/reflect/scala/reflect/api/JavaUniverse.scala
index f2388433c4..ba38381561 100644
--- a/src/reflect/scala/reflect/api/JavaUniverse.scala
+++ b/src/reflect/scala/reflect/api/JavaUniverse.scala
@@ -1,7 +1,7 @@
package scala.reflect
package api
-trait JavaUniverse extends Universe with Mirrors with TagInterop { self =>
+trait JavaUniverse extends Universe with Mirrors { self =>
type RuntimeClass = java.lang.Class[_]
@@ -13,5 +13,28 @@ trait JavaUniverse extends Universe with Mirrors with TagInterop { self =>
}
def runtimeMirror(cl: ClassLoader): Mirror
-}
+ override def typeTagToManifest[T: ClassTag](mirror0: Any, tag: Universe # TypeTag[T]): Manifest[T] = {
+ // SI-6239: make this conversion more precise
+ val mirror = mirror0.asInstanceOf[Mirror]
+ val runtimeClass = mirror.runtimeClass(tag.in(mirror).tpe)
+ Manifest.classType(runtimeClass).asInstanceOf[Manifest[T]]
+ }
+
+ override def manifestToTypeTag[T](mirror0: Any, manifest: Manifest[T]): Universe # TypeTag[T] =
+ TypeTag(mirror0.asInstanceOf[Mirror], new TypeCreator {
+ def apply[U <: Universe with Singleton](mirror: MirrorOf[U]): U # Type = {
+ mirror.universe match {
+ case ju: JavaUniverse =>
+ val jm = mirror.asInstanceOf[ju.Mirror]
+ val sym = jm.classSymbol(manifest.erasure)
+ val tpe =
+ if (manifest.typeArguments.isEmpty) sym.toType
+ else ju.appliedType(sym.toTypeConstructor, manifest.typeArguments map (targ => ju.manifestToTypeTag(jm, targ)) map (_.in(jm).tpe))
+ tpe.asInstanceOf[U # Type]
+ case u =>
+ u.manifestToTypeTag(mirror.asInstanceOf[u.Mirror], manifest).in(mirror).tpe
+ }
+ }
+ })
+}
diff --git a/src/library/scala/reflect/base/MirrorOf.scala b/src/reflect/scala/reflect/api/MirrorOf.scala
index 1e9619d062..cd5641e692 100644
--- a/src/library/scala/reflect/base/MirrorOf.scala
+++ b/src/reflect/scala/reflect/api/MirrorOf.scala
@@ -1,14 +1,33 @@
package scala.reflect
-package base
+package api
-abstract class MirrorOf[U <: base.Universe with Singleton] {
- /** .. */
+/**
+ * The base interface for all mirrors.
+ *
+ * @tparam U the type of the universe this mirror belongs to.
+ *
+ * This is defined outside the reflection universe cake pattern implementation
+ * so that it can be referenced from outside. For example TypeCreator and TreeCreator
+ * reference MirrorOf and also need to be defined outside the cake as they are
+ * used by type tags, which can be migrated between different universes and consequently
+ * cannot be bound to a fixed one.
+ *
+ * @see [[Mirrors]]
+ */
+abstract class MirrorOf[U <: Universe with Singleton] {
+ /** The universe this mirror belongs to. */
val universe: U
- /** .. */
+ /** The class symbol of the `_root_` package */
def RootClass: U#ClassSymbol
+
+ /** The module symbol of the `_root_` package */
def RootPackage: U#ModuleSymbol
+
+ /** The module class symbol of the default (unnamed) package */
def EmptyPackageClass: U#ClassSymbol
+
+ /** The module symbol of the default (unnamed) package */
def EmptyPackage: U#ModuleSymbol
/** The symbol corresponding to the globally accessible class with the
diff --git a/src/reflect/scala/reflect/api/Mirrors.scala b/src/reflect/scala/reflect/api/Mirrors.scala
index 8c4c423221..c935533027 100644
--- a/src/reflect/scala/reflect/api/Mirrors.scala
+++ b/src/reflect/scala/reflect/api/Mirrors.scala
@@ -1,7 +1,23 @@
package scala.reflect
package api
-trait Mirrors extends base.Mirrors { self: Universe =>
+/**
+ * Defines a type hierarchy for mirrors.
+ *
+ * Every universe has one or more mirrors. A mirror defines a hierarchy of symbols starting with the root package `_root_`
+ * and provides methods to locate and define classes and singleton objects in that hierarchy.
+ *
+ * On the JVM, there is a one to one correspondance between class loaders and mirrors.
+ */
+trait Mirrors { self: Universe =>
+
+ /** The base type of all mirrors of this universe */
+ type Mirror >: Null <: MirrorOf[self.type]
+
+ /** The root mirror of this universe. This mirror contains standard Scala classes and types such as `Any`, `AnyRef`, `AnyVal`,
+ * `Nothing`, `Null`, and all classes loaded from scala-library, which are shared across all mirrors within the enclosing universe.
+ */
+ val rootMirror: Mirror
type RuntimeClass >: Null
diff --git a/src/reflect/scala/reflect/api/Names.scala b/src/reflect/scala/reflect/api/Names.scala
index d6868c26ab..e8665ca736 100644
--- a/src/reflect/scala/reflect/api/Names.scala
+++ b/src/reflect/scala/reflect/api/Names.scala
@@ -2,23 +2,52 @@ package scala.reflect
package api
/** A trait that manages names.
- * A name is a string in one of two name universes: terms and types.
- * The same string can be a name in both universes.
- * Two names are equal if they represent the same string and they are
- * members of the same universe.
*
- * Names are interned. That is, for two names `name11 and `name2`,
- * `name1 == name2` implies `name1 eq name2`.
+ * @see TermName
+ * @see TypeName
*/
-trait Names extends base.Names {
+trait Names {
+ // Intentionally no implicit from String => Name.
+ implicit def stringToTermName(s: String): TermName = newTermName(s)
+ implicit def stringToTypeName(s: String): TypeName = newTypeName(s)
- /** The abstract type of names */
+ /**
+ * The abstract type of names
+ *
+ * A Name wraps a string as the name for either a type ([[TypeName]]) of a term ([[TermName]]).
+ * Two names are equal, if the wrapped string are equal and they are either both `TypeName` or both `TermName`.
+ * The same string can co-exist as a `TypeName` and a `TermName`, but they would not be equal.
+ * Names are interned. That is, for two names `name11 and `name2`,
+ * `name1 == name2` implies `name1 eq name2`.
+ *
+ * One of the reasons for the existence of names rather than plain strings is being more explicit about what is a name and if it represents a type or a term.
+ */
type Name >: Null <: NameApi
+ implicit val NameTag: ClassTag[Name]
+
+ /** The abstract type of names representing terms */
+ type TypeName >: Null <: Name
+ implicit val TypeNameTag: ClassTag[TypeName]
- /** The extended API of names that's supported on reflect mirror via an
+ /** The abstract type of names representing types */
+ type TermName >: Null <: Name
+ implicit val TermNameTag: ClassTag[TermName]
+
+ /** The API of names that's supported on reflect mirror via an
* implicit conversion in reflect.ops
*/
- abstract class NameApi extends NameBase {
+ abstract class NameApi {
+ /** Checks wether the name is a a term name */
+ def isTermName: Boolean
+
+ /** Checks wether the name is a a type name */
+ def isTypeName: Boolean
+
+ /** Returns a term name that wraps the same string as `this` */
+ def toTermName: TermName
+
+ /** Returns a type name that wraps the same string as `this` */
+ def toTypeName: TypeName
/** Replaces all occurrences of \$op_names in this name by corresponding operator symbols.
* Example: `foo_\$plus\$eq` becomes `foo_+=`
@@ -38,4 +67,20 @@ trait Names extends base.Names {
*/
def encodedName: Name
}
+
+ /** Create a new term name.
+ */
+ def newTermName(s: String): TermName
+
+ /** Creates a new type name.
+ */
+ def newTypeName(s: String): TypeName
+
+ /** Wraps the empty string. Can be used as the null object for term name.
+ */
+ def EmptyTermName: TermName = newTermName("")
+
+ /** Wraps the empty string. Can be used as the null object for type name.
+ */
+ def EmptyTypeName: TypeName = EmptyTermName.toTypeName
}
diff --git a/src/reflect/scala/reflect/api/Positions.scala b/src/reflect/scala/reflect/api/Positions.scala
index 5e8d958f02..0eddc88fc4 100644
--- a/src/reflect/scala/reflect/api/Positions.scala
+++ b/src/reflect/scala/reflect/api/Positions.scala
@@ -1,12 +1,25 @@
package scala.reflect
package api
-trait Positions extends base.Positions {
+/**
+ * Defines the type hierachy for positions.
+ *
+ * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
+ */
+trait Positions {
self: Universe =>
/** .. */
type Position >: Null <: PositionApi { type Pos = Position }
+ /** A tag that preserves the identity of the `Position` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val PositionTag: ClassTag[Position]
+
+ /** A special "missing" position. */
+ val NoPosition: Position
+
/** Assigns a given position to all position-less nodes of a given AST.
*/
def atPos[T <: Tree](pos: Position)(tree: T): T
diff --git a/src/library/scala/reflect/base/Scopes.scala b/src/reflect/scala/reflect/api/Scopes.scala
index a388fdc392..d30da07ad5 100644
--- a/src/library/scala/reflect/base/Scopes.scala
+++ b/src/reflect/scala/reflect/api/Scopes.scala
@@ -1,24 +1,33 @@
package scala.reflect
-package base
+package api
+/**
+ * Defines the type hierachy for scopes.
+ *
+ * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
+ */
trait Scopes { self: Universe =>
- type Scope >: Null <: ScopeBase
+ /** The base type of all scopes. A scope object generally maps names to symbols available in the current lexical scope.
+ * Scopes can be nested. This base type, however, only exposes a minimal interface, representing a scope as an iterable of symbols.
+ */
+ type Scope >: Null <: ScopeApi
- /** The base API that all scopes support */
- trait ScopeBase extends Iterable[Symbol]
+ /** The API that all scopes support */
+ trait ScopeApi extends Iterable[Symbol]
/** A tag that preserves the identity of the `Scope` abstract type from erasure.
* Can be used for pattern matching, instance tests, serialization and likes.
*/
implicit val ScopeTag: ClassTag[Scope]
- type MemberScope >: Null <: Scope with MemberScopeBase
+ /** The type of member scopes, as in class definitions, for example. */
+ type MemberScope >: Null <: Scope with MemberScopeApi
- /** The base API that all member scopes support */
- trait MemberScopeBase extends ScopeBase {
+ /** The API that all member scopes support */
+ trait MemberScopeApi extends ScopeApi {
/** Sorts the symbols included in this scope so that:
- * 1) Symbols appear the linearization order of their owners.
+ * 1) Symbols appear in the linearization order of their owners.
* 2) Symbols with the same owner appear in reverse order of their declarations.
* 3) Synthetic members (e.g. getters/setters for vals/vars) might appear in arbitrary order.
*/
@@ -30,12 +39,12 @@ trait Scopes { self: Universe =>
*/
implicit val MemberScopeTag: ClassTag[MemberScope]
- /** Create a new scope */
+ /** Create a new scope. */
def newScope: Scope
- /** Create a new scope nested in another one with which it shares its elements */
+ /** Create a new scope nested in another one with which it shares its elements. */
def newNestedScope(outer: Scope): Scope
- /** Create a new scope with given initial elements */
+ /** Create a new scope with the given initial elements. */
def newScopeWith(elems: Symbol*): Scope
} \ No newline at end of file
diff --git a/src/reflect/scala/reflect/api/StandardDefinitions.scala b/src/reflect/scala/reflect/api/StandardDefinitions.scala
index c6f02f1a33..03f2a6b0aa 100644
--- a/src/reflect/scala/reflect/api/StandardDefinitions.scala
+++ b/src/reflect/scala/reflect/api/StandardDefinitions.scala
@@ -5,12 +5,59 @@
package scala.reflect
package api
-trait StandardDefinitions extends base.StandardDefinitions {
+/**
+ * Defines standard symbols and types.
+ */
+trait StandardDefinitions {
self: Universe =>
+ /** A value containing all standard defnitions. */
val definitions: DefinitionsApi
- trait DefinitionsApi extends DefinitionsBase {
+ /** Defines standard symbols (and types via its base trait). */
+ trait DefinitionsApi extends StandardTypes {
+ /** The class symbol of package `scala`. */
+ def ScalaPackageClass: ClassSymbol
+
+ /** The module class symbol of package `scala`. */
+ def ScalaPackage: ModuleSymbol
+
+ // top types
+ def AnyClass : ClassSymbol
+ def AnyValClass: ClassSymbol
+ def ObjectClass: ClassSymbol
+ def AnyRefClass: TypeSymbol
+
+ // bottom types
+ def NullClass : ClassSymbol
+ def NothingClass: ClassSymbol
+
+ // the scala value classes
+ def UnitClass : ClassSymbol
+ def ByteClass : ClassSymbol
+ def ShortClass : ClassSymbol
+ def CharClass : ClassSymbol
+ def IntClass : ClassSymbol
+ def LongClass : ClassSymbol
+ def FloatClass : ClassSymbol
+ def DoubleClass : ClassSymbol
+ def BooleanClass: ClassSymbol
+
+ /** The class symbol of class `String`. */
+ def StringClass : ClassSymbol
+
+ /** The class symbol of class `Class`. */
+ def ClassClass : ClassSymbol
+
+ /** The class symbol of class `Array`. */
+ def ArrayClass : ClassSymbol
+
+ /** The class symbol of class `List`. */
+ def ListClass : ClassSymbol
+
+ /** The module symbol of `scala.Predef`. */
+ def PredefModule: ModuleSymbol
+
def JavaLangPackageClass: ClassSymbol
def JavaLangPackage: ModuleSymbol
def ArrayModule: ModuleSymbol
@@ -45,4 +92,52 @@ trait StandardDefinitions extends base.StandardDefinitions {
def ScalaPrimitiveValueClasses: List[ClassSymbol]
def ScalaNumericValueClasses: List[ClassSymbol]
}
+
+ /** Defines standard types. */
+ trait StandardTypes {
+ /** The `Type` of type `Unit`. */
+ val UnitTpe: Type
+
+ /** The `Type` of primitive type `Byte`. */
+ val ByteTpe: Type
+
+ /** The `Type` of primitive type `Short`. */
+ val ShortTpe: Type
+
+ /** The `Type` of primitive type `Char`. */
+ val CharTpe: Type
+
+ /** The `Type` of primitive type `Int`. */
+ val IntTpe: Type
+
+ /** The `Type` of primitive type `Long`. */
+ val LongTpe: Type
+
+ /** The `Type` of primitive type `Float`. */
+ val FloatTpe: Type
+
+ /** The `Type` of primitive type `Double`. */
+ val DoubleTpe: Type
+
+ /** The `Type` of primitive type `Boolean`. */
+ val BooleanTpe: Type
+
+ /** The `Type` of type `Any`. */
+ val AnyTpe: Type
+
+ /** The `Type` of type `AnyVal`. */
+ val AnyValTpe: Type
+
+ /** The `Type` of type `AnyRef`. */
+ val AnyRefTpe: Type
+
+ /** The `Type` of type `Object`. */
+ val ObjectTpe: Type
+
+ /** The `Type` of type `Nothing`. */
+ val NothingTpe: Type
+
+ /** The `Type` of type `Null`. */
+ val NullTpe: Type
+ }
}
diff --git a/src/reflect/scala/reflect/api/StandardNames.scala b/src/reflect/scala/reflect/api/StandardNames.scala
index 65d87ad7f0..354a9f9328 100644
--- a/src/reflect/scala/reflect/api/StandardNames.scala
+++ b/src/reflect/scala/reflect/api/StandardNames.scala
@@ -5,26 +5,40 @@
package scala.reflect
package api
-// Q: I have a pretty name. Where do I put it - into base.StandardNames or into api.StandardNames?
-// A: <see base.StandardNames>
+// Q: I have a pretty name. Can I put it here?
+// A: Is it necessary to construct trees (like EMPTY or WILDCARD_STAR)? If yes, then sure.
+// Is it necessary to perform reflection (like ERROR or LOCAL_SUFFIX_STRING)? If yes, then sure.
+// Otherwise you'd better not - reflection API should stay minimalistic.
-trait StandardNames extends base.StandardNames {
+// TODO: document better
+/**
+ * Names necessary to create Scala trees.
+ */
+trait StandardNames {
self: Universe =>
val nme: TermNamesApi
val tpnme: TypeNamesApi
- trait NamesApi extends NamesBase {
+ trait NamesApi {
+ type NameType >: Null <: Name
+ val WILDCARD: NameType
val ROOT: NameType
val EMPTY: NameType
val ERROR: NameType
val PACKAGE: NameType
}
- trait TermNamesApi extends NamesApi with TermNamesBase {
+ trait TermNamesApi extends NamesApi {
+ type NameType = TermName
+ val CONSTRUCTOR: NameType
+ val ROOTPKG: NameType
val LOCAL_SUFFIX_STRING: String
}
- trait TypeNamesApi extends NamesApi with TypeNamesBase {
+ trait TypeNamesApi extends NamesApi {
+ type NameType = TypeName
+ val EMPTY: NameType
+ val WILDCARD_STAR: NameType
}
}
diff --git a/src/reflect/scala/reflect/api/Symbols.scala b/src/reflect/scala/reflect/api/Symbols.scala
index 0c4be4f7e1..542673ff00 100644
--- a/src/reflect/scala/reflect/api/Symbols.scala
+++ b/src/reflect/scala/reflect/api/Symbols.scala
@@ -1,19 +1,211 @@
package scala.reflect
package api
-trait Symbols extends base.Symbols { self: Universe =>
-
- override type Symbol >: Null <: SymbolApi
- override type TypeSymbol >: Null <: Symbol with TypeSymbolApi
- override type TermSymbol >: Null <: Symbol with TermSymbolApi
- override type MethodSymbol >: Null <: TermSymbol with MethodSymbolApi
- override type ModuleSymbol >: Null <: TermSymbol with ModuleSymbolApi
- override type ClassSymbol >: Null <: TypeSymbol with ClassSymbolApi
- override type FreeTermSymbol >: Null <: TermSymbol with FreeTermSymbolApi
- override type FreeTypeSymbol >: Null <: TypeSymbol with FreeTypeSymbolApi
+/**
+ * Defines the type hierachy for symbols
+ *
+ * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
+ */
+trait Symbols { self: Universe =>
+
+ /** The type of symbols representing declarations */
+ type Symbol >: Null <: SymbolApi
+
+ /** A tag that preserves the identity of the `Symbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SymbolTag: ClassTag[Symbol]
+
+ /** The type of type symbols representing type, class, and trait declarations,
+ * as well as type parameters
+ */
+ type TypeSymbol >: Null <: Symbol with TypeSymbolApi
+
+ /** A tag that preserves the identity of the `TypeSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeSymbolTag: ClassTag[TypeSymbol]
+
+ /** The type of term symbols representing val, var, def, and object declarations as
+ * well as packages and value parameters.
+ */
+ type TermSymbol >: Null <: Symbol with TermSymbolApi
+
+ /** A tag that preserves the identity of the `TermSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TermSymbolTag: ClassTag[TermSymbol]
+
+ /** The type of method symbols representing def declarations */
+ type MethodSymbol >: Null <: TermSymbol with MethodSymbolApi
+
+ /** A tag that preserves the identity of the `MethodSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val MethodSymbolTag: ClassTag[MethodSymbol]
+
+ /** The type of module symbols representing object declarations */
+ type ModuleSymbol >: Null <: TermSymbol with ModuleSymbolApi
+
+ /** A tag that preserves the identity of the `ModuleSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ModuleSymbolTag: ClassTag[ModuleSymbol]
+
+ /** The type of class symbols representing class and trait definitions */
+ type ClassSymbol >: Null <: TypeSymbol with ClassSymbolApi
+
+ /** A tag that preserves the identity of the `ClassSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ClassSymbolTag: ClassTag[ClassSymbol]
+
+ /** The type of free terms introduced by reification */
+ type FreeTermSymbol >: Null <: TermSymbol with FreeTermSymbolApi
+
+ /** A tag that preserves the identity of the `FreeTermSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val FreeTermSymbolTag: ClassTag[FreeTermSymbol]
+
+ /** The type of free types introduced by reification */
+ type FreeTypeSymbol >: Null <: TypeSymbol with FreeTypeSymbolApi
+
+ /** A tag that preserves the identity of the `FreeTypeSymbol` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val FreeTypeSymbolTag: ClassTag[FreeTypeSymbol]
+
+ /** A special "missing" symbol */
+ val NoSymbol: Symbol
/** The API of symbols */
- trait SymbolApi extends SymbolBase { this: Symbol =>
+ trait SymbolApi { this: Symbol =>
+
+ /** The owner of this symbol. This is the symbol
+ * that directly contains the current symbol's definition.
+ * The `NoSymbol` symbol does not have an owner, and calling this method
+ * on one causes an internal error.
+ * The owner of the Scala root class [[scala.reflect.api.MirrorOf.RootClass]]
+ * and the Scala root object [[scala.reflect.api.MirrorOf.RootPackage]] is `NoSymbol`.
+ * Every other symbol has a chain of owners that ends in
+ * [[scala.reflect.api.MirrorOf.RootClass]].
+ */
+ def owner: Symbol
+
+ /** The type of the symbol name.
+ * Can be either `TermName` or `TypeName` depending on whether this is a `TermSymbol` or a `TypeSymbol`.
+ *
+ * Type name namespaces do not intersect with term name namespaces.
+ * This fact is reflected in different types for names of `TermSymbol` and `TypeSymbol`.
+ */
+ type NameType >: Null <: Name
+
+ /** The name of the symbol as a member of the `Name` type.
+ */
+ def name: Name
+
+ /** The encoded full path name of this symbol, where outer names and inner names
+ * are separated by periods.
+ */
+ def fullName: String
+
+ /** Does this symbol represent the definition of a type?
+ * Note that every symbol is either a term or a type.
+ * So for every symbol `sym` (except for `NoSymbol`),
+ * either `sym.isTerm` is true or `sym.isType` is true.
+ */
+ def isType: Boolean = false
+
+ /** This symbol cast to a TypeSymbol.
+ * @throws ScalaReflectionException if `isType` is false.
+ */
+ def asType: TypeSymbol = throw new ScalaReflectionException(s"$this is not a type")
+
+ /** Does this symbol represent the definition of a term?
+ * Note that every symbol is either a term or a type.
+ * So for every symbol `sym` (except for `NoSymbol`),
+ * either `sym.isTerm` is true or `sym.isTerm` is true.
+ */
+ def isTerm: Boolean = false
+
+ /** This symbol cast to a TermSymbol.
+ * @throws ScalaReflectionException if `isTerm` is false.
+ */
+ def asTerm: TermSymbol = throw new ScalaReflectionException(s"$this is not a term")
+
+ /** Does this symbol represent the definition of a method?
+ * If yes, `isTerm` is also guaranteed to be true.
+ */
+ def isMethod: Boolean = false
+
+ /** This symbol cast to a MethodSymbol.
+ * @throws ScalaReflectionException if `isMethod` is false.
+ */
+ def asMethod: MethodSymbol = {
+ def overloadedMsg =
+ "encapsulates multiple overloaded alternatives and cannot be treated as a method. "+
+ "Consider invoking `<offending symbol>.asTerm.alternatives` and manually picking the required method"
+ def vanillaMsg = "is not a method"
+ val msg = if (isOverloadedMethod) overloadedMsg else vanillaMsg
+ throw new ScalaReflectionException(s"$this $msg")
+ }
+
+ /** Used to provide a better error message for `asMethod` */
+ protected def isOverloadedMethod = false
+
+ /** Does this symbol represent the definition of a module (i.e. it
+ * results from an object definition?).
+ * If yes, `isTerm` is also guaranteed to be true.
+ */
+ def isModule: Boolean = false
+
+ /** This symbol cast to a ModuleSymbol defined by an object definition.
+ * @throws ScalaReflectionException if `isModule` is false.
+ */
+ def asModule: ModuleSymbol = throw new ScalaReflectionException(s"$this is not a module")
+
+ /** Does this symbol represent the definition of a class or trait?
+ * If yes, `isType` is also guaranteed to be true.
+ */
+ def isClass: Boolean = false
+
+ /** Does this symbol represent the definition of a class implicitly associated
+ * with an object definition (module class in scala compiler parlance).
+ * If yes, `isType` is also guaranteed to be true.
+ */
+ def isModuleClass: Boolean = false
+
+ /** This symbol cast to a ClassSymbol representing a class or trait.
+ * @throws ScalaReflectionException if `isClass` is false.
+ */
+ def asClass: ClassSymbol = throw new ScalaReflectionException(s"$this is not a class")
+
+ /** Does this symbol represent a free term captured by reification?
+ * If yes, `isTerm` is also guaranteed to be true.
+ */
+ def isFreeTerm: Boolean = false
+
+ /** This symbol cast to a free term symbol.
+ * @throws ScalaReflectionException if `isFreeTerm` is false.
+ */
+ def asFreeTerm: FreeTermSymbol = throw new ScalaReflectionException(s"$this is not a free term")
+
+ /** Does this symbol represent a free type captured by reification?
+ * If yes, `isType` is also guaranteed to be true.
+ */
+ def isFreeType: Boolean = false
+
+ /** This symbol cast to a free type symbol.
+ * @throws ScalaReflectionException if `isFreeType` is false.
+ */
+ def asFreeType: FreeTypeSymbol = throw new ScalaReflectionException(s"$this is not a free type")
+
+ def newTermSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TermSymbol
+ def newModuleAndClassSymbol(name: Name, pos: Position = NoPosition, flags: FlagSet = NoFlags): (ModuleSymbol, ClassSymbol)
+ def newMethodSymbol(name: TermName, pos: Position = NoPosition, flags: FlagSet = NoFlags): MethodSymbol
+ def newTypeSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): TypeSymbol
+ def newClassSymbol(name: TypeName, pos: Position = NoPosition, flags: FlagSet = NoFlags): ClassSymbol
/** Source file if this symbol is created during this compilation run,
* or a class file if this symbol is loaded from a *.class or *.jar.
@@ -195,7 +387,14 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of term symbols */
- trait TermSymbolApi extends SymbolApi with TermSymbolBase { this: TermSymbol =>
+ trait TermSymbolApi extends SymbolApi { this: TermSymbol =>
+ /** Term symbols have their names of type `TermName`.
+ */
+ final type NameType = TermName
+
+ final override def isTerm = true
+ final override def asTerm = this
+
/** Is this symbol introduced as `val`?
*/
def isVal: Boolean
@@ -269,7 +468,41 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of type symbols */
- trait TypeSymbolApi extends SymbolApi with TypeSymbolBase { this: TypeSymbol =>
+ trait TypeSymbolApi extends SymbolApi { this: TypeSymbol =>
+ /** Type symbols have their names of type `TypeName`.
+ */
+ final type NameType = TypeName
+
+ /** The type constructor corresponding to this type symbol.
+ * This is different from `toType` in that type parameters
+ * are part of results of `toType`, but not of `toTypeConstructor`.
+ *
+ * Example: Given a class declaration `class C[T] { ... } `, that generates a symbol
+ * `C`. Then `C.toType` is the type `C[T]`, but `C.toTypeConstructor` is `C`.
+ */
+ def toTypeConstructor: Type
+
+ /** A type reference that refers to this type symbol seen
+ * as a member of given type `site`.
+ */
+ def toTypeIn(site: Type): Type
+
+ /** A type reference that refers to this type symbol
+ * Note if symbol is a member of a class, one almost always is interested
+ * in `asTypeIn` with a site type instead.
+ *
+ * Example: Given a class declaration `class C[T] { ... } `, that generates a symbol
+ * `C`. Then `C.toType` is the type `C[T]`.
+ *
+ * By contrast, `C.typeSignature` would be a type signature of form
+ * `PolyType(ClassInfoType(...))` that describes type parameters, value
+ * parameters, parent types, and members of `C`.
+ */
+ def toType: Type
+
+ final override def isType = true
+ final override def asType = this
+
/** Is the type parameter represented by this symbol contravariant?
*/
def isContravariant : Boolean
@@ -300,7 +533,10 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of method symbols */
- trait MethodSymbolApi extends TermSymbolApi with MethodSymbolBase { this: MethodSymbol =>
+ trait MethodSymbolApi extends TermSymbolApi { this: MethodSymbol =>
+ final override def isMethod = true
+ final override def asMethod = this
+
/** Does this method represent a constructor?
*
* If `owner` is a class, then this is a vanilla JVM constructor.
@@ -331,11 +567,23 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of module symbols */
- trait ModuleSymbolApi extends TermSymbolApi with ModuleSymbolBase { this: ModuleSymbol =>
+ trait ModuleSymbolApi extends TermSymbolApi { this: ModuleSymbol =>
+ /** The class implicitly associated with the object definition.
+ * One can go back from a module class to the associated module symbol
+ * by inspecting its `selfType.termSymbol`.
+ */
+ def moduleClass: Symbol // needed for tree traversals
+ // when this becomes `moduleClass: ClassSymbol`, it will be the happiest day in my life
+
+ final override def isModule = true
+ final override def asModule = this
}
/** The API of class symbols */
- trait ClassSymbolApi extends TypeSymbolApi with ClassSymbolBase { this: ClassSymbol =>
+ trait ClassSymbolApi extends TypeSymbolApi { this: ClassSymbol =>
+ final override def isClass = true
+ final override def asClass = this
+
/** Does this symbol represent the definition of a primitive class?
* Namely, is it one of [[scala.Double]], [[scala.Float]], [[scala.Long]], [[scala.Int]], [[scala.Char]],
* [[scala.Short]], [[scala.Byte]], [[scala.Unit]] or [[scala.Boolean]]?
@@ -398,7 +646,10 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of free term symbols */
- trait FreeTermSymbolApi extends TermSymbolApi with FreeTermSymbolBase { this: FreeTermSymbol =>
+ trait FreeTermSymbolApi extends TermSymbolApi { this: FreeTermSymbol =>
+ final override def isFreeTerm = true
+ final override def asFreeTerm = this
+
/** The place where this symbol has been spawned */
def origin: String
@@ -407,7 +658,10 @@ trait Symbols extends base.Symbols { self: Universe =>
}
/** The API of free term symbols */
- trait FreeTypeSymbolApi extends TypeSymbolApi with FreeTypeSymbolBase { this: FreeTypeSymbol =>
+ trait FreeTypeSymbolApi extends TypeSymbolApi { this: FreeTypeSymbol =>
+ final override def isFreeType = true
+ final override def asFreeType = this
+
/** The place where this symbol has been spawned */
def origin: String
}
diff --git a/src/reflect/scala/reflect/api/TagInterop.scala b/src/reflect/scala/reflect/api/TagInterop.scala
index 5ab085741e..fc0558d717 100644
--- a/src/reflect/scala/reflect/api/TagInterop.scala
+++ b/src/reflect/scala/reflect/api/TagInterop.scala
@@ -1,32 +1,27 @@
package scala.reflect
package api
-import scala.reflect.base.TypeCreator
-import scala.reflect.base.{Universe => BaseUniverse}
+trait TagInterop { self: Universe =>
+ // TODO `mirror` parameters are now of type `Any`, because I can't make these path-dependent types work
+ // if you're brave enough, replace `Any` with `Mirror`, recompile and run interop_typetags_are_manifests.scala
-trait TagInterop { self: JavaUniverse =>
+ /**
+ * Convert a typetag to a pre `Scala-2.10` manifest.
+ * For example
+ * {{{
+ * typeTagToManifest( scala.reflect.runtime.currentMirror, implicitly[TypeTag[String]] )
+ * }}}
+ */
+ def typeTagToManifest[T: ClassTag](mirror: Any, tag: Universe#TypeTag[T]): Manifest[T] =
+ throw new UnsupportedOperationException("This universe does not support tag -> manifest conversions. Use a JavaUniverse, e.g. the scala.reflect.runtime.universe.")
- override def typeTagToManifest[T: ClassTag](mirror0: Any, tag: base.Universe # TypeTag[T]): Manifest[T] = {
- // SI-6239: make this conversion more precise
- val mirror = mirror0.asInstanceOf[Mirror]
- val runtimeClass = mirror.runtimeClass(tag.in(mirror).tpe)
- Manifest.classType(runtimeClass).asInstanceOf[Manifest[T]]
- }
-
- override def manifestToTypeTag[T](mirror0: Any, manifest: Manifest[T]): base.Universe # TypeTag[T] =
- TypeTag(mirror0.asInstanceOf[Mirror], new TypeCreator {
- def apply[U <: BaseUniverse with Singleton](mirror: MirrorOf[U]): U # Type = {
- mirror.universe match {
- case ju: JavaUniverse =>
- val jm = mirror.asInstanceOf[ju.Mirror]
- val sym = jm.classSymbol(manifest.erasure)
- val tpe =
- if (manifest.typeArguments.isEmpty) sym.toType
- else ju.appliedType(sym.toTypeConstructor, manifest.typeArguments map (targ => ju.manifestToTypeTag(jm, targ)) map (_.in(jm).tpe))
- tpe.asInstanceOf[U # Type]
- case u =>
- u.manifestToTypeTag(mirror.asInstanceOf[u.Mirror], manifest).in(mirror).tpe
- }
- }
- })
+ /**
+ * Convert a pre `Scala-2.10` manifest to a typetag.
+ * For example
+ * {{{
+ * manifestToTypeTag( scala.reflect.runtime.currentMirror, implicitly[Manifest[String]] )
+ * }}}
+ */
+ def manifestToTypeTag[T](mirror: Any, manifest: Manifest[T]): Universe#TypeTag[T] =
+ throw new UnsupportedOperationException("This universe does not support manifest -> tag conversions. Use a JavaUniverse, e.g. the scala.reflect.runtime.universe.")
}
diff --git a/src/reflect/scala/reflect/api/TreeCreator.scala b/src/reflect/scala/reflect/api/TreeCreator.scala
new file mode 100644
index 0000000000..0c8701775c
--- /dev/null
+++ b/src/reflect/scala/reflect/api/TreeCreator.scala
@@ -0,0 +1,26 @@
+package scala.reflect
+package api
+
+/** A mirror-aware factory for trees.
+ *
+ * In the reflection API, artifacts are specific to universes and
+ * symbolic references used in artifacts (e.g. `scala.Int`) are resolved by mirrors.
+ *
+ * Therefore to build a tree one needs to know a universe that the tree is going to be bound to
+ * and a mirror that is going to resolve symbolic references (e.g. to determine that `scala.Int`
+ * points to a core class `Int` from scala-library.jar).
+ *
+ * `TreeCreator` implements this notion by providing a standalone tree factory.
+ *
+ * This is immediately useful for reification. When the compiler reifies an expression,
+ * the end result needs to make sense in any mirror. That's because the compiler knows
+ * the universe it's reifying an expression into (specified by the target of the `reify` call),
+ * but it cannot know in advance the mirror to instantiate the result in (e.g. on JVM
+ * it doesn't know what classloader use to resolve symbolic names in the reifee).
+ *
+ * Due to a typechecker restriction (no eta-expansion for dependent method types),
+ * `TreeCreator` can't have a functional type, so it's implemented as class with an apply method.
+ */
+abstract class TreeCreator {
+ def apply[U <: Universe with Singleton](m: MirrorOf[U]): U # Tree
+}
diff --git a/src/reflect/scala/reflect/api/Trees.scala b/src/reflect/scala/reflect/api/Trees.scala
index e46a977be8..1f15ee6070 100644
--- a/src/reflect/scala/reflect/api/Trees.scala
+++ b/src/reflect/scala/reflect/api/Trees.scala
@@ -6,12 +6,75 @@ package scala.reflect
package api
// Syncnote: Trees are currently not thread-safe.
-trait Trees extends base.Trees { self: Universe =>
+trait Trees { self: Universe =>
+
+ /** Tree is the basis for scala's abstract syntax. The nodes are
+ * implemented as case classes, and the parameters which initialize
+ * a given tree are immutable: however Trees have several mutable
+ * fields which are manipulated in the course of typechecking,
+ * including pos, symbol, and tpe.
+ *
+ * Newly instantiated trees have tpe set to null (though it
+ * may be set immediately thereafter depending on how it is
+ * constructed.) When a tree is passed to the typer, typically via
+ * `typer.typed(tree)`, under normal circumstances the tpe must be
+ * null or the typer will ignore it. Furthermore, the typer is not
+ * required to return the same tree it was passed.
+ *
+ * Trees can be easily traversed with e.g. foreach on the root node;
+ * for a more nuanced traversal, subclass Traverser. Transformations
+ * can be considerably trickier: see the numerous subclasses of
+ * Transformer found around the compiler.
+ *
+ * Copying Trees should be done with care depending on whether
+ * it needs be done lazily or strictly (see LazyTreeCopier and
+ * StrictTreeCopier) and on whether the contents of the mutable
+ * fields should be copied. The tree copiers will copy the mutable
+ * attributes to the new tree; calling Tree#duplicate will copy
+ * symbol and tpe, but all the positions will be focused.
+ *
+ * Trees can be coarsely divided into four mutually exclusive categories:
+ *
+ * - TermTrees, representing terms
+ * - TypTrees, representing types. Note that is `TypTree`, not `TypeTree`.
+ * - SymTrees, which may represent types or terms.
+ * - Other Trees, which have none of those as parents.
+ *
+ * SymTrees include important nodes Ident and Select, which are
+ * used as both terms and types; they are distinguishable based on
+ * whether the Name is a TermName or TypeName. The correct way
+ * to test any Tree for a type or a term are the `isTerm`/`isType`
+ * methods on Tree.
+ *
+ * "Others" are mostly syntactic or short-lived constructs. Examples
+ * include CaseDef, which wraps individual match cases: they are
+ * neither terms nor types, nor do they carry a symbol. Another
+ * example is Parens, which is eliminated during parsing.
+ */
+ type Tree >: Null <: TreeApi
- override type Tree >: Null <: TreeApi
+ /** A tag that preserves the identity of the `Tree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TreeTag: ClassTag[Tree]
- /** ... */
- trait TreeApi extends TreeBase { this: Tree =>
+ /** The API that all trees support */
+ trait TreeApi extends Product { this: Tree =>
+ // TODO
+ /** ... */
+ def isDef: Boolean
+
+ // TODO
+ /** ... */
+ def isEmpty: Boolean
+
+ /** The canonical way to test if a Tree represents a term.
+ */
+ def isTerm: Boolean
+
+ /** The canonical way to test if a Tree represents a type.
+ */
+ def isType: Boolean
/** ... */
def pos: Position
@@ -107,37 +170,83 @@ trait Trees extends base.Trees { self: Universe =>
* in this tree will be found when searching by position).
*/
def duplicate: this.type
+
+ /** Obtains string representation of a tree */
+ override def toString: String = treeToString(this)
}
- override protected def treeType(tree: Tree) = tree.tpe
+ /** Obtains string representation of a tree */
+ protected def treeToString(tree: Tree): String
- override type TermTree >: Null <: Tree with TermTreeApi
+ /** The empty tree */
+ val EmptyTree: Tree
+
+ /** A tree for a term. Not all trees representing terms are TermTrees; use isTerm
+ * to reliably identify terms.
+ */
+ type TermTree >: Null <: AnyRef with Tree with TermTreeApi
+
+ /** A tag that preserves the identity of the `TermTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TermTreeTag: ClassTag[TermTree]
/** The API that all term trees support */
trait TermTreeApi extends TreeApi { this: TermTree =>
}
- override type TypTree >: Null <: Tree with TypTreeApi
+ /** A tree for a type. Not all trees representing types are TypTrees; use isType
+ * to reliably identify types.
+ */
+ type TypTree >: Null <: AnyRef with Tree with TypTreeApi
+
+ /** A tag that preserves the identity of the `TypTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypTreeTag: ClassTag[TypTree]
/** The API that all typ trees support */
trait TypTreeApi extends TreeApi { this: TypTree =>
}
- override type SymTree >: Null <: Tree with SymTreeApi
+ /** A tree with a mutable symbol field, initialized to NoSymbol.
+ */
+ type SymTree >: Null <: AnyRef with Tree with SymTreeApi
+
+ /** A tag that preserves the identity of the `SymTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SymTreeTag: ClassTag[SymTree]
/** The API that all sym trees support */
trait SymTreeApi extends TreeApi { this: SymTree =>
def symbol: Symbol
}
- override type NameTree >: Null <: Tree with NameTreeApi
+ /** A tree with a name - effectively, a DefTree or RefTree.
+ */
+ type NameTree >: Null <: AnyRef with Tree with NameTreeApi
+
+ /** A tag that preserves the identity of the `NameTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val NameTreeTag: ClassTag[NameTree]
/** The API that all name trees support */
trait NameTreeApi extends TreeApi { this: NameTree =>
def name: Name
}
- override type RefTree >: Null <: SymTree with NameTree with RefTreeApi
+ /** A tree which references a symbol-carrying entity.
+ * References one, as opposed to defining one; definitions
+ * are in DefTrees.
+ */
+ type RefTree >: Null <: SymTree with NameTree with RefTreeApi
+
+ /** A tag that preserves the identity of the `RefTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val RefTreeTag: ClassTag[RefTree]
/** The API that all ref trees support */
trait RefTreeApi extends SymTreeApi with NameTreeApi { this: RefTree =>
@@ -145,21 +254,56 @@ trait Trees extends base.Trees { self: Universe =>
def name: Name
}
- override type DefTree >: Null <: SymTree with NameTree with DefTreeApi
+ /** A tree which defines a symbol-carrying entity.
+ */
+ type DefTree >: Null <: SymTree with NameTree with DefTreeApi
+
+ /** A tag that preserves the identity of the `DefTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val DefTreeTag: ClassTag[DefTree]
/** The API that all def trees support */
trait DefTreeApi extends SymTreeApi with NameTreeApi { this: DefTree =>
def name: Name
}
- override type MemberDef >: Null <: DefTree with MemberDefApi
+ /** Common base class for all member definitions: types, classes,
+ * objects, packages, vals and vars, defs.
+ */
+ type MemberDef >: Null <: DefTree with MemberDefApi
+
+ /** A tag that preserves the identity of the `MemberDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val MemberDefTag: ClassTag[MemberDef]
/** The API that all member defs support */
trait MemberDefApi extends DefTreeApi { this: MemberDef =>
def mods: Modifiers
}
- override type PackageDef >: Null <: MemberDef with PackageDefApi
+ /** A packaging, such as `package pid { stats }`
+ */
+ type PackageDef >: Null <: MemberDef with PackageDefApi
+
+ /** A tag that preserves the identity of the `PackageDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val PackageDefTag: ClassTag[PackageDef]
+
+ /** The constructor/deconstructor for `PackageDef` instances. */
+ val PackageDef: PackageDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `PackageDef(pid, stats)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `package` pid { stats }
+ */
+ abstract class PackageDefExtractor {
+ def apply(pid: RefTree, stats: List[Tree]): PackageDef
+ def unapply(packageDef: PackageDef): Option[(RefTree, List[Tree])]
+ }
/** The API that all package defs support */
trait PackageDefApi extends MemberDefApi { this: PackageDef =>
@@ -167,14 +311,45 @@ trait Trees extends base.Trees { self: Universe =>
val stats: List[Tree]
}
- override type ImplDef >: Null <: MemberDef with ImplDefApi
+ /** A common base class for class and object definitions.
+ */
+ type ImplDef >: Null <: MemberDef with ImplDefApi
+
+ /** A tag that preserves the identity of the `ImplDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ImplDefTag: ClassTag[ImplDef]
/** The API that all impl defs support */
trait ImplDefApi extends MemberDefApi { this: ImplDef =>
val impl: Template
}
- override type ClassDef >: Null <: ImplDef with ClassDefApi
+ /** A class definition.
+ */
+ type ClassDef >: Null <: ImplDef with ClassDefApi
+
+ /** A tag that preserves the identity of the `ClassDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ClassDefTag: ClassTag[ClassDef]
+
+ /** The constructor/deconstructor for `ClassDef` instances. */
+ val ClassDef: ClassDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `ClassDef(mods, name, tparams, impl)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * mods `class` name [tparams] impl
+ *
+ * Where impl stands for:
+ *
+ * `extends` parents { defs }
+ */
+ abstract class ClassDefExtractor {
+ def apply(mods: Modifiers, name: TypeName, tparams: List[TypeDef], impl: Template): ClassDef
+ def unapply(classDef: ClassDef): Option[(Modifiers, TypeName, List[TypeDef], Template)]
+ }
/** The API that all class defs support */
trait ClassDefApi extends ImplDefApi { this: ClassDef =>
@@ -184,7 +359,33 @@ trait Trees extends base.Trees { self: Universe =>
val impl: Template
}
- override type ModuleDef >: Null <: ImplDef with ModuleDefApi
+ /** An object definition, e.g. `object Foo`. Internally, objects are
+ * quite frequently called modules to reduce ambiguity.
+ * Eliminated by compiler phase refcheck.
+ */
+ type ModuleDef >: Null <: ImplDef with ModuleDefApi
+
+ /** A tag that preserves the identity of the `ModuleDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ModuleDefTag: ClassTag[ModuleDef]
+
+ /** The constructor/deconstructor for `ModuleDef` instances. */
+ val ModuleDef: ModuleDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `ModuleDef(mods, name, impl)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * mods `object` name impl
+ *
+ * Where impl stands for:
+ *
+ * `extends` parents { defs }
+ */
+ abstract class ModuleDefExtractor {
+ def apply(mods: Modifiers, name: TermName, impl: Template): ModuleDef
+ def unapply(moduleDef: ModuleDef): Option[(Modifiers, TermName, Template)]
+ }
/** The API that all module defs support */
trait ModuleDefApi extends ImplDefApi { this: ModuleDef =>
@@ -193,7 +394,14 @@ trait Trees extends base.Trees { self: Universe =>
val impl: Template
}
- override type ValOrDefDef >: Null <: MemberDef with ValOrDefDefApi
+ /** A common base class for ValDefs and DefDefs.
+ */
+ type ValOrDefDef >: Null <: MemberDef with ValOrDefDefApi
+
+ /** A tag that preserves the identity of the `ValOrDefDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ValOrDefDefTag: ClassTag[ValOrDefDef]
/** The API that all val defs and def defs support */
trait ValOrDefDefApi extends MemberDefApi { this: ValOrDefDef =>
@@ -202,7 +410,42 @@ trait Trees extends base.Trees { self: Universe =>
def rhs: Tree
}
- override type ValDef >: Null <: ValOrDefDef with ValDefApi
+ /** Broadly speaking, a value definition. All these are encoded as ValDefs:
+ *
+ * - immutable values, e.g. "val x"
+ * - mutable values, e.g. "var x" - the MUTABLE flag set in mods
+ * - lazy values, e.g. "lazy val x" - the LAZY flag set in mods
+ * - method parameters, see vparamss in [[scala.reflect.api.Trees#DefDef]] - the PARAM flag is set in mods
+ * - explicit self-types, e.g. class A { self: Bar => }
+ */
+ type ValDef >: Null <: ValOrDefDef with ValDefApi
+
+ /** A tag that preserves the identity of the `ValDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ValDefTag: ClassTag[ValDef]
+
+ /** The constructor/deconstructor for `ValDef` instances. */
+ val ValDef: ValDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `ValDef(mods, name, tpt, rhs)`.
+ * This AST node corresponds to any of the following Scala code:
+ *
+ * mods `val` name: tpt = rhs
+ *
+ * mods `var` name: tpt = rhs
+ *
+ * mods name: tpt = rhs // in signatures of function and method definitions
+ *
+ * self: Bar => // self-types
+ *
+ * If the type of a value is not specified explicitly (i.e. is meant to be inferred),
+ * this is expressed by having `tpt` set to `TypeTree()` (but not to an `EmptyTree`!).
+ */
+ abstract class ValDefExtractor {
+ def apply(mods: Modifiers, name: TermName, tpt: Tree, rhs: Tree): ValDef
+ def unapply(valDef: ValDef): Option[(Modifiers, TermName, Tree, Tree)]
+ }
/** The API that all val defs support */
trait ValDefApi extends ValOrDefDefApi { this: ValDef =>
@@ -212,7 +455,31 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type DefDef >: Null <: ValOrDefDef with DefDefApi
+ /** A method or macro definition.
+ * @param name The name of the method or macro. Can be a type name in case this is a type macro
+ */
+ type DefDef >: Null <: ValOrDefDef with DefDefApi
+
+ /** A tag that preserves the identity of the `DefDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val DefDefTag: ClassTag[DefDef]
+
+ /** The constructor/deconstructor for `DefDef` instances. */
+ val DefDef: DefDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `DefDef(mods, name, tparams, vparamss, tpt, rhs)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * mods `def` name[tparams](vparams_1)...(vparams_n): tpt = rhs
+ *
+ * If the return type is not specified explicitly (i.e. is meant to be inferred),
+ * this is expressed by having `tpt` set to `TypeTree()` (but not to an `EmptyTree`!).
+ */
+ abstract class DefDefExtractor {
+ def apply(mods: Modifiers, name: Name, tparams: List[TypeDef], vparamss: List[List[ValDef]], tpt: Tree, rhs: Tree): DefDef
+ def unapply(defDef: DefDef): Option[(Modifiers, Name, List[TypeDef], List[List[ValDef]], Tree, Tree)]
+ }
/** The API that all def defs support */
trait DefDefApi extends ValOrDefDefApi { this: DefDef =>
@@ -224,7 +491,34 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type TypeDef >: Null <: MemberDef with TypeDefApi
+ /** An abstract type, a type parameter, or a type alias.
+ * Eliminated by erasure.
+ */
+ type TypeDef >: Null <: MemberDef with TypeDefApi
+
+ /** A tag that preserves the identity of the `TypeDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeDefTag: ClassTag[TypeDef]
+
+ /** The constructor/deconstructor for `TypeDef` instances. */
+ val TypeDef: TypeDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeDef(mods, name, tparams, rhs)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * mods `type` name[tparams] = rhs
+ *
+ * mods `type` name[tparams] >: lo <: hi
+ *
+ * First usage illustrates `TypeDefs` representing type aliases and type parameters.
+ * Second usage illustrates `TypeDefs` representing abstract types,
+ * where lo and hi are both `TypeBoundsTrees` and `Modifier.deferred` is set in mods.
+ */
+ abstract class TypeDefExtractor {
+ def apply(mods: Modifiers, name: TypeName, tparams: List[TypeDef], rhs: Tree): TypeDef
+ def unapply(typeDef: TypeDef): Option[(Modifiers, TypeName, List[TypeDef], Tree)]
+ }
/** The API that all type defs support */
trait TypeDefApi extends MemberDefApi { this: TypeDef =>
@@ -234,7 +528,46 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type LabelDef >: Null <: DefTree with TermTree with LabelDefApi
+ /** A labelled expression. Not expressible in language syntax, but
+ * generated by the compiler to simulate while/do-while loops, and
+ * also by the pattern matcher.
+ *
+ * The label acts much like a nested function, where `params` represents
+ * the incoming parameters. The symbol given to the LabelDef should have
+ * a MethodType, as if it were a nested function.
+ *
+ * Jumps are apply nodes attributed with a label's symbol. The
+ * arguments from the apply node will be passed to the label and
+ * assigned to the Idents.
+ *
+ * Forward jumps within a block are allowed.
+ */
+ type LabelDef >: Null <: DefTree with TermTree with LabelDefApi
+
+ /** A tag that preserves the identity of the `LabelDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val LabelDefTag: ClassTag[LabelDef]
+
+ /** The constructor/deconstructor for `LabelDef` instances. */
+ val LabelDef: LabelDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `LabelDef(name, params, rhs)`.
+ *
+ * This AST node does not have direct correspondence to Scala code.
+ * It is used for tailcalls and like.
+ * For example, while/do are desugared to label defs as follows:
+ * {{{
+ * while (cond) body ==> LabelDef($L, List(), if (cond) { body; L$() } else ())
+ * }}}
+ * {{{
+ * do body while (cond) ==> LabelDef($L, List(), body; if (cond) L$() else ())
+ * }}}
+ */
+ abstract class LabelDefExtractor {
+ def apply(name: TermName, params: List[Ident], rhs: Tree): LabelDef
+ def unapply(labelDef: LabelDef): Option[(TermName, List[Ident], Tree)]
+ }
/** The API that all label defs support */
trait LabelDefApi extends DefTreeApi with TermTreeApi { this: LabelDef =>
@@ -243,7 +576,34 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type ImportSelector >: Null <: ImportSelectorApi
+ /** Import selector
+ *
+ * Representation of an imported name its optional rename and their optional positions
+ *
+ * Eliminated by typecheck.
+ *
+ * @param name the imported name
+ * @param namePos its position or -1 if undefined
+ * @param rename the name the import is renamed to (== name if no renaming)
+ * @param renamePos the position of the rename or -1 if undefined
+ */
+ type ImportSelector >: Null <: AnyRef with ImportSelectorApi
+
+ /** A tag that preserves the identity of the `ImportSelector` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ImportSelectorTag: ClassTag[ImportSelector]
+
+ /** The constructor/deconstructor for `ImportSelector` instances. */
+ val ImportSelector: ImportSelectorExtractor
+
+ /** An extractor class to create and pattern match with syntax `ImportSelector(name:, namePos, rename, renamePos)`.
+ * This is not an AST node, it is used as a part of the `Import` node.
+ */
+ abstract class ImportSelectorExtractor {
+ def apply(name: Name, namePos: Int, rename: Name, renamePos: Int): ImportSelector
+ def unapply(importSelector: ImportSelector): Option[(Name, Int, Name, Int)]
+ }
/** The API that all import selectors support */
trait ImportSelectorApi { this: ImportSelector =>
@@ -253,7 +613,42 @@ trait Trees extends base.Trees { self: Universe =>
val renamePos: Int
}
- override type Import >: Null <: SymTree with ImportApi
+ /** Import clause
+ *
+ * @param expr
+ * @param selectors
+ */
+ type Import >: Null <: SymTree with ImportApi
+
+ /** A tag that preserves the identity of the `Import` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ImportTag: ClassTag[Import]
+
+ /** The constructor/deconstructor for `Import` instances. */
+ val Import: ImportExtractor
+
+ /** An extractor class to create and pattern match with syntax `Import(expr, selectors)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * import expr.{selectors}
+ *
+ * Selectors are a list of ImportSelectors, which conceptually are pairs of names (from, to).
+ * The last (and maybe only name) may be a nme.WILDCARD. For instance:
+ *
+ * import qual.{x, y => z, _}
+ *
+ * Would be represented as:
+ *
+ * Import(qual, List(("x", "x"), ("y", "z"), (WILDCARD, null)))
+ *
+ * The symbol of an `Import` is an import symbol @see Symbol.newImport.
+ * It's used primarily as a marker to check that the import has been typechecked.
+ */
+ abstract class ImportExtractor {
+ def apply(expr: Tree, selectors: List[ImportSelector]): Import
+ def unapply(import_ : Import): Option[(Tree, List[ImportSelector])]
+ }
/** The API that all imports support */
trait ImportApi extends SymTreeApi { this: Import =>
@@ -261,7 +656,43 @@ trait Trees extends base.Trees { self: Universe =>
val selectors: List[ImportSelector]
}
- override type Template >: Null <: SymTree with TemplateApi
+ /** Instantiation template of a class or trait
+ *
+ * @param parents
+ * @param body
+ */
+ type Template >: Null <: SymTree with TemplateApi
+
+ /** A tag that preserves the identity of the `Template` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TemplateTag: ClassTag[Template]
+
+ /** The constructor/deconstructor for `Template` instances. */
+ val Template: TemplateExtractor
+
+ /** An extractor class to create and pattern match with syntax `Template(parents, self, body)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `extends` parents { self => body }
+ *
+ * In case when the self-type annotation is missing, it is represented as
+ * an empty value definition with nme.WILDCARD as name and NoType as type.
+ *
+ * The symbol of a template is a local dummy. @see Symbol.newLocalDummy
+ * The owner of the local dummy is the enclosing trait or class.
+ * The local dummy is itself the owner of any local blocks. For example:
+ *
+ * class C {
+ * def foo { // owner is C
+ * def bar // owner is local dummy
+ * }
+ * }
+ */
+ abstract class TemplateExtractor {
+ def apply(parents: List[Tree], self: ValDef, body: List[Tree]): Template
+ def unapply(template: Template): Option[(List[Tree], ValDef, List[Tree])]
+ }
/** The API that all templates support */
trait TemplateApi extends SymTreeApi { this: Template =>
@@ -270,7 +701,28 @@ trait Trees extends base.Trees { self: Universe =>
val body: List[Tree]
}
- override type Block >: Null <: TermTree with BlockApi
+ /** Block of expressions (semicolon separated expressions) */
+ type Block >: Null <: TermTree with BlockApi
+
+ /** A tag that preserves the identity of the `Block` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val BlockTag: ClassTag[Block]
+
+ /** The constructor/deconstructor for `Block` instances. */
+ val Block: BlockExtractor
+
+ /** An extractor class to create and pattern match with syntax `Block(stats, expr)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * { stats; expr }
+ *
+ * If the block is empty, the `expr` is set to `Literal(Constant(()))`.
+ */
+ abstract class BlockExtractor {
+ def apply(stats: List[Tree], expr: Tree): Block
+ def unapply(block: Block): Option[(List[Tree], Tree)]
+ }
/** The API that all blocks support */
trait BlockApi extends TermTreeApi { this: Block =>
@@ -278,7 +730,32 @@ trait Trees extends base.Trees { self: Universe =>
val expr: Tree
}
- override type CaseDef >: Null <: Tree with CaseDefApi
+ /** Case clause in a pattern match.
+ * (except for occurrences in switch statements).
+ * Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher)
+ */
+ type CaseDef >: Null <: AnyRef with Tree with CaseDefApi
+
+ /** A tag that preserves the identity of the `CaseDef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val CaseDefTag: ClassTag[CaseDef]
+
+ /** The constructor/deconstructor for `CaseDef` instances. */
+ val CaseDef: CaseDefExtractor
+
+ /** An extractor class to create and pattern match with syntax `CaseDef(pat, guard, body)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `case` pat `if` guard => body
+ *
+ * If the guard is not present, the `guard` is set to `EmptyTree`.
+ * If the body is not specified, the `body` is set to `Literal(Constant())`
+ */
+ abstract class CaseDefExtractor {
+ def apply(pat: Tree, guard: Tree, body: Tree): CaseDef
+ def unapply(caseDef: CaseDef): Option[(Tree, Tree, Tree)]
+ }
/** The API that all case defs support */
trait CaseDefApi extends TreeApi { this: CaseDef =>
@@ -287,21 +764,92 @@ trait Trees extends base.Trees { self: Universe =>
val body: Tree
}
- override type Alternative >: Null <: TermTree with AlternativeApi
+ /** Alternatives of patterns.
+ *
+ * Eliminated by compiler phases Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher),
+ * except for
+ * occurrences in encoded Switch stmt (i.e. remaining Match(CaseDef(...)))
+ */
+ type Alternative >: Null <: TermTree with AlternativeApi
+
+ /** A tag that preserves the identity of the `Alternative` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AlternativeTag: ClassTag[Alternative]
+
+ /** The constructor/deconstructor for `Alternative` instances. */
+ val Alternative: AlternativeExtractor
+
+ /** An extractor class to create and pattern match with syntax `Alternative(trees)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * pat1 | ... | patn
+ */
+ abstract class AlternativeExtractor {
+ def apply(trees: List[Tree]): Alternative
+ def unapply(alternative: Alternative): Option[List[Tree]]
+ }
/** The API that all alternatives support */
trait AlternativeApi extends TermTreeApi { this: Alternative =>
val trees: List[Tree]
}
- override type Star >: Null <: TermTree with StarApi
+ /** Repetition of pattern.
+ *
+ * Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher).
+ */
+ type Star >: Null <: TermTree with StarApi
+
+ /** A tag that preserves the identity of the `Star` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val StarTag: ClassTag[Star]
+
+ /** The constructor/deconstructor for `Star` instances. */
+ val Star: StarExtractor
+
+ /** An extractor class to create and pattern match with syntax `Star(elem)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * pat*
+ */
+ abstract class StarExtractor {
+ def apply(elem: Tree): Star
+ def unapply(star: Star): Option[Tree]
+ }
/** The API that all stars support */
trait StarApi extends TermTreeApi { this: Star =>
val elem: Tree
}
- override type Bind >: Null <: DefTree with BindApi
+ /** Bind a variable to a rhs pattern.
+ *
+ * Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher).
+ *
+ * @param name
+ * @param body
+ */
+ type Bind >: Null <: DefTree with BindApi
+
+ /** A tag that preserves the identity of the `Bind` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val BindTag: ClassTag[Bind]
+
+ /** The constructor/deconstructor for `Bind` instances. */
+ val Bind: BindExtractor
+
+ /** An extractor class to create and pattern match with syntax `Bind(name, body)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * pat*
+ */
+ abstract class BindExtractor {
+ def apply(name: Name, body: Tree): Bind
+ def unapply(bind: Bind): Option[(Name, Tree)]
+ }
/** The API that all binds support */
trait BindApi extends DefTreeApi { this: Bind =>
@@ -309,7 +857,51 @@ trait Trees extends base.Trees { self: Universe =>
val body: Tree
}
- override type UnApply >: Null <: TermTree with UnApplyApi
+ /**
+ * Used to represent `unapply` methods in pattern matching.
+ *
+ * For example:
+ * {{{
+ * 2 match { case Foo(x) => x }
+ * }}}
+ *
+ * Is represented as:
+ * {{{
+ * Match(
+ * Literal(Constant(2)),
+ * List(
+ * CaseDef(
+ * UnApply(
+ * // a dummy node that carries the type of unapplication to patmat
+ * // the <unapply-selector> here doesn't have an underlying symbol
+ * // it only has a type assigned, therefore after `resetAllAttrs` this tree is no longer typeable
+ * Apply(Select(Ident(Foo), newTermName("unapply")), List(Ident(newTermName("<unapply-selector>")))),
+ * // arguments of the unapply => nothing synthetic here
+ * List(Bind(newTermName("x"), Ident(nme.WILDCARD)))),
+ * EmptyTree,
+ * Ident(newTermName("x")))))
+ * }}}
+ *
+ * Introduced by typer. Eliminated by compiler phases patmat (in the new pattern matcher of 2.10) or explicitouter (in the old pre-2.10 pattern matcher).
+ */
+ type UnApply >: Null <: TermTree with UnApplyApi
+
+ /** A tag that preserves the identity of the `UnApply` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val UnApplyTag: ClassTag[UnApply]
+
+ /** The constructor/deconstructor for `UnApply` instances. */
+ val UnApply: UnApplyExtractor
+
+ /** An extractor class to create and pattern match with syntax `UnApply(fun, args)`.
+ * This AST node does not have direct correspondence to Scala code,
+ * and is introduced when typechecking pattern matches and `try` blocks.
+ */
+ abstract class UnApplyExtractor {
+ def apply(fun: Tree, args: List[Tree]): UnApply
+ def unapply(unApply: UnApply): Option[(Tree, List[Tree])]
+ }
/** The API that all unapplies support */
trait UnApplyApi extends TermTreeApi { this: UnApply =>
@@ -317,23 +909,56 @@ trait Trees extends base.Trees { self: Universe =>
val args: List[Tree]
}
- override type ArrayValue >: Null <: TermTree with ArrayValueApi
+ /** Anonymous function, eliminated by compiler phase lambdalift */
+ type Function >: Null <: TermTree with SymTree with FunctionApi
- /** The API that all array values support */
- trait ArrayValueApi extends TermTreeApi { this: ArrayValue =>
- val elemtpt: Tree
- val elems: List[Tree]
+ /** A tag that preserves the identity of the `Function` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val FunctionTag: ClassTag[Function]
+
+ /** The constructor/deconstructor for `Function` instances. */
+ val Function: FunctionExtractor
+
+ /** An extractor class to create and pattern match with syntax `Function(vparams, body)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * vparams => body
+ *
+ * The symbol of a Function is a synthetic TermSymbol.
+ * It is the owner of the function's parameters.
+ */
+ abstract class FunctionExtractor {
+ def apply(vparams: List[ValDef], body: Tree): Function
+ def unapply(function: Function): Option[(List[ValDef], Tree)]
}
- override type Function >: Null <: TermTree with SymTree with FunctionApi
-
/** The API that all functions support */
trait FunctionApi extends TermTreeApi with SymTreeApi { this: Function =>
val vparams: List[ValDef]
val body: Tree
}
- override type Assign >: Null <: TermTree with AssignApi
+ /** Assignment */
+ type Assign >: Null <: TermTree with AssignApi
+
+ /** A tag that preserves the identity of the `Assign` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AssignTag: ClassTag[Assign]
+
+ /** The constructor/deconstructor for `Assign` instances. */
+ val Assign: AssignExtractor
+
+ /** An extractor class to create and pattern match with syntax `Assign(lhs, rhs)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * lhs = rhs
+ */
+ abstract class AssignExtractor {
+ def apply(lhs: Tree, rhs: Tree): Assign
+ def unapply(assign: Assign): Option[(Tree, Tree)]
+ }
/** The API that all assigns support */
trait AssignApi extends TermTreeApi { this: Assign =>
@@ -341,7 +966,34 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type AssignOrNamedArg >: Null <: TermTree with AssignOrNamedArgApi
+ /** Either an assignment or a named argument. Only appears in argument lists,
+ * eliminated by compiler phase typecheck (doTypedApply), resurrected by reifier.
+ */
+ type AssignOrNamedArg >: Null <: TermTree with AssignOrNamedArgApi
+
+ /** A tag that preserves the identity of the `AssignOrNamedArg` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AssignOrNamedArgTag: ClassTag[AssignOrNamedArg]
+
+ /** The constructor/deconstructor for `AssignOrNamedArg` instances. */
+ val AssignOrNamedArg: AssignOrNamedArgExtractor
+
+ /** An extractor class to create and pattern match with syntax `AssignOrNamedArg(lhs, rhs)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * {{{
+ * m.f(lhs = rhs)
+ * }}}
+ * {{{
+ * @annotation(lhs = rhs)
+ * }}}
+ *
+ */
+ abstract class AssignOrNamedArgExtractor {
+ def apply(lhs: Tree, rhs: Tree): AssignOrNamedArg
+ def unapply(assignOrNamedArg: AssignOrNamedArg): Option[(Tree, Tree)]
+ }
/** The API that all assigns support */
trait AssignOrNamedArgApi extends TermTreeApi { this: AssignOrNamedArg =>
@@ -349,7 +1001,28 @@ trait Trees extends base.Trees { self: Universe =>
val rhs: Tree
}
- override type If >: Null <: TermTree with IfApi
+ /** Conditional expression */
+ type If >: Null <: TermTree with IfApi
+
+ /** A tag that preserves the identity of the `If` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val IfTag: ClassTag[If]
+
+ /** The constructor/deconstructor for `If` instances. */
+ val If: IfExtractor
+
+ /** An extractor class to create and pattern match with syntax `If(cond, thenp, elsep)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `if` (cond) thenp `else` elsep
+ *
+ * If the alternative is not present, the `elsep` is set to `Literal(Constant(()))`.
+ */
+ abstract class IfExtractor {
+ def apply(cond: Tree, thenp: Tree, elsep: Tree): If
+ def unapply(if_ : If): Option[(Tree, Tree, Tree)]
+ }
/** The API that all ifs support */
trait IfApi extends TermTreeApi { this: If =>
@@ -358,7 +1031,38 @@ trait Trees extends base.Trees { self: Universe =>
val elsep: Tree
}
- override type Match >: Null <: TermTree with MatchApi
+ /** - Pattern matching expression (before compiler phase explicitouter before 2.10 / patmat from 2.10)
+ * - Switch statements (after compiler phase explicitouter before 2.10 / patmat from 2.10)
+ *
+ * After compiler phase explicitouter before 2.10 / patmat from 2.10, cases will satisfy the following constraints:
+ *
+ * - all guards are `EmptyTree`,
+ * - all patterns will be either `Literal(Constant(x:Int))`
+ * or `Alternative(lit|...|lit)`
+ * - except for an "otherwise" branch, which has pattern
+ * `Ident(nme.WILDCARD)`
+ */
+ type Match >: Null <: TermTree with MatchApi
+
+ /** A tag that preserves the identity of the `Match` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val MatchTag: ClassTag[Match]
+
+ /** The constructor/deconstructor for `Match` instances. */
+ val Match: MatchExtractor
+
+ /** An extractor class to create and pattern match with syntax `Match(selector, cases)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * selector `match` { cases }
+ *
+ * `Match` is also used in pattern matching assignments like `val (foo, bar) = baz`.
+ */
+ abstract class MatchExtractor {
+ def apply(selector: Tree, cases: List[CaseDef]): Match
+ def unapply(match_ : Match): Option[(Tree, List[CaseDef])]
+ }
/** The API that all matches support */
trait MatchApi extends TermTreeApi { this: Match =>
@@ -366,14 +1070,56 @@ trait Trees extends base.Trees { self: Universe =>
val cases: List[CaseDef]
}
- override type Return >: Null <: TermTree with SymTree with ReturnApi
+ /** Return expression */
+ type Return >: Null <: TermTree with SymTree with ReturnApi
+
+ /** A tag that preserves the identity of the `Return` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ReturnTag: ClassTag[Return]
+
+ /** The constructor/deconstructor for `Return` instances. */
+ val Return: ReturnExtractor
+
+ /** An extractor class to create and pattern match with syntax `Return(expr)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `return` expr
+ *
+ * The symbol of a Return node is the enclosing method.
+ */
+ abstract class ReturnExtractor {
+ def apply(expr: Tree): Return
+ def unapply(return_ : Return): Option[Tree]
+ }
/** The API that all returns support */
trait ReturnApi extends TermTreeApi { this: Return =>
val expr: Tree
}
- override type Try >: Null <: TermTree with TryApi
+ /** [Eugene++] comment me! */
+ type Try >: Null <: TermTree with TryApi
+
+ /** A tag that preserves the identity of the `Try` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TryTag: ClassTag[Try]
+
+ /** The constructor/deconstructor for `Try` instances. */
+ val Try: TryExtractor
+
+ /** An extractor class to create and pattern match with syntax `Try(block, catches, finalizer)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `try` block `catch` { catches } `finally` finalizer
+ *
+ * If the finalizer is not present, the `finalizer` is set to `EmptyTree`.
+ */
+ abstract class TryExtractor {
+ def apply(block: Tree, catches: List[CaseDef], finalizer: Tree): Try
+ def unapply(try_ : Try): Option[(Tree, List[CaseDef], Tree)]
+ }
/** The API that all tries support */
trait TryApi extends TermTreeApi { this: Try =>
@@ -382,21 +1128,89 @@ trait Trees extends base.Trees { self: Universe =>
val finalizer: Tree
}
- override type Throw >: Null <: TermTree with ThrowApi
+ /** Throw expression */
+ type Throw >: Null <: TermTree with ThrowApi
+
+ /** A tag that preserves the identity of the `Throw` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ThrowTag: ClassTag[Throw]
+
+ /** The constructor/deconstructor for `Throw` instances. */
+ val Throw: ThrowExtractor
+
+ /** An extractor class to create and pattern match with syntax `Throw(expr)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `throw` expr
+ */
+ abstract class ThrowExtractor {
+ def apply(expr: Tree): Throw
+ def unapply(throw_ : Throw): Option[Tree]
+ }
/** The API that all tries support */
trait ThrowApi extends TermTreeApi { this: Throw =>
val expr: Tree
}
- override type New >: Null <: TermTree with NewApi
+ /** Object instantiation
+ */
+ type New >: Null <: TermTree with NewApi
+
+ /** A tag that preserves the identity of the `New` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val NewTag: ClassTag[New]
+
+ /** The constructor/deconstructor for `New` instances.
+ */
+ val New: NewExtractor
+
+ /** An extractor class to create and pattern match with syntax `New(tpt)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * `new` T
+ *
+ * This node always occurs in the following context:
+ *
+ * (`new` tpt).<init>[targs](args)
+ */
+ abstract class NewExtractor {
+ /** A user level `new`.
+ * One should always use this factory method to build a user level `new`.
+ *
+ * @param tpt a class type
+ */
+ def apply(tpt: Tree): New
+ def unapply(new_ : New): Option[Tree]
+ }
/** The API that all news support */
trait NewApi extends TermTreeApi { this: New =>
val tpt: Tree
}
- override type Typed >: Null <: TermTree with TypedApi
+ /** Type annotation, eliminated by compiler phase cleanup */
+ type Typed >: Null <: TermTree with TypedApi
+
+ /** A tag that preserves the identity of the `Typed` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypedTag: ClassTag[Typed]
+
+ /** The constructor/deconstructor for `Typed` instances. */
+ val Typed: TypedExtractor
+
+ /** An extractor class to create and pattern match with syntax `Typed(expr, tpt)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * expr: tpt
+ */
+ abstract class TypedExtractor {
+ def apply(expr: Tree, tpt: Tree): Typed
+ def unapply(typed: Typed): Option[(Tree, Tree)]
+ }
/** The API that all typeds support */
trait TypedApi extends TermTreeApi { this: Typed =>
@@ -404,7 +1218,14 @@ trait Trees extends base.Trees { self: Universe =>
val tpt: Tree
}
- override type GenericApply >: Null <: TermTree with GenericApplyApi
+ /** Common base class for Apply and TypeApply.
+ */
+ type GenericApply >: Null <: TermTree with GenericApplyApi
+
+ /** A tag that preserves the identity of the `GenericApply` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val GenericApplyTag: ClassTag[GenericApply]
/** The API that all applies support */
trait GenericApplyApi extends TermTreeApi { this: GenericApply =>
@@ -412,19 +1233,99 @@ trait Trees extends base.Trees { self: Universe =>
val args: List[Tree]
}
- override type TypeApply >: Null <: GenericApply with TypeApplyApi
+ /* @PP: All signs point toward it being a requirement that args.nonEmpty,
+ * but I can't find that explicitly stated anywhere. Unless your last name
+ * is odersky, you should probably treat it as true.
+ */
+ /** Explicit type application. */
+ type TypeApply >: Null <: GenericApply with TypeApplyApi
+
+ /** A tag that preserves the identity of the `TypeApply` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeApplyTag: ClassTag[TypeApply]
+
+ /** The constructor/deconstructor for `TypeApply` instances. */
+ val TypeApply: TypeApplyExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeApply(fun, args)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * fun[args]
+ */
+ abstract class TypeApplyExtractor {
+ def apply(fun: Tree, args: List[Tree]): TypeApply
+ def unapply(typeApply: TypeApply): Option[(Tree, List[Tree])]
+ }
/** The API that all type applies support */
trait TypeApplyApi extends GenericApplyApi { this: TypeApply =>
}
- override type Apply >: Null <: GenericApply with ApplyApi
+ /** Value application */
+ type Apply >: Null <: GenericApply with ApplyApi
+
+ /** A tag that preserves the identity of the `Apply` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ApplyTag: ClassTag[Apply]
+
+ /** The constructor/deconstructor for `Apply` instances. */
+ val Apply: ApplyExtractor
+
+ /** An extractor class to create and pattern match with syntax `Apply(fun, args)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * fun(args)
+ *
+ * For instance:
+ *
+ * fun[targs](args)
+ *
+ * Is expressed as:
+ *
+ * Apply(TypeApply(fun, targs), args)
+ */
+ abstract class ApplyExtractor {
+ def apply(fun: Tree, args: List[Tree]): Apply
+ def unapply(apply: Apply): Option[(Tree, List[Tree])]
+ }
/** The API that all applies support */
trait ApplyApi extends GenericApplyApi { this: Apply =>
}
- override type Super >: Null <: TermTree with SuperApi
+ /** Super reference, where `qual` is the corresponding `this` reference.
+ * A super reference `C.super[M]` is represented as `Super(This(C), M)`.
+ */
+ type Super >: Null <: TermTree with SuperApi
+
+ /** A tag that preserves the identity of the `Super` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SuperTag: ClassTag[Super]
+
+ /** The constructor/deconstructor for `Super` instances. */
+ val Super: SuperExtractor
+
+ /** An extractor class to create and pattern match with syntax `Super(qual, mix)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * C.super[M]
+ *
+ * Which is represented as:
+ *
+ * Super(This(C), M)
+ *
+ * If `mix` is empty, it is tpnme.EMPTY.
+ *
+ * The symbol of a Super is the class _from_ which the super reference is made.
+ * For instance in C.super(...), it would be C.
+ */
+ abstract class SuperExtractor {
+ def apply(qual: Tree, mix: TypeName): Super
+ def unapply(super_ : Super): Option[(Tree, TypeName)]
+ }
/** The API that all supers support */
trait SuperApi extends TermTreeApi { this: Super =>
@@ -432,14 +1333,57 @@ trait Trees extends base.Trees { self: Universe =>
val mix: TypeName
}
- override type This >: Null <: TermTree with SymTree with ThisApi
+ /** Self reference */
+ type This >: Null <: TermTree with SymTree with ThisApi
+
+ /** A tag that preserves the identity of the `This` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ThisTag: ClassTag[This]
+
+ /** The constructor/deconstructor for `This` instances. */
+ val This: ThisExtractor
+
+ /** An extractor class to create and pattern match with syntax `This(qual)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * qual.this
+ *
+ * The symbol of a This is the class to which the this refers.
+ * For instance in C.this, it would be C.
+ *
+ * If `mix` is empty, then ???
+ */
+ abstract class ThisExtractor {
+ def apply(qual: TypeName): This
+ def unapply(this_ : This): Option[TypeName]
+ }
/** The API that all thises support */
trait ThisApi extends TermTreeApi with SymTreeApi { this: This =>
val qual: TypeName
}
- override type Select >: Null <: RefTree with SelectApi
+ /** Designator <qualifier> . <name> */
+ type Select >: Null <: RefTree with SelectApi
+
+ /** A tag that preserves the identity of the `Select` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SelectTag: ClassTag[Select]
+
+ /** The constructor/deconstructor for `Select` instances. */
+ val Select: SelectExtractor
+
+ /** An extractor class to create and pattern match with syntax `Select(qual, name)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * qualifier.selector
+ */
+ abstract class SelectExtractor {
+ def apply(qualifier: Tree, name: Name): Select
+ def unapply(select: Select): Option[(Tree, Name)]
+ }
/** The API that all selects support */
trait SelectApi extends RefTreeApi { this: Select =>
@@ -447,28 +1391,132 @@ trait Trees extends base.Trees { self: Universe =>
val name: Name
}
- override type Ident >: Null <: RefTree with IdentApi
+ /** Identifier <name> */
+ type Ident >: Null <: RefTree with IdentApi
+
+ /** A tag that preserves the identity of the `Ident` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val IdentTag: ClassTag[Ident]
+
+ /** The constructor/deconstructor for `Ident` instances. */
+ val Ident: IdentExtractor
+
+ /** An extractor class to create and pattern match with syntax `Ident(qual, name)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * name
+ *
+ * Type checker converts idents that refer to enclosing fields or methods to selects.
+ * For example, name ==> this.name
+ */
+ abstract class IdentExtractor {
+ def apply(name: Name): Ident
+ def unapply(ident: Ident): Option[Name]
+ }
/** The API that all idents support */
trait IdentApi extends RefTreeApi { this: Ident =>
val name: Name
}
- override type ReferenceToBoxed >: Null <: TermTree with ReferenceToBoxedApi
+ /** Marks underlying reference to id as boxed.
+ * @pre id must refer to a captured variable
+ * A reference such marked will refer to the boxed entity, no dereferencing
+ * with `.elem` is done on it.
+ * This tree node can be emitted by macros such as reify that call referenceCapturedVariable.
+ * It is eliminated in LambdaLift, where the boxing conversion takes place.
+ */
+ type ReferenceToBoxed >: Null <: TermTree with ReferenceToBoxedApi
+
+ /** A tag that preserves the identity of the `ReferenceToBoxed` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ReferenceToBoxedTag: ClassTag[ReferenceToBoxed]
+
+ /** The constructor/deconstructor for `ReferenceToBoxed` instances. */
+ val ReferenceToBoxed: ReferenceToBoxedExtractor
+
+ /** An extractor class to create and pattern match with syntax `ReferenceToBoxed(ident)`.
+ * This AST node does not have direct correspondence to Scala code,
+ * and is emitted by macros to reference capture vars directly without going through `elem`.
+ *
+ * For example:
+ *
+ * var x = ...
+ * fun { x }
+ *
+ * Will emit:
+ *
+ * Ident(x)
+ *
+ * Which gets transformed to:
+ *
+ * Select(Ident(x), "elem")
+ *
+ * If `ReferenceToBoxed` were used instead of Ident, no transformation would be performed.
+ */
+ abstract class ReferenceToBoxedExtractor {
+ def apply(ident: Ident): ReferenceToBoxed
+ def unapply(referenceToBoxed: ReferenceToBoxed): Option[Ident]
+ }
/** The API that all references support */
trait ReferenceToBoxedApi extends TermTreeApi { this: ReferenceToBoxed =>
val ident: Tree
}
- override type Literal >: Null <: TermTree with LiteralApi
+ /** Literal */
+ type Literal >: Null <: TermTree with LiteralApi
+
+ /** A tag that preserves the identity of the `Literal` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val LiteralTag: ClassTag[Literal]
+
+ /** The constructor/deconstructor for `Literal` instances. */
+ val Literal: LiteralExtractor
+
+ /** An extractor class to create and pattern match with syntax `Literal(value)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * value
+ */
+ abstract class LiteralExtractor {
+ def apply(value: Constant): Literal
+ def unapply(literal: Literal): Option[Constant]
+ }
/** The API that all literals support */
trait LiteralApi extends TermTreeApi { this: Literal =>
val value: Constant
}
- override type Annotated >: Null <: Tree with AnnotatedApi
+ /** A tree that has an annotation attached to it. Only used for annotated types and
+ * annotation ascriptions, annotations on definitions are stored in the Modifiers.
+ * Eliminated by typechecker (typedAnnotated), the annotations are then stored in
+ * an AnnotatedType.
+ */
+ type Annotated >: Null <: AnyRef with Tree with AnnotatedApi
+
+ /** A tag that preserves the identity of the `Annotated` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AnnotatedTag: ClassTag[Annotated]
+
+ /** The constructor/deconstructor for `Annotated` instances. */
+ val Annotated: AnnotatedExtractor
+
+ /** An extractor class to create and pattern match with syntax `Annotated(annot, arg)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * arg @annot // for types
+ * arg: @annot // for exprs
+ */
+ abstract class AnnotatedExtractor {
+ def apply(annot: Tree, arg: Tree): Annotated
+ def unapply(annotated: Annotated): Option[(Tree, Tree)]
+ }
/** The API that all annotateds support */
trait AnnotatedApi extends TreeApi { this: Annotated =>
@@ -476,14 +1524,55 @@ trait Trees extends base.Trees { self: Universe =>
val arg: Tree
}
- override type SingletonTypeTree >: Null <: TypTree with SingletonTypeTreeApi
+ /** Singleton type, eliminated by RefCheck */
+ type SingletonTypeTree >: Null <: TypTree with SingletonTypeTreeApi
+
+ /** A tag that preserves the identity of the `SingletonTypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SingletonTypeTreeTag: ClassTag[SingletonTypeTree]
+
+ /** The constructor/deconstructor for `SingletonTypeTree` instances. */
+ val SingletonTypeTree: SingletonTypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `SingletonTypeTree(ref)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * ref.type
+ */
+ abstract class SingletonTypeTreeExtractor {
+ def apply(ref: Tree): SingletonTypeTree
+ def unapply(singletonTypeTree: SingletonTypeTree): Option[Tree]
+ }
/** The API that all singleton type trees support */
trait SingletonTypeTreeApi extends TypTreeApi { this: SingletonTypeTree =>
val ref: Tree
}
- override type SelectFromTypeTree >: Null <: TypTree with RefTree with SelectFromTypeTreeApi
+ /** Type selection <qualifier> # <name>, eliminated by RefCheck */
+ // [Eugene++] don't see why we need it, when we have Select
+ type SelectFromTypeTree >: Null <: TypTree with RefTree with SelectFromTypeTreeApi
+
+ /** A tag that preserves the identity of the `SelectFromTypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SelectFromTypeTreeTag: ClassTag[SelectFromTypeTree]
+
+ /** The constructor/deconstructor for `SelectFromTypeTree` instances. */
+ val SelectFromTypeTree: SelectFromTypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `SelectFromTypeTree(qualifier, name)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * qualifier # selector
+ *
+ * Note: a path-dependent type p.T is expressed as p.type # T
+ */
+ abstract class SelectFromTypeTreeExtractor {
+ def apply(qualifier: Tree, name: TypeName): SelectFromTypeTree
+ def unapply(selectFromTypeTree: SelectFromTypeTree): Option[(Tree, TypeName)]
+ }
/** The API that all selects from type trees support */
trait SelectFromTypeTreeApi extends TypTreeApi with RefTreeApi { this: SelectFromTypeTree =>
@@ -491,14 +1580,52 @@ trait Trees extends base.Trees { self: Universe =>
val name: TypeName
}
- override type CompoundTypeTree >: Null <: TypTree with CompoundTypeTreeApi
+ /** Intersection type <parent1> with ... with <parentN> { <decls> }, eliminated by RefCheck */
+ type CompoundTypeTree >: Null <: TypTree with CompoundTypeTreeApi
+
+ /** A tag that preserves the identity of the `CompoundTypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val CompoundTypeTreeTag: ClassTag[CompoundTypeTree]
+
+ /** The constructor/deconstructor for `CompoundTypeTree` instances. */
+ val CompoundTypeTree: CompoundTypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `CompoundTypeTree(templ)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * parent1 with ... with parentN { refinement }
+ */
+ abstract class CompoundTypeTreeExtractor {
+ def apply(templ: Template): CompoundTypeTree
+ def unapply(compoundTypeTree: CompoundTypeTree): Option[Template]
+ }
/** The API that all compound type trees support */
trait CompoundTypeTreeApi extends TypTreeApi { this: CompoundTypeTree =>
val templ: Template
}
- override type AppliedTypeTree >: Null <: TypTree with AppliedTypeTreeApi
+ /** Applied type <tpt> [ <args> ], eliminated by RefCheck */
+ type AppliedTypeTree >: Null <: TypTree with AppliedTypeTreeApi
+
+ /** A tag that preserves the identity of the `AppliedTypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AppliedTypeTreeTag: ClassTag[AppliedTypeTree]
+
+ /** The constructor/deconstructor for `AppliedTypeTree` instances. */
+ val AppliedTypeTree: AppliedTypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `AppliedTypeTree(tpt, args)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * tpt[args]
+ */
+ abstract class AppliedTypeTreeExtractor {
+ def apply(tpt: Tree, args: List[Tree]): AppliedTypeTree
+ def unapply(appliedTypeTree: AppliedTypeTree): Option[(Tree, List[Tree])]
+ }
/** The API that all applied type trees support */
trait AppliedTypeTreeApi extends TypTreeApi { this: AppliedTypeTree =>
@@ -506,7 +1633,26 @@ trait Trees extends base.Trees { self: Universe =>
val args: List[Tree]
}
- override type TypeBoundsTree >: Null <: TypTree with TypeBoundsTreeApi
+ /** Document me! */
+ type TypeBoundsTree >: Null <: TypTree with TypeBoundsTreeApi
+
+ /** A tag that preserves the identity of the `TypeBoundsTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeBoundsTreeTag: ClassTag[TypeBoundsTree]
+
+ /** The constructor/deconstructor for `TypeBoundsTree` instances. */
+ val TypeBoundsTree: TypeBoundsTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeBoundsTree(lo, hi)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * >: lo <: hi
+ */
+ abstract class TypeBoundsTreeExtractor {
+ def apply(lo: Tree, hi: Tree): TypeBoundsTree
+ def unapply(typeBoundsTree: TypeBoundsTree): Option[(Tree, Tree)]
+ }
/** The API that all type bound trees support */
trait TypeBoundsTreeApi extends TypTreeApi { this: TypeBoundsTree =>
@@ -514,7 +1660,26 @@ trait Trees extends base.Trees { self: Universe =>
val hi: Tree
}
- override type ExistentialTypeTree >: Null <: TypTree with ExistentialTypeTreeApi
+ /** Document me! */
+ type ExistentialTypeTree >: Null <: TypTree with ExistentialTypeTreeApi
+
+ /** A tag that preserves the identity of the `ExistentialTypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ExistentialTypeTreeTag: ClassTag[ExistentialTypeTree]
+
+ /** The constructor/deconstructor for `ExistentialTypeTree` instances. */
+ val ExistentialTypeTree: ExistentialTypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `ExistentialTypeTree(tpt, whereClauses)`.
+ * This AST node corresponds to the following Scala code:
+ *
+ * tpt forSome { whereClauses }
+ */
+ abstract class ExistentialTypeTreeExtractor {
+ def apply(tpt: Tree, whereClauses: List[Tree]): ExistentialTypeTree
+ def unapply(existentialTypeTree: ExistentialTypeTree): Option[(Tree, List[Tree])]
+ }
/** The API that all existential type trees support */
trait ExistentialTypeTreeApi extends TypTreeApi { this: ExistentialTypeTree =>
@@ -522,7 +1687,29 @@ trait Trees extends base.Trees { self: Universe =>
val whereClauses: List[Tree]
}
- override type TypeTree >: Null <: TypTree with TypeTreeApi
+ /** A synthetic tree holding an arbitrary type. Not to be confused with
+ * with TypTree, the trait for trees that are only used for type trees.
+ * TypeTree's are inserted in several places, but most notably in
+ * `RefCheck`, where the arbitrary type trees are all replaced by
+ * TypeTree's. */
+ type TypeTree >: Null <: TypTree with TypeTreeApi
+
+ /** A tag that preserves the identity of the `TypeTree` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeTreeTag: ClassTag[TypeTree]
+
+ /** The constructor/deconstructor for `TypeTree` instances. */
+ val TypeTree: TypeTreeExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeTree()`.
+ * This AST node does not have direct correspondence to Scala code,
+ * and is emitted by everywhere when we want to wrap a `Type` in a `Tree`.
+ */
+ abstract class TypeTreeExtractor {
+ def apply(): TypeTree
+ def unapply(typeTree: TypeTree): Boolean
+ }
/** The API that all type trees support */
trait TypeTreeApi extends TypTreeApi { this: TypeTree =>
@@ -536,6 +1723,83 @@ trait Trees extends base.Trees { self: Universe =>
*/
val emptyValDef: ValDef
+// ---------------------- factories ----------------------------------------------
+
+ /** @param sym the class symbol
+ * @param impl the implementation template
+ */
+ def ClassDef(sym: Symbol, impl: Template): ClassDef
+
+ /**
+ * @param sym the class symbol
+ * @param impl the implementation template
+ */
+ def ModuleDef(sym: Symbol, impl: Template): ModuleDef
+
+ def ValDef(sym: Symbol, rhs: Tree): ValDef
+
+ def ValDef(sym: Symbol): ValDef
+
+ def DefDef(sym: Symbol, mods: Modifiers, vparamss: List[List[ValDef]], rhs: Tree): DefDef
+
+ def DefDef(sym: Symbol, vparamss: List[List[ValDef]], rhs: Tree): DefDef
+
+ def DefDef(sym: Symbol, mods: Modifiers, rhs: Tree): DefDef
+
+ def DefDef(sym: Symbol, rhs: Tree): DefDef
+
+ def DefDef(sym: Symbol, rhs: List[List[Symbol]] => Tree): DefDef
+
+ /** A TypeDef node which defines given `sym` with given tight hand side `rhs`. */
+ def TypeDef(sym: Symbol, rhs: Tree): TypeDef
+
+ /** A TypeDef node which defines abstract type or type parameter for given `sym` */
+ def TypeDef(sym: Symbol): TypeDef
+
+ def LabelDef(sym: Symbol, params: List[Symbol], rhs: Tree): LabelDef
+
+ /** Block factory that flattens directly nested blocks.
+ */
+ def Block(stats: Tree*): Block
+
+ /** casedef shorthand */
+ def CaseDef(pat: Tree, body: Tree): CaseDef
+
+ def Bind(sym: Symbol, body: Tree): Bind
+
+ def Try(body: Tree, cases: (Tree, Tree)*): Try
+
+ def Throw(tpe: Type, args: Tree*): Throw
+
+ /** Factory method for object creation `new tpt(args_1)...(args_n)`
+ * A `New(t, as)` is expanded to: `(new t).<init>(as)`
+ */
+ def New(tpt: Tree, argss: List[List[Tree]]): Tree
+
+ /** 0-1 argument list new, based on a type.
+ */
+ def New(tpe: Type, args: Tree*): Tree
+
+ def New(sym: Symbol, args: Tree*): Tree
+
+ def Apply(sym: Symbol, args: Tree*): Tree
+
+ def ApplyConstructor(tpt: Tree, args: List[Tree]): Tree
+
+ def Super(sym: Symbol, mix: TypeName): Tree
+
+ def This(sym: Symbol): Tree
+
+ def Select(qualifier: Tree, name: String): Select
+
+ def Select(qualifier: Tree, sym: Symbol): Select
+
+ def Ident(name: String): Ident
+
+ def Ident(sym: Symbol): Ident
+
+ def TypeTree(tp: Type): TypeTree
+
// ---------------------- copying ------------------------------------------------
/** The standard (lazy) tree copier
@@ -565,7 +1829,6 @@ trait Trees extends base.Trees { self: Universe =>
def Star(tree: Tree, elem: Tree): Star
def Bind(tree: Tree, name: Name, body: Tree): Bind
def UnApply(tree: Tree, fun: Tree, args: List[Tree]): UnApply
- def ArrayValue(tree: Tree, elemtpt: Tree, trees: List[Tree]): ArrayValue
def Function(tree: Tree, vparams: List[ValDef], body: Tree): Function
def Assign(tree: Tree, lhs: Tree, rhs: Tree): Assign
def AssignOrNamedArg(tree: Tree, lhs: Tree, rhs: Tree): AssignOrNamedArg
@@ -682,9 +1945,35 @@ trait Trees extends base.Trees { self: Universe =>
protected def xtransform(transformer: Transformer, tree: Tree): Tree = throw new MatchError(tree)
- type Modifiers >: Null <: ModifiersApi
- abstract class ModifiersApi extends ModifiersBase
+ /** ... */
+ type Modifiers >: Null <: AnyRef with ModifiersApi
-}
+ /** A tag that preserves the identity of the `Modifiers` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ModifiersTag: ClassTag[Modifiers]
+
+ /** ... */
+ abstract class ModifiersApi {
+ def flags: FlagSet // default: NoFlags
+ def hasFlag(flag: FlagSet): Boolean
+ def privateWithin: Name // default: EmptyTypeName
+ def annotations: List[Tree] // default: List()
+ def mapAnnotations(f: List[Tree] => List[Tree]): Modifiers =
+ Modifiers(flags, privateWithin, f(annotations))
+ }
+
+ val Modifiers: ModifiersCreator
+ abstract class ModifiersCreator {
+ def apply(): Modifiers = Modifiers(NoFlags, EmptyTypeName, List())
+ def apply(flags: FlagSet, privateWithin: Name, annotations: List[Tree]): Modifiers
+ }
+
+ def Modifiers(flags: FlagSet, privateWithin: Name): Modifiers = Modifiers(flags, privateWithin, List())
+ def Modifiers(flags: FlagSet): Modifiers = Modifiers(flags, EmptyTypeName)
+
+ /** ... */
+ lazy val NoMods = Modifiers()
+}
diff --git a/src/reflect/scala/reflect/api/TypeCreator.scala b/src/reflect/scala/reflect/api/TypeCreator.scala
new file mode 100644
index 0000000000..cc6d38c548
--- /dev/null
+++ b/src/reflect/scala/reflect/api/TypeCreator.scala
@@ -0,0 +1,26 @@
+package scala.reflect
+package api
+
+/** A mirror-aware factory for types.
+ *
+ * In the reflection API, artifacts are specific to universes and
+ * symbolic references used in artifacts (e.g. `scala.Int`) are resolved by mirrors.
+ *
+ * Therefore to build a type one needs to know a universe that the type is going to be bound to
+ * and a mirror that is going to resolve symbolic references (e.g. to determine that `scala.Int`
+ * points to a core class `Int` from scala-library.jar).
+ *
+ * `TypeCreator` implements this notion by providing a standalone type factory.
+ *
+ * This is immediately useful for type tags. When the compiler creates a type tag,
+ * the end result needs to make sense in any mirror. That's because the compiler knows
+ * the universe it's creating a type tag for (since `TypeTag` is path-dependent on a universe),
+ * but it cannot know in advance the mirror to instantiate the result in (e.g. on JVM
+ * it doesn't know what classloader use to resolve symbolic names in the type tag).
+ *
+ * Due to a typechecker restriction (no eta-expansion for dependent method types),
+ * `TypeCreator` can't have a functional type, so it's implemented as class with an apply method.
+ */
+abstract class TypeCreator {
+ def apply[U <: Universe with Singleton](m: MirrorOf[U]): U # Type
+}
diff --git a/src/library/scala/reflect/base/TypeTags.scala b/src/reflect/scala/reflect/api/TypeTags.scala
index 55708c5274..a7e58d2bcb 100644
--- a/src/library/scala/reflect/base/TypeTags.scala
+++ b/src/reflect/scala/reflect/api/TypeTags.scala
@@ -5,50 +5,84 @@
package scala
package reflect
-package base
+package api
import java.lang.{ Class => jClass }
import scala.language.implicitConversions
+/*
+ * TODO
+ * add @see to docs about universes
+ * [Eugene++] also mention sensitivity to prefixes, i.e. that rb.TypeTag is different from ru.TypeTag
+ * [Chris++] tag.in(some mirror) or expr.in(some mirror) (does not work for tag and exprs in macros)
+ * Backwards compat item1: [Eugene++] it might be useful, though, to guard against abstractness of the incoming type.
+ */
/**
- * Type tags encapsulate a representation of type T.
- * They are supposed to replace the pre-2.10 concept of a [[scala.reflect.Manifest]].
- * TypeTags are much better integrated with reflection than manifests are, and are consequently much simpler.
+ * A type tag encapsulates a representation of type T.
*
- * === Overview ===
+ * Type tags replace the pre-2.10 concept of a [[scala.reflect.Manifest]] and are integrated with reflection.
*
- * Type tags are organized in a hierarchy of three classes:
- * [[scala.reflect.ClassTag]], [[scala.reflect.base.Universe#TypeTag]] and [[scala.reflect.base.Universe#WeakTypeTag]].
+ * === Overview and examples ===
*
- * A [[scala.reflect.ClassTag]] carries a runtime class that corresponds to the source type T.
- * As of such, it possesses the knowledge about how to build single- and multi-dimensional arrays of elements of that type.
- * It guarantees that the source type T did not to contain any references to type parameters or abstract types.
- * [[scala.reflect.ClassTag]] corresponds to a previous notion of [[scala.reflect.ClassManifest]].
+ * Type tags are organized in a hierarchy of three classes:
+ * [[scala.reflect.ClassTag]], [[scala.reflect.api.Universe#TypeTag]] and [[scala.reflect.api.Universe#WeakTypeTag]].
*
- * A [[scala.reflect.base.Universe#WeakTypeTag]] value wraps a full Scala type in its tpe field.
- * A [[scala.reflect.base.Universe#TypeTag]] value is an [[scala.reflect.base.Universe#WeakTypeTag]]
- * that is guaranteed not to contain any references to type parameters or abstract types.
+ * @see [[scala.reflect.ClassTag]], [[scala.reflect.api.Universe#TypeTag]], [[scala.reflect.api.Universe#WeakTypeTag]]
*
- * [Eugene++] also mention sensitivity to prefixes, i.e. that rb.TypeTag is different from ru.TypeTag
- * [Eugene++] migratability between mirrors and universes is also worth mentioning
+ * Examples:
+ * {{{
+ * scala> class Person
+ * scala> class Container[T]
+ * scala> import scala.reflect.ClassTag
+ * scala> import scala.reflect.runtime.universe.TypeTag
+ * scala> import scala.reflect.runtime.universe.WeakTypeTag
+ * scala> def firstTypeArg( tag: WeakTypeTag[_] ) = (tag.tpe match {case TypeRef(_,_,typeArgs) => typeArgs})(0)
+ * }}}
+ * TypeTag contains concrete type arguments:
+ * {{{
+ * scala> firstTypeArg( implicitly[TypeTag[Container[Person]]] )
+ * res0: reflect.runtime.universe.Type = Person
+ * }}}
+ * TypeTag guarantees concrete type arguments (fails for references to unbound type arguments):
+ * {{{
+ * scala> def foo1[T] = implicitly[TypeTag[Container[T]]]
+ * <console>:11: error: No TypeTag available for Container[T]
+ * def foo1[T] = implicitly[TypeTag[Container[T]]]
+ * }}}
+ * WeakTypeTag allows references to unbound type arguments:
+ * {{{
+ * scala> def foo2[T] = firstTypeArg( implicitly[WeakTypeTag[Container[T]]] )
+ * foo2: [T]=> reflect.runtime.universe.Type
+ * scala> foo2[Person]
+ * res1: reflect.runtime.universe.Type = T
+ * }}}
+ * TypeTag allows unbound type arguments for which type tags are available:
+ * {{{
+ * scala> def foo3[T:TypeTag] = firstTypeArg( implicitly[TypeTag[Container[T]]] )
+ * foo3: [T](implicit evidence$1: reflect.runtime.universe.TypeTag[T])reflect.runtime.universe.Type
+ * scala> foo3[Person]
+ * res1: reflect.runtime.universe.Type = Person
+ * }}}
+ * WeakTypeTag contains concrete type arguments if available via existing tags:
+ * {{{
+ * scala> def foo4[T:WeakTypeTag] = firstTypeArg( implicitly[WeakTypeTag[Container[T]]] )
+ * foo4: [T](implicit evidence$1: reflect.runtime.universe.WeakTypeTag[T])reflect.runtime.universe.Type
+ * scala> foo4[Person]
+ * res1: reflect.runtime.universe.Type = Person
+ * }}}
*
- * === Splicing ===
*
- * Tags can be spliced, i.e. if compiler generates a tag for a type that contains references to tagged
- * type parameters or abstract type members, it will retrieve the corresponding tag and embed it into the result.
- * An example that illustrates the TypeTag embedding, consider the following function:
+ * [[scala.reflect.api.Universe#TypeTag]] and [[scala.reflect.api.Universe#WeakTypeTag]] are path dependent on their universe.
*
- * import reflect.mirror._
- * def f[T: TypeTag, U] = {
- * type L = T => U
- * implicitly[WeakTypeTag[L]]
- * }
+ * The default universe is [[scala.reflect.runtime.universe]]
*
- * Then a call of f[String, Int] will yield a result of the form
+ * Type tags can be migrated to another universe given the corresponding mirror using
*
- * WeakTypeTag(<[ String => U ]>).
+ * {{{
+ * tag.in( other_mirror )
+ * }}}
*
- * Note that T has been replaced by String, because it comes with a TypeTag in f, whereas U was left as a type parameter.
+ * See [[scala.reflect.api.TypeTags#WeakTypeTag.in]]
*
* === WeakTypeTag vs TypeTag ===
*
@@ -56,15 +90,17 @@ import scala.language.implicitConversions
* This makes it easy to forget to tag one of the methods in the call chain and discover it much later in the runtime
* by getting cryptic errors far away from their source. For example, consider the following snippet:
*
+ * {{{
* def bind[T: WeakTypeTag](name: String, value: T): IR.Result = bind((name, value))
* def bind(p: NamedParam): IR.Result = bind(p.name, p.tpe, p.value)
* object NamedParam {
* implicit def namedValue[T: WeakTypeTag](name: String, x: T): NamedParam = apply(name, x)
* def apply[T: WeakTypeTag](name: String, x: T): NamedParam = new Typed[T](name, x)
* }
+ * }}}
*
- * This fragment of Scala REPL implementation defines a `bind` function that carries a named value along with its type
- * into the heart of the REPL. Using a [[scala.reflect.base.Universe#WeakTypeTag]] here is reasonable, because it is desirable
+ * This fragment of the Scala REPL implementation defines a `bind` function that carries a named value along with its type
+ * into the heart of the REPL. Using a [[scala.reflect.api.Universe#WeakTypeTag]] here is reasonable, because it is desirable
* to work with all types, even if they are type parameters or abstract type members.
*
* However if any of the three `WeakTypeTag` context bounds is omitted, the resulting code will be incorrect,
@@ -73,7 +109,7 @@ import scala.language.implicitConversions
* If `WeakTypeTag` context bounds were replaced with `TypeTag`, then such errors would be reported statically.
* But in that case we wouldn't be able to use `bind` in arbitrary contexts.
*
- * === Backward compatibility ===
+ * === Backward compatibility with Manifests ===
*
* Type tags correspond loosely to manifests.
*
@@ -81,50 +117,72 @@ import scala.language.implicitConversions
* The previous notion of a [[scala.reflect.ClassManifest]] corresponds to a scala.reflect.ClassTag,
* The previous notion of a [[scala.reflect.Manifest]] corresponds to scala.reflect.runtime.universe.TypeTag,
*
- * In Scala 2.10, manifests are deprecated, so it's adviseable to migrate them to tags,
- * because manifests might be removed in the next major release.
+ * In Scala 2.10, manifests are deprecated, so it's advisable to migrate them to tags,
+ * because manifests will probably be removed in the next major release.
*
- * In most cases it will be enough to replace ClassManifests with ClassTags and Manifests with TypeTags,
- * however there are a few caveats:
+ * In most cases it will be enough to replace ClassManifest with ClassTag and Manifest with TypeTag.
+ * There are however a few caveats:
*
* 1) The notion of OptManifest is no longer supported. Tags can reify arbitrary types, so they are always available.
- * // [Eugene++] it might be useful, though, to guard against abstractness of the incoming type.
*
* 2) There's no equivalent for AnyValManifest. Consider comparing your tag with one of the base tags
* (defined in the corresponding companion objects) to find out whether it represents a primitive value class.
* You can also use `<tag>.tpe.typeSymbol.isPrimitiveValueClass` for that purpose (requires scala-reflect.jar).
*
* 3) There's no replacement for factory methods defined in `ClassManifest` and `Manifest` companion objects.
- * Consider assembling corresponding types using reflection API provided by Java (for classes) and Scala (for types).
+ * Consider assembling corresponding types using the reflection APIs provided by Java (for classes) and Scala (for types).
*
* 4) Certain manifest functions (such as `<:<`, `>:>` and `typeArguments`) weren't included in the tag API.
- * Consider using reflection API provided by Java (for classes) and Scala (for types) instead.
+ * Consider using the reflection APIs provided by Java (for classes) and Scala (for types) instead.
*/
trait TypeTags { self: Universe =>
import definitions._
/**
- * If an implicit value of type u.WeakTypeTag[T] is required, the compiler will make one up on demand.
- * The implicitly created value contains in its tpe field a value of type u.Type that is a reflective representation of T.
- * In that value, any occurrences of type parameters or abstract types U
- * which come themselves with a TypeTag are represented by the type referenced by that TypeTag.
+ * If an implicit value of type WeakTypeTag[T] is required, the compiler will create one.
+ * A reflective representation of T can be accessed via the tpe field.
+ * Components of T can be references to type parameters or abstract types. WeakTypeTag makes an effort to
+ * be as concrete as possible, i.e. if type tags are available for the referenced type arguments or abstract types,
+ * they are used to embed the concrete types into the WeakTypeTag. Otherwise the WeakTypeTag will contain a reference
+ * to an abstract type. This behavior can be useful, when one expects T to be possibly partially abstract, but
+ * requires special care to handle this case. If however T is expected to be fully known, use
+ * [[scala.reflect.api.Universe#TypeTag]] instead, which statically guarantees this property.
*
- * @see [[scala.reflect.base.TypeTags]]
+ * @see [[scala.reflect.api.TypeTags]]
*/
@annotation.implicitNotFound(msg = "No WeakTypeTag available for ${T}")
trait WeakTypeTag[T] extends Equals with Serializable {
+ /**
+ * Mirror corresponding to the universe of this WeakTypeTag.
+ */
val mirror: Mirror
+ /**
+ * Migrates type tag to another universe.
+ *
+ * Type tags are path dependent on their universe. This methods allows migration
+ * given the mirror corresponding to the target universe.
+ *
+ * Migration means that all symbolic references to classes/objects/packages in the expression
+ * will be re-resolved within the new mirror (typically using that mirror's classloader).
+ */
def in[U <: Universe with Singleton](otherMirror: MirrorOf[U]): U # WeakTypeTag[T]
+
+ /**
+ * Reflective representation of type T.
+ */
def tpe: Type
- /** case class accessories */
+ // case class accessories
override def canEqual(x: Any) = x.isInstanceOf[WeakTypeTag[_]]
override def equals(x: Any) = x.isInstanceOf[WeakTypeTag[_]] && this.mirror == x.asInstanceOf[WeakTypeTag[_]].mirror && this.tpe == x.asInstanceOf[WeakTypeTag[_]].tpe
override def hashCode = mirror.hashCode * 31 + tpe.hashCode
override def toString = "WeakTypeTag[" + tpe + "]"
}
+ /**
+ * Type tags corresponding to primitive types and constructor/extractor for WeakTypeTags.
+ */
object WeakTypeTag {
val Byte : WeakTypeTag[scala.Byte] = TypeTag.Byte
val Short : WeakTypeTag[scala.Short] = TypeTag.Short
@@ -142,6 +200,7 @@ trait TypeTags { self: Universe =>
val Nothing : WeakTypeTag[scala.Nothing] = TypeTag.Nothing
val Null : WeakTypeTag[scala.Null] = TypeTag.Null
+
def apply[T](mirror1: MirrorOf[self.type], tpec1: TypeCreator): WeakTypeTag[T] =
tpec1(mirror1) match {
case ByteTpe => WeakTypeTag.Byte.asInstanceOf[WeakTypeTag[T]]
@@ -175,16 +234,20 @@ trait TypeTags { self: Universe =>
}
/**
- * If an implicit value of type u.TypeTag[T] is required, the compiler will make one up on demand following the same procedure as for TypeTags.
- * However, if the resulting type still contains references to type parameters or abstract types, a static error results.
+ * A `TypeTag` is a [[scala.reflect.api.Universe#WeakTypeTag]] with the additional
+ * static guarantee that all type references are concrete, i.e. it does <b>not</b> contain any references to
+ * unresolved type parameters or abstract types.
*
- * @see [[scala.reflect.base.TypeTags]]
+ * @see [[scala.reflect.api.TypeTags]]
*/
@annotation.implicitNotFound(msg = "No TypeTag available for ${T}")
trait TypeTag[T] extends WeakTypeTag[T] with Equals with Serializable {
+ /**
+ * @inheritdoc
+ */
override def in[U <: Universe with Singleton](otherMirror: MirrorOf[U]): U # TypeTag[T]
- /** case class accessories */
+ // case class accessories
override def canEqual(x: Any) = x.isInstanceOf[TypeTag[_]]
override def equals(x: Any) = x.isInstanceOf[TypeTag[_]] && this.mirror == x.asInstanceOf[TypeTag[_]].mirror && this.tpe == x.asInstanceOf[TypeTag[_]].tpe
override def hashCode = mirror.hashCode * 31 + tpe.hashCode
@@ -239,23 +302,36 @@ trait TypeTags { self: Universe =>
private def writeReplace(): AnyRef = new SerializedTypeTag(tpec, concrete = true)
}
- private class PredefTypeCreator[T](copyIn: Universe => Universe # TypeTag[T]) extends TypeCreator {
+ private class PredefTypeCreator[T](copyIn: Universe => Universe#TypeTag[T]) extends TypeCreator {
def apply[U <: Universe with Singleton](m: MirrorOf[U]): U # Type = {
copyIn(m.universe).asInstanceOf[U # TypeTag[T]].tpe
}
}
- private class PredefTypeTag[T](_tpe: Type, copyIn: Universe => Universe # TypeTag[T]) extends TypeTagImpl[T](rootMirror, new PredefTypeCreator(copyIn)) {
+ private class PredefTypeTag[T](_tpe: Type, copyIn: Universe => Universe#TypeTag[T]) extends TypeTagImpl[T](rootMirror, new PredefTypeCreator(copyIn)) {
override lazy val tpe: Type = _tpe
private def writeReplace(): AnyRef = new SerializedTypeTag(tpec, concrete = true)
}
- // incantations
+ /**
+ * Shortcut for `implicitly[WeakTypeTag[T]]`
+ */
def weakTypeTag[T](implicit attag: WeakTypeTag[T]) = attag
+
+ /**
+ * Shortcut for `implicitly[TypeTag[T]]`
+ */
def typeTag[T](implicit ttag: TypeTag[T]) = ttag
// big thanks to Viktor Klang for this brilliant idea!
+ /**
+ * Shortcut for `implicitly[WeakTypeTag[T]].tpe`
+ */
def weakTypeOf[T](implicit attag: WeakTypeTag[T]): Type = attag.tpe
+
+ /**
+ * Shortcut for `implicitly[TypeTag[T]].tpe`
+ */
def typeOf[T](implicit ttag: TypeTag[T]): Type = ttag.tpe
}
@@ -271,7 +347,7 @@ private[scala] class SerializedTypeTag(var tpec: TypeCreator, var concrete: Bool
}
private def readResolve(): AnyRef = {
- import scala.reflect.basis._
+ import scala.reflect.runtime.universe._
if (concrete) TypeTag(rootMirror, tpec)
else WeakTypeTag(rootMirror, tpec)
}
diff --git a/src/reflect/scala/reflect/api/Types.scala b/src/reflect/scala/reflect/api/Types.scala
index 1c79de02c3..af70c9e761 100644
--- a/src/reflect/scala/reflect/api/Types.scala
+++ b/src/reflect/scala/reflect/api/Types.scala
@@ -1,13 +1,39 @@
package scala.reflect
package api
-trait Types extends base.Types { self: Universe =>
+/**
+ * Defines the type hierachy for types.
+ *
+ * Note: Because of implementation details, some type factories have return type `Type`
+ * instead of a more precise type.
+ *
+ * @see [[scala.reflect]] for a description on how the class hierarchy is encoded here.
+ */
+trait Types { self: Universe =>
+
+ /** The type of Scala types, and also Scala type signatures.
+ * (No difference is internally made between the two).
+ */
+ type Type >: Null <: TypeApi
- override type Type >: Null <: TypeApi
+ /** A tag that preserves the identity of the `Type` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeTagg: ClassTag[Type]
- /** The extended API of types
+ /** This constant is used as a special value that indicates that no meaningful type exists.
*/
- abstract class TypeApi extends TypeBase {
+ val NoType: Type
+
+ /** This constant is used as a special value denoting the empty prefix in a path dependent type.
+ * For instance `x.type` is represented as `SingleType(NoPrefix, <x>)`, where `<x>` stands for
+ * the symbol for `x`.
+ */
+ val NoPrefix: Type
+
+ /** The API of types
+ */
+ abstract class TypeApi {
/** The term symbol associated with the type, or `NoSymbol` for types
* that do not refer to a term symbol.
*/
@@ -152,42 +178,177 @@ trait Types extends base.Types { self: Universe =>
def contains(sym: Symbol): Boolean
}
- /** .. */
- override type ThisType >: Null <: SingletonType with ThisTypeApi
+ /** The type of Scala singleton types, i.e., types that are inhabited
+ * by only one nun-null value. These include types of the forms
+ * {{{
+ * C.this.type
+ * C.super.type
+ * x.type
+ * }}}
+ * as well as [[ConstantType constant types]].
+ */
+ type SingletonType >: Null <: Type
+
+ /** A tag that preserves the identity of the `SingletonType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SingletonTypeTag: ClassTag[SingletonType]
+
+ /** A singleton type that describes types of the form on the left with the
+ * corresponding `ThisType` representation to the right:
+ * {{{
+ * C.this.type ThisType(C)
+ * }}}
+ */
+ type ThisType >: Null <: AnyRef with SingletonType with ThisTypeApi
+
+ /** A tag that preserves the identity of the `ThisType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ThisTypeTag: ClassTag[ThisType]
+
+ /** The constructor/deconstructor for `ThisType` instances. */
+ val ThisType: ThisTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `ThisType(sym)`
+ * where `sym` is the class prefix of the this type.
+ */
+ abstract class ThisTypeExtractor {
+ /**
+ * Creates a ThisType from the given class symbol.
+ */
+ def apply(sym: Symbol): Type
+ def unapply(tpe: ThisType): Option[Symbol]
+ }
/** The API that all this types support */
trait ThisTypeApi extends TypeApi { this: ThisType =>
val sym: Symbol
}
- /** .. */
- override type SingleType >: Null <: SingletonType with SingleTypeApi
+ /** The `SingleType` type describes types of any of the forms on the left,
+ * with their TypeRef representations to the right.
+ * {{{
+ * (T # x).type SingleType(T, x)
+ * p.x.type SingleType(p.type, x)
+ * x.type SingleType(NoPrefix, x)
+ * }}}
+ */
+ type SingleType >: Null <: AnyRef with SingletonType with SingleTypeApi
+
+ /** A tag that preserves the identity of the `SingleType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SingleTypeTag: ClassTag[SingleType]
+
+ /** The constructor/deconstructor for `SingleType` instances. */
+ val SingleType: SingleTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `SingleType(pre, sym)`
+ * Here, `pre` is the prefix of the single-type, and `sym` is the stable value symbol
+ * referred to by the single-type.
+ */
+ abstract class SingleTypeExtractor {
+ def apply(pre: Type, sym: Symbol): Type // not SingleTypebecause of implementation details
+ def unapply(tpe: SingleType): Option[(Type, Symbol)]
+ }
/** The API that all single types support */
trait SingleTypeApi extends TypeApi { this: SingleType =>
val pre: Type
val sym: Symbol
}
+ /** The `SuperType` type is not directly written, but arises when `C.super` is used
+ * as a prefix in a `TypeRef` or `SingleType`. It's internal presentation is
+ * {{{
+ * SuperType(thistpe, supertpe)
+ * }}}
+ * Here, `thistpe` is the type of the corresponding this-type. For instance,
+ * in the type arising from C.super, the `thistpe` part would be `ThisType(C)`.
+ * `supertpe` is the type of the super class referred to by the `super`.
+ */
+ type SuperType >: Null <: AnyRef with SingletonType with SuperTypeApi
- /** .. */
- override type SuperType >: Null <: SingletonType with SuperTypeApi
+ /** A tag that preserves the identity of the `SuperType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val SuperTypeTag: ClassTag[SuperType]
+
+ /** The constructor/deconstructor for `SuperType` instances. */
+ val SuperType: SuperTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `SingleType(thistpe, supertpe)`
+ */
+ abstract class SuperTypeExtractor {
+ def apply(thistpe: Type, supertpe: Type): Type // not SuperTypebecause of implementation details
+ def unapply(tpe: SuperType): Option[(Type, Type)]
+ }
/** The API that all super types support */
trait SuperTypeApi extends TypeApi { this: SuperType =>
val thistpe: Type
val supertpe: Type
}
+ /** The `ConstantType` type is not directly written in user programs, but arises as the type of a constant.
+ * The REPL expresses constant types like `Int(11)`. Here are some constants with their types:
+ * {{{
+ * 1 ConstantType(Constant(1))
+ * "abc" ConstantType(Constant("abc"))
+ * }}}
+ */
+ type ConstantType >: Null <: AnyRef with SingletonType with ConstantTypeApi
+
+ /** A tag that preserves the identity of the `ConstantType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ConstantTypeTag: ClassTag[ConstantType]
- /** .. */
- override type ConstantType >: Null <: SingletonType with ConstantTypeApi
+ /** The constructor/deconstructor for `ConstantType` instances. */
+ val ConstantType: ConstantTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `ConstantType(constant)`
+ * Here, `constant` is the constant value represented by the type.
+ */
+ abstract class ConstantTypeExtractor {
+ def apply(value: Constant): ConstantType
+ def unapply(tpe: ConstantType): Option[Constant]
+ }
/** The API that all constant types support */
trait ConstantTypeApi extends TypeApi { this: ConstantType =>
val value: Constant
}
- /** .. */
- override type TypeRef >: Null <: Type with TypeRefApi
+ /** The `TypeRef` type describes types of any of the forms on the left,
+ * with their TypeRef representations to the right.
+ * {{{
+ * T # C[T_1, ..., T_n] TypeRef(T, C, List(T_1, ..., T_n))
+ * p.C[T_1, ..., T_n] TypeRef(p.type, C, List(T_1, ..., T_n))
+ * C[T_1, ..., T_n] TypeRef(NoPrefix, C, List(T_1, ..., T_n))
+ * T # C TypeRef(T, C, Nil)
+ * p.C TypeRef(p.type, C, Nil)
+ * C TypeRef(NoPrefix, C, Nil)
+ * }}}
+ */
+ type TypeRef >: Null <: AnyRef with Type with TypeRefApi
+
+ /** A tag that preserves the identity of the `TypeRef` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeRefTag: ClassTag[TypeRef]
+
+ /** The constructor/deconstructor for `TypeRef` instances. */
+ val TypeRef: TypeRefExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeRef(pre, sym, args)`
+ * Here, `pre` is the prefix of the type reference, `sym` is the symbol
+ * referred to by the type reference, and `args` is a possible empty list of
+ * type argumenrts.
+ */
+ abstract class TypeRefExtractor {
+ def apply(pre: Type, sym: Symbol, args: List[Type]): Type // not TypeRefbecause of implementation details
+ def unapply(tpe: TypeRef): Option[(Type, Symbol, List[Type])]
+ }
/** The API that all type refs support */
trait TypeRefApi extends TypeApi { this: TypeRef =>
@@ -196,8 +357,46 @@ trait Types extends base.Types { self: Universe =>
val args: List[Type]
}
- /** .. */
- override type RefinedType >: Null <: CompoundType with RefinedTypeApi
+ /** A subtype of Type representing refined types as well as `ClassInfo` signatures.
+ */
+ type CompoundType >: Null <: AnyRef with Type
+
+ /** A tag that preserves the identity of the `CompoundType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val CompoundTypeTag: ClassTag[CompoundType]
+
+ /** The `RefinedType` type defines types of any of the forms on the left,
+ * with their RefinedType representations to the right.
+ * {{{
+ * P_1 with ... with P_m { D_1; ...; D_n} RefinedType(List(P_1, ..., P_m), Scope(D_1, ..., D_n))
+ * P_1 with ... with P_m RefinedType(List(P_1, ..., P_m), Scope())
+ * { D_1; ...; D_n} RefinedType(List(AnyRef), Scope(D_1, ..., D_n))
+ * }}}
+ */
+ type RefinedType >: Null <: AnyRef with CompoundType with RefinedTypeApi
+
+ /** A tag that preserves the identity of the `RefinedType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val RefinedTypeTag: ClassTag[RefinedType]
+
+ /** The constructor/deconstructor for `RefinedType` instances. */
+ val RefinedType: RefinedTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `RefinedType(parents, decls)`
+ * Here, `parents` is the list of parent types of the class, and `decls` is the scope
+ * containing all declarations in the class.
+ */
+ abstract class RefinedTypeExtractor {
+ def apply(parents: List[Type], decls: Scope): RefinedType
+
+ /** An alternative constructor that passes in the synthetic classs symbol
+ * that backs the refined type. (Normally, a fresh class symbol is created automatically).
+ */
+ def apply(parents: List[Type], decls: Scope, clazz: Symbol): RefinedType
+ def unapply(tpe: RefinedType): Option[(List[Type], Scope)]
+ }
/** The API that all refined types support */
trait RefinedTypeApi extends TypeApi { this: RefinedType =>
@@ -205,8 +404,35 @@ trait Types extends base.Types { self: Universe =>
val decls: Scope
}
- /** .. */
- override type ClassInfoType >: Null <: CompoundType with ClassInfoTypeApi
+ /** The `ClassInfo` type signature is used to define parents and declarations
+ * of classes, traits, and objects. If a class, trait, or object C is declared like this
+ * {{{
+ * C extends P_1 with ... with P_m { D_1; ...; D_n}
+ * }}}
+ * its `ClassInfo` type has the following form:
+ * {{{
+ * ClassInfo(List(P_1, ..., P_m), Scope(D_1, ..., D_n), C)
+ * }}}
+ */
+ type ClassInfoType >: Null <: AnyRef with CompoundType with ClassInfoTypeApi
+
+ /** A tag that preserves the identity of the `ClassInfoType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ClassInfoTypeTag: ClassTag[ClassInfoType]
+
+ /** The constructor/deconstructor for `ClassInfoType` instances. */
+ val ClassInfoType: ClassInfoTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `ClassInfo(parents, decls, clazz)`
+ * Here, `parents` is the list of parent types of the class, `decls` is the scope
+ * containing all declarations in the class, and `clazz` is the symbol of the class
+ * itself.
+ */
+ abstract class ClassInfoTypeExtractor {
+ def apply(parents: List[Type], decls: Scope, typeSymbol: Symbol): ClassInfoType
+ def unapply(tpe: ClassInfoType): Option[(List[Type], Scope, Symbol)]
+ }
/** The API that all class info types support */
trait ClassInfoTypeApi extends TypeApi { this: ClassInfoType =>
@@ -215,8 +441,36 @@ trait Types extends base.Types { self: Universe =>
val typeSymbol: Symbol
}
- /** .. */
- override type MethodType >: Null <: Type with MethodTypeApi
+ /** The `MethodType` type signature is used to indicate parameters and result type of a method
+ */
+ type MethodType >: Null <: AnyRef with Type with MethodTypeApi
+
+ /** A tag that preserves the identity of the `MethodType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val MethodTypeTag: ClassTag[MethodType]
+
+ /** The constructor/deconstructor for `MethodType` instances. */
+ val MethodType: MethodTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `MethodType(params, respte)`
+ * Here, `params` is a potentially empty list of parameter symbols of the method,
+ * and `restpe` is the result type of the method. If the method is curried, `restpe` would
+ * be another `MethodType`.
+ * Note: `MethodType(Nil, Int)` would be the type of a method defined with an empty parameter list.
+ * {{{
+ * def f(): Int
+ * }}}
+ * If the method is completely parameterless, as in
+ * {{{
+ * def f: Int
+ * }}}
+ * its type is a `NullaryMethodType`.
+ */
+ abstract class MethodTypeExtractor {
+ def apply(params: List[Symbol], resultType: Type): MethodType
+ def unapply(tpe: MethodType): Option[(List[Symbol], Type)]
+ }
/** The API that all method types support */
trait MethodTypeApi extends TypeApi { this: MethodType =>
@@ -224,16 +478,53 @@ trait Types extends base.Types { self: Universe =>
val resultType: Type
}
- /** .. */
- override type NullaryMethodType >: Null <: Type with NullaryMethodTypeApi
+ /** The `NullaryMethodType` type signature is used for parameterless methods
+ * with declarations of the form `def foo: T`
+ */
+ type NullaryMethodType >: Null <: AnyRef with Type with NullaryMethodTypeApi
+
+ /** A tag that preserves the identity of the `NullaryMethodType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val NullaryMethodTypeTag: ClassTag[NullaryMethodType]
+
+ /** The constructor/deconstructor for `NullaryMethodType` instances. */
+ val NullaryMethodType: NullaryMethodTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `NullaryMethodType(resultType)`.
+ * Here, `resultType` is the result type of the parameterless method.
+ */
+ abstract class NullaryMethodTypeExtractor {
+ def apply(resultType: Type): NullaryMethodType
+ def unapply(tpe: NullaryMethodType): Option[(Type)]
+ }
/** The API that all nullary method types support */
trait NullaryMethodTypeApi extends TypeApi { this: NullaryMethodType =>
val resultType: Type
}
- /** .. */
- override type PolyType >: Null <: Type with PolyTypeApi
+ /** The `PolyType` type signature is used for polymorphic methods
+ * that have at least one type parameter.
+ */
+ type PolyType >: Null <: AnyRef with Type with PolyTypeApi
+
+ /** A tag that preserves the identity of the `PolyType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val PolyTypeTag: ClassTag[PolyType]
+
+ /** The constructor/deconstructor for `PolyType` instances. */
+ val PolyType: PolyTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `PolyType(typeParams, resultType)`.
+ * Here, `typeParams` are the type parameters of the method and `resultType`
+ * is the type signature following the type parameters.
+ */
+ abstract class PolyTypeExtractor {
+ def apply(typeParams: List[Symbol], resultType: Type): PolyType
+ def unapply(tpe: PolyType): Option[(List[Symbol], Type)]
+ }
/** The API that all polymorphic types support */
trait PolyTypeApi extends TypeApi { this: PolyType =>
@@ -241,8 +532,28 @@ trait Types extends base.Types { self: Universe =>
val resultType: Type
}
- /** .. */
- override type ExistentialType >: Null <: Type with ExistentialTypeApi
+ /** The `ExistentialType` type signature is used for existential types and
+ * wildcard types.
+ */
+ type ExistentialType >: Null <: AnyRef with Type with ExistentialTypeApi
+
+ /** A tag that preserves the identity of the `ExistentialType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val ExistentialTypeTag: ClassTag[ExistentialType]
+
+ /** The constructor/deconstructor for `ExistentialType` instances. */
+ val ExistentialType: ExistentialTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax
+ * `ExistentialType(quantified, underlying)`.
+ * Here, `quantified` are the type variables bound by the existential type and `underlying`
+ * is the type that's existentially quantified.
+ */
+ abstract class ExistentialTypeExtractor {
+ def apply(quantified: List[Symbol], underlying: Type): ExistentialType
+ def unapply(tpe: ExistentialType): Option[(List[Symbol], Type)]
+ }
/** The API that all existential types support */
trait ExistentialTypeApi extends TypeApi { this: ExistentialType =>
@@ -250,8 +561,28 @@ trait Types extends base.Types { self: Universe =>
val underlying: Type
}
- /** .. */
- override type AnnotatedType >: Null <: Type with AnnotatedTypeApi
+ /** The `AnnotatedType` type signature is used for annotated types of the
+ * for `<type> @<annotation>`.
+ */
+ type AnnotatedType >: Null <: AnyRef with Type with AnnotatedTypeApi
+
+ /** A tag that preserves the identity of the `AnnotatedType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val AnnotatedTypeTag: ClassTag[AnnotatedType]
+
+ /** The constructor/deconstructor for `AnnotatedType` instances. */
+ val AnnotatedType: AnnotatedTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax
+ * `AnnotatedType(annotations, underlying, selfsym)`.
+ * Here, `annotations` are the annotations decorating the underlying type `underlying`.
+ * `selfSym` is a symbol representing the annotated type itself.
+ */
+ abstract class AnnotatedTypeExtractor {
+ def apply(annotations: List[Annotation], underlying: Type, selfsym: Symbol): AnnotatedType
+ def unapply(tpe: AnnotatedType): Option[(List[Annotation], Type, Symbol)]
+ }
/** The API that all annotated types support */
trait AnnotatedTypeApi extends TypeApi { this: AnnotatedType =>
@@ -260,8 +591,34 @@ trait Types extends base.Types { self: Universe =>
val selfsym: Symbol
}
- /** .. */
- override type TypeBounds >: Null <: Type with TypeBoundsApi
+ /** The `TypeBounds` type signature is used to indicate lower and upper type bounds
+ * of type parameters and abstract types. It is not a first-class type.
+ * If an abstract type or type parameter is declared with any of the forms
+ * on the left, its type signature is the TypeBounds type on the right.
+ * {{{
+ * T >: L <: U TypeBounds(L, U)
+ * T >: L TypeBounds(L, Any)
+ * T <: U TypeBounds(Nothing, U)
+ * }}}
+ */
+ type TypeBounds >: Null <: AnyRef with Type with TypeBoundsApi
+
+ /** A tag that preserves the identity of the `TypeBounds` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val TypeBoundsTag: ClassTag[TypeBounds]
+
+ /** The constructor/deconstructor for `TypeBounds` instances. */
+ val TypeBounds: TypeBoundsExtractor
+
+ /** An extractor class to create and pattern match with syntax `TypeBound(lower, upper)`
+ * Here, `lower` is the lower bound of the `TypeBounds` pair, and `upper` is
+ * the upper bound.
+ */
+ abstract class TypeBoundsExtractor {
+ def apply(lo: Type, hi: Type): TypeBounds
+ def unapply(tpe: TypeBounds): Option[(Type, Type)]
+ }
/** The API that all type bounds support */
trait TypeBoundsApi extends TypeApi { this: TypeBounds =>
@@ -269,8 +626,38 @@ trait Types extends base.Types { self: Universe =>
val hi: Type
}
- /** .. */
- override type BoundedWildcardType >: Null <: Type with BoundedWildcardTypeApi
+ /** An object representing an unknown type, used during type inference.
+ * If you see WildcardType outside of inference it is almost certainly a bug.
+ */
+ val WildcardType: Type
+
+ /** BoundedWildcardTypes, used only during type inference, are created in
+ * two places:
+ *
+ * 1. If the expected type of an expression is an existential type,
+ * its hidden symbols are replaced with bounded wildcards.
+ * 2. When an implicit conversion is being sought based in part on
+ * the name of a method in the converted type, a HasMethodMatching
+ * type is created: a MethodType with parameters typed as
+ * BoundedWildcardTypes.
+ */
+ type BoundedWildcardType >: Null <: AnyRef with Type with BoundedWildcardTypeApi
+
+ /** A tag that preserves the identity of the `BoundedWildcardType` abstract type from erasure.
+ * Can be used for pattern matching, instance tests, serialization and likes.
+ */
+ implicit val BoundedWildcardTypeTag: ClassTag[BoundedWildcardType]
+
+ /** The constructor/deconstructor for `BoundedWildcardType` instances. */
+ val BoundedWildcardType: BoundedWildcardTypeExtractor
+
+ /** An extractor class to create and pattern match with syntax `BoundedWildcardTypeExtractor(bounds)`
+ * with `bounds` denoting the type bounds.
+ */
+ abstract class BoundedWildcardTypeExtractor {
+ def apply(bounds: TypeBounds): BoundedWildcardType
+ def unapply(tpe: BoundedWildcardType): Option[TypeBounds]
+ }
/** The API that all this types support */
trait BoundedWildcardTypeApi extends TypeApi { this: BoundedWildcardType =>
diff --git a/src/reflect/scala/reflect/api/Universe.scala b/src/reflect/scala/reflect/api/Universe.scala
index 3165f9abcd..7d0f6cf0d6 100644
--- a/src/reflect/scala/reflect/api/Universe.scala
+++ b/src/reflect/scala/reflect/api/Universe.scala
@@ -1,17 +1,82 @@
package scala.reflect
package api
-abstract class Universe extends base.Universe
- with Symbols
+abstract class Universe extends Symbols
with Types
with FlagSets
+ with Scopes
with Names
with Trees
- with Printers
with Constants
+ with Annotations
with Positions
- with Mirrors
+ with Exprs
+ with TypeTags
+ with TagInterop
with StandardDefinitions
with StandardNames
+ with BuildUtils
+ with Mirrors
+ with Printers
with Importers
- with Annotations
+{
+ /** Produce the abstract syntax tree representing the given Scala expression.
+ *
+ * For example
+ *
+ * {{{
+ * val five = reify{ 5 } // Literal(Constant(5))
+ * reify{ 2 + 4 } // Apply( Select( Literal(Constant(2)), newTermName("$plus")), List( Literal(Constant(4)) ) )
+ * reify{ five.splice + 4 } // Apply( Select( Literal(Constant(5)), newTermName("$plus")), List( Literal(Constant(4)) ) )
+ * }}}
+ *
+ * The produced tree is path dependent on the Universe `reify` was called from.
+ *
+ * Use [[scala.reflect.api.Exprs#Expr.splice]] to embed an existing expression into a reify call. Use [[Expr]] to turn a [[Tree]] into an expression that can be spliced.
+ *
+ * == Further info and implementation details ==
+ *
+ * `reify` is implemented as a macro, which given an expression, generates a tree that when compiled and executed produces the original tree.
+ *
+ * For instance in `reify{ x + 1 }` the macro `reify` receives the abstract syntax tree of `x + 1` as its argument, which is
+ *
+ * {{{
+ * Apply(Select(Ident("x"), "+"), List(Literal(Constant(1))))
+ * }}}
+ *
+ * and returns a tree, which produces the tree above, when compiled and executed. So in other terms, the refiy call expands to something like
+ *
+ * {{{
+ * val $u: u.type = u // where u is a reference to the Universe that calls the reify
+ * $u.Expr[Int]($u.Apply($u.Select($u.Ident($u.newFreeVar("x", <Int>, x), "+"), List($u.Literal($u.Constant(1))))))
+ * }}}
+ *
+ * ------
+ *
+ * Reification performs expression splicing (when processing Expr.splice)
+ * and type splicing (for every type T that has a TypeTag[T] implicit in scope):
+ *
+ * {{{
+ * val two = mirror.reify(2) // Literal(Constant(2))
+ * val four = mirror.reify(two.splice + two.splice) // Apply(Select(two.tree, newTermName("$plus")), List(two.tree))
+ *
+ * def macroImpl[T](c: Context) = {
+ * ...
+ * // T here is just a type parameter, so the tree produced by reify won't be of much use in a macro expansion
+ * // however, if T were annotated with c.WeakTypeTag (which would declare an implicit parameter for macroImpl)
+ * // then reification would substitute T with the TypeTree that was used in a TypeApply of this particular macro invocation
+ * val factory = c.reify{ new Queryable[T] }
+ * ...
+ * }
+ * }}}
+ *
+ * The transformation looks mostly straightforward, but it has its tricky parts:
+ * - Reifier retains symbols and types defined outside the reified tree, however
+ * locally defined entities get erased and replaced with their original trees
+ * - Free variables are detected and wrapped in symbols of the type `FreeTermSymbol` or `FreeTypeSymbol`
+ * - Mutable variables that are accessed from a local function are wrapped in refs
+ */
+ // implementation is hardwired to `scala.reflect.reify.Taggers`
+ // using the mechanism implemented in `scala.tools.reflect.FastTrack`
+ def reify[T](expr: T): Expr[T] = ??? // macro
+} \ No newline at end of file
diff --git a/src/reflect/scala/reflect/api/package.scala b/src/reflect/scala/reflect/api/package.scala
index d2fce7cf1d..0b2a43936e 100644
--- a/src/reflect/scala/reflect/api/package.scala
+++ b/src/reflect/scala/reflect/api/package.scala
@@ -1,12 +1,80 @@
package scala.reflect
-package object api {
+import scala.reflect.api.{Universe => ApiUniverse}
- // type and value aliases for slices of the base Universe cake that are not
- // repeated in api.Universe
- type Scopes = base.Scopes
- type BuildUtils = base.BuildUtils
- type Attachments = base.Attachments
+/**
+ * The main package of Scala's reflection library.
+ *
+ * The reflection library is structured according to the 'cake pattern'. The main layer
+ * resides in package [[scala.reflect.api]] and defines an interface to the following main types:
+ *
+ * - [[scala.reflect.api.Types#Type Types]] represent types
+ * - [[scala.reflect.api.Symbols#Symbol Symbols]] represent definitions
+ * - [[scala.reflect.api.Trees#Tree Trees]] represent abstract syntax trees
+ * - [[scala.reflect.api.Names#Name Names]] represent term and type names
+ * - [[scala.reflect.api.Annotations#Annotation Annotations]] represent annotations
+ * - [[scala.reflect.api.Positions#Position Positions]] represent source positions of tree nodes
+ * - [[scala.reflect.api.FlagSets#FlagSet FlagSet]] represent sets of flags that apply to symbols and
+ * definition trees
+ * - [[scala.reflect.api.Constants#Constant Constants]] represent compile-time constants.
+ *
+ * Each of these types are defined in their own enclosing traits, which are ultimately all inherited by class
+ * [[scala.reflect.api.Universe Universe]]. The main universe defines a minimal interface to the above types.
+ * Universes that provide additional functionality such as deeper introspection or runtime code generation,
+ * are defined in packages [[scala.reflect.api]] and `scala.tools.reflect`.
+ *
+ * The cake pattern employed here requires to write certain Scala idioms with more indirections that usual.
+ * What follows is a description of these indirections, which will help to navigate the Scaladocs easily.
+ *
+ * For instance, consider the base type of all abstract syntax trees: [[scala.reflect.api.Trees#Tree]].
+ * This type is not a class but is abstract and has an upper bound of [[scala.reflect.api.Trees#TreeApi]],
+ * which is a class defining the minimal base interface for all trees.
+ *
+ * For a more interesting tree type, consider [[scala.reflect.api.Trees#If]] representing if-expressions.
+ * It is defined next to a value `If` of type [[scala.reflect.api.Trees#IfExtractor]].
+ * This value serves as the companion object defining a factory method `apply` and a corresponding `unapply`
+ * for pattern matching.
+ *
+ * {{{
+ * import scala.reflect.runtime.universe._
+ * val cond = reify{ condition }.tree // <- just some tree representing a condition
+ * val body = Literal(Constant(1))
+ * val other = Literal(Constant(2))
+ * val iftree = If(cond,body,other)
+ * }}}
+ *
+ * is equivalent to
+ *
+ * {{{
+ * import scala.reflect.runtime.universe._
+ * val iftree = reify{ if( condition ) 1 else 2 }.tree
+ * }}}
+ *
+ * and can be pattern matched as
+ *
+ * {{{
+ * iftree match { case If(cond,body,other) => ... }
+ * }}}
+ *
+ * Moreover, there is an implicit value [[scala.reflect.api.Trees#IfTag]] of type
+ * `ClassTag[If]` that is used by the Scala compiler so that we can indeed pattern match on `If`:
+ * {{{
+ * iftree match { case _:If => ... }
+ * }}}
+ * Without the given implicit value, this pattern match would raise an "unchecked" warning at compile time
+ * since `If` is an abstract type that gets erased at runtime. See [[scala.reflect.ClassTag]] for details.
+ *
+ * To summarize: each tree type `X` (and similarly for other types such as `Type` or `Symbol`) is represented
+ * by an abstract type `X`, optionally together with a class `XApi` that defines `X`'s' interface.
+ * `X`'s companion object, if it exists, is represented by a value `X` that is of type `XExtractor`.
+ * Moreover, for each type `X`, there is a value `XTag` of type `ClassTag[X]` that allows to pattern match on `X`.
+ */
+package object api {
- type MirrorOf[U <: base.Universe with Singleton] = base.MirrorOf[U]
-}
+ // anchors for materialization macros emitted during tag materialization in Implicits.scala
+ // implementation is hardwired into `scala.reflect.reify.Taggers`
+ // using the mechanism implemented in `scala.tools.reflect.FastTrack`
+ // todo. once we have implicit macros for tag generation, we can remove these anchors
+ private[scala] def materializeWeakTypeTag[T](u: ApiUniverse): u.WeakTypeTag[T] = ??? // macro
+ private[scala] def materializeTypeTag[T](u: ApiUniverse): u.TypeTag[T] = ??? // macro
+} \ No newline at end of file
diff --git a/src/reflect/scala/reflect/internal/BuildUtils.scala b/src/reflect/scala/reflect/internal/BuildUtils.scala
index f7371f4180..9f41f0336e 100644
--- a/src/reflect/scala/reflect/internal/BuildUtils.scala
+++ b/src/reflect/scala/reflect/internal/BuildUtils.scala
@@ -3,9 +3,9 @@ package internal
import Flags._
-trait BuildUtils extends base.BuildUtils { self: SymbolTable =>
+trait BuildUtils { self: SymbolTable =>
- class BuildImpl extends BuildBase {
+ class BuildImpl extends BuildApi {
def selectType(owner: Symbol, name: String): TypeSymbol =
select(owner, newTypeName(name)).asType
@@ -64,5 +64,5 @@ trait BuildUtils extends base.BuildUtils { self: SymbolTable =>
def setSymbol[T <: Tree](tree: T, sym: Symbol): T = { tree.setSymbol(sym); tree }
}
- val build: BuildBase = new BuildImpl
+ val build: BuildApi = new BuildImpl
}
diff --git a/src/reflect/scala/reflect/internal/Chars.scala b/src/reflect/scala/reflect/internal/Chars.scala
index e5e5325b93..b1ae105e56 100644
--- a/src/reflect/scala/reflect/internal/Chars.scala
+++ b/src/reflect/scala/reflect/internal/Chars.scala
@@ -51,7 +51,7 @@ trait Chars {
}
/** Is character a line break? */
- @inline def isLineBreakChar(c: Char) = (c: @switch) match {
+ def isLineBreakChar(c: Char) = (c: @switch) match {
case LF|FF|CR|SU => true
case _ => false
}
diff --git a/src/reflect/scala/reflect/internal/Definitions.scala b/src/reflect/scala/reflect/internal/Definitions.scala
index 4a5ace4248..2db8c29a63 100644
--- a/src/reflect/scala/reflect/internal/Definitions.scala
+++ b/src/reflect/scala/reflect/internal/Definitions.scala
@@ -10,7 +10,7 @@ import scala.annotation.{ switch, meta }
import scala.collection.{ mutable, immutable }
import Flags._
import PartialFunction._
-import scala.reflect.base.{Universe => BaseUniverse}
+import scala.reflect.api.{Universe => ApiUniverse}
trait Definitions extends api.StandardDefinitions {
self: SymbolTable =>
@@ -484,7 +484,7 @@ trait Definitions extends api.StandardDefinitions {
// scala.reflect
lazy val ReflectPackage = requiredModule[scala.reflect.`package`.type]
- def ReflectBasis = getMemberValue(ReflectPackage, nme.basis)
+ lazy val ReflectApiPackage = getPackageObjectIfDefined("scala.reflect.api") // defined in scala-reflect.jar, so we need to be careful
lazy val ReflectRuntimePackage = getPackageObjectIfDefined("scala.reflect.runtime") // defined in scala-reflect.jar, so we need to be careful
def ReflectRuntimeUniverse = if (ReflectRuntimePackage != NoSymbol) getMemberValue(ReflectRuntimePackage, nme.universe) else NoSymbol
def ReflectRuntimeCurrentMirror = if (ReflectRuntimePackage != NoSymbol) getMemberMethod(ReflectRuntimePackage, nme.currentMirror) else NoSymbol
@@ -496,28 +496,31 @@ trait Definitions extends api.StandardDefinitions {
lazy val OptManifestClass = requiredClass[scala.reflect.OptManifest[_]]
lazy val NoManifest = requiredModule[scala.reflect.NoManifest.type]
- lazy val ExprsClass = requiredClass[scala.reflect.base.Exprs]
- lazy val ExprClass = getMemberClass(ExprsClass, tpnme.Expr)
- def ExprSplice = getMemberMethod(ExprClass, nme.splice)
- def ExprValue = getMemberMethod(ExprClass, nme.value)
- lazy val ExprModule = getMemberModule(ExprsClass, nme.Expr)
-
- lazy val ClassTagModule = requiredModule[scala.reflect.ClassTag[_]]
- lazy val ClassTagClass = requiredClass[scala.reflect.ClassTag[_]]
- lazy val TypeTagsClass = requiredClass[scala.reflect.base.TypeTags]
- lazy val WeakTypeTagClass = getMemberClass(TypeTagsClass, tpnme.WeakTypeTag)
- lazy val WeakTypeTagModule = getMemberModule(TypeTagsClass, nme.WeakTypeTag)
- lazy val TypeTagClass = getMemberClass(TypeTagsClass, tpnme.TypeTag)
- lazy val TypeTagModule = getMemberModule(TypeTagsClass, nme.TypeTag)
-
- lazy val BaseUniverseClass = requiredClass[scala.reflect.base.Universe]
- def BaseUniverseReify = getMemberMethod(BaseUniverseClass, nme.reify)
+ lazy val ExprsClass = getClassIfDefined("scala.reflect.api.Exprs") // defined in scala-reflect.jar, so we need to be careful
+ lazy val ExprClass = if (ExprsClass != NoSymbol) getMemberClass(ExprsClass, tpnme.Expr) else NoSymbol
+ def ExprSplice = if (ExprsClass != NoSymbol) getMemberMethod(ExprClass, nme.splice) else NoSymbol
+ def ExprValue = if (ExprsClass != NoSymbol) getMemberMethod(ExprClass, nme.value) else NoSymbol
+ lazy val ExprModule = if (ExprsClass != NoSymbol) getMemberModule(ExprsClass, nme.Expr) else NoSymbol
+
+ lazy val ClassTagModule = requiredModule[scala.reflect.ClassTag[_]]
+ lazy val ClassTagClass = requiredClass[scala.reflect.ClassTag[_]]
+ lazy val TypeTagsClass = getClassIfDefined("scala.reflect.api.TypeTags") // defined in scala-reflect.jar, so we need to be careful
+ lazy val WeakTypeTagClass = if (TypeTagsClass != NoSymbol) getMemberClass(TypeTagsClass, tpnme.WeakTypeTag) else NoSymbol
+ lazy val WeakTypeTagModule = if (TypeTagsClass != NoSymbol) getMemberModule(TypeTagsClass, nme.WeakTypeTag) else NoSymbol
+ lazy val TypeTagClass = if (TypeTagsClass != NoSymbol) getMemberClass(TypeTagsClass, tpnme.TypeTag) else NoSymbol
+ lazy val TypeTagModule = if (TypeTagsClass != NoSymbol) getMemberModule(TypeTagsClass, nme.TypeTag) else NoSymbol
+ def materializeClassTag = getMemberMethod(ReflectPackage, nme.materializeClassTag)
+ def materializeWeakTypeTag = if (ReflectApiPackage != NoSymbol) getMemberMethod(ReflectApiPackage, nme.materializeWeakTypeTag) else NoSymbol
+ def materializeTypeTag = if (ReflectApiPackage != NoSymbol) getMemberMethod(ReflectApiPackage, nme.materializeTypeTag) else NoSymbol
+
+ lazy val ApiUniverseClass = getClassIfDefined("scala.reflect.api.Universe") // defined in scala-reflect.jar, so we need to be careful
+ def ApiUniverseReify = if (ApiUniverseClass != NoSymbol) getMemberMethod(ApiUniverseClass, nme.reify) else NoSymbol
lazy val JavaUniverseClass = getClassIfDefined("scala.reflect.api.JavaUniverse") // defined in scala-reflect.jar, so we need to be careful
- lazy val MirrorOfClass = requiredClass[scala.reflect.base.MirrorOf[_]]
+ lazy val MirrorOfClass = getClassIfDefined("scala.reflect.api.MirrorOf") // defined in scala-reflect.jar, so we need to be careful
- lazy val TypeCreatorClass = requiredClass[scala.reflect.base.TypeCreator]
- lazy val TreeCreatorClass = requiredClass[scala.reflect.base.TreeCreator]
+ lazy val TypeCreatorClass = getClassIfDefined("scala.reflect.api.TypeCreator") // defined in scala-reflect.jar, so we need to be careful
+ lazy val TreeCreatorClass = getClassIfDefined("scala.reflect.api.TreeCreator") // defined in scala-reflect.jar, so we need to be careful
lazy val MacroContextClass = getClassIfDefined("scala.reflect.macros.Context") // defined in scala-reflect.jar, so we need to be careful
def MacroContextPrefix = if (MacroContextClass != NoSymbol) getMemberMethod(MacroContextClass, nme.prefix) else NoSymbol
@@ -525,10 +528,6 @@ trait Definitions extends api.StandardDefinitions {
def MacroContextUniverse = if (MacroContextClass != NoSymbol) getMemberMethod(MacroContextClass, nme.universe) else NoSymbol
def MacroContextMirror = if (MacroContextClass != NoSymbol) getMemberMethod(MacroContextClass, nme.mirror) else NoSymbol
lazy val MacroImplAnnotation = requiredClass[scala.reflect.macros.internal.macroImpl]
- lazy val MacroInternalPackage = getPackageObject("scala.reflect.macros.internal")
- def MacroInternal_materializeClassTag = getMemberMethod(MacroInternalPackage, nme.materializeClassTag)
- def MacroInternal_materializeWeakTypeTag = getMemberMethod(MacroInternalPackage, nme.materializeWeakTypeTag)
- def MacroInternal_materializeTypeTag = getMemberMethod(MacroInternalPackage, nme.materializeTypeTag)
lazy val StringContextClass = requiredClass[scala.StringContext]
def StringContext_f = getMemberMethod(StringContextClass, nme.f)
@@ -542,8 +541,8 @@ trait Definitions extends api.StandardDefinitions {
lazy val NoneModule: ModuleSymbol = requiredModule[scala.None.type]
lazy val SomeModule: ModuleSymbol = requiredModule[scala.Some.type]
- def compilerTypeFromTag(tt: BaseUniverse # WeakTypeTag[_]): Type = tt.in(rootMirror).tpe
- def compilerSymbolFromTag(tt: BaseUniverse # WeakTypeTag[_]): Symbol = tt.in(rootMirror).tpe.typeSymbol
+ def compilerTypeFromTag(tt: ApiUniverse # WeakTypeTag[_]): Type = tt.in(rootMirror).tpe
+ def compilerSymbolFromTag(tt: ApiUniverse # WeakTypeTag[_]): Symbol = tt.in(rootMirror).tpe.typeSymbol
// The given symbol represents either String.+ or StringAdd.+
def isStringAddition(sym: Symbol) = sym == String_+ || sym == StringAdd_+
@@ -932,7 +931,6 @@ trait Definitions extends api.StandardDefinitions {
lazy val SwitchClass = requiredClass[scala.annotation.switch]
lazy val TailrecClass = requiredClass[scala.annotation.tailrec]
lazy val VarargsClass = requiredClass[scala.annotation.varargs]
- lazy val StaticClass = requiredClass[scala.annotation.static]
lazy val uncheckedStableClass = requiredClass[scala.annotation.unchecked.uncheckedStable]
lazy val uncheckedVarianceClass = requiredClass[scala.annotation.unchecked.uncheckedVariance]
diff --git a/src/reflect/scala/reflect/internal/Scopes.scala b/src/reflect/scala/reflect/internal/Scopes.scala
index 385e45997b..89332d0ae5 100644
--- a/src/reflect/scala/reflect/internal/Scopes.scala
+++ b/src/reflect/scala/reflect/internal/Scopes.scala
@@ -41,7 +41,7 @@ trait Scopes extends api.Scopes { self: SymbolTable =>
* This is necessary because when run from reflection every scope needs to have a
* SynchronizedScope as mixin.
*/
- class Scope protected[Scopes] (initElems: ScopeEntry = null, initFingerPrints: Long = 0L) extends ScopeBase with MemberScopeBase {
+ class Scope protected[Scopes] (initElems: ScopeEntry = null, initFingerPrints: Long = 0L) extends ScopeApi with MemberScopeApi {
protected[Scopes] def this(base: Scope) = {
this(base.elems)
diff --git a/src/reflect/scala/reflect/internal/StdAttachments.scala b/src/reflect/scala/reflect/internal/StdAttachments.scala
index 5f6a3bf777..5c4d1f7e28 100644
--- a/src/reflect/scala/reflect/internal/StdAttachments.scala
+++ b/src/reflect/scala/reflect/internal/StdAttachments.scala
@@ -8,7 +8,7 @@ trait StdAttachments {
* Common code between reflect-internal Symbol and Tree related to Attachments.
*/
trait Attachable {
- protected var rawatt: base.Attachments { type Pos = Position } = NoPosition
+ protected var rawatt: scala.reflect.api.Attachments { type Pos = Position } = NoPosition
def attachments = rawatt
def updateAttachment[T: ClassTag](attachment: T): this.type = { rawatt = rawatt.update(attachment); this }
def removeAttachment[T: ClassTag]: this.type = { rawatt = rawatt.remove[T]; this }
diff --git a/src/reflect/scala/reflect/internal/StdCreators.scala b/src/reflect/scala/reflect/internal/StdCreators.scala
index 3e6b7c1ab4..eba583d4b5 100644
--- a/src/reflect/scala/reflect/internal/StdCreators.scala
+++ b/src/reflect/scala/reflect/internal/StdCreators.scala
@@ -1,20 +1,20 @@
package scala.reflect
package internal
-import scala.reflect.base.{TreeCreator, TypeCreator}
-import scala.reflect.base.{Universe => BaseUniverse}
+import scala.reflect.api.{TreeCreator, TypeCreator}
+import scala.reflect.api.{Universe => ApiUniverse}
trait StdCreators {
self: SymbolTable =>
case class FixedMirrorTreeCreator(mirror: MirrorOf[StdCreators.this.type], tree: Tree) extends TreeCreator {
- def apply[U <: BaseUniverse with Singleton](m: MirrorOf[U]): U # Tree =
+ def apply[U <: ApiUniverse with Singleton](m: MirrorOf[U]): U # Tree =
if (m eq mirror) tree.asInstanceOf[U # Tree]
else throw new IllegalArgumentException(s"Expr defined in $mirror cannot be migrated to other mirrors.")
}
case class FixedMirrorTypeCreator(mirror: MirrorOf[StdCreators.this.type], tpe: Type) extends TypeCreator {
- def apply[U <: BaseUniverse with Singleton](m: MirrorOf[U]): U # Type =
+ def apply[U <: ApiUniverse with Singleton](m: MirrorOf[U]): U # Type =
if (m eq mirror) tpe.asInstanceOf[U # Type]
else throw new IllegalArgumentException(s"Type tag defined in $mirror cannot be migrated to other mirrors.")
}
diff --git a/src/reflect/scala/reflect/internal/StdNames.scala b/src/reflect/scala/reflect/internal/StdNames.scala
index 22f5b391b8..2cdfb05e77 100644
--- a/src/reflect/scala/reflect/internal/StdNames.scala
+++ b/src/reflect/scala/reflect/internal/StdNames.scala
@@ -206,7 +206,6 @@ trait StdNames {
}
abstract class TypeNames extends Keywords with TypeNamesApi {
- type NameType = TypeName
protected implicit def createNameType(name: String): TypeName = newTypeNameCached(name)
final val BYNAME_PARAM_CLASS_NAME: NameType = "<byname>"
@@ -246,7 +245,6 @@ trait StdNames {
final val BeanPropertyAnnot: NameType = "BeanProperty"
final val BooleanBeanPropertyAnnot: NameType = "BooleanBeanProperty"
final val bridgeAnnot: NameType = "bridge"
- final val staticAnnot: NameType = "static"
// Classfile Attributes
final val AnnotationDefaultATTR: NameType = "AnnotationDefault"
@@ -274,7 +272,6 @@ trait StdNames {
}
abstract class TermNames extends Keywords with TermNamesApi {
- type NameType = TermName
protected implicit def createNameType(name: String): TermName = newTermNameCached(name)
/** Base strings from which synthetic names are derived. */
@@ -636,7 +633,6 @@ trait StdNames {
val asInstanceOf_Ob : NameType = "$asInstanceOf"
val assert_ : NameType = "assert"
val assume_ : NameType = "assume"
- val basis : NameType = "basis"
val box: NameType = "box"
val build : NameType = "build"
val bytes: NameType = "bytes"
diff --git a/src/reflect/scala/reflect/internal/Symbols.scala b/src/reflect/scala/reflect/internal/Symbols.scala
index b04cf4ff9f..50e5afd21e 100644
--- a/src/reflect/scala/reflect/internal/Symbols.scala
+++ b/src/reflect/scala/reflect/internal/Symbols.scala
@@ -10,7 +10,6 @@ import scala.collection.{ mutable, immutable }
import scala.collection.mutable.ListBuffer
import util.Statistics
import Flags._
-import base.Attachments
import scala.annotation.tailrec
import scala.tools.nsc.io.AbstractFile
@@ -346,7 +345,7 @@ trait Symbols extends api.Symbols { self: SymbolTable =>
// don't test directly -- use isGADTSkolem
// used to single out a gadt skolem symbol in deskolemizeGADT
// gadtskolems are created in adaptConstrPattern and removed at the end of typedCase
- @inline final protected[Symbols] def GADT_SKOLEM_FLAGS = CASEACCESSOR | SYNTHETIC
+ final protected[Symbols] def GADT_SKOLEM_FLAGS = CASEACCESSOR | SYNTHETIC
// flags set up to maintain TypeSkolem's invariant: origin.isInstanceOf[Symbol] == !hasFlag(EXISTENTIAL)
// GADT_SKOLEM_FLAGS (== CASEACCESSOR | SYNTHETIC) used to single this symbol out in deskolemizeGADT
@@ -586,11 +585,11 @@ trait Symbols extends api.Symbols { self: SymbolTable =>
&& owner.isPackageClass
&& nme.isReplWrapperName(name)
)
- @inline final def getFlag(mask: Long): Long = flags & mask
+ final def getFlag(mask: Long): Long = flags & mask
/** Does symbol have ANY flag in `mask` set? */
- @inline final def hasFlag(mask: Long): Boolean = (flags & mask) != 0
+ final def hasFlag(mask: Long): Boolean = (flags & mask) != 0
/** Does symbol have ALL the flags in `mask` set? */
- @inline final def hasAllFlags(mask: Long): Boolean = (flags & mask) == mask
+ final def hasAllFlags(mask: Long): Boolean = (flags & mask) == mask
def setFlag(mask: Long): this.type = { _rawflags |= mask ; this }
def resetFlag(mask: Long): this.type = { _rawflags &= ~mask ; this }
@@ -697,7 +696,6 @@ trait Symbols extends api.Symbols { self: SymbolTable =>
|| hasAnnotation(SerializableAttr) // last part can be removed, @serializable annotation is deprecated
)
def hasBridgeAnnotation = hasAnnotation(BridgeClass)
- def hasStaticAnnotation = hasAnnotation(StaticClass)
def isDeprecated = hasAnnotation(DeprecatedAttr)
def deprecationMessage = getAnnotation(DeprecatedAttr) flatMap (_ stringArg 0)
def deprecationVersion = getAnnotation(DeprecatedAttr) flatMap (_ stringArg 1)
diff --git a/src/reflect/scala/reflect/internal/TreeGen.scala b/src/reflect/scala/reflect/internal/TreeGen.scala
index f953e9b757..ebf0998573 100644
--- a/src/reflect/scala/reflect/internal/TreeGen.scala
+++ b/src/reflect/scala/reflect/internal/TreeGen.scala
@@ -272,9 +272,6 @@ abstract class TreeGen extends macros.TreeBuilder {
def mkOr(tree1: Tree, tree2: Tree): Tree =
Apply(Select(tree1, Boolean_or), List(tree2))
- def mkBasisUniverseRef: Tree =
- mkAttributedRef(ReflectBasis) setType singleType(ReflectBasis.owner.thisPrefix, ReflectBasis)
-
def mkRuntimeUniverseRef: Tree = {
assert(ReflectRuntimeUniverse != NoSymbol)
mkAttributedRef(ReflectRuntimeUniverse) setType singleType(ReflectRuntimeUniverse.owner.thisPrefix, ReflectRuntimeUniverse)
diff --git a/src/reflect/scala/reflect/internal/Trees.scala b/src/reflect/scala/reflect/internal/Trees.scala
index 5a6d6ce7c7..7ec9f7086d 100644
--- a/src/reflect/scala/reflect/internal/Trees.scala
+++ b/src/reflect/scala/reflect/internal/Trees.scala
@@ -7,7 +7,6 @@ package scala.reflect
package internal
import Flags._
-import base.Attachments
import scala.collection.mutable.{ListBuffer, LinkedHashSet}
import util.Statistics
@@ -21,10 +20,10 @@ trait Trees extends api.Trees { self: SymbolTable =>
if (Statistics.canEnable) Statistics.incCounter(TreesStats.nodeByType, getClass)
- @inline final override def pos: Position = rawatt.pos
+ final override def pos: Position = rawatt.pos
private[this] var rawtpe: Type = _
- @inline final def tpe = rawtpe
+ final def tpe = rawtpe
def tpe_=(t: Type) = rawtpe = t
def setType(tp: Type): this.type = { rawtpe = tp; this }
def defineType(tp: Type): this.type = setType(tp)
@@ -328,9 +327,23 @@ trait Trees extends api.Trees { self: SymbolTable =>
extends TermTree with UnApplyApi
object UnApply extends UnApplyExtractor
- case class ArrayValue(elemtpt: Tree, elems: List[Tree])
- extends TermTree with ArrayValueApi
- object ArrayValue extends ArrayValueExtractor
+ /** An array of expressions. This AST node needs to be translated in backend.
+ * It is used to pass arguments to vararg arguments.
+ * Introduced by compiler phase uncurry.
+ *
+ * This AST node does not have direct correspondence to Scala code,
+ * and is used to pass arguments to vararg arguments. For instance:
+ *
+ * printf("%s%d", foo, 42)
+ *
+ * Is translated to after compiler phase uncurry to:
+ *
+ * Apply(
+ * Ident("printf"),
+ * Literal("%s%d"),
+ * ArrayValue(<Any>, List(Ident("foo"), Literal(42))))
+ */
+ case class ArrayValue(elemtpt: Tree, elems: List[Tree]) extends TermTree
case class Function(vparams: List[ValDef], body: Tree)
extends SymTree with TermTree with FunctionApi
@@ -497,6 +510,7 @@ trait Trees extends api.Trees { self: SymbolTable =>
override type TreeCopier <: InternalTreeCopierOps
abstract class InternalTreeCopierOps extends TreeCopierOps {
def ApplyDynamic(tree: Tree, qual: Tree, args: List[Tree]): ApplyDynamic
+ def ArrayValue(tree: Tree, elemtpt: Tree, trees: List[Tree]): ArrayValue
}
class StrictTreeCopier extends InternalTreeCopierOps {
@@ -1574,7 +1588,6 @@ trait Trees extends api.Trees { self: SymbolTable =>
implicit val StarTag = ClassTag[Star](classOf[Star])
implicit val BindTag = ClassTag[Bind](classOf[Bind])
implicit val UnApplyTag = ClassTag[UnApply](classOf[UnApply])
- implicit val ArrayValueTag = ClassTag[ArrayValue](classOf[ArrayValue])
implicit val FunctionTag = ClassTag[Function](classOf[Function])
implicit val AssignTag = ClassTag[Assign](classOf[Assign])
implicit val AssignOrNamedArgTag = ClassTag[AssignOrNamedArg](classOf[AssignOrNamedArg])
diff --git a/src/reflect/scala/reflect/internal/Types.scala b/src/reflect/scala/reflect/internal/Types.scala
index cda8a382de..ee488c9d18 100644
--- a/src/reflect/scala/reflect/internal/Types.scala
+++ b/src/reflect/scala/reflect/internal/Types.scala
@@ -4429,7 +4429,7 @@ trait Types extends api.Types { self: SymbolTable =>
var capturedSkolems: List[Symbol] = List()
var capturedParams: List[Symbol] = List()
- @inline private def skipPrefixOf(pre: Type, clazz: Symbol) = (
+ private def skipPrefixOf(pre: Type, clazz: Symbol) = (
(pre eq NoType) || (pre eq NoPrefix) || !isPossiblePrefix(clazz)
)
override def mapOver(tree: Tree, giveup: ()=>Nothing): Tree = {
@@ -5117,9 +5117,9 @@ trait Types extends api.Types { self: SymbolTable =>
// in addition to making subtyping "more correct" for type vars,
// it should avoid the stackoverflow that's been plaguing us (https://groups.google.com/d/topic/scala-internals/2gHzNjtB4xA/discussion)
// this method is only called when subtyping hits a recursion threshold (subsametypeRecursions >= LogPendingSubTypesThreshold)
- @inline def suspend(tp: Type) =
+ def suspend(tp: Type) =
if (tp.isGround) null else suspendTypeVarsInType(tp)
- @inline def revive(suspension: List[TypeVar]) =
+ def revive(suspension: List[TypeVar]) =
if (suspension ne null) suspension foreach (_.suspended = false)
val suspensions = Array(tp1, stp.tp1, tp2, stp.tp2) map suspend
@@ -5621,7 +5621,7 @@ trait Types extends api.Types { self: SymbolTable =>
case _: SingletonType =>
tp2 match {
case _: SingletonType =>
- @inline def chaseDealiasedUnderlying(tp: Type): Type = {
+ def chaseDealiasedUnderlying(tp: Type): Type = {
var origin = tp
var next = origin.underlying.dealias
while (next.isInstanceOf[SingletonType]) {
diff --git a/src/reflect/scala/reflect/internal/package.scala b/src/reflect/scala/reflect/internal/package.scala
index 99b837152d..63568f6a6b 100644
--- a/src/reflect/scala/reflect/internal/package.scala
+++ b/src/reflect/scala/reflect/internal/package.scala
@@ -2,5 +2,5 @@ package scala.reflect
package object internal {
- type MirrorOf[U <: base.Universe with Singleton] = base.MirrorOf[U]
+ type MirrorOf[U <: scala.reflect.api.Universe with Singleton] = scala.reflect.api.MirrorOf[U]
}
diff --git a/src/reflect/scala/reflect/internal/util/Position.scala b/src/reflect/scala/reflect/internal/util/Position.scala
index 0268881be7..1621fb84d4 100644
--- a/src/reflect/scala/reflect/internal/util/Position.scala
+++ b/src/reflect/scala/reflect/internal/util/Position.scala
@@ -7,7 +7,7 @@
package scala.reflect.internal.util
import scala.reflect.ClassTag
-import scala.reflect.base.Attachments
+import scala.reflect.api.Attachments
import scala.reflect.api.PositionApi
object Position {
diff --git a/src/reflect/scala/reflect/internal/util/ThreeValues.scala b/src/reflect/scala/reflect/internal/util/ThreeValues.scala
index d89f11c407..f89bd9e199 100644
--- a/src/reflect/scala/reflect/internal/util/ThreeValues.scala
+++ b/src/reflect/scala/reflect/internal/util/ThreeValues.scala
@@ -9,6 +9,6 @@ object ThreeValues {
final val NO = -1
final val UNKNOWN = 0
- @inline def fromBoolean(b: Boolean): ThreeValue = if (b) YES else NO
- @inline def toBoolean(x: ThreeValue): Boolean = x == YES
+ def fromBoolean(b: Boolean): ThreeValue = if (b) YES else NO
+ def toBoolean(x: ThreeValue): Boolean = x == YES
}
diff --git a/src/reflect/scala/reflect/macros/Reifiers.scala b/src/reflect/scala/reflect/macros/Reifiers.scala
index bdc6687edc..c2a6c5be05 100644
--- a/src/reflect/scala/reflect/macros/Reifiers.scala
+++ b/src/reflect/scala/reflect/macros/Reifiers.scala
@@ -6,11 +6,6 @@ import scala.reflect.api.PositionApi
trait Reifiers {
self: Context =>
- /** Reification prefix that refers to the base reflexive universe, ``scala.reflect.basis''.
- * Providing it for the ``prefix'' parameter of ``reifyTree'' or ``reifyType'' will create a tree that can be inspected at runtime.
- */
- val basisUniverse: Tree
-
/** Reification prefix that refers to the runtime reflexive universe, ``scala.reflect.runtime.universe''.
* Providing it for the ``prefix'' parameter of ``reifyTree'' or ``reifyType'' will create a full-fledged tree that can be inspected at runtime.
*/
@@ -20,7 +15,7 @@ trait Reifiers {
* For more information and examples see the documentation for ``Universe.reify''.
*
* The produced tree will be bound to the specified ``universe'' and ``mirror''.
- * Possible values for ``universe'' include ``basisUniverse'' and ``runtimeUniverse''.
+ * Possible values for ``universe'' include ``runtimeUniverse''.
* Possible values for ``mirror'' include ``EmptyTree'' (in that case the reifier will automatically pick an appropriate mirror).
*
* This function is deeply connected to ``Universe.reify'', a macro that reifies arbitrary expressions into runtime trees.
diff --git a/src/reflect/scala/reflect/macros/Universe.scala b/src/reflect/scala/reflect/macros/Universe.scala
index 7fa2e7cbae..f84c11ee63 100644
--- a/src/reflect/scala/reflect/macros/Universe.scala
+++ b/src/reflect/scala/reflect/macros/Universe.scala
@@ -7,7 +7,7 @@ abstract class Universe extends scala.reflect.api.Universe {
trait AttachableApi {
/** ... */
- def attachments: base.Attachments { type Pos = Position }
+ def attachments: scala.reflect.api.Attachments { type Pos = Position }
/** ... */
def updateAttachment[T: ClassTag](attachment: T): AttachableApi.this.type
diff --git a/src/reflect/scala/reflect/macros/package.scala b/src/reflect/scala/reflect/macros/package.scala
index 06ce0b3244..df93785d40 100644
--- a/src/reflect/scala/reflect/macros/package.scala
+++ b/src/reflect/scala/reflect/macros/package.scala
@@ -2,5 +2,5 @@ package scala.reflect
package object macros {
- type MirrorOf[U <: base.Universe with Singleton] = base.MirrorOf[U]
+ type MirrorOf[U <: scala.reflect.api.Universe with Singleton] = scala.reflect.api.MirrorOf[U]
}
diff --git a/src/reflect/scala/reflect/runtime/JavaMirrors.scala b/src/reflect/scala/reflect/runtime/JavaMirrors.scala
index 47978821a3..0d9e90d3a6 100644
--- a/src/reflect/scala/reflect/runtime/JavaMirrors.scala
+++ b/src/reflect/scala/reflect/runtime/JavaMirrors.scala
@@ -148,8 +148,10 @@ trait JavaMirrors extends internal.SymbolTable with api.JavaUniverse { thisUnive
object AnnotationClass { def unapply(x: jClass[_]) = x.isAnnotation }
object ConstantArg {
- def enumToSymbol(enum: Enum[_]): Symbol =
- classToScala(enum.getClass).typeSignature.declaration(enum.name: TermName)
+ def enumToSymbol(enum: Enum[_]): Symbol = {
+ val staticPartOfEnum = classToScala(enum.getClass).companionSymbol
+ staticPartOfEnum.typeSignature.declaration(enum.name: TermName)
+ }
def unapply(schemaAndValue: (jClass[_], Any)): Option[Any] = schemaAndValue match {
case (StringClass | PrimitiveClass(), value) => Some(value)
@@ -659,7 +661,6 @@ trait JavaMirrors extends internal.SymbolTable with api.JavaUniverse { thisUnive
}
override def complete(sym: Symbol): Unit = {
- if (jclazz.isEnum) throw new ScalaReflectionException("implementation restriction: Java enums are not supported")
load(sym)
completeRest()
}
@@ -1024,13 +1025,12 @@ trait JavaMirrors extends internal.SymbolTable with api.JavaUniverse { thisUnive
rawToExistential(typeRef(clazz.owner.thisType, clazz, List()))
}
case japplied: ParameterizedType =>
- val (pre, sym) = typeToScala(japplied.getRawType) match {
- case ExistentialType(tparams, TypeRef(pre, sym, _)) => (pre, sym)
- case TypeRef(pre, sym, _) => (pre, sym)
- }
+ // http://stackoverflow.com/questions/5767122/parameterizedtype-getrawtype-returns-j-l-r-type-not-class
+ val sym = classToScala(japplied.getRawType.asInstanceOf[jClass[_]])
+ val pre = sym.owner.thisType
val args0 = japplied.getActualTypeArguments
val (args, bounds) = targsToScala(pre.typeSymbol, args0.toList)
- ExistentialType(bounds, typeRef(pre, sym, args))
+ newExistentialType(bounds, typeRef(pre, sym, args))
case jarr: GenericArrayType =>
arrayType(typeToScala(jarr.getGenericComponentType))
case jtvar: jTypeVariable[_] =>