summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/AsmUtils.scala4
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/BCodeBodyBuilder.scala4
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/BTypes.scala2
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/BTypesFromSymbols.scala8
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/BackendReporting.scala2
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/CoreBTypes.scala276
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/GenBCode.scala2
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/analysis/AliasingFrame.scala74
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/analysis/BackendUtils.scala147
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/analysis/InstructionStackEffect.scala9
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/analysis/NullnessAnalyzer.scala12
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/analysis/ProdConsAnalyzerImpl.scala33
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/analysis/TypeFlowInterpreter.scala36
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/opt/BoxUnbox.scala907
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/opt/BytecodeUtils.scala124
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/opt/CallGraph.scala4
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/opt/ClosureOptimizer.scala272
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/opt/CopyProp.scala641
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/opt/Inliner.scala178
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/opt/InstructionResultSize.scala236
-rw-r--r--src/compiler/scala/tools/nsc/backend/jvm/opt/LocalOpt.scala534
-rw-r--r--src/compiler/scala/tools/nsc/settings/ScalaSettings.scala65
-rw-r--r--src/compiler/scala/tools/nsc/transform/LambdaLift.scala5
-rw-r--r--src/partest-extras/scala/tools/partest/ASMConverters.scala5
-rw-r--r--src/reflect/scala/reflect/internal/Definitions.scala4
-rw-r--r--src/reflect/scala/reflect/runtime/JavaUniverseForce.scala1
26 files changed, 2860 insertions, 725 deletions
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/AsmUtils.scala b/src/compiler/scala/tools/nsc/backend/jvm/AsmUtils.scala
index 1cf547a5ac..32f8c7826f 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/AsmUtils.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/AsmUtils.scala
@@ -142,12 +142,12 @@ object AsmUtils {
* Run ASM's CheckClassAdapter over a class. Returns None if no problem is found, otherwise
* Some(msg) with the verifier's error message.
*/
- def checkClass(classNode: ClassNode): Option[String] = {
+ def checkClass(classNode: ClassNode, dumpNonErroneous: Boolean = false): Option[String] = {
val cw = new ClassWriter(ClassWriter.COMPUTE_MAXS)
classNode.accept(cw)
val sw = new StringWriter()
val pw = new PrintWriter(sw)
- CheckClassAdapter.verify(new ClassReader(cw.toByteArray), false, pw)
+ CheckClassAdapter.verify(new ClassReader(cw.toByteArray), dumpNonErroneous, pw)
val res = sw.toString
if (res.isEmpty) None else Some(res)
}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/BCodeBodyBuilder.scala b/src/compiler/scala/tools/nsc/backend/jvm/BCodeBodyBuilder.scala
index 790469d874..59d584c370 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/BCodeBodyBuilder.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/BCodeBodyBuilder.scala
@@ -640,7 +640,7 @@ abstract class BCodeBodyBuilder extends BCodeSkelBuilder {
case Apply(fun @ _, List(expr)) if currentRun.runDefinitions.isBox(fun.symbol) =>
val nativeKind = tpeTK(expr)
genLoad(expr, nativeKind)
- val MethodNameAndType(mname, methodType) = asmBoxTo(nativeKind)
+ val MethodNameAndType(mname, methodType) = srBoxesRuntimeBoxToMethods(nativeKind)
bc.invokestatic(srBoxesRunTimeRef.internalName, mname, methodType.descriptor, app.pos)
generatedType = boxResultType(fun.symbol) // was typeToBType(fun.symbol.tpe.resultType)
@@ -648,7 +648,7 @@ abstract class BCodeBodyBuilder extends BCodeSkelBuilder {
genLoad(expr)
val boxType = unboxResultType(fun.symbol) // was typeToBType(fun.symbol.owner.linkedClassOfClass.tpe)
generatedType = boxType
- val MethodNameAndType(mname, methodType) = asmUnboxTo(boxType)
+ val MethodNameAndType(mname, methodType) = srBoxesRuntimeUnboxToMethods(boxType)
bc.invokestatic(srBoxesRunTimeRef.internalName, mname, methodType.descriptor, app.pos)
case app @ Apply(fun, args) =>
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/BTypes.scala b/src/compiler/scala/tools/nsc/backend/jvm/BTypes.scala
index ab52bf72d8..c3f6399901 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/BTypes.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/BTypes.scala
@@ -1113,7 +1113,7 @@ abstract class BTypes {
*/
/**
- * Just a named pair, used in CoreBTypes.asmBoxTo/asmUnboxTo.
+ * Just a named pair, used in CoreBTypes.srBoxesRuntimeBoxToMethods/srBoxesRuntimeUnboxToMethods.
*/
final case class MethodNameAndType(name: String, methodType: MethodBType)
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/BTypesFromSymbols.scala b/src/compiler/scala/tools/nsc/backend/jvm/BTypesFromSymbols.scala
index 53304d137f..9bfa7dae27 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/BTypesFromSymbols.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/BTypesFromSymbols.scala
@@ -106,7 +106,7 @@ class BTypesFromSymbols[G <: Global](val global: G) extends BTypes {
assert(classSym != NoSymbol, "Cannot create ClassBType from NoSymbol")
assert(classSym.isClass, s"Cannot create ClassBType from non-class symbol $classSym")
assertClassNotArrayNotPrimitive(classSym)
- assert(!primitiveTypeMap.contains(classSym) || isCompilingPrimitive, s"Cannot create ClassBType for primitive class symbol $classSym")
+ assert(!primitiveTypeToBType.contains(classSym) || isCompilingPrimitive, s"Cannot create ClassBType for primitive class symbol $classSym")
if (classSym == NothingClass) srNothingRef
else if (classSym == NullClass) srNullRef
else {
@@ -152,7 +152,7 @@ class BTypesFromSymbols[G <: Global](val global: G) extends BTypes {
def primitiveOrClassToBType(sym: Symbol): BType = {
assertClassNotArray(sym)
assert(!sym.isImplClass, sym)
- primitiveTypeMap.getOrElse(sym, classBTypeFromSymbol(sym))
+ primitiveTypeToBType.getOrElse(sym, classBTypeFromSymbol(sym))
}
/**
@@ -214,7 +214,7 @@ class BTypesFromSymbols[G <: Global](val global: G) extends BTypes {
def assertClassNotArrayNotPrimitive(sym: Symbol): Unit = {
assertClassNotArray(sym)
- assert(!primitiveTypeMap.contains(sym) || isCompilingPrimitive, sym)
+ assert(!primitiveTypeToBType.contains(sym) || isCompilingPrimitive, sym)
}
def implementedInterfaces(classSym: Symbol): List[Symbol] = {
@@ -331,7 +331,7 @@ class BTypesFromSymbols[G <: Global](val global: G) extends BTypes {
superClassSym == ObjectClass
else
// A ClassBType for a primitive class (scala.Boolean et al) is only created when compiling these classes.
- ((superClassSym != NoSymbol) && !superClassSym.isInterface) || (isCompilingPrimitive && primitiveTypeMap.contains(classSym)),
+ ((superClassSym != NoSymbol) && !superClassSym.isInterface) || (isCompilingPrimitive && primitiveTypeToBType.contains(classSym)),
s"Bad superClass for $classSym: $superClassSym"
)
val superClass = if (superClassSym == NoSymbol) None
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/BackendReporting.scala b/src/compiler/scala/tools/nsc/backend/jvm/BackendReporting.scala
index 05cc484135..13f4738d3d 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/BackendReporting.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/BackendReporting.scala
@@ -287,7 +287,7 @@ object BackendReporting {
s"Failed to get the type of a method of class symbol $classFullName due to SI-9111."
case ClassNotFoundWhenBuildingInlineInfoFromSymbol(missingClass) =>
- s"Failed to build the inline information: $missingClass."
+ s"Failed to build the inline information: $missingClass"
case UnknownScalaInlineInfoVersion(internalName, version) =>
s"Cannot read ScalaInlineInfo version $version in classfile $internalName. Use a more recent compiler."
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/CoreBTypes.scala b/src/compiler/scala/tools/nsc/backend/jvm/CoreBTypes.scala
index 028eea9da2..8bb71a386f 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/CoreBTypes.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/CoreBTypes.scala
@@ -1,7 +1,7 @@
package scala.tools.nsc
package backend.jvm
-import scala.annotation.switch
+import scala.tools.nsc.backend.jvm.BTypes.InternalName
/**
* Core BTypes and some other definitions. The initialization of these definitions requires access
@@ -29,14 +29,14 @@ import scala.annotation.switch
class CoreBTypes[BTFS <: BTypesFromSymbols[_ <: Global]](val bTypes: BTFS) {
import bTypes._
import global._
- import rootMirror.{requiredClass, requiredModule, getClassIfDefined}
+ import rootMirror.{requiredClass, requiredModule, getRequiredClass, getClassIfDefined}
import definitions._
/**
* Maps primitive types to their corresponding PrimitiveBType. The map is defined lexically above
* the first use of `classBTypeFromSymbol` because that method looks at the map.
*/
- lazy val primitiveTypeMap: Map[Symbol, PrimitiveBType] = Map(
+ lazy val primitiveTypeToBType: Map[Symbol, PrimitiveBType] = Map(
UnitClass -> UNIT,
BooleanClass -> BOOL,
CharClass -> CHAR,
@@ -45,34 +45,22 @@ class CoreBTypes[BTFS <: BTypesFromSymbols[_ <: Global]](val bTypes: BTFS) {
IntClass -> INT,
LongClass -> LONG,
FloatClass -> FLOAT,
- DoubleClass -> DOUBLE
- )
-
- private lazy val BOXED_UNIT : ClassBType = classBTypeFromSymbol(requiredClass[java.lang.Void])
- private lazy val BOXED_BOOLEAN : ClassBType = classBTypeFromSymbol(BoxedBooleanClass)
- private lazy val BOXED_BYTE : ClassBType = classBTypeFromSymbol(BoxedByteClass)
- private lazy val BOXED_SHORT : ClassBType = classBTypeFromSymbol(BoxedShortClass)
- private lazy val BOXED_CHAR : ClassBType = classBTypeFromSymbol(BoxedCharacterClass)
- private lazy val BOXED_INT : ClassBType = classBTypeFromSymbol(BoxedIntClass)
- private lazy val BOXED_LONG : ClassBType = classBTypeFromSymbol(BoxedLongClass)
- private lazy val BOXED_FLOAT : ClassBType = classBTypeFromSymbol(BoxedFloatClass)
- private lazy val BOXED_DOUBLE : ClassBType = classBTypeFromSymbol(BoxedDoubleClass)
+ DoubleClass -> DOUBLE)
/**
* Map from primitive types to their boxed class type. Useful when pushing class literals onto the
* operand stack (ldc instruction taking a class literal), see genConstant.
*/
lazy val boxedClassOfPrimitive: Map[PrimitiveBType, ClassBType] = Map(
- UNIT -> BOXED_UNIT,
- BOOL -> BOXED_BOOLEAN,
- BYTE -> BOXED_BYTE,
- SHORT -> BOXED_SHORT,
- CHAR -> BOXED_CHAR,
- INT -> BOXED_INT,
- LONG -> BOXED_LONG,
- FLOAT -> BOXED_FLOAT,
- DOUBLE -> BOXED_DOUBLE
- )
+ UNIT -> classBTypeFromSymbol(requiredClass[java.lang.Void]),
+ BOOL -> classBTypeFromSymbol(BoxedBooleanClass),
+ BYTE -> classBTypeFromSymbol(BoxedByteClass),
+ SHORT -> classBTypeFromSymbol(BoxedShortClass),
+ CHAR -> classBTypeFromSymbol(BoxedCharacterClass),
+ INT -> classBTypeFromSymbol(BoxedIntClass),
+ LONG -> classBTypeFromSymbol(BoxedLongClass),
+ FLOAT -> classBTypeFromSymbol(BoxedFloatClass),
+ DOUBLE -> classBTypeFromSymbol(BoxedDoubleClass))
lazy val boxedClasses: Set[ClassBType] = boxedClassOfPrimitive.values.toSet
@@ -82,7 +70,7 @@ class CoreBTypes[BTFS <: BTypesFromSymbols[_ <: Global]](val bTypes: BTFS) {
*/
lazy val boxResultType: Map[Symbol, ClassBType] = {
for ((valueClassSym, boxMethodSym) <- currentRun.runDefinitions.boxMethod)
- yield boxMethodSym -> boxedClassOfPrimitive(primitiveTypeMap(valueClassSym))
+ yield boxMethodSym -> boxedClassOfPrimitive(primitiveTypeToBType(valueClassSym))
}
/**
@@ -90,7 +78,7 @@ class CoreBTypes[BTFS <: BTypesFromSymbols[_ <: Global]](val bTypes: BTFS) {
* For example, the method symbol for `Byte.unbox()`) is mapped to the PrimitiveBType BYTE. */
lazy val unboxResultType: Map[Symbol, PrimitiveBType] = {
for ((valueClassSym, unboxMethodSym) <- currentRun.runDefinitions.unboxMethod)
- yield unboxMethodSym -> primitiveTypeMap(valueClassSym)
+ yield unboxMethodSym -> primitiveTypeToBType(valueClassSym)
}
/*
@@ -106,6 +94,7 @@ class CoreBTypes[BTFS <: BTypesFromSymbols[_ <: Global]](val bTypes: BTFS) {
lazy val ObjectRef : ClassBType = classBTypeFromSymbol(ObjectClass)
lazy val StringRef : ClassBType = classBTypeFromSymbol(StringClass)
+ lazy val PredefRef : ClassBType = classBTypeFromSymbol(PredefModule.moduleClass)
lazy val jlStringBuilderRef : ClassBType = classBTypeFromSymbol(StringBuilderClass)
lazy val jlThrowableRef : ClassBType = classBTypeFromSymbol(ThrowableClass)
lazy val jlCloneableRef : ClassBType = classBTypeFromSymbol(JavaCloneableClass) // java/lang/Cloneable
@@ -116,58 +105,138 @@ class CoreBTypes[BTFS <: BTypesFromSymbols[_ <: Global]](val bTypes: BTFS) {
lazy val sbScalaBeanInfoRef : ClassBType = classBTypeFromSymbol(requiredClass[scala.beans.ScalaBeanInfo])
lazy val jliSerializedLambdaRef : ClassBType = classBTypeFromSymbol(requiredClass[java.lang.invoke.SerializedLambda])
lazy val jliMethodHandlesRef : ClassBType = classBTypeFromSymbol(requiredClass[java.lang.invoke.MethodHandles])
- lazy val jliMethodHandlesLookupRef : ClassBType = classBTypeFromSymbol(exitingPickler(rootMirror.getRequiredClass("java.lang.invoke.MethodHandles.Lookup"))) // didn't find a reliable non-stringly-typed way that works for inner classes in the backend
+ lazy val jliMethodHandlesLookupRef : ClassBType = classBTypeFromSymbol(exitingPickler(getRequiredClass("java.lang.invoke.MethodHandles.Lookup"))) // didn't find a reliable non-stringly-typed way that works for inner classes in the backend
lazy val jliMethodTypeRef : ClassBType = classBTypeFromSymbol(requiredClass[java.lang.invoke.MethodType])
lazy val jliCallSiteRef : ClassBType = classBTypeFromSymbol(requiredClass[java.lang.invoke.CallSite])
lazy val jliLambdaMetafactoryRef : ClassBType = classBTypeFromSymbol(requiredClass[java.lang.invoke.LambdaMetafactory])
lazy val srLambdaDeserializerRef : ClassBType = classBTypeFromSymbol(requiredModule[scala.runtime.LambdaDeserializer.type].moduleClass)
lazy val srBoxesRunTimeRef : ClassBType = classBTypeFromSymbol(requiredClass[scala.runtime.BoxesRunTime])
+ lazy val srBoxedUnitRef : ClassBType = classBTypeFromSymbol(requiredClass[scala.runtime.BoxedUnit])
- lazy val hashMethodSym: Symbol = getMember(ScalaRunTimeModule, nme.hash_)
+ private def methodNameAndType(cls: Symbol, name: Name, static: Boolean = false, filterOverload: Symbol => Boolean = _ => true): MethodNameAndType = {
+ val holder = if (static) cls.companionModule.moduleClass else cls
+ val method = holder.info.member(name).suchThat(filterOverload)
+ assert(!method.isOverloaded, method)
+ MethodNameAndType(name.toString, methodBTypeFromSymbol(method))
+ }
- // TODO @lry avoiding going through through missingHook for every line in the REPL: https://github.com/scala/scala/commit/8d962ed4ddd310cc784121c426a2e3f56a112540
- lazy val AndroidParcelableInterface : Symbol = getClassIfDefined("android.os.Parcelable")
- lazy val AndroidCreatorClass : Symbol = getClassIfDefined("android.os.Parcelable$Creator")
+ private def srBoxesRuntimeMethods(getName: (String, String) => String): Map[BType, MethodNameAndType] = {
+ ScalaValueClassesNoUnit.map(primitive => {
+ val bType = primitiveTypeToBType(primitive)
+ val name = newTermName(getName(primitive.name.toString, boxedClass(primitive).name.toString))
+ (bType, methodNameAndType(BoxesRunTimeClass, name))
+ })(collection.breakOut)
+ }
- lazy val BeanInfoAttr: Symbol = requiredClass[scala.beans.BeanInfo]
+ // Z -> MethodNameAndType(boxToBoolean,(Z)Ljava/lang/Boolean;)
+ lazy val srBoxesRuntimeBoxToMethods: Map[BType, MethodNameAndType] = srBoxesRuntimeMethods((primitive, boxed) => "boxTo" + boxed)
- /* The Object => String overload. */
- lazy val String_valueOf: Symbol = {
- getMember(StringModule, nme.valueOf) filter (sym => sym.info.paramTypes match {
- case List(pt) => pt.typeSymbol == ObjectClass
- case _ => false
- })
+ // Z -> MethodNameAndType(unboxToBoolean,(Ljava/lang/Object;)Z)
+ lazy val srBoxesRuntimeUnboxToMethods: Map[BType, MethodNameAndType] = srBoxesRuntimeMethods((primitive, boxed) => "unboxTo" + primitive)
+
+ def singleParamOfClass(cls: Symbol) = (s: Symbol) => s.paramss match {
+ case List(List(param)) => param.info.typeSymbol == cls
+ case _ => false
}
- /**
- * Methods in scala.runtime.BoxesRuntime
- */
- lazy val asmBoxTo : Map[BType, MethodNameAndType] = Map(
- BOOL -> MethodNameAndType("boxToBoolean", MethodBType(List(BOOL), BOXED_BOOLEAN)),
- BYTE -> MethodNameAndType("boxToByte", MethodBType(List(BYTE), BOXED_BYTE)),
- CHAR -> MethodNameAndType("boxToCharacter", MethodBType(List(CHAR), BOXED_CHAR)),
- SHORT -> MethodNameAndType("boxToShort", MethodBType(List(SHORT), BOXED_SHORT)),
- INT -> MethodNameAndType("boxToInteger", MethodBType(List(INT), BOXED_INT)),
- LONG -> MethodNameAndType("boxToLong", MethodBType(List(LONG), BOXED_LONG)),
- FLOAT -> MethodNameAndType("boxToFloat", MethodBType(List(FLOAT), BOXED_FLOAT)),
- DOUBLE -> MethodNameAndType("boxToDouble", MethodBType(List(DOUBLE), BOXED_DOUBLE))
- )
-
- lazy val asmUnboxTo: Map[BType, MethodNameAndType] = Map(
- BOOL -> MethodNameAndType("unboxToBoolean", MethodBType(List(ObjectRef), BOOL)),
- BYTE -> MethodNameAndType("unboxToByte", MethodBType(List(ObjectRef), BYTE)),
- CHAR -> MethodNameAndType("unboxToChar", MethodBType(List(ObjectRef), CHAR)),
- SHORT -> MethodNameAndType("unboxToShort", MethodBType(List(ObjectRef), SHORT)),
- INT -> MethodNameAndType("unboxToInt", MethodBType(List(ObjectRef), INT)),
- LONG -> MethodNameAndType("unboxToLong", MethodBType(List(ObjectRef), LONG)),
- FLOAT -> MethodNameAndType("unboxToFloat", MethodBType(List(ObjectRef), FLOAT)),
- DOUBLE -> MethodNameAndType("unboxToDouble", MethodBType(List(ObjectRef), DOUBLE))
- )
+ // java/lang/Boolean -> MethodNameAndType(valueOf,(Z)Ljava/lang/Boolean;)
+ lazy val javaBoxMethods: Map[InternalName, MethodNameAndType] = {
+ ScalaValueClassesNoUnit.map(primitive => {
+ val boxed = boxedClass(primitive)
+ val method = methodNameAndType(boxed, newTermName("valueOf"), static = true, filterOverload = singleParamOfClass(primitive))
+ (classBTypeFromSymbol(boxed).internalName, method)
+ })(collection.breakOut)
+ }
+
+ // java/lang/Boolean -> MethodNameAndType(booleanValue,()Z)
+ lazy val javaUnboxMethods: Map[InternalName, MethodNameAndType] = {
+ ScalaValueClassesNoUnit.map(primitive => {
+ val boxed = boxedClass(primitive)
+ val name = primitive.name.toString.toLowerCase + "Value"
+ (classBTypeFromSymbol(boxed).internalName, methodNameAndType(boxed, newTermName(name)))
+ })(collection.breakOut)
+ }
+
+ private def predefBoxingMethods(getName: (String, String) => String): Map[String, MethodBType] = {
+ ScalaValueClassesNoUnit.map(primitive => {
+ val boxed = boxedClass(primitive)
+ val name = getName(primitive.name.toString, boxed.name.toString)
+ (name, methodNameAndType(PredefModule.moduleClass, newTermName(name)).methodType)
+ })(collection.breakOut)
+ }
+
+ // boolean2Boolean -> (Z)Ljava/lang/Boolean;
+ lazy val predefAutoBoxMethods: Map[String, MethodBType] = predefBoxingMethods((primitive, boxed) => primitive.toLowerCase + "2" + boxed)
+
+ // Boolean2boolean -> (Ljava/lang/Boolean;)Z
+ lazy val predefAutoUnboxMethods: Map[String, MethodBType] = predefBoxingMethods((primitive, boxed) => boxed + "2" + primitive.toLowerCase)
+
+ private def staticRefMethods(name: Name): Map[InternalName, MethodNameAndType] = {
+ allRefClasses.map(refClass =>
+ (classBTypeFromSymbol(refClass).internalName, methodNameAndType(refClass, name, static = true)))(collection.breakOut)
+ }
+
+ // scala/runtime/BooleanRef -> MethodNameAndType(create,(Z)Lscala/runtime/BooleanRef;)
+ lazy val srRefCreateMethods: Map[InternalName, MethodNameAndType] = staticRefMethods(nme.create)
+
+ // scala/runtime/BooleanRef -> MethodNameAndType(zero,()Lscala/runtime/BooleanRef;)
+ lazy val srRefZeroMethods: Map[InternalName, MethodNameAndType] = staticRefMethods(nme.zero)
+
+ // java/lang/Boolean -> MethodNameAndType(<init>,(Z)V)
+ lazy val primitiveBoxConstructors: Map[InternalName, MethodNameAndType] = {
+ ScalaValueClassesNoUnit.map(primitive => {
+ val boxed = boxedClass(primitive)
+ (classBTypeFromSymbol(boxed).internalName, methodNameAndType(boxed, nme.CONSTRUCTOR, filterOverload = singleParamOfClass(primitive)))
+ })(collection.breakOut)
+ }
+
+ private def nonOverloadedConstructors(classes: Iterable[Symbol]): Map[InternalName, MethodNameAndType] = {
+ classes.map(cls => (classBTypeFromSymbol(cls).internalName, methodNameAndType(cls, nme.CONSTRUCTOR)))(collection.breakOut)
+ }
+
+ // scala/runtime/BooleanRef -> MethodNameAndType(<init>,(Z)V)
+ lazy val srRefConstructors: Map[InternalName, MethodNameAndType] = nonOverloadedConstructors(allRefClasses)
+
+ private def specializedSubclasses(cls: Symbol): List[Symbol] = {
+ exitingSpecialize(cls.info) // the `transformInfo` method of specialization adds specialized subclasses to the `specializedClass` map
+ specializeTypes.specializedClass.collect({
+ case ((`cls`, _), specCls) => specCls
+ }).toList
+ }
+
+ // scala/Tuple3 -> MethodNameAndType(<init>,(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)V)
+ // scala/Tuple2$mcZC$sp -> MethodNameAndType(<init>,(ZC)V)
+ lazy val tupleClassConstructors: Map[InternalName, MethodNameAndType] = {
+ val tupleClassSymbols = TupleClass.seq ++ specializedSubclasses(TupleClass(1)) ++ specializedSubclasses(TupleClass(2))
+ nonOverloadedConstructors(tupleClassSymbols)
+ }
+
+ // enumeration of specialized classes is temporary, while we still use the java-defined JFunctionN.
+ // once we switch to ordinary FunctionN, we can use specializedSubclasses just like for tuples.
+ private def functionClasses(base: String): Set[Symbol] = {
+ def primitives = Iterator("B", "S", "I", "J", "C", "F", "D", "Z", "V")
+ def ijfd = Iterator("I", "J", "F", "D")
+ def ijfdzv = Iterator("I", "J", "F", "D", "Z", "V")
+ def ijd = Iterator("I", "J", "D")
+ val classNames = Set.empty[String] ++ {
+ (0 to 22).map(base + _)
+ } ++ {
+ primitives.map(base + "0$mc" + _ + "$sp") // Function0
+ } ++ {
+ // return type specializations appear first in the name string (alphabetical sorting)
+ for (r <- ijfdzv; a <- ijfd) yield base + "1$mc" + r + a + "$sp" // Function1
+ } ++ {
+ for (r <- ijfdzv; a <- ijd; b <- ijd) yield base + "2$mc" + r + a + b + "$sp" // Function2
+ }
+ classNames map getRequiredClass
+ }
+
+ lazy val srJFunctionRefs: Set[InternalName] = functionClasses("scala.runtime.java8.JFunction").map(classBTypeFromSymbol(_).internalName)
lazy val typeOfArrayOp: Map[Int, BType] = {
import scalaPrimitives._
Map(
- (List(ZARRAY_LENGTH, ZARRAY_GET, ZARRAY_SET) map (_ -> BOOL)) ++
+ (List(ZARRAY_LENGTH, ZARRAY_GET, ZARRAY_SET) map (_ -> BOOL)) ++
(List(BARRAY_LENGTH, BARRAY_GET, BARRAY_SET) map (_ -> BYTE)) ++
(List(SARRAY_LENGTH, SARRAY_GET, SARRAY_SET) map (_ -> SHORT)) ++
(List(CARRAY_LENGTH, CARRAY_GET, CARRAY_SET) map (_ -> CHAR)) ++
@@ -178,6 +247,22 @@ class CoreBTypes[BTFS <: BTypesFromSymbols[_ <: Global]](val bTypes: BTFS) {
(List(OARRAY_LENGTH, OARRAY_GET, OARRAY_SET) map (_ -> ObjectRef)) : _*
)
}
+
+ lazy val hashMethodSym: Symbol = getMember(ScalaRunTimeModule, nme.hash_)
+
+ // TODO @lry avoiding going through through missingHook for every line in the REPL: https://github.com/scala/scala/commit/8d962ed4ddd310cc784121c426a2e3f56a112540
+ lazy val AndroidParcelableInterface : Symbol = getClassIfDefined("android.os.Parcelable")
+ lazy val AndroidCreatorClass : Symbol = getClassIfDefined("android.os.Parcelable$Creator")
+
+ lazy val BeanInfoAttr: Symbol = requiredClass[scala.beans.BeanInfo]
+
+ /* The Object => String overload. */
+ lazy val String_valueOf: Symbol = {
+ getMember(StringModule, nme.valueOf) filter (sym => sym.info.paramTypes match {
+ case List(pt) => pt.typeSymbol == ObjectClass
+ case _ => false
+ })
+ }
}
/**
@@ -193,10 +278,14 @@ trait CoreBTypesProxyGlobalIndependent[BTS <: BTypes] {
import bTypes._
def boxedClasses: Set[ClassBType]
+ def boxedClassOfPrimitive: Map[PrimitiveBType, ClassBType]
- def ObjectRef : ClassBType
def srNothingRef : ClassBType
def srNullRef : ClassBType
+
+ def ObjectRef : ClassBType
+ def StringRef : ClassBType
+ def PredefRef : ClassBType
def jlCloneableRef : ClassBType
def jiSerializableRef : ClassBType
def juHashMapRef : ClassBType
@@ -205,6 +294,26 @@ trait CoreBTypesProxyGlobalIndependent[BTS <: BTypes] {
def jliMethodHandlesRef : ClassBType
def jliMethodHandlesLookupRef : ClassBType
def srLambdaDeserializerRef : ClassBType
+ def srBoxesRunTimeRef : ClassBType
+ def srBoxedUnitRef : ClassBType
+
+ def srBoxesRuntimeBoxToMethods : Map[BType, MethodNameAndType]
+ def srBoxesRuntimeUnboxToMethods : Map[BType, MethodNameAndType]
+
+ def javaBoxMethods : Map[InternalName, MethodNameAndType]
+ def javaUnboxMethods : Map[InternalName, MethodNameAndType]
+
+ def predefAutoBoxMethods : Map[String, MethodBType]
+ def predefAutoUnboxMethods : Map[String, MethodBType]
+
+ def srRefCreateMethods : Map[InternalName, MethodNameAndType]
+ def srRefZeroMethods : Map[InternalName, MethodNameAndType]
+
+ def primitiveBoxConstructors : Map[InternalName, MethodNameAndType]
+ def srRefConstructors : Map[InternalName, MethodNameAndType]
+ def tupleClassConstructors : Map[InternalName, MethodNameAndType]
+
+ def srJFunctionRefs: Set[InternalName]
}
/**
@@ -219,20 +328,21 @@ final class CoreBTypesProxy[BTFS <: BTypesFromSymbols[_ <: Global]](val bTypes:
_coreBTypes = coreBTypes.asInstanceOf[CoreBTypes[bTypes.type]]
}
- def primitiveTypeMap: Map[Symbol, PrimitiveBType] = _coreBTypes.primitiveTypeMap
+ def primitiveTypeToBType: Map[Symbol, PrimitiveBType] = _coreBTypes.primitiveTypeToBType
def boxedClasses: Set[ClassBType] = _coreBTypes.boxedClasses
-
def boxedClassOfPrimitive: Map[PrimitiveBType, ClassBType] = _coreBTypes.boxedClassOfPrimitive
def boxResultType: Map[Symbol, ClassBType] = _coreBTypes.boxResultType
def unboxResultType: Map[Symbol, PrimitiveBType] = _coreBTypes.unboxResultType
+ def srNothingRef : ClassBType = _coreBTypes.srNothingRef
+ def srNullRef : ClassBType = _coreBTypes.srNullRef
+
def ObjectRef : ClassBType = _coreBTypes.ObjectRef
def StringRef : ClassBType = _coreBTypes.StringRef
+ def PredefRef : ClassBType = _coreBTypes.PredefRef
def jlStringBuilderRef : ClassBType = _coreBTypes.jlStringBuilderRef
- def srNothingRef : ClassBType = _coreBTypes.srNothingRef
- def srNullRef : ClassBType = _coreBTypes.srNullRef
def jlThrowableRef : ClassBType = _coreBTypes.jlThrowableRef
def jlCloneableRef : ClassBType = _coreBTypes.jlCloneableRef
def jiSerializableRef : ClassBType = _coreBTypes.jiSerializableRef
@@ -248,6 +358,29 @@ final class CoreBTypesProxy[BTFS <: BTypesFromSymbols[_ <: Global]](val bTypes:
def jliLambdaMetafactoryRef : ClassBType = _coreBTypes.jliLambdaMetafactoryRef
def srLambdaDeserializerRef : ClassBType = _coreBTypes.srLambdaDeserializerRef
def srBoxesRunTimeRef : ClassBType = _coreBTypes.srBoxesRunTimeRef
+ def srBoxedUnitRef : ClassBType = _coreBTypes.srBoxedUnitRef
+
+ def srBoxesRuntimeBoxToMethods : Map[BType, MethodNameAndType] = _coreBTypes.srBoxesRuntimeBoxToMethods
+ def srBoxesRuntimeUnboxToMethods : Map[BType, MethodNameAndType] = _coreBTypes.srBoxesRuntimeUnboxToMethods
+
+ def javaBoxMethods : Map[InternalName, MethodNameAndType] = _coreBTypes.javaBoxMethods
+ def javaUnboxMethods : Map[InternalName, MethodNameAndType] = _coreBTypes.javaUnboxMethods
+
+ def predefAutoBoxMethods : Map[String, MethodBType] = _coreBTypes.predefAutoBoxMethods
+ def predefAutoUnboxMethods : Map[String, MethodBType] = _coreBTypes.predefAutoUnboxMethods
+
+ def srRefCreateMethods : Map[InternalName, MethodNameAndType] = _coreBTypes.srRefCreateMethods
+ def srRefZeroMethods : Map[InternalName, MethodNameAndType] = _coreBTypes.srRefZeroMethods
+
+ def primitiveBoxConstructors : Map[InternalName, MethodNameAndType] = _coreBTypes.primitiveBoxConstructors
+ def srRefConstructors : Map[InternalName, MethodNameAndType] = _coreBTypes.srRefConstructors
+ def tupleClassConstructors : Map[InternalName, MethodNameAndType] = _coreBTypes.tupleClassConstructors
+
+ def srJFunctionRefs: Set[InternalName] = _coreBTypes.srJFunctionRefs
+
+ def typeOfArrayOp: Map[Int, BType] = _coreBTypes.typeOfArrayOp
+
+ // Some symbols. These references should probably be moved to Definitions.
def hashMethodSym: Symbol = _coreBTypes.hashMethodSym
@@ -257,9 +390,4 @@ final class CoreBTypesProxy[BTFS <: BTypesFromSymbols[_ <: Global]](val bTypes:
def BeanInfoAttr: Symbol = _coreBTypes.BeanInfoAttr
def String_valueOf: Symbol = _coreBTypes.String_valueOf
-
- def asmBoxTo : Map[BType, MethodNameAndType] = _coreBTypes.asmBoxTo
- def asmUnboxTo: Map[BType, MethodNameAndType] = _coreBTypes.asmUnboxTo
-
- def typeOfArrayOp: Map[Int, BType] = _coreBTypes.typeOfArrayOp
}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/GenBCode.scala b/src/compiler/scala/tools/nsc/backend/jvm/GenBCode.scala
index 35e4db33bc..b0ec37db97 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/GenBCode.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/GenBCode.scala
@@ -237,7 +237,7 @@ abstract class GenBCode extends BCodeSyncAndTry {
}
if (settings.YoptInlinerEnabled)
bTypes.inliner.runInliner()
- if (settings.YoptClosureElimination)
+ if (settings.YoptClosureInvocations)
closureOptimizer.rewriteClosureApplyInvocations()
}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/analysis/AliasingFrame.scala b/src/compiler/scala/tools/nsc/backend/jvm/analysis/AliasingFrame.scala
index 596ee55290..086946e4e3 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/analysis/AliasingFrame.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/analysis/AliasingFrame.scala
@@ -28,6 +28,8 @@ class AliasingFrame[V <: Value](nLocals: Int, nStack: Int) extends Frame[V](nLoc
init(src)
}
+ override def toString: String = super.toString + " - " + aliases.toList.filter(s => s != null && s.size > 1).map(_.toString).distinct.mkString(",")
+
/**
* For every value the set of values that are aliases of it.
*
@@ -99,7 +101,7 @@ class AliasingFrame[V <: Value](nLocals: Int, nStack: Int) extends Frame[V](nLoc
super.execute(insn, interpreter)
(insn.getOpcode: @switch) match {
- case ALOAD =>
+ case ILOAD | LLOAD | FLOAD | DLOAD | ALOAD =>
newAlias(assignee = stackTop, source = insn.asInstanceOf[VarInsnNode].`var`)
case DUP =>
@@ -212,23 +214,26 @@ class AliasingFrame[V <: Value](nLocals: Int, nStack: Int) extends Frame[V](nLoc
}
case opcode =>
- if (opcode == ASTORE) {
- // not a separate case: we re-use the code below that removes the consumed stack value from alias sets
- val stackTopBefore = stackTop - produced + consumed
- val local = insn.asInstanceOf[VarInsnNode].`var`
- newAlias(assignee = local, source = stackTopBefore)
- // if the value written is size 2, it overwrites the subsequent slot, which is then no
- // longer an alias of anything. see the corresponding case in `Frame.execute`.
- if (getLocal(local).getSize == 2)
- removeAlias(local + 1)
-
- // if the value at the preceding index is size 2, it is no longer valid, so we remove its
- // aliasing. see corresponding case in `Frame.execute`
- if (local > 0) {
- val precedingValue = getLocal(local - 1)
- if (precedingValue != null && precedingValue.getSize == 2)
- removeAlias(local - 1)
- }
+ (opcode: @switch) match {
+ case ISTORE | LSTORE | FSTORE | DSTORE | ASTORE =>
+ // not a separate case: we re-use the code below that removes the consumed stack value from alias sets
+ val stackTopBefore = stackTop - produced + consumed
+ val local = insn.asInstanceOf[VarInsnNode].`var`
+ newAlias(assignee = local, source = stackTopBefore)
+ // if the value written is size 2, it overwrites the subsequent slot, which is then no
+ // longer an alias of anything. see the corresponding case in `Frame.execute`.
+ if (getLocal(local).getSize == 2)
+ removeAlias(local + 1)
+
+ // if the value at the preceding index is size 2, it is no longer valid, so we remove its
+ // aliasing. see corresponding case in `Frame.execute`
+ if (local > 0) {
+ val precedingValue = getLocal(local - 1)
+ if (precedingValue != null && precedingValue.getSize == 2)
+ removeAlias(local - 1)
+ }
+
+ case _ =>
}
// Remove consumed stack values from aliasing sets.
@@ -296,18 +301,25 @@ class AliasingFrame[V <: Value](nLocals: Int, nStack: Int) extends Frame[V](nLoc
if (!knownOk(i)) {
val thisAliases = this.aliases(i)
val otherAliases = aliasingOther.aliases(i)
- if (thisAliases != null && otherAliases != null) {
- // The iterator yields elements that are in `thisAliases` but not in `otherAliases`.
- // As a side-effect, for every index `i` that is in both alias sets, the iterator sets
- // `knownOk(i) = true`: the alias sets for these values don't need to be merged again.
- val thisNotOtherIt = AliasSet.andNotIterator(thisAliases, otherAliases, knownOk)
- if (thisNotOtherIt.hasNext) {
- aliasesChanged = true
- val newSet = AliasSet.empty
- while (thisNotOtherIt.hasNext) {
- val next = thisNotOtherIt.next()
- newSet += next
- setAliasSet(next, newSet)
+ if (thisAliases != null) {
+ if (otherAliases == null) {
+ if (thisAliases.size > 1) {
+ aliasesChanged = true
+ removeAlias(i)
+ }
+ } else {
+ // The iterator yields elements that are in `thisAliases` but not in `otherAliases`.
+ // As a side-effect, for every index `i` that is in both alias sets, the iterator sets
+ // `knownOk(i) = true`: the alias sets for these values don't need to be merged again.
+ val thisNotOtherIt = AliasSet.andNotIterator(thisAliases, otherAliases, knownOk)
+ if (thisNotOtherIt.hasNext) {
+ aliasesChanged = true
+ val newSet = AliasSet.empty
+ while (thisNotOtherIt.hasNext) {
+ val next = thisNotOtherIt.next()
+ newSet += next
+ setAliasSet(next, newSet)
+ }
}
}
}
@@ -413,7 +425,7 @@ abstract class IntIterator extends Iterator[Int] {
class AliasSet(var set: Object /*SmallBitSet | Array[Long]*/, var size: Int) {
import AliasSet._
- override def toString: String = set.toString
+ override def toString: String = iterator.toSet.mkString("<", ",", ">")
/**
* An iterator for the elements of this bit set. Note that only one iterator can be used at a
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/analysis/BackendUtils.scala b/src/compiler/scala/tools/nsc/backend/jvm/analysis/BackendUtils.scala
index b02bc7c96e..e8630c65d9 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/analysis/BackendUtils.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/analysis/BackendUtils.scala
@@ -3,10 +3,13 @@ package backend.jvm
package analysis
import scala.annotation.switch
-import scala.tools.asm.{Opcodes, Handle, Type, Label}
+import scala.tools.asm.{Handle, Type, Label}
+import scala.tools.asm.Opcodes._
import scala.tools.asm.tree._
import scala.tools.asm.tree.analysis.{Frame, BasicInterpreter, Analyzer, Value}
+import GenBCode._
import scala.tools.nsc.backend.jvm.BTypes._
+import scala.tools.nsc.backend.jvm.opt.BytecodeUtils
import scala.tools.nsc.backend.jvm.opt.BytecodeUtils._
import java.lang.invoke.LambdaMetafactory
import scala.collection.mutable
@@ -23,6 +26,8 @@ import scala.collection.convert.decorateAsScala._
*/
class BackendUtils[BT <: BTypes](val btypes: BT) {
import btypes._
+ import btypes.coreBTypes._
+ import callGraph.ClosureInstantiation
/**
* A wrapper to make ASM's Analyzer a bit easier to use.
@@ -47,6 +52,7 @@ class BackendUtils[BT <: BTypes](val btypes: BT) {
private val basicValueSizeLimit = 9000l * 1000l * 1000l
private val sourceValueSizeLimit = 8000l * 950l * 950l
+ def sizeOKForAliasing(method: MethodNode): Boolean = size(method) < nullnessSizeLimit
def sizeOKForNullness(method: MethodNode): Boolean = size(method) < nullnessSizeLimit
def sizeOKForBasicValue(method: MethodNode): Boolean = size(method) < basicValueSizeLimit
def sizeOKForSourceValue(method: MethodNode): Boolean = size(method) < sourceValueSizeLimit
@@ -54,6 +60,8 @@ class BackendUtils[BT <: BTypes](val btypes: BT) {
class ProdConsAnalyzer(val methodNode: MethodNode, classInternalName: InternalName) extends AsmAnalyzer(methodNode, classInternalName, new Analyzer(new InitialProducerSourceInterpreter)) with ProdConsAnalyzerImpl
+ class NonLubbingTypeFlowAnalyzer(val methodNode: MethodNode, classInternalName: InternalName) extends AsmAnalyzer(methodNode, classInternalName, new Analyzer(new NonLubbingTypeFlowInterpreter))
+
/**
* Add:
* private static java.util.Map $deserializeLambdaCache$ = null
@@ -68,8 +76,6 @@ class BackendUtils[BT <: BTypes](val btypes: BT) {
*/
def addLambdaDeserialize(classNode: ClassNode): Unit = {
val cw = classNode
- import scala.tools.asm.Opcodes._
- import btypes.coreBTypes._
// Make sure to reference the ClassBTypes of all types that are used in the code generated
// here (e.g. java/util/Map) are initialized. Initializing a ClassBType adds it to the
@@ -140,6 +146,137 @@ class BackendUtils[BT <: BTypes](val btypes: BT) {
(result, map, hasSerializableClosureInstantiation)
}
+ def getBoxedUnit: FieldInsnNode = new FieldInsnNode(GETSTATIC, srBoxedUnitRef.internalName, "UNIT", srBoxedUnitRef.descriptor)
+
+ private val anonfunAdaptedName = """.*\$anonfun\$\d+\$adapted""".r
+ def hasAdaptedImplMethod(closureInit: ClosureInstantiation): Boolean = {
+ isrJFunctionType(Type.getReturnType(closureInit.lambdaMetaFactoryCall.indy.desc).getInternalName) &&
+ anonfunAdaptedName.pattern.matcher(closureInit.lambdaMetaFactoryCall.implMethod.getName).matches
+ }
+
+ private def primitiveAsmTypeToBType(primitiveType: Type): PrimitiveBType = (primitiveType.getSort: @switch) match {
+ case Type.BOOLEAN => BOOL
+ case Type.BYTE => BYTE
+ case Type.CHAR => CHAR
+ case Type.SHORT => SHORT
+ case Type.INT => INT
+ case Type.LONG => LONG
+ case Type.FLOAT => FLOAT
+ case Type.DOUBLE => DOUBLE
+ case _ => null
+ }
+
+ def isScalaBox(insn: MethodInsnNode): Boolean = {
+ insn.owner == srBoxesRunTimeRef.internalName && {
+ val args = Type.getArgumentTypes(insn.desc)
+ args.length == 1 && (srBoxesRuntimeBoxToMethods.get(primitiveAsmTypeToBType(args(0))) match {
+ case Some(MethodNameAndType(name, tp)) => name == insn.name && tp.descriptor == insn.desc
+ case _ => false
+ })
+ }
+ }
+
+ def getScalaBox(primitiveType: Type): MethodInsnNode = {
+ val bType = primitiveAsmTypeToBType(primitiveType)
+ val MethodNameAndType(name, methodBType) = srBoxesRuntimeBoxToMethods(bType)
+ new MethodInsnNode(INVOKESTATIC, srBoxesRunTimeRef.internalName, name, methodBType.descriptor, /*itf =*/ false)
+ }
+
+ def isScalaUnbox(insn: MethodInsnNode): Boolean = {
+ insn.owner == srBoxesRunTimeRef.internalName && (srBoxesRuntimeUnboxToMethods.get(primitiveAsmTypeToBType(Type.getReturnType(insn.desc))) match {
+ case Some(MethodNameAndType(name, tp)) => name == insn.name && tp.descriptor == insn.desc
+ case _ => false
+ })
+ }
+
+ def getScalaUnbox(primitiveType: Type): MethodInsnNode = {
+ val bType = primitiveAsmTypeToBType(primitiveType)
+ val MethodNameAndType(name, methodBType) = srBoxesRuntimeUnboxToMethods(bType)
+ new MethodInsnNode(INVOKESTATIC, srBoxesRunTimeRef.internalName, name, methodBType.descriptor, /*itf =*/ false)
+ }
+
+ private def calleeInMap(insn: MethodInsnNode, map: Map[InternalName, MethodNameAndType]): Boolean = map.get(insn.owner) match {
+ case Some(MethodNameAndType(name, tp)) => insn.name == name && insn.desc == tp.descriptor
+ case _ => false
+ }
+
+ def isJavaBox(insn: MethodInsnNode): Boolean = calleeInMap(insn, javaBoxMethods)
+ def isJavaUnbox(insn: MethodInsnNode): Boolean = calleeInMap(insn, javaUnboxMethods)
+
+ def isPredefAutoBox(insn: MethodInsnNode): Boolean = {
+ insn.owner == PredefRef.internalName && (predefAutoBoxMethods.get(insn.name) match {
+ case Some(tp) => insn.desc == tp.descriptor
+ case _ => false
+ })
+ }
+
+ def isPredefAutoUnbox(insn: MethodInsnNode): Boolean = {
+ insn.owner == PredefRef.internalName && (predefAutoUnboxMethods.get(insn.name) match {
+ case Some(tp) => insn.desc == tp.descriptor
+ case _ => false
+ })
+ }
+
+ def isRefCreate(insn: MethodInsnNode): Boolean = calleeInMap(insn, srRefCreateMethods)
+ def isRefZero(insn: MethodInsnNode): Boolean = calleeInMap(insn, srRefZeroMethods)
+
+ def runtimeRefClassBoxedType(refClass: InternalName): Type = Type.getArgumentTypes(srRefCreateMethods(refClass).methodType.descriptor)(0)
+
+ def isSideEffectFreeCall(insn: MethodInsnNode): Boolean = {
+ isScalaBox(insn) || isScalaUnbox(insn) ||
+ isJavaBox(insn) || // not java unbox, it may NPE
+ isSideEffectFreeConstructorCall(insn)
+ }
+
+ def isNonNullMethodInvocation(mi: MethodInsnNode): Boolean = {
+ isJavaBox(mi) || isScalaBox(mi) || isPredefAutoBox(mi) || isRefCreate(mi) || isRefZero(mi)
+ }
+
+ def isModuleLoad(insn: AbstractInsnNode, moduleName: InternalName): Boolean = insn match {
+ case fi: FieldInsnNode => fi.getOpcode == GETSTATIC && fi.owner == moduleName && fi.name == "MODULE$" && fi.desc == ("L" + moduleName + ";")
+ case _ => false
+ }
+
+ def isPredefLoad(insn: AbstractInsnNode) = isModuleLoad(insn, PredefRef.internalName)
+
+ def isPrimitiveBoxConstructor(insn: MethodInsnNode): Boolean = calleeInMap(insn, primitiveBoxConstructors)
+ def isRuntimeRefConstructor(insn: MethodInsnNode): Boolean = calleeInMap(insn, srRefConstructors)
+ def isTupleConstructor(insn: MethodInsnNode): Boolean = calleeInMap(insn, tupleClassConstructors)
+
+ // unused objects created by these constructors are eliminated by pushPop
+ private lazy val sideEffectFreeConstructors: Set[(String, String)] = {
+ val ownerDesc = (p: (InternalName, MethodNameAndType)) => (p._1, p._2.methodType.descriptor)
+ primitiveBoxConstructors.map(ownerDesc).toSet ++
+ srRefConstructors.map(ownerDesc) ++
+ tupleClassConstructors.map(ownerDesc) ++ Set(
+ (ObjectRef.internalName, MethodBType(Nil, UNIT).descriptor),
+ (StringRef.internalName, MethodBType(Nil, UNIT).descriptor),
+ (StringRef.internalName, MethodBType(List(StringRef), UNIT).descriptor),
+ (StringRef.internalName, MethodBType(List(ArrayBType(CHAR)), UNIT).descriptor))
+ }
+
+ def isSideEffectFreeConstructorCall(insn: MethodInsnNode): Boolean = {
+ insn.name == INSTANCE_CONSTRUCTOR_NAME && sideEffectFreeConstructors((insn.owner, insn.desc))
+ }
+
+ private lazy val classesOfSideEffectFreeConstructors = sideEffectFreeConstructors.map(_._1)
+
+ def isNewForSideEffectFreeConstructor(insn: AbstractInsnNode) = {
+ insn.getOpcode == NEW && {
+ val ti = insn.asInstanceOf[TypeInsnNode]
+ classesOfSideEffectFreeConstructors.contains(ti.desc)
+ }
+ }
+
+ def isBoxedUnit(insn: AbstractInsnNode) = {
+ insn.getOpcode == GETSTATIC && {
+ val fi = insn.asInstanceOf[FieldInsnNode]
+ fi.owner == srBoxedUnitRef.internalName && fi.name == "UNIT" && fi.desc == srBoxedUnitRef.descriptor
+ }
+ }
+
+ def isrJFunctionType(internalName: InternalName): Boolean = srJFunctionRefs(internalName)
+
/**
* Visit the class node and collect all referenced nested classes.
*/
@@ -274,15 +411,13 @@ class BackendUtils[BT <: BTypes](val btypes: BT) {
* Analyzer: its implementation also skips over unreachable code in the same way.
*/
def computeMaxLocalsMaxStack(method: MethodNode): Unit = {
- import Opcodes._
-
if (isAbstractMethod(method) || isNativeMethod(method)) {
method.maxLocals = 0
method.maxStack = 0
} else if (!maxLocalsMaxStackComputed(method)) {
val size = method.instructions.size
- var maxLocals = (Type.getArgumentsAndReturnSizes(method.desc) >> 2) - (if (isStaticMethod(method)) 1 else 0)
+ var maxLocals = parametersSize(method)
var maxStack = 0
// queue of instruction indices where analysis should start
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/analysis/InstructionStackEffect.scala b/src/compiler/scala/tools/nsc/backend/jvm/analysis/InstructionStackEffect.scala
index 4e81018451..dd19ad594f 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/analysis/InstructionStackEffect.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/analysis/InstructionStackEffect.scala
@@ -27,7 +27,7 @@ object InstructionStackEffect {
* This method requires the `frame` to be in the state **before** executing / interpreting the
* `insn`.
*/
- def forAsmAnalysis[V <: Value](insn: AbstractInsnNode, frame: Frame[V]): Int = computeConsProd(insn, frame = frame)
+ def forAsmAnalysis[V <: Value](insn: AbstractInsnNode, frame: Frame[V]): Int = computeConsProd(insn, forClassfile = false, conservative = false, frame = frame)
/**
* Returns the maximal possible growth of the stack when executing `insn`. The returned value
@@ -41,7 +41,7 @@ object InstructionStackEffect {
* allows looking up the sizes of values on the stack.
*/
def maxStackGrowth(insn: AbstractInsnNode): Int = {
- val prodCons = computeConsProd(insn, conservative = true)
+ val prodCons = computeConsProd(insn, forClassfile = false, conservative = true)
prod(prodCons) - cons(prodCons)
}
@@ -50,7 +50,7 @@ object InstructionStackEffect {
* (the `cons` / `prod` extract individual values). The returned values are correct for writing
* into a classfile (see doc on the `analysis` package object).
*/
- def forClassfile(insn: AbstractInsnNode): Int = computeConsProd(insn, forClassfile = true)
+ def forClassfile(insn: AbstractInsnNode): Int = computeConsProd(insn, forClassfile = true, conservative = false)
private def invokeConsProd(methodDesc: String, insn: AbstractInsnNode, forClassfile: Boolean): Int = {
val consumesReceiver = insn.getOpcode != INVOKESTATIC && insn.getOpcode != INVOKEDYNAMIC
@@ -71,7 +71,7 @@ object InstructionStackEffect {
d == "J" || d == "D"
}
- private def computeConsProd[V <: Value](insn: AbstractInsnNode, forClassfile: Boolean = false, conservative: Boolean = false, frame: Frame[V] = null): Int = {
+ private def computeConsProd[V <: Value](insn: AbstractInsnNode, forClassfile: Boolean, conservative: Boolean, frame: Frame[V] = null): Int = {
// not used if `forClassfile || conservative`: in these cases, `frame` is allowed to be `null`
def peekStack(n: Int): V = frame.peekStack(n)
@@ -335,5 +335,4 @@ object InstructionStackEffect {
IFNONNULL => t(1, 0)
}
}
-
}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/analysis/NullnessAnalyzer.scala b/src/compiler/scala/tools/nsc/backend/jvm/analysis/NullnessAnalyzer.scala
index f9ac12eb4d..30e73f8ac2 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/analysis/NullnessAnalyzer.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/analysis/NullnessAnalyzer.scala
@@ -63,7 +63,7 @@ object NullnessValue {
def unknown(insn: AbstractInsnNode) = if (BytecodeUtils.instructionResultSize(insn) == 2) UnknownValue2 else UnknownValue1
}
-final class NullnessInterpreter extends Interpreter[NullnessValue](Opcodes.ASM5) {
+final class NullnessInterpreter(bTypes: BTypes) extends Interpreter[NullnessValue](Opcodes.ASM5) {
def newValue(tp: Type): NullnessValue = {
// ASM loves giving semantics to null. The behavior here is the same as in SourceInterpreter,
// which is provided by the framework.
@@ -113,13 +113,13 @@ final class NullnessInterpreter extends Interpreter[NullnessValue](Opcodes.ASM5)
def ternaryOperation(insn: AbstractInsnNode, value1: NullnessValue, value2: NullnessValue, value3: NullnessValue): NullnessValue = UnknownValue1
- def naryOperation(insn: AbstractInsnNode, values: util.List[_ <: NullnessValue]): NullnessValue = (insn.getOpcode: @switch) match {
- case Opcodes.MULTIANEWARRAY =>
+ def naryOperation(insn: AbstractInsnNode, values: util.List[_ <: NullnessValue]): NullnessValue = insn match {
+ case mi: MethodInsnNode if bTypes.backendUtils.isNonNullMethodInvocation(mi) =>
NotNullValue
case _ =>
- // TODO: use a list of methods that are known to return non-null values
- NullnessValue.unknown(insn)
+ if (insn.getOpcode == Opcodes.MULTIANEWARRAY) NotNullValue
+ else NullnessValue.unknown(insn)
}
def returnOperation(insn: AbstractInsnNode, value: NullnessValue, expected: NullnessValue): Unit = ()
@@ -197,7 +197,7 @@ class NullnessFrame(nLocals: Int, nStack: Int) extends AliasingFrame[NullnessVal
* This class is required to override the `newFrame` methods, which makes makes sure the analyzer
* uses NullnessFrames.
*/
-class NullnessAnalyzer extends Analyzer[NullnessValue](new NullnessInterpreter) {
+class NullnessAnalyzer(bTypes: BTypes) extends Analyzer[NullnessValue](new NullnessInterpreter(bTypes)) {
override def newFrame(nLocals: Int, nStack: Int): NullnessFrame = new NullnessFrame(nLocals, nStack)
override def newFrame(src: Frame[_ <: NullnessValue]): NullnessFrame = new NullnessFrame(src)
}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/analysis/ProdConsAnalyzerImpl.scala b/src/compiler/scala/tools/nsc/backend/jvm/analysis/ProdConsAnalyzerImpl.scala
index c933341492..894799bf36 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/analysis/ProdConsAnalyzerImpl.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/analysis/ProdConsAnalyzerImpl.scala
@@ -94,8 +94,13 @@ trait ProdConsAnalyzerImpl {
inputValues(insn).iterator.flatMap(v => v.insns.asScala).toSet
}
- def consumersOfOutputsFrom(insn: AbstractInsnNode): Set[AbstractInsnNode] =
- _consumersOfOutputsFrom.get(insn).map(v => v.indices.flatMap(v.apply)(collection.breakOut): Set[AbstractInsnNode]).getOrElse(Set.empty)
+ def consumersOfOutputsFrom(insn: AbstractInsnNode): Set[AbstractInsnNode] = insn match {
+ case _: UninitializedLocalProducer => Set.empty
+ case ParameterProducer(local) => consumersOfValueAt(methodNode.instructions.getFirst, local)
+ case ExceptionProducer(handlerLabel, handlerFrame) => consumersOfValueAt(handlerLabel, handlerFrame.stackTop)
+ case _ =>
+ _consumersOfOutputsFrom.get(insn).map(v => v.indices.flatMap(v.apply)(collection.breakOut): Set[AbstractInsnNode]).getOrElse(Set.empty)
+ }
/**
* Returns the potential initial producer instructions of a value in the frame of `insn`.
@@ -151,13 +156,19 @@ trait ProdConsAnalyzerImpl {
inputValueSlots(insn).flatMap(slot => initialProducersForValueAt(insn, slot)).toSet
}
- def ultimateConsumersOfOutputsFrom(insn: AbstractInsnNode): Set[AbstractInsnNode] = {
- lazy val next = insn.getNext
- outputValueSlots(insn).flatMap(slot => ultimateConsumersOfValueAt(next, slot)).toSet
+ def ultimateConsumersOfOutputsFrom(insn: AbstractInsnNode): Set[AbstractInsnNode] = insn match {
+ case _: UninitializedLocalProducer => Set.empty
+ case _ =>
+ lazy val next = insn match {
+ case _: ParameterProducer => methodNode.instructions.getFirst
+ case ExceptionProducer(handlerLabel, _) => handlerLabel
+ case _ => insn.getNext
+ }
+ outputValueSlots(insn).flatMap(slot => ultimateConsumersOfValueAt(next, slot)).toSet
}
private def isCopyOperation(insn: AbstractInsnNode): Boolean = {
- isVarInstruction(insn) || {
+ isLoadOrStore(insn) || {
(insn.getOpcode: @switch) match {
case DUP | DUP_X1 | DUP_X2 | DUP2 | DUP2_X1 | DUP2_X2 | SWAP | CHECKCAST => true
case _ => false
@@ -378,7 +389,7 @@ trait ProdConsAnalyzerImpl {
private def outputValueSlots(insn: AbstractInsnNode): Seq[Int] = insn match {
case ParameterProducer(local) => Seq(local)
case UninitializedLocalProducer(local) => Seq(local)
- case ExceptionProducer(frame) => Seq(frame.stackTop)
+ case ExceptionProducer(_, frame) => Seq(frame.stackTop)
case _ =>
if (insn.getOpcode == -1) return Seq.empty
if (isStore(insn)) {
@@ -443,9 +454,9 @@ abstract class InitialProducer extends AbstractInsnNode(-1) {
override def accept(cv: MethodVisitor): Unit = throw new UnsupportedOperationException
}
-case class ParameterProducer(local: Int) extends InitialProducer
-case class UninitializedLocalProducer(local: Int) extends InitialProducer
-case class ExceptionProducer[V <: Value](handlerFrame: Frame[V]) extends InitialProducer
+case class ParameterProducer(local: Int) extends InitialProducer
+case class UninitializedLocalProducer(local: Int) extends InitialProducer
+case class ExceptionProducer[V <: Value](handlerLabel: LabelNode, handlerFrame: Frame[V]) extends InitialProducer
class InitialProducerSourceInterpreter extends SourceInterpreter {
override def newParameterValue(isInstanceMethod: Boolean, local: Int, tp: Type): SourceValue = {
@@ -457,6 +468,6 @@ class InitialProducerSourceInterpreter extends SourceInterpreter {
}
override def newExceptionValue(tryCatchBlockNode: TryCatchBlockNode, handlerFrame: Frame[_ <: Value], exceptionType: Type): SourceValue = {
- new SourceValue(1, ExceptionProducer(handlerFrame))
+ new SourceValue(1, ExceptionProducer(tryCatchBlockNode.handler, handlerFrame))
}
}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/analysis/TypeFlowInterpreter.scala b/src/compiler/scala/tools/nsc/backend/jvm/analysis/TypeFlowInterpreter.scala
new file mode 100644
index 0000000000..bcf9978c16
--- /dev/null
+++ b/src/compiler/scala/tools/nsc/backend/jvm/analysis/TypeFlowInterpreter.scala
@@ -0,0 +1,36 @@
+package scala.tools.nsc
+package backend.jvm
+package analysis
+
+import scala.tools.asm.Type
+import scala.tools.asm.tree.analysis.{BasicValue, BasicInterpreter}
+
+abstract class TypeFlowInterpreter extends BasicInterpreter {
+ override def newValue(tp: Type) = {
+ if (tp == null) super.newValue(tp)
+ else if (isRef(tp)) new BasicValue(tp)
+ else super.newValue(tp)
+ }
+
+ def isRef(tp: Type) = tp != null && (tp.getSort match {
+ case Type.OBJECT | Type.ARRAY => true
+ case _ => false
+ })
+
+ def refLub(a: BasicValue, b: BasicValue): BasicValue
+
+ override def merge(a: BasicValue, b: BasicValue): BasicValue = {
+ if (a == b) a
+ else if (isRef(a.getType) && isRef(b.getType)) refLub(a, b)
+ else BasicValue.UNINITIALIZED_VALUE
+ }
+}
+
+/**
+ * A [[TypeFlowInterpreter]] which collapses LUBs of non-equal reference types to Object.
+ * This could be made more precise by looking up ClassBTypes for the two reference types and using
+ * the `jvmWiseLUB` method.
+ */
+class NonLubbingTypeFlowInterpreter extends TypeFlowInterpreter {
+ def refLub(a: BasicValue, b: BasicValue): BasicValue = BasicValue.REFERENCE_VALUE // java/lang/Object
+}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/opt/BoxUnbox.scala b/src/compiler/scala/tools/nsc/backend/jvm/opt/BoxUnbox.scala
new file mode 100644
index 0000000000..4ecaf17a10
--- /dev/null
+++ b/src/compiler/scala/tools/nsc/backend/jvm/opt/BoxUnbox.scala
@@ -0,0 +1,907 @@
+/* NSC -- new Scala compiler
+ * Copyright 2005-2014 LAMP/EPFL
+ * @author Martin Odersky
+ */
+
+package scala.tools.nsc
+package backend.jvm
+package opt
+
+import scala.annotation.tailrec
+import scala.tools.asm.Type
+import scala.tools.asm.Opcodes._
+import scala.tools.asm.tree._
+import scala.collection.mutable
+import scala.collection.convert.decorateAsScala._
+import scala.tools.nsc.backend.jvm.BTypes.InternalName
+import scala.tools.nsc.backend.jvm.opt.BytecodeUtils._
+
+class BoxUnbox[BT <: BTypes](val btypes: BT) {
+ import btypes._
+ import backendUtils._
+
+ /**
+ * Eliminate box-unbox paris within `method`. Such appear commonly after closure elimination:
+ *
+ * def t2 = {
+ * val f = (b: Byte, i: Int) => i + b // no specialized variant for this function type
+ * f(1, 2) // invokes the generic `apply`
+ * }
+ *
+ * The closure optimizer re-writes the `apply` call to `anonfun$adapted` method, which takes
+ * boxed arguments. After inlining this method, we get
+ *
+ * def t2 = {
+ * val a = boxByte(1)
+ * val b = boxInteger(2)
+ * val r = boxInteger(anonfun$(unboxByte(a), unboxInt(b)))
+ * unboxInt(r)
+ * }
+ *
+ * All these box/unbox operations are eliminated here.
+ *
+ * Implementation: for every box operation, find all consumers of the boxed value, then all
+ * producers of these consumers, repeat until reaching a fixpoint. If this results in a set of
+ * boxing and unboxing operations, the box can be eliminated.
+ *
+ * There are two methods for eliminating boxes:
+ * M1: If there is a single boxing operation, the boxed value(s) are stored into new local
+ * variable(s) at the allocation site. Accesses to the boxed value are re-written to reads /
+ * writes of these locals. Advantages:
+ * - supports mutable boxes (IntRef and friends)
+ * - supports eliminating unbox operations even if the box object needs to be created
+ * because it escapes (see E4)
+ * - works by keeping the unboxed value(s) in locals AND the box in its original form
+ * - only for immutable boxes: modifications to the escaped box cannot be applied to
+ * the local variable(s) holding the boxed value(s).
+ * Restriction:
+ * - does not work if there are multiple boxing operations (see E1)
+ *
+ * M2: If there are multiple boxing operations, the boxing operations are simply eliminated,
+ * leaving the unboxed value(s) on the stack. Store / load operations that previously
+ * acted on the box are adapted to handle the boxed type(s). If the box contains multiple
+ * values (or a size-2 value, which doesn't fit into locals that were used for the box),
+ * new local slots are used for store / load operations. Restrictions:
+ * - does not support re-writing writes to (mutable) boxes (see E2)
+ * - does not support re-writing reads of boxes that also escape (see E3)
+ *
+ *
+ * E1: M1 only works if there's a single boxing operation.
+ * def e1(b: Boolean) = {
+ * val i: Integer = box(10) // 10 is stored into a new local, box operation and i removed
+ * val j: Integer = box(20) // 20 is stored into a new local, box operation adn j removed
+ * val r = if (b) i else j // loads and stores of the box are eliminated, r no longer exists
+ * unbox(r) // cannot rewrite: we don't know which local to load
+ * }
+ * Note: the example has no write and the box does not escape, so M2 works here.
+ *
+ * E2: mutable boxes with multiple boxing operations cannot be eliminated.
+ * M1: see E1
+ * M2: cannot replace an `IntRef` on the stack by an `Int` value on the stack, an Int on the
+ * stack cannot be modified.
+ *
+ * def e2(b: Boolean) = {
+ * val r1 = new IntRef(0)
+ * val r2 = new IntRef(1)
+ * val modRef = if (b) r1 else r2
+ * modRef.elem += 10 // M1: cannot rewrite: which local to write? same as E1.
+ * (if (b) r1 else r2).elem += 10 // M2: cannot change an Int on the stack
+ * (r1.elem, r2.elem)
+ * }
+ *
+ *
+ * E3: escaping boxes with multiple boxing operations cannot be rewritten.
+ * M1: see E1.
+ * M2: at *, instead of an Integer, an Int is on the stack, but the escape method expects an
+ * Integer. We cannot just create a box at this point: if there are multiple escapes (or
+ * an escape is executed more than once), the difference could be observed (reference
+ * equality).
+ *
+ * def e3(b: Boolean) = {
+ * val i: Integer = box(1)
+ * val j: Integer = box(2)
+ * escape(if (b) i else j) // *
+ * unbox(if (b) i else j)
+ * }
+ *
+ *
+ * E4: M1 supports rewriting unbox operations of immutable boxes that escape
+ * def e4 = {
+ * val i: Integer = box(10) // 10 is stored into a new local, loaded as argument for the box call
+ * escape(i) // not changed, still loads the local i holding the box
+ * unbox(i) // rewritten to a pop (of the box) and a load of the local variable
+ * }
+ *
+ *
+ * E4 seems to be a bit of a corner case, but it's necessary to unblock box eliminations with
+ * mutual dependencies. Example:
+ *
+ * val ((a, b), c) = ((1, 2), 3)
+ * a + b + c
+ *
+ * generates (after a few cleanups) the following (pseudo-bytecode, ignoring primitive boxing, specialization):
+ *
+ * load 1, load 2, new Tuple2 // stack: Tuple2
+ * load 3 // stack: Tuple2; Int
+ * val local1 = new Tuple2
+ * val local2 = local1._1.asInstanceOf[Tuple2]
+ * val c = local1._2.asInstanceOf[Int]
+ * if (local2 == null) throw new MatchError(local1)
+ * val a = local2._1
+ * val b = local2._2
+ * a + b + c
+ *
+ * In order to eliminate the tuples, we first need to eliminate the outer tuple (stored in local1)
+ * - single box operation, so we use M1
+ * - there are three consumers of the outer tuple: `local1._1`, `local1._2` and
+ * `new MatchError(local1)`. in the last one, the tuple escapes.
+ * - note that the MatchError creation is dead code: local2 is never null. However, our nullness
+ * analysis cannot identify this: it does not track nullness through tuple stores and loads.
+ * - if we re-write the non-escaping consumers of the outer tuple, but keep the tuple allocation
+ * and the escaping consumer, we get the follwoing:
+ *
+ * load 1, load 2
+ * val newLocal1 = new Tuple2; load newLocal1 // stack: Tuple2
+ * val newLocal2 = 3; load newLocal2 // stack: Tuple2; Int
+ * val local1 = new Tuple2
+ * val local2 = newLocal1
+ * val c = newLocal2
+ * if (local2 == null) throw new MatchError(local1)
+ * val a = local2._1
+ * val b = local2._2
+ * a + b + c
+ *
+ * At this point, the nullness analysis sees that `local2 == null` is false, dead code elimination
+ * removes the `throw new MatchError(local1)`. After eliminating the allocation of the outer tuple,
+ * the inner tuple (stored in newLocal1) can also be eliminated.
+ *
+ *
+ * Special case for tuples wrt specialization: a tuple getter may box or unbox the value stored
+ * in the tuple: calling `_1` on a `Tuple2$mcII$sp` boxes the primitive Int stored in the tuple.
+ * Similarly, calling `_1$mcI$sp` on a non-specialized `Tuple2` unboxes the Integer in the tuple.
+ * When eliminating such getters, we have to introduce appropriate box / unbox calls.
+ *
+ *
+ * TODO: add new calls (box / unbox) to the call graph (not urgent)
+ * TODO: update the call graph because stack heights change (not urgent).
+ * this may also affect other optimizations, we ignored the issue so far. check how stack
+ * heights stored in the call graph are used.
+ * Note: these tasks are not urgent because the call graph is not currently used during / after
+ * method-local optimizations, only before to perform inlining and closure rewriting.
+ */
+ def boxUnboxElimination(method: MethodNode, owner: InternalName): Boolean = {
+ AsmAnalyzer.sizeOKForSourceValue(method) && {
+ val toInsertBefore = mutable.Map.empty[AbstractInsnNode, List[AbstractInsnNode]]
+ val toReplace = mutable.Map.empty[AbstractInsnNode, List[AbstractInsnNode]]
+ val toDelete = mutable.Set.empty[AbstractInsnNode]
+
+ val knownHandled = mutable.Set.empty[AbstractInsnNode]
+
+ lazy val prodCons = new ProdConsAnalyzer(method, owner)
+
+ var nextLocal = method.maxLocals
+ def getLocal(size: Int) = {
+ val r = nextLocal
+ nextLocal += size
+ r
+ }
+
+ var maxStackGrowth = 0
+
+ /** Mehtod M1 for eliminating box-unbox pairs (see doc comment in the beginning of this file) */
+ def replaceBoxOperationsSingleCreation(creation: BoxCreation, finalCons: Set[BoxConsumer], boxKind: BoxKind, keepBox: Boolean): Unit = {
+ /**
+ * If the box is eliminated, all copy operations (loads, stores, others) of the box need to
+ * be removed. This method returns all copy operations that should be removed.
+ *
+ * Returns `None` in case some exotic copy operation is found that cannot be removed
+ * (DUP2_X1 and friends - these are never emitted by scalac). In this case, the box cannot
+ * be eliminated.
+ */
+ def copyOpsToEliminate: Option[Set[AbstractInsnNode]] = {
+ var elidableCopyOps = Set.empty[AbstractInsnNode]
+ var replaceOK = true
+ val copyOps = new CopyOpsIterator(Set(creation), finalCons, prodCons)
+ while (replaceOK && copyOps.hasNext) copyOps.next() match {
+ case vi: VarInsnNode =>
+ elidableCopyOps += vi
+
+ case copyOp if copyOp.getOpcode == DUP =>
+ elidableCopyOps += copyOp
+
+ case _ =>
+ replaceOK = false
+ }
+ if (replaceOK) Some(elidableCopyOps) else None
+ }
+
+ val canRewrite = keepBox || (copyOpsToEliminate match {
+ case Some(copyOps) =>
+ toDelete ++= copyOps
+ true
+
+ case _ => false
+ })
+
+ if (canRewrite) {
+ val localSlots: Vector[(Int, Type)] = boxKind.boxedTypes.map(tp => (getLocal(tp.getSize), tp))(collection.breakOut)
+
+ // store boxed value(s) into localSlots
+ val storeOps = localSlots.toList reverseMap { case (slot, tp) =>
+ new VarInsnNode(tp.getOpcode(ISTORE), slot)
+ }
+ val storeInitialValues = creation.loadInitialValues match {
+ case Some(ops) => ops ::: storeOps
+ case None => storeOps
+ }
+ if (keepBox) {
+ val loadOps: List[VarInsnNode] = localSlots.map({ case (slot, tp) =>
+ new VarInsnNode(tp.getOpcode(ILOAD), slot)
+ })(collection.breakOut)
+ toInsertBefore(creation.valuesConsumer) = storeInitialValues ::: loadOps
+ } else {
+ toReplace(creation.valuesConsumer) = storeInitialValues
+ toDelete ++= creation.allInsns - creation.valuesConsumer
+ }
+
+ // rewrite consumers
+ finalCons foreach {
+ case write: StaticSetterOrInstanceWrite =>
+ assert(!keepBox, s"cannot eliminate box write if the box remains (and escapes): $write")
+ val (slot, tp) = localSlots(boxKind.extractedValueIndex(write))
+ val storeOp = new VarInsnNode(tp.getOpcode(ISTORE), slot)
+ toReplace(write.consumer) = List(storeOp)
+
+ case c: EscapingConsumer =>
+ assert(keepBox, s"found escaping consumer, but box is eliminated: $c")
+
+ case extraction =>
+ val (slot, tp) = localSlots(boxKind.extractedValueIndex(extraction))
+ val loadOps = new VarInsnNode(tp.getOpcode(ILOAD), slot) :: extraction.postExtractionAdaptationOps(tp)
+ if (keepBox) toReplace(extraction.consumer) = getPop(1) :: loadOps
+ else toReplace(extraction.consumer) = loadOps
+ toDelete ++= extraction.allInsns - extraction.consumer
+ }
+ }
+ }
+
+ /** Method M2 for eliminating box-unbox pairs (see doc comment in the beginning of this file) */
+ def replaceBoxOperationsMultipleCreations(allCreations: Set[BoxCreation], allConsumers: Set[BoxConsumer], boxKind: BoxKind): Unit = {
+ /**
+ * If a single-value size-1 box is eliminated, local variables slots holding the box are
+ * reused to hold the unboxed value. In case there's an entry for that local variable in the
+ * method's local variables table (debug info), adapt the type.
+ *
+ * If there are multiple entries for a local variable that's changing types, then all
+ * entries for that variable are deleted - it's not obvious how to find the correct entry.
+ * Note that scalac never re-uses local variable slots for non-overlapping locals. Also note
+ * that all locals that are newly created during the optimizer don't have an entry either.
+ *
+ * Finally, note that variables that become unused are removed later from the table by
+ * removeUnusedLocalVariableNodes in LocalOpt.
+ *
+ * Unlike modifications that affect the method's instructions (which uses toReplace etc),
+ * we can directly modify the local variable table - it does not affect the frames of the
+ * ProdCons analysis.
+ */
+ def updateLocalVariableTypes(reTypedLocals: Map[Int, Type]): Unit = {
+ lazy val localsByIndex = method.localVariables.asScala.groupBy(_.index)
+ for ((index, tp) <- reTypedLocals) localsByIndex.get(index).map(_.toList) match {
+ case Some(List(local)) =>
+ local.desc = tp.getDescriptor
+ case Some(locals) =>
+ locals foreach method.localVariables.remove
+ case _ =>
+ }
+ }
+
+ /** Remove box creations - leave the boxed value(s) on the stack instead. */
+ def replaceCreationOps(): Unit = {
+ for (creation <- allCreations) creation.loadInitialValues match {
+ case None =>
+ toDelete ++= creation.allInsns
+
+ case Some(ops) =>
+ toReplace(creation.valuesConsumer) = ops
+ toDelete ++= (creation.allInsns - creation.valuesConsumer)
+ }
+ }
+
+ /**
+ * Replace a value extraction operation. For a single-value box, the extraction operation can
+ * just be removed. An extraction from a multi-value box is replaced by POP operations for the
+ * non-used values, and an xSTORE / xLOAD for the extracted value. Example: tuple3._2 becomes
+ * POP; xSTORE n; POP; xLOAD n.
+ */
+ def replaceExtractionOps(): Unit = {
+ if (boxKind.boxedTypes.lengthCompare(1) == 0) {
+ // fast path for single-value boxes
+ allConsumers.foreach(extraction => extraction.postExtractionAdaptationOps(boxKind.boxedTypes.head) match {
+ case Nil =>
+ toDelete ++= extraction.allInsns
+ case ops =>
+ toReplace(extraction.consumer) = ops
+ toDelete ++= extraction.allInsns - extraction.consumer
+ })
+ } else {
+ for (extraction <- allConsumers) {
+ val valueIndex = boxKind.extractedValueIndex(extraction)
+ val replacementOps = if (valueIndex == 0) {
+ val pops = boxKind.boxedTypes.tail.map(t => getPop(t.getSize))
+ pops ::: extraction.postExtractionAdaptationOps(boxKind.boxedTypes.head)
+ } else {
+ var loadOps: List[AbstractInsnNode] = null
+ val consumeStack = boxKind.boxedTypes.zipWithIndex reverseMap {
+ case (tp, i) =>
+ if (i == valueIndex) {
+ val resultSlot = getLocal(tp.getSize)
+ loadOps = new VarInsnNode(tp.getOpcode(ILOAD), resultSlot) :: extraction.postExtractionAdaptationOps(tp)
+ new VarInsnNode(tp.getOpcode(ISTORE), resultSlot)
+ } else {
+ getPop(tp.getSize)
+ }
+ }
+ consumeStack ::: loadOps
+ }
+ toReplace(extraction.consumer) = replacementOps
+ toDelete ++= extraction.allInsns - extraction.consumer
+ }
+ }
+ }
+
+ checkCopyOpReplacements(allCreations, allConsumers, boxKind.boxedTypes, nextLocal, prodCons) match {
+ case Some((replacements, nextCopyOpLocal, reTypedLocals)) =>
+ toReplace ++= replacements
+ updateLocalVariableTypes(reTypedLocals)
+ nextLocal = nextCopyOpLocal
+ replaceCreationOps()
+ replaceExtractionOps()
+ // Conservative (safe) value for stack growth. In every frame that initially has a multi-value
+ // box on the stack, the stack now contains all of the individual values. So for every eliminated
+ // box, the maxStack may be up to N-1 slots larger.
+ maxStackGrowth += boxKind.boxedTypes.length - 1
+
+ case None =>
+ }
+ }
+
+ val it = method.instructions.iterator
+ while (it.hasNext) {
+ val insn = it.next()
+ if (!knownHandled(insn)) BoxKind.valueCreationKind(insn, prodCons) match {
+ case Some((boxCreation, boxKind)) =>
+ allCreationsConsumers(boxCreation, boxKind, prodCons) match {
+ case Some((allCreations, allConsumers)) =>
+ val (escapingConsumers, boxConsumers) = allConsumers.partition(_.isEscaping)
+ if (boxConsumers.nonEmpty) {
+ for (c <- allCreations) knownHandled ++= c.allInsns
+ for (e <- allConsumers) knownHandled ++= e.allInsns
+
+ val hasEscaping = escapingConsumers.nonEmpty
+ val hasWrite = allConsumers.exists(_.isWrite)
+ if (!hasEscaping && !hasWrite) {
+ // M2 -- see doc comment in the beginning of this file
+ // If both M1 and M2 can be applied, we prefer M2 because it doesn't introduce new locals.
+ replaceBoxOperationsMultipleCreations(allCreations, allConsumers, boxKind)
+ } else if (allCreations.size == 1 && (!hasEscaping || !boxKind.isMutable)) {
+ // M1 -- see doc comment in the beginning of this file
+ replaceBoxOperationsSingleCreation(allCreations.head, allConsumers, boxKind, keepBox = hasEscaping)
+ }
+ }
+
+ case None =>
+ }
+
+ case None =>
+ }
+ }
+
+ def removeFromCallGraph(insn: AbstractInsnNode): Unit = insn match {
+ case mi: MethodInsnNode => callGraph.removeCallsite(mi, method)
+ case _ =>
+ }
+
+ for ((location, ops) <- toInsertBefore; op <- ops)
+ method.instructions.insertBefore(location, op)
+
+ for ((oldOp, newOps) <- toReplace) {
+ for (newOp <- newOps) method.instructions.insertBefore(oldOp, newOp)
+ method.instructions.remove(oldOp)
+ removeFromCallGraph(oldOp)
+ }
+
+ for (op <- toDelete) {
+ method.instructions.remove(op)
+ removeFromCallGraph(op)
+ }
+
+ method.maxLocals = nextLocal
+ method.maxStack += maxStackGrowth
+ toInsertBefore.nonEmpty || toReplace.nonEmpty || toDelete.nonEmpty
+ }
+ }
+
+ /**
+ * Given a box creations operation
+ * - find all ultimate consumers for the produced value. then:
+ * - for all consumed values, find all producer operations. check that all are box creations
+ * - recurse until reaching a fixpoint
+ *
+ * Returns a set of box creations and a set of box consumers. Note that the box consumers may
+ * contain [[EscapingConsumer]]s, even if there are multiple box creation operations. The callee
+ * will handle this case (and not attempt to eliminate the box).
+ */
+ def allCreationsConsumers(initialCreation: BoxCreation, boxKind: BoxKind, prodCons: ProdConsAnalyzer): Option[(Set[BoxCreation], Set[BoxConsumer])] = {
+ var creations = Set(initialCreation)
+ var consumers = Set.empty[BoxConsumer]
+
+ def addCreations(boxConsumer: BoxConsumer): Boolean = {
+ val newProds = boxConsumer.boxProducers(prodCons).filterNot(prod => creations.exists(_.producer == prod))
+ newProds.forall(prod => boxKind.checkBoxCreation(prod, prodCons) match {
+ case Some(boxCreation) =>
+ creations += boxCreation
+ addBoxConsumers(boxCreation)
+
+ case _ => false
+ })
+ }
+
+ def addBoxConsumers(creation: BoxCreation): Boolean = {
+ val newCons = creation.boxConsumers(prodCons, ultimate = true).filterNot(cons => consumers.exists(_.consumer == cons))
+ newCons.forall(cons => boxKind.checkBoxConsumer(cons, prodCons) match {
+ case Some(boxConsumer) =>
+ consumers += boxConsumer
+ addCreations(boxConsumer)
+
+ case _ =>
+ creations.size <= 1 && {
+ // If there's a single box creation, the box operations can still be rewritten
+ consumers += EscapingConsumer(cons)
+ true
+ }
+ })
+ }
+
+ if (addBoxConsumers(initialCreation)) Some((creations, consumers))
+ else None
+ }
+
+ /**
+ * Takes two sets `initialProds` and `finalCons` such that all boxes produced by the first set
+ * are only consumed by an operation in the second set.
+ *
+ * Returns a map that replaces copy operations (ALOAD / ASTORE) between the producers and
+ * consumers with corresponding copy operations for the values stored in the box. The returned
+ * `Int` value returns the next free local variable slot.
+ *
+ * Examples:
+ * - for an Integer box, an ASTORE x is simply replaced by ISTORE x
+ * - for a pair of two references, an ASTORE x is replaced by `ASTORE x1; ASTORE x2` where x1
+ * and x2 are fresh locals
+ *
+ * Not all copy operations can be supported: DUP only works for single-value boxes, the more
+ * exotic copy operations (DUP2_X2) are not supported (note that Scalac never emits them). If a
+ * copy operation cannot be replaced, this method returns `None`.
+ */
+ def checkCopyOpReplacements(initialProds: Set[BoxCreation], finalCons: Set[BoxConsumer], valueTypes: List[Type], nextLocal: Int, prodCons: ProdConsAnalyzer): Option[(Map[AbstractInsnNode, List[AbstractInsnNode]], Int, Map[Int, Type])] = {
+ var replacements = Map.empty[AbstractInsnNode, List[AbstractInsnNode]]
+ var reTypedLocals = Map.empty[Int, Type]
+
+ var nextCopyOpLocal = nextLocal
+ val newLocalsMap: mutable.LongMap[List[(Type, Int)]] = mutable.LongMap.empty
+ def newLocals(index: Int) = newLocalsMap.getOrElseUpdate(index, valueTypes match {
+ case List(t) if t.getSize == 1 =>
+ reTypedLocals += index -> t
+ List((t, index))
+ case _ => valueTypes.map(t => {
+ val newIndex = nextCopyOpLocal
+ nextCopyOpLocal += t.getSize
+ (t, newIndex)
+ })
+ })
+
+ var replaceOK = true
+ val copyOps = new CopyOpsIterator(initialProds, finalCons, prodCons)
+ while (replaceOK && copyOps.hasNext) copyOps.next() match {
+ case vi: VarInsnNode =>
+ val isLoad = vi.getOpcode == ALOAD
+ val typedVarOp = (tp: (Type, Int)) => {
+ val opc = tp._1.getOpcode(if (isLoad) ILOAD else ISTORE)
+ new VarInsnNode(opc, tp._2)
+ }
+ val locs = newLocals(vi.`var`)
+ replacements += vi -> (if (isLoad) locs.map(typedVarOp) else locs.reverseMap(typedVarOp))
+
+ case copyOp =>
+ if (copyOp.getOpcode == DUP && valueTypes.lengthCompare(1) == 0) {
+ if (valueTypes.head.getSize == 2)
+ replacements += copyOp -> List(new InsnNode(DUP2))
+ } else {
+ replaceOK = false
+ }
+ }
+ if (replaceOK) Some((replacements, nextCopyOpLocal, reTypedLocals)) else None
+ }
+
+ /**
+ * For a set of box creation operations and a corresponding set of box consumer operations,
+ * this iterator returns all copy operations (load, store, dup) that are in between.
+ */
+ class CopyOpsIterator(initialCreations: Set[BoxCreation], finalCons: Set[BoxConsumer], prodCons: ProdConsAnalyzer) extends Iterator[AbstractInsnNode] {
+ private var queue = mutable.Queue.empty[AbstractInsnNode] ++ initialCreations.iterator.flatMap(_.boxConsumers(prodCons, ultimate = false))
+
+ // a single copy operation can consume multiple producers: val a = if (b) box(1) else box(2).
+ // the `ASTORE a` has two producers (the two box operations). we need to handle it only once.
+ private val visited = mutable.Set.empty[AbstractInsnNode]
+
+ private val boxConsumingOps = finalCons.map(_.consumer)
+
+ @tailrec private def advanceToNextCopyOp(): Unit = {
+ if (queue.nonEmpty) {
+ val h = queue.front
+ if (visited(h) || boxConsumingOps(h)) {
+ queue.dequeue()
+ advanceToNextCopyOp()
+ }
+ }
+ }
+
+ def hasNext: Boolean = {
+ advanceToNextCopyOp()
+ queue.nonEmpty
+ }
+
+ def next(): AbstractInsnNode = {
+ advanceToNextCopyOp()
+ val r = queue.dequeue()
+ visited += r
+ queue ++= prodCons.consumersOfOutputsFrom(r)
+ r
+ }
+ }
+
+ trait BoxKind {
+ def checkBoxCreation(insn: AbstractInsnNode, prodCons: ProdConsAnalyzer): Option[BoxCreation]
+ def checkBoxConsumer(insn: AbstractInsnNode, prodCons: ProdConsAnalyzer): Option[BoxConsumer]
+ def boxedTypes: List[Type]
+ def extractedValueIndex(extraction: BoxConsumer): Int
+ def isMutable: Boolean
+ }
+
+ object BoxKind {
+ def valueCreationKind(insn: AbstractInsnNode, prodCons: ProdConsAnalyzer): Option[(BoxCreation, BoxKind)] = {
+ PrimitiveBox.checkPrimitiveBox(insn, None, prodCons) orElse
+ Ref.checkRefCreation(insn, None, prodCons) orElse
+ Tuple.checkTupleCreation(insn, None, prodCons)
+ }
+
+ /**
+ * Check if `newOp` is part of a standard object construction pattern in which:
+ *
+ * NEW T
+ * DUP
+ * [load constructor args]
+ * INVOKESPECIAL T.init
+ *
+ * The method ensures that the entire construction pattern is closed in itself, without any
+ * branches going in or out. This is checked by looking at producers / consumers:
+ * - `DUP` is the only consumer of `NEW`, and vice versa
+ * - `DUP` the only producer for the receiver of the constructor call
+ * - The set of consumers of `DUP` without the constructor call is the same as
+ * the set of consumers of the value on the stack top after the constructor call
+ */
+ def checkInstanceCreation(newOp: TypeInsnNode, prodCons: ProdConsAnalyzer): Option[(InsnNode, MethodInsnNode)] = {
+ val newCons = prodCons.consumersOfOutputsFrom(newOp)
+ if (newCons.size == 1 && newCons.head.getOpcode == DUP) {
+ val dupOp = newCons.head.asInstanceOf[InsnNode]
+ if (prodCons.producersForInputsOf(dupOp) == Set(newOp)) {
+ val dupCons = prodCons.consumersOfOutputsFrom(dupOp)
+ val initCalls = dupCons collect {
+ case mi: MethodInsnNode if mi.name == GenBCode.INSTANCE_CONSTRUCTOR_NAME && mi.owner == newOp.desc => mi
+ }
+ if (initCalls.size == 1) {
+ val initCall = initCalls.head
+ val numArgs = Type.getArgumentTypes(initCall.desc).length
+ val receiverProds = prodCons.producersForValueAt(initCall, prodCons.frameAt(initCall).stackTop - numArgs)
+ if (receiverProds == Set(dupOp)) {
+ val dupConsWithoutInit = dupCons - initCall
+ val afterInit = initCall.getNext
+ val stackTopAfterInit = prodCons.frameAt(afterInit).stackTop
+ val initializedInstanceCons = prodCons.consumersOfValueAt(afterInit, stackTopAfterInit)
+ if (initializedInstanceCons == dupConsWithoutInit && prodCons.producersForValueAt(afterInit, stackTopAfterInit) == Set(dupOp)) {
+ return Some((dupOp, initCall))
+ }
+ }
+ }
+ }
+ }
+ None
+ }
+
+ /**
+ * If `mi` is an invocation of a method on Predef, check if the receiver is a GETSTATIC of
+ * Predef.MODULE$ and return it.
+ */
+ def checkReceiverPredefLoad(mi: MethodInsnNode, prodCons: ProdConsAnalyzer): Option[AbstractInsnNode] = {
+ val numArgs = Type.getArgumentTypes(mi.desc).length
+ val receiverProds = prodCons.producersForValueAt(mi, prodCons.frameAt(mi).stackTop - numArgs)
+ if (receiverProds.size == 1) {
+ val prod = receiverProds.head
+ if (isPredefLoad(prod) && prodCons.consumersOfOutputsFrom(prod) == Set(mi)) return Some(prod)
+ }
+ None
+ }
+ }
+
+ case class PrimitiveBox(boxedType: Type, boxClass: InternalName) extends BoxKind {
+ import PrimitiveBox._
+ def checkBoxCreation(insn: AbstractInsnNode, prodCons: ProdConsAnalyzer): Option[BoxCreation] = checkPrimitiveBox(insn, Some(this), prodCons).map(_._1)
+ def checkBoxConsumer(insn: AbstractInsnNode, prodCons: ProdConsAnalyzer): Option[BoxConsumer] = checkPrimitiveUnbox(insn, this, prodCons)
+ def boxedTypes: List[Type] = List(boxedType)
+ def extractedValueIndex(extraction: BoxConsumer): Int = 0
+ def isMutable = false
+ }
+
+ object PrimitiveBox {
+ private def boxedType(mi: MethodInsnNode) = Type.getArgumentTypes(mi.desc)(0)
+
+ private def boxClass(mi: MethodInsnNode) = {
+ if (mi.name == GenBCode.INSTANCE_CONSTRUCTOR_NAME) mi.owner
+ else Type.getReturnType(mi.desc).getInternalName
+ }
+
+ def checkPrimitiveBox(insn: AbstractInsnNode, expectedKind: Option[PrimitiveBox], prodCons: ProdConsAnalyzer): Option[(BoxCreation, PrimitiveBox)] = {
+ // mi is either a box factory or a box constructor invocation
+ def checkKind(mi: MethodInsnNode) = expectedKind match {
+ case Some(kind) => if (kind.boxClass == boxClass(mi)) expectedKind else None
+ case None => Some(PrimitiveBox(boxedType(mi), boxClass(mi)))
+ }
+
+ insn match {
+ case mi: MethodInsnNode =>
+ if (isScalaBox(mi) || isJavaBox(mi)) checkKind(mi).map((StaticFactory(mi, loadInitialValues = None), _))
+ else if (isPredefAutoBox(mi))
+ for (predefLoad <- BoxKind.checkReceiverPredefLoad(mi, prodCons); kind <- checkKind(mi))
+ yield (ModuleFactory(predefLoad, mi), kind)
+ else None
+
+ case ti: TypeInsnNode if ti.getOpcode == NEW =>
+ for ((dupOp, initCall) <- BoxKind.checkInstanceCreation(ti, prodCons) if isPrimitiveBoxConstructor(initCall); kind <- checkKind(initCall))
+ yield (InstanceCreation(ti, dupOp, initCall), kind)
+
+ case _ => None
+ }
+ }
+
+ def checkPrimitiveUnbox(insn: AbstractInsnNode, kind: PrimitiveBox, prodCons: ProdConsAnalyzer): Option[BoxConsumer] = {
+ def typeOK(mi: MethodInsnNode) = kind.boxedType == Type.getReturnType(mi.desc)
+ insn match {
+ case mi: MethodInsnNode =>
+ if ((isScalaUnbox(mi) || isJavaUnbox(mi)) && typeOK(mi)) Some(StaticGetterOrInstanceRead(mi))
+ else if (isPredefAutoUnbox(mi) && typeOK(mi)) BoxKind.checkReceiverPredefLoad(mi, prodCons).map(ModuleGetter(_, mi))
+ else None
+
+ case _ => None
+ }
+ }
+ }
+
+ case class Ref(boxedType: Type, refClass: InternalName) extends BoxKind {
+ import Ref._
+ def checkBoxCreation(insn: AbstractInsnNode, prodCons: ProdConsAnalyzer): Option[BoxCreation] = checkRefCreation(insn, Some(this), prodCons).map(_._1)
+ def checkBoxConsumer(insn: AbstractInsnNode, prodCons: ProdConsAnalyzer): Option[BoxConsumer] = checkRefConsumer(insn, this, prodCons)
+ def boxedTypes: List[Type] = List(boxedType)
+ def extractedValueIndex(extraction: BoxConsumer): Int = 0
+ def isMutable = true
+ }
+
+ object Ref {
+ private def boxedType(mi: MethodInsnNode): Type = runtimeRefClassBoxedType(mi.owner)
+ private def refClass(mi: MethodInsnNode): InternalName = mi.owner
+ private def loadZeroValue(refZeroCall: MethodInsnNode): List[AbstractInsnNode] = List(loadZeroForTypeSort(runtimeRefClassBoxedType(refZeroCall.owner).getSort))
+
+ def checkRefCreation(insn: AbstractInsnNode, expectedKind: Option[Ref], prodCons: ProdConsAnalyzer): Option[(BoxCreation, Ref)] = {
+ def checkKind(mi: MethodInsnNode): Option[Ref] = expectedKind match {
+ case Some(kind) => if (kind.refClass == refClass(mi)) expectedKind else None
+ case None => Some(Ref(boxedType(mi), refClass(mi)))
+ }
+
+ insn match {
+ case mi: MethodInsnNode =>
+ if (isRefCreate(mi)) checkKind(mi).map((StaticFactory(mi, loadInitialValues = None), _))
+ else if (isRefZero(mi)) checkKind(mi).map((StaticFactory(mi, loadInitialValues = Some(loadZeroValue(mi))), _))
+ else None
+
+ case ti: TypeInsnNode if ti.getOpcode == NEW =>
+ for ((dupOp, initCall) <- BoxKind.checkInstanceCreation(ti, prodCons) if isRuntimeRefConstructor(initCall); kind <- checkKind(initCall))
+ yield (InstanceCreation(ti, dupOp, initCall), kind)
+
+ case _ => None
+ }
+ }
+
+ def checkRefConsumer(insn: AbstractInsnNode, kind: Ref, prodCons: ProdConsAnalyzer): Option[BoxConsumer] = insn match {
+ case fi: FieldInsnNode if fi.owner == kind.refClass && fi.name == "elem" =>
+ if (fi.getOpcode == GETFIELD) Some(StaticGetterOrInstanceRead(fi))
+ else if (fi.getOpcode == PUTFIELD) Some(StaticSetterOrInstanceWrite(fi))
+ else None
+
+ case _ => None
+ }
+ }
+
+ case class Tuple(boxedTypes: List[Type], tupleClass: InternalName) extends BoxKind {
+ import Tuple._
+ def checkBoxCreation(insn: AbstractInsnNode, prodCons: ProdConsAnalyzer): Option[BoxCreation] = checkTupleCreation(insn, Some(this), prodCons).map(_._1)
+ def checkBoxConsumer(insn: AbstractInsnNode, prodCons: ProdConsAnalyzer): Option[BoxConsumer] = checkTupleExtraction(insn, this, prodCons)
+ def extractedValueIndex(extraction: BoxConsumer): Int = extraction match {
+ case StaticGetterOrInstanceRead(mi: MethodInsnNode) => tupleGetterIndex(mi.name)
+ case PrimitiveBoxingGetter(mi) => tupleGetterIndex(mi.name)
+ case PrimitiveUnboxingGetter(mi, _) => tupleGetterIndex(mi.name)
+ case _ => throw new AssertionError(s"Expected tuple getter, found $extraction")
+ }
+ def isMutable = false
+ }
+
+ object Tuple {
+ private def boxedTypes(mi: MethodInsnNode): List[Type] = Type.getArgumentTypes(mi.desc).toList
+ private def tupleClass(mi: MethodInsnNode): InternalName = mi.owner
+
+ def checkTupleCreation(insn: AbstractInsnNode, expectedKind: Option[Tuple], prodCons: ProdConsAnalyzer): Option[(BoxCreation, Tuple)] = {
+ def checkKind(mi: MethodInsnNode): Option[Tuple] = expectedKind match {
+ case Some(kind) => if (kind.tupleClass == tupleClass(mi)) expectedKind else None
+ case None => Some(Tuple(boxedTypes(mi), tupleClass(mi)))
+ }
+
+ insn match {
+ // no need to check for TupleN.apply: the compiler transforms case companion apply calls to constructor invocations
+ case ti: TypeInsnNode if ti.getOpcode == NEW =>
+ for ((dupOp, initCall) <- BoxKind.checkInstanceCreation(ti, prodCons) if isTupleConstructor(initCall); kind <- checkKind(initCall))
+ yield (InstanceCreation(ti, dupOp, initCall), kind)
+
+ case _ => None
+ }
+ }
+
+ private val specializedTupleClassR = "scala/Tuple[12]\\$mc[IJDCZ]{1,2}\\$sp".r
+ private def isSpecializedTupleClass(tupleClass: InternalName) = specializedTupleClassR.pattern.matcher(tupleClass).matches
+
+ private val specializedTupleGetterR = "_[12]\\$mc[IJDCZ]\\$sp".r
+ private def isSpecializedTupleGetter(mi: MethodInsnNode) = specializedTupleGetterR.pattern.matcher(mi.name)matches
+
+ private val tupleGetterR = "_\\d\\d?".r
+ private def isTupleGetter(mi: MethodInsnNode) = tupleGetterR.pattern.matcher(mi.name).matches
+
+ def checkTupleExtraction(insn: AbstractInsnNode, kind: Tuple, prodCons: ProdConsAnalyzer): Option[BoxConsumer] = {
+ val expectedTupleClass = kind.tupleClass
+ insn match {
+ case mi: MethodInsnNode =>
+ val tupleClass = mi.owner
+ if (isSpecializedTupleClass(expectedTupleClass)) {
+ val typeOK = tupleClass == expectedTupleClass || tupleClass == expectedTupleClass.substring(0, expectedTupleClass.indexOf('$'))
+ if (typeOK) {
+ if (isSpecializedTupleGetter(mi)) return Some(StaticGetterOrInstanceRead(mi))
+ else if (isTupleGetter(mi)) return Some(PrimitiveBoxingGetter(mi))
+ }
+ } else if (expectedTupleClass == tupleClass) {
+ if (isSpecializedTupleGetter(mi)) return Some(PrimitiveUnboxingGetter(mi, Type.getReturnType(mi.desc)))
+ else if (isTupleGetter(mi)) return Some(StaticGetterOrInstanceRead(mi))
+ }
+
+ case _ =>
+ }
+ None
+ }
+
+ private val getterIndexPattern = "_(\\d{1,2}).*".r
+ def tupleGetterIndex(getterName: String) = getterName match { case getterIndexPattern(i) => i.toInt - 1 }
+ }
+
+ // TODO: add more
+ // case class ValueClass(valueClass: Type, valueType: Type) extends BoxKind
+
+ sealed trait BoxCreation {
+ // to support box creation operations that don't consume an initial value from the stack, e.g., IntRef.zero
+ val loadInitialValues: Option[List[AbstractInsnNode]]
+
+ /**
+ * The instruction that produces the box value; for instance creations, the `NEW` operation.
+ */
+ def producer: AbstractInsnNode
+
+ /**
+ * The instruction that consumes the boxed values; for instance creations, the `init` call.
+ */
+ def valuesConsumer: MethodInsnNode = this match {
+ case StaticFactory(call, _) => call
+ case ModuleFactory(_, call) => call
+ case InstanceCreation(_, _, initCall) => initCall
+ }
+
+ def allInsns: Set[AbstractInsnNode] = this match {
+ case StaticFactory(c, _) => Set(c)
+ case ModuleFactory(m, c) => Set(m, c)
+ case InstanceCreation(n, d, i) => Set(n, d, i)
+ }
+
+ /**
+ * The consumers of the box produced by this box creation. If `ultimate` is true, then the
+ * final consumers are returned (e.g., an unbox operation), otherwise direct consumers (e.g.,
+ * a store operation).
+ */
+ def boxConsumers(prodCons: ProdConsAnalyzer, ultimate: Boolean): Set[AbstractInsnNode] = {
+ val startInsn = this match {
+ // for the non-transitive case (ultimate == false), it's important to start at the `dupOp`,
+ // not the `newOp` - look at the BoxCreation as a black box, get its consumers.
+ case InstanceCreation(_, dupOp, _) => dupOp
+ case _ => producer
+ }
+ val cons = if (ultimate) prodCons.ultimateConsumersOfOutputsFrom(startInsn) else prodCons.consumersOfOutputsFrom(startInsn)
+ this match {
+ case InstanceCreation(_, _, initCall) => cons - initCall
+ case _ => cons
+ }
+ }
+ }
+
+ case class StaticFactory(producer: MethodInsnNode, loadInitialValues: Option[List[AbstractInsnNode]]) extends BoxCreation
+ case class ModuleFactory(moduleLoad: AbstractInsnNode, producer: MethodInsnNode) extends BoxCreation {
+ val loadInitialValues: Option[List[AbstractInsnNode]] = None
+ }
+ case class InstanceCreation(newOp: TypeInsnNode, dupOp: InsnNode, initCall: MethodInsnNode) extends BoxCreation {
+ def producer = newOp
+ val loadInitialValues: Option[List[AbstractInsnNode]] = None
+ }
+
+ sealed trait BoxConsumer {
+ val consumer: AbstractInsnNode
+
+ def allInsns: Set[AbstractInsnNode] = this match {
+ case ModuleGetter(m, c) => Set(m, c)
+ case _ => Set(consumer)
+ }
+
+ /**
+ * The initial producers of the box value consumed by this box consumer
+ */
+ def boxProducers(prodCons: ProdConsAnalyzer): Set[AbstractInsnNode] = {
+ val stackTop = prodCons.frameAt(consumer).stackTop
+ val slot = if (isWrite) stackTop - 1 else stackTop
+ prodCons.initialProducersForValueAt(consumer, slot)
+ }
+
+ def isEscaping = this match {
+ case _: EscapingConsumer => true
+ case _ => false
+ }
+
+ def isWrite = this match {
+ case _: StaticSetterOrInstanceWrite => true
+ case _ => false
+ }
+
+ /**
+ * If this box consumer extracts a boxed value and applies a conversion, this method returns
+ * equivalent conversion operations. For example, invoking `_1$mcI$sp` on a non-specialized
+ * `Tuple2` extracts the Integer value and unboxes it.
+ */
+ def postExtractionAdaptationOps(typeOfExtractedValue: Type): List[AbstractInsnNode] = this match {
+ case PrimitiveBoxingGetter(_) => List(getScalaBox(typeOfExtractedValue))
+ case PrimitiveUnboxingGetter(_, unboxedPrimitive) => List(getScalaUnbox(unboxedPrimitive))
+ case _ => Nil
+ }
+ }
+
+ /** Static extractor (BoxesRunTime.unboxToInt) or GETFIELD or getter invocation */
+ case class StaticGetterOrInstanceRead(consumer: AbstractInsnNode) extends BoxConsumer
+ /** A getter that boxes the returned value, e.g., `Tuple2$mcII$sp._1` */
+ case class PrimitiveBoxingGetter(consumer: MethodInsnNode) extends BoxConsumer
+ /** A getter that unboxes the returned value, e.g., `Tuple2._1$mcI$sp` */
+ case class PrimitiveUnboxingGetter(consumer: MethodInsnNode, unboxedPrimitive: Type) extends BoxConsumer
+ /** An extractor method in a Scala module, e.g., `Predef.Integer2int` */
+ case class ModuleGetter(moduleLoad: AbstractInsnNode, consumer: MethodInsnNode) extends BoxConsumer
+ /** PUTFIELD or setter invocation */
+ case class StaticSetterOrInstanceWrite(consumer: AbstractInsnNode) extends BoxConsumer
+ /** An unknown box consumer */
+ case class EscapingConsumer(consumer: AbstractInsnNode) extends BoxConsumer
+}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/opt/BytecodeUtils.scala b/src/compiler/scala/tools/nsc/backend/jvm/opt/BytecodeUtils.scala
index e543a8c3e0..ff36f36589 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/opt/BytecodeUtils.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/opt/BytecodeUtils.scala
@@ -12,10 +12,13 @@ import scala.collection.mutable
import scala.reflect.internal.util.Collections._
import scala.tools.asm.commons.CodeSizeEvaluator
import scala.tools.asm.tree.analysis._
-import scala.tools.asm.{MethodWriter, ClassWriter, Label, Opcodes, Type}
+import scala.tools.asm.{Label, Type}
+import scala.tools.asm.Opcodes._
import scala.tools.asm.tree._
import GenBCode._
import scala.collection.convert.decorateAsScala._
+import scala.tools.nsc.backend.jvm.BTypes.InternalName
+import scala.tools.nsc.backend.jvm.analysis.InstructionStackEffect
object BytecodeUtils {
@@ -27,7 +30,7 @@ object BytecodeUtils {
object Goto {
def unapply(instruction: AbstractInsnNode): Option[JumpInsnNode] = {
- if (instruction.getOpcode == Opcodes.GOTO) Some(instruction.asInstanceOf[JumpInsnNode])
+ if (instruction.getOpcode == GOTO) Some(instruction.asInstanceOf[JumpInsnNode])
else None
}
}
@@ -47,8 +50,9 @@ object BytecodeUtils {
}
object VarInstruction {
- def unapply(instruction: AbstractInsnNode): Option[VarInsnNode] = {
- if (isVarInstruction(instruction)) Some(instruction.asInstanceOf[VarInsnNode])
+ def unapply(instruction: AbstractInsnNode): Option[(AbstractInsnNode, Int)] = {
+ if (isLoadStoreOrRet(instruction)) Some((instruction, instruction.asInstanceOf[VarInsnNode].`var`))
+ else if (instruction.getOpcode == IINC) Some((instruction, instruction.asInstanceOf[IincInsnNode].`var`))
else None
}
@@ -57,30 +61,32 @@ object BytecodeUtils {
def isJumpNonJsr(instruction: AbstractInsnNode): Boolean = {
val op = instruction.getOpcode
// JSR is deprecated in classfile version 50, disallowed in 51. historically, it was used to implement finally.
- op == Opcodes.GOTO || isConditionalJump(instruction)
+ op == GOTO || isConditionalJump(instruction)
}
def isConditionalJump(instruction: AbstractInsnNode): Boolean = {
val op = instruction.getOpcode
- (op >= Opcodes.IFEQ && op <= Opcodes.IF_ACMPNE) || op == Opcodes.IFNULL || op == Opcodes.IFNONNULL
+ (op >= IFEQ && op <= IF_ACMPNE) || op == IFNULL || op == IFNONNULL
}
def isReturn(instruction: AbstractInsnNode): Boolean = {
val op = instruction.getOpcode
- op >= Opcodes.IRETURN && op <= Opcodes.RETURN
+ op >= IRETURN && op <= RETURN
}
def isLoad(instruction: AbstractInsnNode): Boolean = {
val op = instruction.getOpcode
- op >= Opcodes.ILOAD && op <= Opcodes.ALOAD
+ op >= ILOAD && op <= ALOAD
}
def isStore(instruction: AbstractInsnNode): Boolean = {
val op = instruction.getOpcode
- op >= Opcodes.ISTORE && op <= Opcodes.ASTORE
+ op >= ISTORE && op <= ASTORE
}
- def isVarInstruction(instruction: AbstractInsnNode): Boolean = isLoad(instruction) || isStore(instruction)
+ def isLoadStoreOrRet(instruction: AbstractInsnNode): Boolean = isLoad(instruction) || isStore(instruction) || instruction.getOpcode == RET
+
+ def isLoadOrStore(instruction: AbstractInsnNode): Boolean = isLoad(instruction) || isStore(instruction)
def isExecutable(instruction: AbstractInsnNode): Boolean = instruction.getOpcode >= 0
@@ -88,29 +94,34 @@ object BytecodeUtils {
methodNode.name == INSTANCE_CONSTRUCTOR_NAME || methodNode.name == CLASS_CONSTRUCTOR_NAME
}
- def isStaticMethod(methodNode: MethodNode): Boolean = (methodNode.access & Opcodes.ACC_STATIC) != 0
+ def isStaticMethod(methodNode: MethodNode): Boolean = (methodNode.access & ACC_STATIC) != 0
- def isAbstractMethod(methodNode: MethodNode): Boolean = (methodNode.access & Opcodes.ACC_ABSTRACT) != 0
+ def isAbstractMethod(methodNode: MethodNode): Boolean = (methodNode.access & ACC_ABSTRACT) != 0
- def isSynchronizedMethod(methodNode: MethodNode): Boolean = (methodNode.access & Opcodes.ACC_SYNCHRONIZED) != 0
+ def isSynchronizedMethod(methodNode: MethodNode): Boolean = (methodNode.access & ACC_SYNCHRONIZED) != 0
- def isNativeMethod(methodNode: MethodNode): Boolean = (methodNode.access & Opcodes.ACC_NATIVE) != 0
+ def isNativeMethod(methodNode: MethodNode): Boolean = (methodNode.access & ACC_NATIVE) != 0
def hasCallerSensitiveAnnotation(methodNode: MethodNode) = methodNode.visibleAnnotations != null && methodNode.visibleAnnotations.asScala.exists(_.desc == "Lsun/reflect/CallerSensitive;")
- def isFinalClass(classNode: ClassNode): Boolean = (classNode.access & Opcodes.ACC_FINAL) != 0
+ def isFinalClass(classNode: ClassNode): Boolean = (classNode.access & ACC_FINAL) != 0
- def isFinalMethod(methodNode: MethodNode): Boolean = (methodNode.access & (Opcodes.ACC_FINAL | Opcodes.ACC_PRIVATE | Opcodes.ACC_STATIC)) != 0
+ def isFinalMethod(methodNode: MethodNode): Boolean = (methodNode.access & (ACC_FINAL | ACC_PRIVATE | ACC_STATIC)) != 0
- def isStrictfpMethod(methodNode: MethodNode): Boolean = (methodNode.access & Opcodes.ACC_STRICT) != 0
+ def isStrictfpMethod(methodNode: MethodNode): Boolean = (methodNode.access & ACC_STRICT) != 0
def isReference(t: Type) = t.getSort == Type.OBJECT || t.getSort == Type.ARRAY
- def nextExecutableInstruction(instruction: AbstractInsnNode, alsoKeep: AbstractInsnNode => Boolean = Set()): Option[AbstractInsnNode] = {
- var result = instruction
- do { result = result.getNext }
- while (result != null && !isExecutable(result) && !alsoKeep(result))
- Option(result)
+ @tailrec def nextExecutableInstruction(insn: AbstractInsnNode, alsoKeep: AbstractInsnNode => Boolean = Set()): Option[AbstractInsnNode] = {
+ val next = insn.getNext
+ if (next == null || isExecutable(next) || alsoKeep(next)) Option(next)
+ else nextExecutableInstruction(next, alsoKeep)
+ }
+
+ @tailrec def nextExecutableInstructionOrLabel(insn: AbstractInsnNode): Option[AbstractInsnNode] = {
+ val next = insn.getNext
+ if (next == null || isExecutable(next) || next.isInstanceOf[LabelNode]) Option(next)
+ else nextExecutableInstructionOrLabel(next)
}
def sameTargetExecutableInstruction(a: JumpInsnNode, b: JumpInsnNode): Boolean = {
@@ -124,14 +135,14 @@ object BytecodeUtils {
def removeJumpAndAdjustStack(method: MethodNode, jump: JumpInsnNode) {
val instructions = method.instructions
val op = jump.getOpcode
- if ((op >= Opcodes.IFEQ && op <= Opcodes.IFGE) || op == Opcodes.IFNULL || op == Opcodes.IFNONNULL) {
+ if ((op >= IFEQ && op <= IFLE) || op == IFNULL || op == IFNONNULL) {
instructions.insert(jump, getPop(1))
- } else if ((op >= Opcodes.IF_ICMPEQ && op <= Opcodes.IF_ICMPLE) || op == Opcodes.IF_ACMPEQ || op == Opcodes.IF_ACMPNE) {
+ } else if ((op >= IF_ICMPEQ && op <= IF_ICMPLE) || op == IF_ACMPEQ || op == IF_ACMPNE) {
instructions.insert(jump, getPop(1))
instructions.insert(jump, getPop(1))
} else {
// we can't remove JSR: its execution does not only jump, it also adds a return address to the stack
- assert(jump.getOpcode == Opcodes.GOTO)
+ assert(jump.getOpcode == GOTO)
}
instructions.remove(jump)
}
@@ -148,42 +159,61 @@ object BytecodeUtils {
}
def negateJumpOpcode(jumpOpcode: Int): Int = (jumpOpcode: @switch) match {
- case Opcodes.IFEQ => Opcodes.IFNE
- case Opcodes.IFNE => Opcodes.IFEQ
+ case IFEQ => IFNE
+ case IFNE => IFEQ
- case Opcodes.IFLT => Opcodes.IFGE
- case Opcodes.IFGE => Opcodes.IFLT
+ case IFLT => IFGE
+ case IFGE => IFLT
- case Opcodes.IFGT => Opcodes.IFLE
- case Opcodes.IFLE => Opcodes.IFGT
+ case IFGT => IFLE
+ case IFLE => IFGT
- case Opcodes.IF_ICMPEQ => Opcodes.IF_ICMPNE
- case Opcodes.IF_ICMPNE => Opcodes.IF_ICMPEQ
+ case IF_ICMPEQ => IF_ICMPNE
+ case IF_ICMPNE => IF_ICMPEQ
- case Opcodes.IF_ICMPLT => Opcodes.IF_ICMPGE
- case Opcodes.IF_ICMPGE => Opcodes.IF_ICMPLT
+ case IF_ICMPLT => IF_ICMPGE
+ case IF_ICMPGE => IF_ICMPLT
- case Opcodes.IF_ICMPGT => Opcodes.IF_ICMPLE
- case Opcodes.IF_ICMPLE => Opcodes.IF_ICMPGT
+ case IF_ICMPGT => IF_ICMPLE
+ case IF_ICMPLE => IF_ICMPGT
- case Opcodes.IF_ACMPEQ => Opcodes.IF_ACMPNE
- case Opcodes.IF_ACMPNE => Opcodes.IF_ACMPEQ
+ case IF_ACMPEQ => IF_ACMPNE
+ case IF_ACMPNE => IF_ACMPEQ
- case Opcodes.IFNULL => Opcodes.IFNONNULL
- case Opcodes.IFNONNULL => Opcodes.IFNULL
+ case IFNULL => IFNONNULL
+ case IFNONNULL => IFNULL
}
def isSize2LoadOrStore(opcode: Int): Boolean = (opcode: @switch) match {
- case Opcodes.LLOAD | Opcodes.DLOAD | Opcodes.LSTORE | Opcodes.DSTORE => true
+ case LLOAD | DLOAD | LSTORE | DSTORE => true
case _ => false
}
def getPop(size: Int): InsnNode = {
- val op = if (size == 1) Opcodes.POP else Opcodes.POP2
+ val op = if (size == 1) POP else POP2
new InsnNode(op)
}
- def instructionResultSize(instruction: AbstractInsnNode) = InstructionResultSize(instruction)
+ def instructionResultSize(insn: AbstractInsnNode) = InstructionStackEffect.prod(InstructionStackEffect.forClassfile(insn))
+
+ def loadZeroForTypeSort(sort: Int) = (sort: @switch) match {
+ case Type.BOOLEAN |
+ Type.BYTE |
+ Type.CHAR |
+ Type.SHORT |
+ Type.INT => new InsnNode(ICONST_0)
+ case Type.LONG => new InsnNode(LCONST_0)
+ case Type.FLOAT => new InsnNode(FCONST_0)
+ case Type.DOUBLE => new InsnNode(DCONST_0)
+ case Type.OBJECT => new InsnNode(ACONST_NULL)
+ }
+
+ /**
+ * The number of local variable slots used for parameters and for the `this` reference.
+ */
+ def parametersSize(methodNode: MethodNode): Int = {
+ (Type.getArgumentsAndReturnSizes(methodNode.desc) >> 2) - (if (isStaticMethod(methodNode)) 1 else 0)
+ }
def labelReferences(method: MethodNode): Map[LabelNode, Set[AnyRef]] = {
val res = mutable.Map.empty[LabelNode, Set[AnyRef]]
@@ -311,10 +341,10 @@ object BytecodeUtils {
*/
def fixLoadedNothingOrNullValue(loadedType: Type, loadInstr: AbstractInsnNode, methodNode: MethodNode, bTypes: BTypes): Unit = {
if (loadedType == bTypes.coreBTypes.srNothingRef.toASMType) {
- methodNode.instructions.insert(loadInstr, new InsnNode(Opcodes.ATHROW))
+ methodNode.instructions.insert(loadInstr, new InsnNode(ATHROW))
} else if (loadedType == bTypes.coreBTypes.srNullRef.toASMType) {
- methodNode.instructions.insert(loadInstr, new InsnNode(Opcodes.ACONST_NULL))
- methodNode.instructions.insert(loadInstr, new InsnNode(Opcodes.POP))
+ methodNode.instructions.insert(loadInstr, new InsnNode(ACONST_NULL))
+ methodNode.instructions.insert(loadInstr, new InsnNode(POP))
}
}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/opt/CallGraph.scala b/src/compiler/scala/tools/nsc/backend/jvm/opt/CallGraph.scala
index b192e1b46a..863bb2d10a 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/opt/CallGraph.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/opt/CallGraph.scala
@@ -103,7 +103,7 @@ class CallGraph[BT <: BTypes](val btypes: BT) {
val analyzer = {
if (compilerSettings.YoptNullnessTracking && AsmAnalyzer.sizeOKForNullness(methodNode)) {
- Some(new AsmAnalyzer(methodNode, definingClass.internalName, new NullnessAnalyzer))
+ Some(new AsmAnalyzer(methodNode, definingClass.internalName, new NullnessAnalyzer(btypes)))
} else if (AsmAnalyzer.sizeOKForBasicValue(methodNode)) {
Some(new AsmAnalyzer(methodNode, definingClass.internalName))
} else None
@@ -461,7 +461,7 @@ class CallGraph[BT <: BTypes](val btypes: BT) {
// When re-writing the closure callsite to the implMethod, we have to insert a cast.
//
// The check below ensures that
- // (1) the implMethod type has the expected singature (captured types plus argument types
+ // (1) the implMethod type has the expected signature (captured types plus argument types
// from instantiatedMethodType)
// (2) the receiver of the implMethod matches the first captured type
// (3) all parameters that are not the same in samMethodType and instantiatedMethodType
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/opt/ClosureOptimizer.scala b/src/compiler/scala/tools/nsc/backend/jvm/opt/ClosureOptimizer.scala
index 4203a93f2e..f98a08a6a9 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/opt/ClosureOptimizer.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/opt/ClosureOptimizer.scala
@@ -8,10 +8,10 @@ package backend.jvm
package opt
import scala.annotation.switch
-import scala.collection.immutable
+import scala.collection.{mutable, immutable}
import scala.collection.immutable.IntMap
import scala.reflect.internal.util.NoPosition
-import scala.tools.asm.{Type, Opcodes}
+import scala.tools.asm.{Handle, Type, Opcodes}
import scala.tools.asm.tree._
import scala.tools.nsc.backend.jvm.BTypes.InternalName
import BytecodeUtils._
@@ -23,7 +23,9 @@ import scala.collection.convert.decorateAsScala._
class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
import btypes._
import callGraph._
+ import coreBTypes._
import backendUtils._
+ import ClosureOptimizer._
/**
* If a closure is allocated and invoked within the same method, re-write the invocation to the
@@ -71,34 +73,58 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
}
}
- // For each closure instantiation, a list of callsites of the closure that can be re-written
- // If a callsite cannot be rewritten, for example because the lambda body method is not accessible,
- // a warning is returned instead.
- val callsitesToRewrite: List[(ClosureInstantiation, List[Either[RewriteClosureApplyToClosureBodyFailed, (MethodInsnNode, Int)]])] = {
- closureInstantiations.iterator.flatMap({
- case (methodNode, closureInits) =>
- // A lazy val to ensure the analysis only runs if necessary (the value is passed by name to `closureCallsites`)
- // We don't need to worry about the method being too large for running an analysis: large
- // methods are not added to the call graph / closureInstantiations map.
- lazy val prodCons = new ProdConsAnalyzer(methodNode, closureInits.valuesIterator.next().ownerClass.internalName)
- val sortedInits = immutable.TreeSet.empty ++ closureInits.values
- sortedInits.iterator.map(init => (init, closureCallsites(init, prodCons))).filter(_._2.nonEmpty)
- }).toList // mapping to a list (not a map) to keep the sorting
+ // Use collections that keep insertion order, ensures order of closure rewrites (bytecode stability)
+ val toRewrite = mutable.LinkedHashMap.empty[ClosureInstantiation, mutable.ArrayBuffer[(MethodInsnNode, Int)]]
+ def addRewrite(init: ClosureInstantiation, invocation: MethodInsnNode, stackHeight: Int) = {
+ val calls = toRewrite.getOrElseUpdate(init, mutable.ArrayBuffer.empty[(MethodInsnNode, Int)])
+ calls += ((invocation, stackHeight))
}
- // Rewrite all closure callsites (or issue inliner warnings for those that cannot be rewritten)
- for ((closureInit, callsites) <- callsitesToRewrite) {
- // Local variables that hold the captured values and the closure invocation arguments.
- // They are lazy vals to ensure that locals for captured values are only allocated if there's
- // actually a callsite to rewrite (an not only warnings to be issued).
- lazy val (localsForCapturedValues, argumentLocalsList) = localsForClosureRewrite(closureInit)
- for (callsite <- callsites) callsite match {
- case Left(warning) =>
- backendReporting.inlinerWarning(warning.pos, warning.toString)
-
- case Right((invocation, stackHeight)) =>
- rewriteClosureApplyInvocation(closureInit, invocation, stackHeight, localsForCapturedValues, argumentLocalsList)
- }
+ // For each closure instantiation find callsites of the closure and add them to the toRewrite
+ // buffer (cannot change a method's bytecode while still looking for further invocations to
+ // rewrite, the frame indices of the ProdCons analysis would get out of date). If a callsite
+ // cannot be rewritten, for example because the lambda body method is not accessible, issue a
+ // warning. The `toList` in the next line prevents modifying closureInstantiations while
+ // iterating it: minimalRemoveUnreachableCode (called in the loop) removes elements.
+ for (method <- closureInstantiations.keysIterator.toList if AsmAnalyzer.sizeOKForBasicValue(method)) closureInstantiations.get(method) match {
+ case Some(closureInitsBeforeDCE) if closureInitsBeforeDCE.nonEmpty =>
+ val ownerClass = closureInitsBeforeDCE.head._2.ownerClass.internalName
+
+ // Advanced ProdCons queries (initialProducersForValueAt) expect no unreachable code.
+ localOpt.minimalRemoveUnreachableCode(method, ownerClass)
+
+ if (AsmAnalyzer.sizeOKForSourceValue(method)) closureInstantiations.get(method) match {
+ case Some(closureInits) =>
+ // A lazy val to ensure the analysis only runs if necessary (the value is passed by name to `closureCallsites`)
+ lazy val prodCons = new ProdConsAnalyzer(method, ownerClass)
+
+ // sorting for bytecode stability (e.g. indices of local vars created during the rewrite)
+ val sortedInits = immutable.TreeSet.empty ++ closureInits.values
+
+ for (init <- sortedInits) {
+ val callsites = closureCallsites(init, prodCons)
+ if (callsites.nonEmpty) {
+ callsites foreach {
+ case Left(warning) =>
+ backendReporting.inlinerWarning(warning.pos, warning.toString)
+
+ case Right((invocation, stackHeight)) =>
+ addRewrite(init, invocation, stackHeight)
+ }
+ }
+ }
+
+ case _ =>
+ }
+
+ case _ =>
+ }
+
+ toRewrite foreach {
+ case (closureInit, invocations) =>
+ // Local variables that hold the captured values and the closure invocation arguments.
+ val (localsForCapturedValues, argumentLocalsList) = localsForClosureRewrite(closureInit)
+ for ((invocation, stackHeight) <- invocations) rewriteClosureApplyInvocation(closureInit, invocation, stackHeight, localsForCapturedValues, argumentLocalsList)
}
}
@@ -118,20 +144,7 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
val argTypes = closureInit.lambdaMetaFactoryCall.samMethodType.getArgumentTypes
val firstArgLocal = ownerMethod.maxLocals
- // The comment in the unapply method of `LambdaMetaFactoryCall` explains why we have to introduce
- // casts for arguments that have different types in samMethodType and instantiatedMethodType.
- val castLoadTypes = {
- val instantiatedMethodType = closureInit.lambdaMetaFactoryCall.instantiatedMethodType
- (argTypes, instantiatedMethodType.getArgumentTypes).zipped map {
- case (samArgType, instantiatedArgType) if samArgType != instantiatedArgType =>
- // the LambdaMetaFactoryCall extractor ensures that the two types are reference types,
- // so we don't end up casting primitive values.
- Some(instantiatedArgType)
- case _ =>
- None
- }
- }
- val argLocals = LocalsList.fromTypes(firstArgLocal, argTypes, castLoadTypes)
+ val argLocals = LocalsList.fromTypes(firstArgLocal, argTypes)
ownerMethod.maxLocals = firstArgLocal + argLocals.size
(captureLocals, argLocals)
@@ -169,6 +182,28 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
}).toList
}
+ /**
+ * Check whether `invocation` invokes the SAM of the IndyLambda `closureInit`.
+ *
+ * In addition to a perfect match, we also identify cases where a generic FunctionN is created
+ * but the invocation is to a specialized variant apply$sp... Vice-versa, we also allow the
+ * case where a specialized FunctionN$sp.. is created but the generic apply is invoked. In
+ * these cases, the translation will introduce the necessary box / unbox invocations. Example:
+ *
+ * val f: Int => Any = (x: Int) => 1
+ * f(10)
+ *
+ * The IndyLambda creates a specialized `JFunction1$mcII$sp`, whose SAM is `apply$mcII$sp(I)I`.
+ * The invocation calls `apply(Object)Object`: the method name and type don't match.
+ * We identify these cases, insert the necessary unbox operation for the arguments, and invoke
+ * the `$anonfun(I)I` method.
+ *
+ * Tests in InlinerTest.optimizeSpecializedClosures. In that test, methods t4/t4a/t5/t8 show
+ * examples where the parameters have to be unboxed because generic `apply` is called, but the
+ * lambda body method takes primitive types.
+ * The opposite case is in t9: a the specialized `apply$sp..` is invoked, but the lambda body
+ * method takes boxed arguments, so we have to insert boxing operations.
+ */
private def isSamInvocation(invocation: MethodInsnNode, closureInit: ClosureInstantiation, prodCons: => ProdConsAnalyzer): Boolean = {
val indy = closureInit.lambdaMetaFactoryCall.indy
if (invocation.getOpcode == INVOKESTATIC) false
@@ -183,11 +218,85 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
receiverProducers.size == 1 && receiverProducers.head == indy
}
- invocation.name == indy.name && {
- val indySamMethodDesc = closureInit.lambdaMetaFactoryCall.samMethodType.getDescriptor
- indySamMethodDesc == invocation.desc
- } &&
- closureIsReceiver // most expensive check last
+ def isSpecializedVersion(specName: String, nonSpecName: String) = specName.startsWith(nonSpecName) && specializationSuffix.pattern.matcher(specName.substring(nonSpecName.length)).matches
+
+ def sameOrSpecializedType(specTp: Type, nonSpecTp: Type) = {
+ specTp == nonSpecTp || {
+ val specDesc = specTp.getDescriptor
+ val nonSpecDesc = nonSpecTp.getDescriptor
+ specDesc.length == 1 && primitives.contains(specDesc) && nonSpecDesc == ObjectRef.descriptor
+ }
+ }
+
+ def specializedDescMatches(specMethodDesc: String, nonSpecMethodDesc: String) = {
+ val specArgs = Type.getArgumentTypes(specMethodDesc)
+ val nonSpecArgs = Type.getArgumentTypes(nonSpecMethodDesc)
+ specArgs.corresponds(nonSpecArgs)(sameOrSpecializedType) && sameOrSpecializedType(Type.getReturnType(specMethodDesc), Type.getReturnType(nonSpecMethodDesc))
+ }
+
+ def nameAndDescMatch = {
+ val aName = invocation.name
+ val bName = indy.name
+ val aDesc = invocation.desc
+ val bDesc = closureInit.lambdaMetaFactoryCall.samMethodType.getDescriptor
+ if (aName == bName) aDesc == bDesc
+ else if (isSpecializedVersion(aName, bName)) specializedDescMatches(aDesc, bDesc)
+ else if (isSpecializedVersion(bName, aName)) specializedDescMatches(bDesc, aDesc)
+ else false
+ }
+
+ nameAndDescMatch && closureIsReceiver // most expensive check last
+ }
+ }
+
+ private def isPrimitiveType(asmType: Type) = {
+ val sort = asmType.getSort
+ Type.VOID <= sort && sort <= Type.DOUBLE
+ }
+
+ /**
+ * The argument types of the lambda body method may differ in two ways from the argument types of
+ * the closure member method that is invoked (and replaced by a call to the body).
+ * - The lambda body method may have more specific types than the invoked closure member, see
+ * comment in [[LambdaMetaFactoryCall.unapply]].
+ * - The invoked closure member might be a specialized variant of the SAM or vice-versa, see
+ * comment method [[isSamInvocation]].
+ */
+ private def adaptStoredArguments(closureInit: ClosureInstantiation, invocation: MethodInsnNode): Int => Option[AbstractInsnNode] = {
+ val invokeDesc = invocation.desc
+ // The lambda body method has additional parameters for captured values. Here we need to consider
+ // only those parameters of the body method that correspond to lambda parameters. This happens
+ // to be exactly LMF.instantiatedMethodType. In fact, `LambdaMetaFactoryCall.unapply` ensures
+ // that the body method signature is exactly (capturedParams + instantiatedMethodType).
+ val lambdaBodyMethodDescWithoutCaptures = closureInit.lambdaMetaFactoryCall.instantiatedMethodType.getDescriptor
+ if (invokeDesc == lambdaBodyMethodDescWithoutCaptures) {
+ _ => None
+ } else {
+ val invokeArgTypes = Type.getArgumentTypes(invokeDesc)
+ val implMethodArgTypes = Type.getArgumentTypes(lambdaBodyMethodDescWithoutCaptures)
+ val res = new Array[Option[AbstractInsnNode]](invokeArgTypes.length)
+ for (i <- invokeArgTypes.indices) {
+ if (invokeArgTypes(i) == implMethodArgTypes(i)) {
+ res(i) = None
+ } else if (isPrimitiveType(implMethodArgTypes(i)) && invokeArgTypes(i).getDescriptor == ObjectRef.descriptor) {
+ res(i) = Some(getScalaUnbox(implMethodArgTypes(i)))
+ } else if (isPrimitiveType(invokeArgTypes(i)) && implMethodArgTypes(i).getDescriptor == ObjectRef.descriptor) {
+ res(i) = Some(getScalaBox(invokeArgTypes(i)))
+ } else {
+ assert(!isPrimitiveType(invokeArgTypes(i)), invokeArgTypes(i))
+ assert(!isPrimitiveType(implMethodArgTypes(i)), implMethodArgTypes(i))
+ // The comment in the unapply method of `LambdaMetaFactoryCall` explains why we have to introduce
+ // casts for arguments that have different types in samMethodType and instantiatedMethodType.
+ //
+ // Note:
+ // - invokeArgTypes is the same as the argument types in the IndyLambda's samMethodType,
+ // this is ensured by the `isSamInvocation` filter in this file
+ // - implMethodArgTypes is the same as the arg types in the IndyLambda's instantiatedMethodType,
+ // this is ensured by the unapply method in LambdaMetaFactoryCall (file CallGraph)
+ res(i) = Some(new TypeInsnNode(CHECKCAST, implMethodArgTypes(i).getInternalName))
+ }
+ }
+ res
}
}
@@ -196,7 +305,7 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
val lambdaBodyHandle = closureInit.lambdaMetaFactoryCall.implMethod
// store arguments
- insertStoreOps(invocation, ownerMethod, argumentLocalsList)
+ insertStoreOps(invocation, ownerMethod, argumentLocalsList, adaptStoredArguments(closureInit, invocation))
// drop the closure from the stack
ownerMethod.instructions.insertBefore(invocation, new InsnNode(POP))
@@ -228,8 +337,22 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
val bodyInvocation = new MethodInsnNode(bodyOpcode, lambdaBodyHandle.getOwner, lambdaBodyHandle.getName, lambdaBodyHandle.getDesc, isInterface)
ownerMethod.instructions.insertBefore(invocation, bodyInvocation)
- val returnType = Type.getReturnType(lambdaBodyHandle.getDesc)
- fixLoadedNothingOrNullValue(returnType, bodyInvocation, ownerMethod, btypes) // see comment of that method
+ val bodyReturnType = Type.getReturnType(lambdaBodyHandle.getDesc)
+ val invocationReturnType = Type.getReturnType(invocation.desc)
+ if (isPrimitiveType(invocationReturnType) && bodyReturnType.getDescriptor == ObjectRef.descriptor) {
+ val op =
+ if (invocationReturnType.getSort == Type.VOID) getPop(1)
+ else getScalaUnbox(invocationReturnType)
+ ownerMethod.instructions.insertBefore(invocation, op)
+ } else if (isPrimitiveType(bodyReturnType) && invocationReturnType.getDescriptor == ObjectRef.descriptor) {
+ val op =
+ if (bodyReturnType.getSort == Type.VOID) getBoxedUnit
+ else getScalaBox(bodyReturnType)
+ ownerMethod.instructions.insertBefore(invocation, op)
+ } else {
+ // see comment of that method
+ fixLoadedNothingOrNullValue(bodyReturnType, bodyInvocation, ownerMethod, btypes)
+ }
ownerMethod.instructions.remove(invocation)
@@ -277,6 +400,9 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
// Rewriting a closure invocation may render code unreachable. For example, the body method of
// (x: T) => ??? has return type Nothing$, and an ATHROW is added (see fixLoadedNothingOrNullValue).
unreachableCodeEliminated -= ownerMethod
+
+ if (hasAdaptedImplMethod(closureInit) && inliner.canInlineBody(bodyMethodCallsite).isEmpty)
+ inliner.inlineCallsite(bodyMethodCallsite)
}
/**
@@ -293,13 +419,10 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
// local. On the other hand, further optimizations (copy propagation, remove unused locals) will
// clean it up.
- // Captured variables don't need to be cast when loaded at the callsite (castLoadTypes are None).
- // This is checked in `isClosureInstantiation`: the types of the captured variables in the indy
- // instruction match exactly the corresponding parameter types in the body method.
- val localsForCaptures = LocalsList.fromTypes(firstCaptureLocal, capturedTypes, castLoadTypes = _ => None)
+ val localsForCaptures = LocalsList.fromTypes(firstCaptureLocal, capturedTypes)
closureInit.ownerMethod.maxLocals = firstCaptureLocal + localsForCaptures.size
- insertStoreOps(indy, closureInit.ownerMethod, localsForCaptures)
+ insertStoreOps(indy, closureInit.ownerMethod, localsForCaptures, _ => None)
insertLoadOps(indy, closureInit.ownerMethod, localsForCaptures)
localsForCaptures
@@ -311,8 +434,16 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
*
* The lowest stack value is stored in the head of the locals list, so the last local is stored first.
*/
- private def insertStoreOps(before: AbstractInsnNode, methodNode: MethodNode, localsList: LocalsList) =
- insertLocalValueOps(before, methodNode, localsList, store = true)
+ private def insertStoreOps(before: AbstractInsnNode, methodNode: MethodNode, localsList: LocalsList, beforeStore: Int => Option[AbstractInsnNode]) = {
+ // The first instruction needs to store into the last local of the `localsList`.
+ // To avoid reversing the list, we use `insert(previous)`.
+ val previous = before.getPrevious
+ def ins(op: AbstractInsnNode) = methodNode.instructions.insert(previous, op)
+ for ((l, i) <- localsList.locals.zipWithIndex) {
+ ins(new VarInsnNode(l.storeOpcode, l.local))
+ beforeStore(i) foreach ins
+ }
+ }
/**
* Insert load operations in front of the `before` instruction to copy the local values denoted
@@ -320,20 +451,10 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
*
* The head of the locals list will be the lowest value on the stack, so the first local is loaded first.
*/
- private def insertLoadOps(before: AbstractInsnNode, methodNode: MethodNode, localsList: LocalsList) =
- insertLocalValueOps(before, methodNode, localsList, store = false)
-
- private def insertLocalValueOps(before: AbstractInsnNode, methodNode: MethodNode, localsList: LocalsList, store: Boolean): Unit = {
- // If `store` is true, the first instruction needs to store into the last local of the `localsList`.
- // Load instructions on the other hand are emitted in the order of the list.
- // To avoid reversing the list, we use `insert(previousInstr)` for stores and `insertBefore(before)` for loads.
- lazy val previous = before.getPrevious
+ private def insertLoadOps(before: AbstractInsnNode, methodNode: MethodNode, localsList: LocalsList) = {
for (l <- localsList.locals) {
- val varOp = new VarInsnNode(if (store) l.storeOpcode else l.loadOpcode, l.local)
- if (store) methodNode.instructions.insert(previous, varOp)
- else methodNode.instructions.insertBefore(before, varOp)
- if (!store) for (castType <- l.castLoadedValue)
- methodNode.instructions.insert(varOp, new TypeInsnNode(CHECKCAST, castType.getInternalName))
+ val op = new VarInsnNode(l.loadOpcode, l.local)
+ methodNode.instructions.insertBefore(before, op)
}
}
@@ -355,12 +476,12 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
* Local(6, refOpOffset) ::
* Nil
*/
- def fromTypes(firstLocal: Int, types: Array[Type], castLoadTypes: Int => Option[Type]): LocalsList = {
+ def fromTypes(firstLocal: Int, types: Array[Type]): LocalsList = {
var sizeTwoOffset = 0
val locals: List[Local] = types.indices.map(i => {
// The ASM method `type.getOpcode` returns the opcode for operating on a value of `type`.
val offset = types(i).getOpcode(ILOAD) - ILOAD
- val local = Local(firstLocal + i + sizeTwoOffset, offset, castLoadTypes(i))
+ val local = Local(firstLocal + i + sizeTwoOffset, offset)
if (local.size == 2) sizeTwoOffset += 1
local
})(collection.breakOut)
@@ -374,10 +495,15 @@ class ClosureOptimizer[BT <: BTypes](val btypes: BT) {
* The xLOAD / xSTORE opcodes are in the following sequence: I, L, F, D, A, so the offset for
* a local variable holding a reference (`A`) is 4. See also method `getOpcode` in [[scala.tools.asm.Type]].
*/
- case class Local(local: Int, opcodeOffset: Int, castLoadedValue: Option[Type]) {
+ case class Local(local: Int, opcodeOffset: Int) {
def size = if (loadOpcode == LLOAD || loadOpcode == DLOAD) 2 else 1
def loadOpcode = ILOAD + opcodeOffset
def storeOpcode = ISTORE + opcodeOffset
}
}
+
+object ClosureOptimizer {
+ val primitives = "BSIJCFDZV"
+ val specializationSuffix = s"(\\$$mc[$primitives]+\\$$sp)".r
+}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/opt/CopyProp.scala b/src/compiler/scala/tools/nsc/backend/jvm/opt/CopyProp.scala
new file mode 100644
index 0000000000..f91530903d
--- /dev/null
+++ b/src/compiler/scala/tools/nsc/backend/jvm/opt/CopyProp.scala
@@ -0,0 +1,641 @@
+/* NSC -- new Scala compiler
+ * Copyright 2005-2014 LAMP/EPFL
+ * @author Martin Odersky
+ */
+
+package scala.tools.nsc
+package backend.jvm
+package opt
+
+import scala.annotation.{switch, tailrec}
+import scala.tools.asm.tree.analysis.BasicInterpreter
+import scala.tools.asm.Type
+import scala.tools.asm.Opcodes._
+import scala.tools.asm.tree._
+import scala.collection.mutable
+import scala.collection.convert.decorateAsScala._
+import scala.tools.nsc.backend.jvm.BTypes.InternalName
+import scala.tools.nsc.backend.jvm.analysis._
+import scala.tools.nsc.backend.jvm.opt.BytecodeUtils._
+
+class CopyProp[BT <: BTypes](val btypes: BT) {
+ import btypes._
+ import backendUtils._
+
+
+ /**
+ * For every `xLOAD n`, find all local variable slots that are aliases of `n` using an
+ * AliasingAnalyzer and change the instruction to `xLOAD m` where `m` is the smallest alias.
+ * This leaves behind potentially stale `xSTORE n` instructions, which are then eliminated
+ * by [[eliminateStaleStores]].
+ */
+ def copyPropagation(method: MethodNode, owner: InternalName): Boolean = {
+ AsmAnalyzer.sizeOKForAliasing(method) && {
+ var changed = false
+ val numParams = parametersSize(method)
+ lazy val aliasAnalysis = new AsmAnalyzer(method, owner, new AliasingAnalyzer(new BasicInterpreter))
+
+ // Remember locals that are used in a `LOAD` instruction. Assume a program has two LOADs:
+ //
+ // ...
+ // LOAD 3 // aliases of 3 here: <3>
+ // ...
+ // LOAD 1 // aliases of 1 here: <1, 3>
+ //
+ // In this example, we should change the second load from 1 to 3, which might render the
+ // local variable 1 unused.
+ val knownUsed = new Array[Boolean](method.maxLocals)
+
+ def usedOrMinAlias(it: IntIterator, init: Int): Int = {
+ if (knownUsed(init)) init
+ else {
+ var r = init
+ while (it.hasNext) {
+ val n = it.next()
+ // knownUsed.lenght is the number of locals, `n` may be a stack slot
+ if (n < knownUsed.length && knownUsed(n)) return n
+ if (n < r) r = n
+ }
+ r
+ }
+ }
+
+ val it = method.instructions.iterator
+ while (it.hasNext) it.next() match {
+ case vi: VarInsnNode if vi.`var` >= numParams && isLoad(vi) =>
+ val aliases = aliasAnalysis.frameAt(vi).asInstanceOf[AliasingFrame[_]].aliasesOf(vi.`var`)
+ if (aliases.size > 1) {
+ val alias = usedOrMinAlias(aliases.iterator, vi.`var`)
+ if (alias != -1) {
+ changed = true
+ vi.`var` = alias
+ }
+ }
+ knownUsed(vi.`var`) = true
+
+ case _ =>
+ }
+
+ changed
+ }
+ }
+
+ /**
+ * Eliminate `xSTORE` instructions that have no consumer. If the instruction can be completely
+ * eliminated, it is replaced by a POP. The [[eliminatePushPop]] cleans up unnecessary POPs.
+ *
+ * Note that an `ASOTRE` can not always be eliminated: it removes a reference to the object that
+ * is currently stored in that local, which potentially frees it for GC (SI-5313). Therefore
+ * we replace such stores by `POP; ACONST_NULL; ASTORE x`.
+ */
+ def eliminateStaleStores(method: MethodNode, owner: InternalName): Boolean = {
+ AsmAnalyzer.sizeOKForSourceValue(method) && {
+ lazy val prodCons = new ProdConsAnalyzer(method, owner)
+ def hasNoCons(varIns: AbstractInsnNode, slot: Int) = prodCons.consumersOfValueAt(varIns.getNext, slot).isEmpty
+
+ // insns to delete: IINC that have no consumer
+ val toDelete = mutable.ArrayBuffer.empty[IincInsnNode]
+
+ // xSTORE insns to be replaced by POP or POP2
+ val storesToDrop = mutable.ArrayBuffer.empty[VarInsnNode]
+
+ // ASTORE insn that have no consumer.
+ // - if the local is not live, the store is replaced by POP
+ // - otherwise, pop the argument value and store NULL instead. Unless the boolean field is
+ // `true`: then the store argument is already known to be ACONST_NULL.
+ val toNullOut = mutable.ArrayBuffer.empty[(VarInsnNode, Boolean)]
+
+ // `true` for variables that are known to be live
+ val liveVars = new Array[Boolean](method.maxLocals)
+
+ val it = method.instructions.iterator
+ while (it.hasNext) it.next() match {
+ case vi: VarInsnNode if isStore(vi) && hasNoCons(vi, vi.`var`) =>
+ val canElim = vi.getOpcode != ASTORE || {
+ val currentFieldValueProds = prodCons.initialProducersForValueAt(vi, vi.`var`)
+ currentFieldValueProds.size == 1 && (currentFieldValueProds.head match {
+ case ParameterProducer(0) => !isStaticMethod(method) // current field value is `this`, which won't be gc'd anyway
+ case _: UninitializedLocalProducer => true // field is not yet initialized, so current value cannot leak
+ case _ => false
+ })
+ }
+ if (canElim) storesToDrop += vi
+ else {
+ val prods = prodCons.producersForValueAt(vi, prodCons.frameAt(vi).stackTop)
+ val isStoreNull = prods.size == 1 && prods.head.getOpcode == ACONST_NULL
+ toNullOut += ((vi, isStoreNull))
+ }
+
+ case ii: IincInsnNode if hasNoCons(ii, ii.`var`) =>
+ toDelete += ii
+
+ case vi: VarInsnNode =>
+ liveVars(vi.`var`) = true
+
+ case ii: IincInsnNode =>
+ liveVars(ii.`var`) = true
+
+ case _ =>
+ }
+
+ def replaceByPop(vi: VarInsnNode): Unit = {
+ val size = if (isSize2LoadOrStore(vi.getOpcode)) 2 else 1
+ method.instructions.set(vi, getPop(size))
+ }
+
+ toDelete foreach method.instructions.remove
+
+ storesToDrop foreach replaceByPop
+
+ for ((vi, isStoreNull) <- toNullOut) {
+ if (!liveVars(vi.`var`)) replaceByPop(vi) // can drop `ASTORE x` where x has only dead stores
+ else {
+ if (!isStoreNull) {
+ val prev = vi.getPrevious
+ method.instructions.insert(prev, new InsnNode(ACONST_NULL))
+ method.instructions.insert(prev, getPop(1))
+ }
+ }
+ }
+
+ toDelete.nonEmpty || storesToDrop.nonEmpty || toNullOut.nonEmpty
+ }
+ }
+
+ /**
+ * When a POP instruction has a single producer, remove the POP and eliminate the producer by
+ * bubbling up the POPs. For example, given
+ * ILOAD 1; ILOAD 2; IADD; POP
+ * we first eliminate the POP, then the IADD, then its inputs, so the entire sequence goes away.
+ * If a producer cannot be eliminated (need to keep side-effects), a POP is inserted.
+ *
+ * A special case eliminates the creation of unused objects with side-effect-free constructors:
+ * NEW scala/Tuple1; DUP; ALOAD 0; INVOKESPECIAL scala/Tuple1.<init>; POP
+ * The POP has a signle producer (the DUP), it's easy to eliminate these two. A special case
+ * is needed to eliminate the INVOKESPECIAL and NEW.
+ */
+ def eliminatePushPop(method: MethodNode, owner: InternalName): Boolean = {
+ AsmAnalyzer.sizeOKForSourceValue(method) && {
+ // A queue of instructions producing a value that has to be eliminated. If possible, the
+ // instruction (and its inputs) will be removed, otherwise a POP is inserted after
+ val queue = mutable.Queue.empty[ProducedValue]
+ // Contains constructor invocations for values that can be eliminated if unused.
+ val sideEffectFreeConstructorCalls = mutable.ArrayBuffer.empty[MethodInsnNode]
+
+ // instructions to remove (we don't change the bytecode while analyzing it. this allows
+ // running the ProdConsAnalyzer only once.)
+ val toRemove = mutable.Set.empty[AbstractInsnNode]
+ // instructions to insert before some instruction
+ val toInsertBefore = mutable.Map.empty[AbstractInsnNode, List[InsnNode]]
+ // an instruction to insert after some instruction
+ val toInsertAfter = mutable.Map.empty[AbstractInsnNode, AbstractInsnNode]
+
+ lazy val prodCons = new ProdConsAnalyzer(method, owner)
+
+ /**
+ * Returns the producers for the stack value `inputSlot` consumed by `cons`, if the consumer
+ * instruction is the only consumer for all of these producers.
+ *
+ * If a producer has multiple consumers, or the value is the caught exception in a catch
+ * block, this method returns Set.empty.
+ */
+ def producersIfSingleConsumer(cons: AbstractInsnNode, inputSlot: Int): Set[AbstractInsnNode] = {
+ /**
+ * True if the values produced by `prod` are all the same. Most instructions produce a single
+ * value. DUP and DUP2 (with a size-2 input) produce two equivalent values. However, there
+ * are some exotic instructions that produce multiple non-equal values (DUP_X1, SWAP, ...).
+ *
+ * Assume we have `DUP_X2; POP`. In order to remove the `POP` we need to change the DUP_X2
+ * into something else, which is not straightforward.
+ *
+ * Since scalac never emits any of those exotic bytecodes, we don't optimize them.
+ */
+ def producerHasSingleOutput(prod: AbstractInsnNode): Boolean = prod match {
+ case _: ExceptionProducer[_] | _: UninitializedLocalProducer =>
+ // POP of an exception in a catch block cannot be removed. For an uninitialized local,
+ // there should not be a consumer. We are conservative and include it here, so the
+ // producer would not be removed.
+ false
+
+ case _: ParameterProducer =>
+ true
+
+ case _ => (prod.getOpcode: @switch) match {
+ case DUP => true
+ case DUP2 => prodCons.frameAt(prod).peekStack(0).getSize == 2
+ case _ => InstructionStackEffect.prod(InstructionStackEffect.forAsmAnalysis(prod, prodCons.frameAt(prod))) == 1
+ }
+ }
+
+ val prods = prodCons.producersForValueAt(cons, inputSlot)
+ val singleConsumer = prods forall { prod =>
+ producerHasSingleOutput(prod) && {
+ // for DUP / DUP2, we only consider the value that is actually consumed by cons
+ val conss = prodCons.consumersOfValueAt(prod.getNext, inputSlot)
+ conss.size == 1 && conss.head == cons
+ }
+ }
+ if (singleConsumer) prods else Set.empty
+ }
+
+ /**
+ * For a POP instruction that is the single consumer of its producers, remove the POP and
+ * enqueue the producers.
+ */
+ def handleInitialPop(pop: AbstractInsnNode): Unit = {
+ val prods = producersIfSingleConsumer(pop, prodCons.frameAt(pop).stackTop)
+ if (prods.nonEmpty) {
+ toRemove += pop
+ val size = if (pop.getOpcode == POP2) 2 else 1
+ queue ++= prods.map(ProducedValue(_, size))
+ }
+ }
+
+ /**
+ * Traverse the method in its initial state and collect all POP instructions and side-effect
+ * free constructor invocations that can be eliminated.
+ */
+ def collectInitialPopsAndPureConstrs(): Unit = {
+ val it = method.instructions.iterator
+ while (it.hasNext) {
+ val insn = it.next()
+ (insn.getOpcode: @switch) match {
+ case POP | POP2 =>
+ handleInitialPop(insn)
+
+ case INVOKESPECIAL =>
+ val mi = insn.asInstanceOf[MethodInsnNode]
+ if (isSideEffectFreeConstructorCall(mi)) sideEffectFreeConstructorCalls += mi
+
+ case _ =>
+ }
+ }
+ }
+
+ /**
+ * Eliminate the `numArgs` inputs of the instruction `prod` (which was eliminated). Fo
+ * each input value
+ * - if the `prod` instruction is the single consumer, enqueue the producers of the input
+ * - otherwise, insert a POP instruction to POP the input value
+ */
+ def handleInputs(prod: AbstractInsnNode, numArgs: Int): Unit = {
+ val frame = prodCons.frameAt(prod)
+ val pops = mutable.ListBuffer.empty[InsnNode]
+ @tailrec def handle(stackOffset: Int): Unit = {
+ if (stackOffset >= 0) {
+ val prods = producersIfSingleConsumer(prod, frame.stackTop - stackOffset)
+ val nSize = frame.peekStack(stackOffset).getSize
+ if (prods.isEmpty) pops append getPop(nSize)
+ else queue ++= prods.map(ProducedValue(_, nSize))
+ handle(stackOffset - 1)
+ }
+ }
+ handle(numArgs - 1) // handle stack offsets (numArgs - 1) to 0
+ if (pops.nonEmpty) toInsertBefore(prod) = pops.toList
+ }
+
+ /**
+ * Eliminate the closure value produced by `indy`. If the SAM type is known to construct
+ * without side-effects (e.g. scala/runtime/java8/JFunctionN), the `indy` and its inputs
+ * are eliminated, otherwise a POP is inserted.
+ */
+ def handleClosureInst(indy: InvokeDynamicInsnNode): Unit = {
+ if (isrJFunctionType(Type.getReturnType(indy.desc).getInternalName)) {
+ toRemove += indy
+ callGraph.removeClosureInstantiation(indy, method)
+ handleInputs(indy, Type.getArgumentTypes(indy.desc).length)
+ } else {
+ toInsertAfter(indy) = getPop(1)
+ }
+ }
+
+ def runQueue(): Unit = while (queue.nonEmpty) {
+ val ProducedValue(prod, size) = queue.dequeue()
+
+ def prodString = s"Producer ${AsmUtils textify prod}@${method.instructions.indexOf(prod)}\n${AsmUtils textify method}"
+ def popAfterProd(): Unit = toInsertAfter(prod) = getPop(size)
+
+ (prod.getOpcode: @switch) match {
+ case ACONST_NULL | ICONST_M1 | ICONST_0 | ICONST_1 | ICONST_2 | ICONST_3 | ICONST_4 | ICONST_5 | LCONST_0 | LCONST_1 | FCONST_0 | FCONST_1 | FCONST_2 | DCONST_0 | DCONST_1 |
+ BIPUSH | SIPUSH | ILOAD | LLOAD | FLOAD | DLOAD | ALOAD=>
+ toRemove += prod
+
+ case opc @ (DUP | DUP2) =>
+ assert(opc != 2 || size == 2, s"DUP2 for two size-1 values; $prodString") // ensured in method `producerHasSingleOutput`
+ if (toRemove(prod))
+ // the DUP is already scheduled for removal because one of its consumers is a POP.
+ // now the second consumer is also a POP, so we need to eliminate the DUP's input.
+ handleInputs(prod, 1)
+ else
+ toRemove += prod
+
+ case DUP_X1 | DUP_X2 | DUP2_X1 | DUP2_X2 | SWAP =>
+ // these are excluded in method `producerHasSingleOutput`
+ assert(false, s"Cannot eliminate value pushed by an instruction with multiple output values; $prodString")
+
+ case IDIV | LDIV | IREM | LREM =>
+ popAfterProd() // keep potential division by zero
+
+ case IADD | LADD | FADD | DADD | ISUB | LSUB | FSUB | DSUB | IMUL | LMUL | FMUL | DMUL | FDIV | DDIV | FREM | DREM |
+ LSHL | LSHR | LUSHR |
+ IAND | IOR | IXOR | LAND | LOR | LXOR |
+ LCMP | FCMPL | FCMPG | DCMPL | DCMPG =>
+ toRemove += prod
+ handleInputs(prod, 2)
+
+ case INEG | LNEG | FNEG | DNEG |
+ I2L | I2F | I2D | L2I | L2F | L2D | F2I | F2L | F2D | D2I | D2L | D2F | I2B | I2C | I2S =>
+ toRemove += prod
+ handleInputs(prod, 1)
+
+ case GETFIELD | GETSTATIC =>
+ // TODO eliminate side-effect free module loads (https://github.com/scala/scala-dev/issues/16)
+ if (isBoxedUnit(prod)) toRemove += prod
+ else popAfterProd() // keep potential class initialization (static field) or NPE (instance field)
+
+ case INVOKEVIRTUAL | INVOKESPECIAL | INVOKESTATIC | INVOKEINTERFACE =>
+ val methodInsn = prod.asInstanceOf[MethodInsnNode]
+ if (isSideEffectFreeCall(methodInsn)) {
+ toRemove += prod
+ callGraph.removeCallsite(methodInsn, method)
+ val receiver = if (methodInsn.getOpcode == INVOKESTATIC) 0 else 1
+ handleInputs(prod, Type.getArgumentTypes(methodInsn.desc).length + receiver)
+ } else
+ popAfterProd()
+
+ case INVOKEDYNAMIC =>
+ prod match {
+ case callGraph.LambdaMetaFactoryCall(indy, _, _, _) => handleClosureInst(indy)
+ case _ => popAfterProd()
+ }
+
+ case NEW =>
+ if (isNewForSideEffectFreeConstructor(prod)) toRemove += prod
+ else popAfterProd()
+
+ case LDC => prod.asInstanceOf[LdcInsnNode].cst match {
+ case _: java.lang.Integer | _: java.lang.Float | _: java.lang.Long | _: java.lang.Double | _: String =>
+ toRemove += prod
+
+ case _ =>
+ // don't remove class literals, method types, method handles: keep a potential NoClassDefFoundError
+ popAfterProd()
+ }
+
+ case MULTIANEWARRAY =>
+ toRemove += prod
+ handleInputs(prod, prod.asInstanceOf[MultiANewArrayInsnNode].dims)
+
+ case _ =>
+ popAfterProd()
+ }
+ }
+
+ // there are two cases when we can eliminate a constructor call:
+ // - NEW T; INVOKESPECIAL T.<init> -- there's no DUP, the new object is consumed only by the constructor)
+ // - NEW T; DUP; INVOKESPECIAL T.<init>, where the DUP will be removed
+ def eliminateUnusedPureConstructorCalls(): Boolean = {
+ var changed = false
+
+ def removeConstructorCall(mi: MethodInsnNode): Unit = {
+ toRemove += mi
+ callGraph.removeCallsite(mi, method)
+ sideEffectFreeConstructorCalls -= mi
+ changed = true
+ }
+
+ for (mi <- sideEffectFreeConstructorCalls.toList) { // toList to allow removing elements while traversing
+ val frame = prodCons.frameAt(mi)
+ val stackTop = frame.stackTop
+ val numArgs = Type.getArgumentTypes(mi.desc).length
+ val receiverProds = producersIfSingleConsumer(mi, stackTop - numArgs)
+ if (receiverProds.size == 1) {
+ val receiverProd = receiverProds.head
+ if (receiverProd.getOpcode == NEW) {
+ removeConstructorCall(mi)
+ handleInputs(mi, numArgs + 1) // removes the producers of args and receiver
+ } else if (receiverProd.getOpcode == DUP && toRemove.contains(receiverProd)) {
+ val dupProds = producersIfSingleConsumer(receiverProd, prodCons.frameAt(receiverProd).stackTop)
+ if (dupProds.size == 1 && dupProds.head.getOpcode == NEW) {
+ removeConstructorCall(mi)
+ handleInputs(mi, numArgs) // removes the producers of args. the producer of the receiver is DUP and already in toRemove.
+ queue += ProducedValue(dupProds.head, 1) // removes the NEW (which is NOT the producer of the receiver!)
+ }
+ }
+ }
+ }
+ changed
+ }
+
+ collectInitialPopsAndPureConstrs()
+
+ // eliminating producers enables eliminating unused constructor calls (when a DUP gets removed).
+ // vice-versa, eliminating a constructor call adds producers of constructor parameters to the queue.
+ // so the two run in a loop.
+ runQueue()
+ while (eliminateUnusedPureConstructorCalls())
+ runQueue()
+
+ var changed = false
+ toInsertAfter foreach {
+ case (target, insn) =>
+ nextExecutableInstructionOrLabel(target) match {
+ // `insn` is of type `InsnNode`, so we only need to check the Opcode when comparing to another instruction
+ case Some(next) if next.getOpcode == insn.getOpcode && toRemove(next) =>
+ // Inserting and removing a POP at the same place should not enable `changed`. This happens
+ // when a POP directly follows a producer that cannot be eliminated, e.g. INVOKESTATIC A.m ()I; POP
+ // The POP is initially added to `toRemove`, and the `INVOKESTATIC` producer is added to the queue.
+ // Because the producer cannot be elided, a POP is added to `toInsertAfter`.
+ toRemove -= next
+
+ case _ =>
+ changed = true
+ method.instructions.insert(target, insn)
+ }
+ }
+ toInsertBefore foreach {
+ case (target, insns) =>
+ changed = true
+ insns.foreach(method.instructions.insertBefore(target, _))
+ }
+ toRemove foreach { insn =>
+ changed = true
+ method.instructions.remove(insn)
+ }
+ changed
+ }
+ }
+
+ case class ProducedValue(producer: AbstractInsnNode, size: Int) {
+ override def toString = s"<${AsmUtils textify producer}>"
+ }
+
+ /**
+ * Remove `xSTORE n; xLOAD n` paris if
+ * - the local variable n is not used anywhere else in the method (1), and
+ * - there are no executable instructions and no live labels (jump targets) between the two (2)
+ *
+ * Note: store-load pairs that cannot be eliminated could be replaced by `DUP; xSTORE n`, but
+ * that's just cosmetic and doesn't help for anything.
+ *
+ * (1) This could be made more precise by running a prodCons analysis and checking that the load
+ * is the only user of the store. Then we could eliminate the pair even if the variable is live
+ * (except for ASTORE, SI-5313). Not needing an analyzer is more efficient, and catches most
+ * cases.
+ *
+ * (2) The implementation uses a conservative estimation for liveness (if some instruction uses
+ * local n, then n is considered live in the entire method). In return, it doesn't need to run an
+ * Analyzer on the method, making it more efficient.
+ *
+ * This method also removes `ACONST_NULL; ASTORE n` if the local n is not live. This pattern is
+ * introduced by [[eliminateStaleStores]].
+ *
+ * The implementation is a little tricky to support the following case:
+ * ISTORE 1; ISTORE 2; ILOAD 2; ACONST_NULL; ASTORE 3; ILOAD 1
+ * The outer store-load pair can be removed if two the inner pairs can be.
+ */
+ def eliminateStoreLoad(method: MethodNode): Boolean = {
+ val removePairs = mutable.Set.empty[RemovePair]
+ val liveVars = new Array[Boolean](method.maxLocals)
+ val liveLabels = mutable.Set.empty[LabelNode]
+
+ def mkRemovePair(store: VarInsnNode, other: AbstractInsnNode, depends: List[RemovePairDependency]): RemovePair = {
+ val r = RemovePair(store, other, depends)
+ removePairs += r
+ r
+ }
+
+ def registerLiveVarsLabels(insn: AbstractInsnNode): Unit = insn match {
+ case vi: VarInsnNode => liveVars(vi.`var`) = true
+ case ii: IincInsnNode => liveVars(ii.`var`) = true
+ case j: JumpInsnNode => liveLabels += j.label
+ case s: TableSwitchInsnNode => liveLabels += s.dflt; liveLabels ++= s.labels.asScala
+ case s: LookupSwitchInsnNode => liveLabels += s.dflt; liveLabels ++= s.labels.asScala
+ case _ =>
+ }
+
+ val pairStartStack = new mutable.Stack[(AbstractInsnNode, mutable.ListBuffer[RemovePairDependency])]
+
+ def push(insn: AbstractInsnNode) = {
+ pairStartStack push ((insn, mutable.ListBuffer.empty))
+ }
+
+ def addDepends(dependency: RemovePairDependency) = if (pairStartStack.nonEmpty) {
+ val (_, depends) = pairStartStack.top
+ depends += dependency
+ }
+
+ def completesStackTop(load: AbstractInsnNode) = isLoad(load) && pairStartStack.nonEmpty && {
+ pairStartStack.top match {
+ case (store: VarInsnNode, _) => store.`var` == load.asInstanceOf[VarInsnNode].`var`
+ case _ => false
+ }
+ }
+
+ /**
+ * Try to pair `insn` with its correspondant on the stack
+ * - if the stack top is a store and `insn` is a corresponding load, create a pair
+ * - otherwise, check the two top stack values for `null; store`. if it matches, create
+ * a pair and continue pairing `insn` on the remaining stack
+ * - otherwise, empty the stack and mark the local variables in it live
+ */
+ def tryToPairInstruction(insn: AbstractInsnNode): Unit = {
+ @tailrec def emptyStack(): Unit = if (pairStartStack.nonEmpty) {
+ registerLiveVarsLabels(pairStartStack.pop()._1)
+ emptyStack()
+ }
+
+ @tailrec def tryPairing(): Unit = {
+ if (completesStackTop(insn)) {
+ val (store: VarInsnNode, depends) = pairStartStack.pop()
+ addDepends(mkRemovePair(store, insn, depends.toList))
+ } else if (pairStartStack.nonEmpty) {
+ val (top, topDepends) = pairStartStack.pop()
+ if (pairStartStack.nonEmpty) {
+ (pairStartStack.top, top) match {
+ case ((ldNull: InsnNode, depends), store: VarInsnNode) if ldNull.getOpcode == ACONST_NULL && store.getOpcode == ASTORE =>
+ pairStartStack.pop()
+ addDepends(mkRemovePair(store, ldNull, depends.toList))
+ // example: store; (null; store;) (store; load;) load
+ // s1^ ^^^^^p1^^^^^ // p1 is added to s1's depends
+ // then: store; (null; store;) load
+ // s2^ ^^^^p2^^^^^ // p1 and p2 are added to s2's depends
+ topDepends foreach addDepends
+ tryPairing()
+
+ case _ =>
+ // empty the stack - a non-matching insn was found, cannot create any pairs to remove
+ registerLiveVarsLabels(insn)
+ registerLiveVarsLabels(top)
+ emptyStack()
+ }
+ } else {
+ // stack only has one element
+ registerLiveVarsLabels(insn)
+ registerLiveVarsLabels(top)
+ }
+ } else {
+ // stack is empty already
+ registerLiveVarsLabels(insn)
+ }
+ }
+
+ tryPairing()
+ }
+
+
+ var insn = method.instructions.getFirst
+
+ @tailrec def advanceToNextExecutableOrLabel(): Unit = {
+ insn = insn.getNext
+ if (insn != null && !isExecutable(insn) && !insn.isInstanceOf[LabelNode]) advanceToNextExecutableOrLabel()
+ }
+
+ while (insn != null) {
+ insn match {
+ case _ if insn.getOpcode == ACONST_NULL => push(insn)
+ case vi: VarInsnNode if isStore(vi) => push(insn)
+ case label: LabelNode if pairStartStack.nonEmpty => addDepends(LabelNotLive(label))
+ case _ => tryToPairInstruction(insn)
+ }
+ advanceToNextExecutableOrLabel()
+ }
+
+ // elide RemovePairs that depend on live labels or other RemovePair that have to be elided.
+ // example: store 1; store 2; label x; load 2; load 1
+ // if x is live, the inner pair has to be elided, causing the outer pair to be elided too.
+
+ var doneEliding = false
+
+ def elide(removePair: RemovePair) = {
+ doneEliding = false
+ liveVars(removePair.store.`var`) = true
+ removePairs -= removePair
+ }
+
+ while (!doneEliding) {
+ doneEliding = true
+ for (removePair <- removePairs.toList) {
+ val slot = removePair.store.`var`
+ if (liveVars(slot)) elide(removePair)
+ else removePair.depends foreach {
+ case LabelNotLive(label) => if (liveLabels(label)) elide(removePair)
+ case other: RemovePair => if (!removePairs(other)) elide(removePair)
+ }
+ }
+ }
+
+ for (removePair <- removePairs) {
+ method.instructions.remove(removePair.store)
+ method.instructions.remove(removePair.other)
+ }
+
+ removePairs.nonEmpty
+ }
+}
+
+trait RemovePairDependency
+case class RemovePair(store: VarInsnNode, other: AbstractInsnNode, depends: List[RemovePairDependency]) extends RemovePairDependency {
+ override def toString = s"<${AsmUtils textify store},${AsmUtils textify other}> [$depends]"
+}
+case class LabelNotLive(label: LabelNode) extends RemovePairDependency
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/opt/Inliner.scala b/src/compiler/scala/tools/nsc/backend/jvm/opt/Inliner.scala
index 449a56fdd1..f247e884ae 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/opt/Inliner.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/opt/Inliner.scala
@@ -26,14 +26,6 @@ class Inliner[BT <: BTypes](val btypes: BT) {
import inlinerHeuristics._
import backendUtils._
- def eliminateUnreachableCodeAndUpdateCallGraph(methodNode: MethodNode, definingClass: InternalName): Unit = {
- localOpt.minimalRemoveUnreachableCode(methodNode, definingClass) foreach {
- case invocation: MethodInsnNode => callGraph.removeCallsite(invocation, methodNode)
- case indy: InvokeDynamicInsnNode => callGraph.removeClosureInstantiation(indy, methodNode)
- case _ =>
- }
- }
-
def runInliner(): Unit = {
rewriteFinalTraitMethodInvocations()
@@ -78,11 +70,13 @@ class Inliner[BT <: BTypes](val btypes: BT) {
}
}
+ // Rewriting final trait method callsites to the implementation class enables inlining.
def rewriteFinalTraitMethodInvocations(): Unit = {
- // Rewriting final trait method callsites to the implementation class enables inlining.
- // We cannot just iterate over the values of the `callsites` map because the rewrite changes the
- // map. Therefore we first copy the values to a list.
- callsites.valuesIterator.flatMap(_.valuesIterator).toList.foreach(rewriteFinalTraitMethodInvocation)
+ // Collect callsites to rewrite before actually rewriting anything. This prevents changing the
+ // `callsties` map while iterating it.
+ val toRewrite = mutable.ArrayBuffer.empty[Callsite]
+ for (css <- callsites.valuesIterator; cs <- css.valuesIterator if doRewriteTraitCallsite(cs)) toRewrite += cs
+ toRewrite foreach rewriteFinalTraitMethodInvocation
}
/**
@@ -101,79 +95,82 @@ class Inliner[BT <: BTypes](val btypes: BT) {
* (the receiver type is the interface, so the method is abstract).
*/
def rewriteFinalTraitMethodInvocation(callsite: Callsite): Unit = {
- if (doRewriteTraitCallsite(callsite)) {
- val Right(Callee(callee, calleeDeclarationClass, _, _, annotatedInline, annotatedNoInline, samParamTypes, infoWarning)) = callsite.callee
+ // The analyzer used below needs to have a non-null frame for the callsite instruction
+ localOpt.minimalRemoveUnreachableCode(callsite.callsiteMethod, callsite.callsiteClass.internalName)
- val traitMethodArgumentTypes = asm.Type.getArgumentTypes(callee.desc)
+ // If the callsite was eliminated by DCE, do nothing.
+ if (!callGraph.containsCallsite(callsite)) return
- val implClassInternalName = calleeDeclarationClass.internalName + "$class"
+ val Right(Callee(callee, calleeDeclarationClass, _, _, annotatedInline, annotatedNoInline, samParamTypes, infoWarning)) = callsite.callee
- val selfParamTypeV: Either[OptimizerWarning, ClassBType] = calleeDeclarationClass.info.map(_.inlineInfo.traitImplClassSelfType match {
- case Some(internalName) => classBTypeFromParsedClassfile(internalName)
- case None => calleeDeclarationClass
- })
+ val traitMethodArgumentTypes = asm.Type.getArgumentTypes(callee.desc)
- def implClassMethodV(implMethodDescriptor: String): Either[OptimizerWarning, MethodNode] = {
- byteCodeRepository.methodNode(implClassInternalName, callee.name, implMethodDescriptor).map(_._1)
- }
+ val implClassInternalName = calleeDeclarationClass.internalName + "$class"
- // The rewrite reading the implementation class and the implementation method from the bytecode
- // repository. If either of the two fails, the rewrite is not performed.
- val res = for {
- selfParamType <- selfParamTypeV
- implMethodDescriptor = asm.Type.getMethodDescriptor(asm.Type.getReturnType(callee.desc), selfParamType.toASMType +: traitMethodArgumentTypes: _*)
- implClassMethod <- implClassMethodV(implMethodDescriptor)
- implClassBType = classBTypeFromParsedClassfile(implClassInternalName)
- selfTypeOk <- calleeDeclarationClass.isSubtypeOf(selfParamType)
- } yield {
-
- // The self parameter type may be incompatible with the trait type.
- // trait T { self: S => def foo = 1 }
- // The $self parameter type of T$class.foo is S, which may be unrelated to T. If we re-write
- // a call to T.foo to T$class.foo, we need to cast the receiver to S, otherwise we get a
- // VerifyError. We run a `SourceInterpreter` to find all producer instructions of the
- // receiver value and add a cast to the self type after each.
- if (!selfTypeOk) {
- // We don't need to worry about the method being too large for running an analysis.
- // Callsites of large methods are not added to the call graph.
- localOpt.minimalRemoveUnreachableCode(callsite.callsiteMethod, callsite.callsiteClass.internalName)
- val analyzer = new AsmAnalyzer(callsite.callsiteMethod, callsite.callsiteClass.internalName, new Analyzer(new SourceInterpreter))
- val receiverValue = analyzer.frameAt(callsite.callsiteInstruction).peekStack(traitMethodArgumentTypes.length)
- for (i <- receiverValue.insns.asScala) {
- val cast = new TypeInsnNode(CHECKCAST, selfParamType.internalName)
- callsite.callsiteMethod.instructions.insert(i, cast)
- }
- }
+ val selfParamTypeV: Either[OptimizerWarning, ClassBType] = calleeDeclarationClass.info.map(_.inlineInfo.traitImplClassSelfType match {
+ case Some(internalName) => classBTypeFromParsedClassfile(internalName)
+ case None => calleeDeclarationClass
+ })
- val newCallsiteInstruction = new MethodInsnNode(INVOKESTATIC, implClassInternalName, callee.name, implMethodDescriptor, false)
- callsite.callsiteMethod.instructions.insert(callsite.callsiteInstruction, newCallsiteInstruction)
- callsite.callsiteMethod.instructions.remove(callsite.callsiteInstruction)
+ def implClassMethodV(implMethodDescriptor: String): Either[OptimizerWarning, MethodNode] = {
+ byteCodeRepository.methodNode(implClassInternalName, callee.name, implMethodDescriptor).map(_._1)
+ }
- callGraph.removeCallsite(callsite.callsiteInstruction, callsite.callsiteMethod)
- val staticCallSamParamTypes = {
- if (selfParamType.info.get.inlineInfo.sam.isEmpty) samParamTypes - 0
- else samParamTypes.updated(0, selfParamType)
+ // The rewrite reading the implementation class and the implementation method from the bytecode
+ // repository. If either of the two fails, the rewrite is not performed.
+ val res = for {
+ selfParamType <- selfParamTypeV
+ implMethodDescriptor = asm.Type.getMethodDescriptor(asm.Type.getReturnType(callee.desc), selfParamType.toASMType +: traitMethodArgumentTypes: _*)
+ implClassMethod <- implClassMethodV(implMethodDescriptor)
+ implClassBType = classBTypeFromParsedClassfile(implClassInternalName)
+ selfTypeOk <- calleeDeclarationClass.isSubtypeOf(selfParamType)
+ } yield {
+
+ // The self parameter type may be incompatible with the trait type.
+ // trait T { self: S => def foo = 1 }
+ // The $self parameter type of T$class.foo is S, which may be unrelated to T. If we re-write
+ // a call to T.foo to T$class.foo, we need to cast the receiver to S, otherwise we get a
+ // VerifyError. We run a `SourceInterpreter` to find all producer instructions of the
+ // receiver value and add a cast to the self type after each.
+ if (!selfTypeOk) {
+ // We don't need to worry about the method being too large for running an analysis.
+ // Callsites of large methods are not added to the call graph.
+ val analyzer = new AsmAnalyzer(callsite.callsiteMethod, callsite.callsiteClass.internalName, new Analyzer(new SourceInterpreter))
+ val receiverValue = analyzer.frameAt(callsite.callsiteInstruction).peekStack(traitMethodArgumentTypes.length)
+ for (i <- receiverValue.insns.asScala) {
+ val cast = new TypeInsnNode(CHECKCAST, selfParamType.internalName)
+ callsite.callsiteMethod.instructions.insert(i, cast)
}
- val staticCallsite = callsite.copy(
- callsiteInstruction = newCallsiteInstruction,
- callee = Right(Callee(
- callee = implClassMethod,
- calleeDeclarationClass = implClassBType,
- safeToInline = true,
- safeToRewrite = false,
- annotatedInline = annotatedInline,
- annotatedNoInline = annotatedNoInline,
- samParamTypes = staticCallSamParamTypes,
- calleeInfoWarning = infoWarning))
- )
- callGraph.addCallsite(staticCallsite)
}
- for (warning <- res.left) {
- val Right(callee) = callsite.callee
- val newCallee = callee.copy(calleeInfoWarning = Some(RewriteTraitCallToStaticImplMethodFailed(calleeDeclarationClass.internalName, callee.callee.name, callee.callee.desc, warning)))
- callGraph.addCallsite(callsite.copy(callee = Right(newCallee)))
+ val newCallsiteInstruction = new MethodInsnNode(INVOKESTATIC, implClassInternalName, callee.name, implMethodDescriptor, false)
+ callsite.callsiteMethod.instructions.insert(callsite.callsiteInstruction, newCallsiteInstruction)
+ callsite.callsiteMethod.instructions.remove(callsite.callsiteInstruction)
+
+ callGraph.removeCallsite(callsite.callsiteInstruction, callsite.callsiteMethod)
+ val staticCallSamParamTypes = {
+ if (selfParamType.info.get.inlineInfo.sam.isEmpty) samParamTypes - 0
+ else samParamTypes.updated(0, selfParamType)
}
+ val staticCallsite = callsite.copy(
+ callsiteInstruction = newCallsiteInstruction,
+ callee = Right(Callee(
+ callee = implClassMethod,
+ calleeDeclarationClass = implClassBType,
+ safeToInline = true,
+ safeToRewrite = false,
+ annotatedInline = annotatedInline,
+ annotatedNoInline = annotatedNoInline,
+ samParamTypes = staticCallSamParamTypes,
+ calleeInfoWarning = infoWarning))
+ )
+ callGraph.addCallsite(staticCallsite)
+ }
+
+ for (warning <- res.left) {
+ val Right(callee) = callsite.callee
+ val newCallee = callee.copy(calleeInfoWarning = Some(RewriteTraitCallToStaticImplMethodFailed(calleeDeclarationClass.internalName, callee.callee.name, callee.callee.desc, warning)))
+ callGraph.addCallsite(callsite.copy(callee = Right(newCallee)))
}
}
@@ -311,21 +308,9 @@ class Inliner[BT <: BTypes](val btypes: BT) {
def inline(request: InlineRequest): List[CannotInlineWarning] = canInlineBody(request.callsite) match {
case Some(w) => List(w)
case None =>
- // Inlining a method can create unreachable code. Example:
- // def f = throw e
- // def g = f; println() // println is unreachable after inlining f
- // If we have an inline request for a call to g, and f has been already inlined into g, we
- // need to run DCE before inlining g.
- val Right(callee) = request.callsite.callee
- eliminateUnreachableCodeAndUpdateCallGraph(callee.callee, callee.calleeDeclarationClass.internalName)
- // Skip over DCE'd callsites
- if (callGraph.containsCallsite(request.callsite)) {
- inlineCallsite(request.callsite)
- val postRequests = request.post.flatMap(adaptPostRequestForMainCallsite(_, request.callsite))
- postRequests flatMap inline
- } else {
- Nil
- }
+ inlineCallsite(request.callsite)
+ val postRequests = request.post.flatMap(adaptPostRequestForMainCallsite(_, request.callsite))
+ postRequests flatMap inline
}
/**
@@ -334,8 +319,6 @@ class Inliner[BT <: BTypes](val btypes: BT) {
* Preconditions:
* - The callsite can safely be inlined (canInlineBody is true)
* - The maxLocals and maxStack values of the callsite method are correctly computed
- * - The callsite method contains no unreachable basic blocks, i.e., running an Analyzer does
- * not produce any `null` frames
*
* @return A map associating instruction nodes of the callee with the corresponding cloned
* instruction in the callsite method.
@@ -345,6 +328,17 @@ class Inliner[BT <: BTypes](val btypes: BT) {
val Right(callsiteCallee) = callsite.callee
import callsiteCallee.{callee, calleeDeclarationClass}
+ // Inlining requires the callee not to have unreachable code, the analyzer used below should not
+ // return any `null` frames. Note that inlining a method can create unreachable code. Example:
+ // def f = throw e
+ // def g = f; println() // println is unreachable after inlining f
+ // If we have an inline request for a call to g, and f has been already inlined into g, we
+ // need to run DCE on g's body before inlining g.
+ localOpt.minimalRemoveUnreachableCode(callee, calleeDeclarationClass.internalName)
+
+ // If the callsite was eliminated by DCE, do nothing.
+ if (!callGraph.containsCallsite(callsite)) return
+
// New labels for the cloned instructions
val labelsMap = cloneLabels(callee)
val (clonedInstructions, instructionMap, hasSerializableClosureInstantiation) = cloneInstructions(callee, labelsMap)
@@ -521,7 +515,7 @@ class Inliner[BT <: BTypes](val btypes: BT) {
// Remove the elided invocation from the call graph
callGraph.removeCallsite(callsiteInstruction, callsiteMethod)
- // Inlining a method body can render some code unreachable, see example above (in runInliner).
+ // Inlining a method body can render some code unreachable, see example above in this method.
unreachableCodeEliminated -= callsiteMethod
}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/opt/InstructionResultSize.scala b/src/compiler/scala/tools/nsc/backend/jvm/opt/InstructionResultSize.scala
deleted file mode 100644
index 79e44a8503..0000000000
--- a/src/compiler/scala/tools/nsc/backend/jvm/opt/InstructionResultSize.scala
+++ /dev/null
@@ -1,236 +0,0 @@
-package scala.tools.nsc.backend.jvm.opt
-
-import scala.annotation.switch
-import scala.tools.asm.{Handle, Type, Opcodes}
-import scala.tools.asm.tree._
-
-object InstructionResultSize {
- import Opcodes._
- def apply(instruction: AbstractInsnNode): Int = (instruction.getOpcode: @switch) match {
- // The order of opcodes is (almost) the same as in Opcodes.java
- case ACONST_NULL => 1
-
- case ICONST_M1 |
- ICONST_0 |
- ICONST_1 |
- ICONST_2 |
- ICONST_3 |
- ICONST_4 |
- ICONST_5 => 1
-
- case LCONST_0 |
- LCONST_1 => 2
-
- case FCONST_0 |
- FCONST_1 |
- FCONST_2 => 1
-
- case DCONST_0 |
- DCONST_1 => 2
-
- case BIPUSH |
- SIPUSH => 1
-
- case LDC =>
- instruction.asInstanceOf[LdcInsnNode].cst match {
- case _: java.lang.Long |
- _: java.lang.Double => 2
-
- case _ => 1
- }
-
- case ILOAD |
- FLOAD |
- ALOAD => 1
-
- case LLOAD |
- DLOAD => 2
-
- case IALOAD |
- FALOAD |
- AALOAD |
- BALOAD |
- CALOAD |
- SALOAD => 1
-
- case LALOAD |
- DALOAD => 2
-
- case ISTORE |
- LSTORE |
- FSTORE |
- DSTORE |
- ASTORE => 0
-
- case IASTORE |
- LASTORE |
- FASTORE |
- DASTORE |
- AASTORE |
- BASTORE |
- CASTORE |
- SASTORE => 0
-
- case POP |
- POP2 => 0
-
- case DUP |
- DUP_X1 |
- DUP_X2 |
- DUP2 |
- DUP2_X1 |
- DUP2_X2 |
- SWAP => throw new IllegalArgumentException("Can't compute the size of DUP/SWAP without knowing what's on stack top")
-
- case IADD |
- FADD => 1
-
- case LADD |
- DADD => 2
-
- case ISUB |
- FSUB => 1
-
- case LSUB |
- DSUB => 2
-
- case IMUL |
- FMUL => 1
-
- case LMUL |
- DMUL => 2
-
- case IDIV |
- FDIV => 1
-
- case LDIV |
- DDIV => 2
-
- case IREM |
- FREM => 1
-
- case LREM |
- DREM => 2
-
- case INEG |
- FNEG => 1
-
- case LNEG |
- DNEG => 2
-
- case ISHL |
- ISHR => 1
-
- case LSHL |
- LSHR => 2
-
- case IUSHR => 1
-
- case LUSHR => 2
-
- case IAND |
- IOR |
- IXOR => 1
-
- case LAND |
- LOR |
- LXOR => 2
-
- case IINC => 1
-
- case I2F |
- L2I |
- L2F |
- F2I |
- D2I |
- D2F |
- I2B |
- I2C |
- I2S => 1
-
- case I2L |
- I2D |
- L2D |
- F2L |
- F2D |
- D2L => 2
-
- case LCMP |
- FCMPL |
- FCMPG |
- DCMPL |
- DCMPG => 1
-
- case IFEQ |
- IFNE |
- IFLT |
- IFGE |
- IFGT |
- IFLE => 0
-
- case IF_ICMPEQ |
- IF_ICMPNE |
- IF_ICMPLT |
- IF_ICMPGE |
- IF_ICMPGT |
- IF_ICMPLE |
- IF_ACMPEQ |
- IF_ACMPNE => 0
-
- case GOTO => 0
-
- case JSR => throw new IllegalArgumentException("Subroutines are not supported.")
-
- case RET => 0
-
- case TABLESWITCH |
- LOOKUPSWITCH => 0
-
- case IRETURN |
- FRETURN |
- ARETURN => 1
-
- case LRETURN |
- DRETURN => 2
-
- case RETURN => 0
-
- case GETSTATIC => Type.getType(instruction.asInstanceOf[FieldInsnNode].desc).getSize
-
- case PUTSTATIC => 0
-
- case GETFIELD => Type.getType(instruction.asInstanceOf[FieldInsnNode].desc).getSize
-
- case PUTFIELD => 0
-
- case INVOKEVIRTUAL |
- INVOKESPECIAL |
- INVOKESTATIC |
- INVOKEINTERFACE =>
- val desc = instruction.asInstanceOf[MethodInsnNode].desc
- Type.getReturnType(desc).getSize
-
- case INVOKEDYNAMIC =>
- val desc = instruction.asInstanceOf[InvokeDynamicInsnNode].desc
- Type.getReturnType(desc).getSize
-
- case NEW => 1
-
- case NEWARRAY |
- ANEWARRAY |
- ARRAYLENGTH => 1
-
- case ATHROW => 0
-
- case CHECKCAST |
- INSTANCEOF => 1
-
- case MONITORENTER |
- MONITOREXIT => 0
-
- case MULTIANEWARRAY => 1
-
- case IFNULL |
- IFNONNULL => 0
- }
-}
diff --git a/src/compiler/scala/tools/nsc/backend/jvm/opt/LocalOpt.scala b/src/compiler/scala/tools/nsc/backend/jvm/opt/LocalOpt.scala
index a80b3d0487..7a1dcd9ec6 100644
--- a/src/compiler/scala/tools/nsc/backend/jvm/opt/LocalOpt.scala
+++ b/src/compiler/scala/tools/nsc/backend/jvm/opt/LocalOpt.scala
@@ -7,49 +7,146 @@ package scala.tools.nsc
package backend.jvm
package opt
-import scala.annotation.switch
-import scala.tools.asm.{Type, ClassWriter, MethodWriter, Opcodes}
+import scala.annotation.{tailrec, switch}
+import scala.tools.asm.Type
+import scala.tools.asm.tree.analysis.Frame
+import scala.tools.asm.Opcodes._
import scala.tools.asm.tree._
+import scala.collection.{mutable, immutable}
import scala.collection.convert.decorateAsScala._
import scala.tools.nsc.backend.jvm.BTypes.InternalName
+import scala.tools.nsc.backend.jvm.analysis._
import scala.tools.nsc.backend.jvm.opt.BytecodeUtils._
/**
- * Optimizations within a single method.
+ * Optimizations within a single method. Certain optimizations enable others, for example removing
+ * unreachable code can render a `try` block empty and enable removeEmptyExceptionHandlers. The
+ * latter in turn enables more unreachable code to be eliminated (the `catch` block), so there is
+ * a cyclic dependency. Optimizations that depend on each other are therefore executed in a loop
+ * until reaching a fixpoint.
*
- * unreachable code
- * - removes instructions of basic blocks to which no branch instruction points
- * + enables eliminating some exception handlers and local variable descriptors
- * > eliminating them is required for correctness, as explained in `removeUnreachableCode`
+ * The optimizations marked UPSTREAM enable optimizations that were already executed, so they cause
+ * another iteration in the fixpoint loop.
*
- * empty exception handlers
- * - removes exception handlers whose try block is empty
- * + eliminating a handler where the try block is empty and reachable will turn the catch block
- * unreachable. in this case "unreachable code" is invoked recursively until reaching a fixpoint.
- * > for try blocks that are unreachable, "unreachable code" removes also the instructions of the
- * catch block, and the recursive invocation is not necessary.
+ * nullness optimizations: rewrite null-checking branches to GOTO if nullness is known
+ * + enables downstream
+ * - unreachable code (null / non-null branch becomes unreachable)
+ * - box-unbox elimination (may render an escaping consumer of a box unreachable)
+ * - stale stores (aload x is replaced by aconst_null if it's known null)
+ * - simplify jumps (replaces conditional jumps by goto, so may enable goto chains)
*
- * simplify jumps
- * - various simplifications, see doc comments of individual optimizations
- * + changing or eliminating jumps may render some code unreachable, therefore "simplify jumps" is
- * executed in a loop with "unreachable code"
+ * unreachable code / DCE (removes instructions of basic blocks to which there is no branch)
+ * + enables downstream:
+ * - stale stores (loads may be eliminated, removing consumers of a store)
+ * - empty handlers (try blocks may become empty)
+ * - simplify jumps (goto l; [dead code]; l: ..) => remove goto
+ * - stale local variable descriptors
+ * - (not box-unbox, which is implemented using prod-cons, so it doesn't consider dead code)
*
- * empty local variable descriptors
- * - removes entries from the local variable table where the variable is not actually used
- * + enables eliminating labels that the entry points to (if they are not otherwise referenced)
+ * note that eliminating empty handlers and stale local variable descriptors is required for
+ * correctness, see the comment in the body of `methodOptimizations`.
*
- * empty line numbers
- * - eliminates line number nodes that describe no executable instructions
- * + enables eliminating the label of the line number node (if it's not otherwise referenced)
+ * box-unbox elimination (eliminates box-unbox pairs withing the same method)
+ * + enables UPSTREAM:
+ * - nullness optimizations (a box extraction operation (unknown nullness) may be rewritten to
+ * a read of a non-null local. example in doc comment of box-unbox implementation)
+ * - further box-unbox elimination (e.g. an Integer stored in a Tuple; eliminating the tuple may
+ * enable eliminating the Integer)
+ * + enables downstream:
+ * - copy propagation (new locals are introduced, may be aliases of existing)
+ * - stale stores (multi-value boxes where not all values are used)
+ * - redundant casts (`("a", "b")._1`: the generic `_1` method returns `Object`, a cast
+ * to String is added. The cast is redundant after eliminating the tuple.)
+ * - empty local variable descriptors (local variables that were holding the box may become unused)
*
- * stale labels
- * - eliminate labels that are not referenced, merge sequences of label definitions.
+ * copy propagation (replaces LOAD n to the LOAD m for the smallest m that is an alias of n)
+ * + enables downstrem:
+ * - stale stores (a stored value may not be loaded anymore)
+ * - store-load pairs (a load n may now be right after a store n)
+ * + NOTE: copy propagation is only executed once, in the first fixpoint loop iteration. none of
+ * the other optimizations enables further copy prop. we still run it as part of the loop
+ * because it requires unreachable code to be eliminated.
+ *
+ * stale stores (replace STORE by POP)
+ * + enables downstream:
+ * - push-pop (the new pop may be the single consumer for an instruction)
+ *
+ * redundant casts: eliminates casts that are statically known to succeed (uses type propagation)
+ * + enables UPSTREAM:
+ * - box-unbox elimination (a removed checkcast may be a box consumer)
+ * + enables downstream:
+ * - push-pop for closure allocation elimination (every indyLambda is followed by a checkcast, see SI-9540)
+ *
+ * push-pop (when a POP is the only consumer of a value, remove the POP and its producer)
+ * + enables UPSTREAM:
+ * - stale stores (if a LOAD is removed, a corresponding STORE may become stale)
+ * - box-unbox elimination (push-pop may eliminate a closure allocation, rendering a captured
+ * box non-escaping)
+ * + enables downstream:
+ * - store-load pairs (a variable may become non-live)
+ * - stale handlers (push-pop removes code)
+ * - simplify jumps (push-pop removes code)
+ *
+ * store-load pairs (remove `STORE x; LOAD x` if x is otherwise not used in the method)
+ * + enables downstream:
+ * - empty handlers (code is removes, a try block may become empty
+ * - simplify jumps (code is removed, a goto may become redundant for example)
+ * - stale local variable descriptors
+ *
+ * empty handlers (removes exception handlers whose try block is empty)
+ * + enables UPSTREAM:
+ * - unreachable code (catch block becomes unreachable)
+ * - box-unbox (a box may be escape in an operation in a dead handler)
+ * + enables downstream:
+ * - simplify jumps
+ *
+ * simplify jumps (various, like `GOTO l; l: ...`, see doc comments of individual optimizations)
+ * + enables UPSTREAM
+ * - unreachable code (`GOTO a; a: GOTO b; b: ...`, the first jump is changed to `GOTO b`, the second becomes unreachable)
+ * - store-load pairs (a `GOTO l; l: ...` is removed between store and load)
+ * - push-pop (`IFNULL l; l: ...` is replaced by `POP`)
+ *
+ *
+ * The following cleanup optimizations don't enable any upstream optimizations, so they can be
+ * executed once at the end, when the above optimizations reach a fixpoint.
+ *
+ *
+ * empty local variable descriptors (removes unused variables from the local variable table)
+ * + enables downstream:
+ * - stale labels (labels that the entry points to, if not otherwise referenced)
+ *
+ * empty line numbers (eliminates line number nodes that describe no executable instructions)
+ * + enables downstream:
+ * - stale labels (label of the line number node, if not otherwise referenced)
+ *
+ * stale labels (eliminate labels that are not referenced, merge sequences of label definitions)
+ *
+ *
+ * Note on a method's maxLocals / maxStack: the backend only uses those values for running
+ * Analyzers. The values can be conservative approximations: if an optimization removes code and
+ * the maximal stack size is now smaller, the larger maxStack value will still work fine for
+ * running an Analyzer (just that frames allocate more space than required). The correct max
+ * values written to the bytecode are re-computed during classfile serialization.
+ * To keep things simpler, we don't update the max values in every optimization:
+ * - we do it in `removeUnreachableCodeImpl`, because it's quite straightforward
+ * - maxLocals is updated in `compactLocalVariables`, which runs at the end of method optimizations
+ *
+ *
+ * Note on updating the call graph: whenever an optimization eliminates a callsite or a closure
+ * instantiation, we eliminate the corresponding entry from the call graph.
*/
class LocalOpt[BT <: BTypes](val btypes: BT) {
import LocalOptImpls._
import btypes._
+ import coreBTypes._
import backendUtils._
+ val boxUnbox = new BoxUnbox(btypes)
+ import boxUnbox._
+
+ val copyProp = new CopyProp(btypes)
+ import copyProp._
+
/**
* Remove unreachable code from a method.
*
@@ -59,28 +156,30 @@ class LocalOpt[BT <: BTypes](val btypes: BT) {
*
* @return A set containing the eliminated instructions
*/
- def minimalRemoveUnreachableCode(method: MethodNode, ownerClassName: InternalName): Set[AbstractInsnNode] = {
- if (method.instructions.size == 0) return Set.empty // fast path for abstract methods
- if (unreachableCodeEliminated(method)) return Set.empty // we know there is no unreachable code
- if (!AsmAnalyzer.sizeOKForBasicValue(method)) return Set.empty // the method is too large for running an analyzer
+ def minimalRemoveUnreachableCode(method: MethodNode, ownerClassName: InternalName): Boolean = {
+ // In principle, for the inliner, a single removeUnreachableCodeImpl would be enough. But that
+ // would potentially leave behind stale handlers (empty try block) which is not legal in the
+ // classfile. So we run both removeUnreachableCodeImpl and removeEmptyExceptionHandlers.
+ if (method.instructions.size == 0) return false // fast path for abstract methods
+ if (unreachableCodeEliminated(method)) return false // we know there is no unreachable code
+ if (!AsmAnalyzer.sizeOKForBasicValue(method)) return false // the method is too large for running an analyzer
// For correctness, after removing unreachable code, we have to eliminate empty exception
// handlers, see scaladoc of def methodOptimizations. Removing an live handler may render more
// code unreachable and therefore requires running another round.
- def removalRound(): Set[AbstractInsnNode] = {
- val (removedInstructions, liveLabels) = removeUnreachableCodeImpl(method, ownerClassName)
- val removedRecursively = if (removedInstructions.nonEmpty) {
+ def removalRound(): Boolean = {
+ val (insnsRemoved, liveLabels) = removeUnreachableCodeImpl(method, ownerClassName)
+ if (insnsRemoved) {
val liveHandlerRemoved = removeEmptyExceptionHandlers(method).exists(h => liveLabels(h.start))
if (liveHandlerRemoved) removalRound()
- else Set.empty
- } else Set.empty
- removedInstructions ++ removedRecursively
+ }
+ insnsRemoved
}
- val removedInstructions = removalRound()
- if (removedInstructions.nonEmpty) removeUnusedLocalVariableNodes(method)()
+ val changed = removalRound()
+ if (changed) removeUnusedLocalVariableNodes(method)()
unreachableCodeEliminated += method
- removedInstructions
+ changed
}
/**
@@ -97,15 +196,7 @@ class LocalOpt[BT <: BTypes](val btypes: BT) {
}
/**
- * Remove unreachable code from a method.
- *
- * We rely on dead code elimination provided by the ASM framework, as described in the ASM User
- * Guide (http://asm.ow2.org/index.html), Section 8.2.1. It runs a data flow analysis, which only
- * computes Frame information for reachable instructions. Instructions for which no Frame data is
- * available after the analysis are unreachable.
- *
- * Also simplifies branching instructions, removes unused local variable descriptors, empty
- * exception handlers, unnecessary label declarations and empty line number nodes.
+ * Run method-level optimizations, see comment on class [[LocalOpt]].
*
* Returns `true` if the bytecode of `method` was changed.
*/
@@ -138,37 +229,149 @@ class LocalOpt[BT <: BTypes](val btypes: BT) {
// This triggers "ClassFormatError: Illegal exception table range in class file C". Similar
// for local variables in dead blocks. Maybe that's a bug in the ASM framework.
- def canRunDCE = AsmAnalyzer.sizeOKForBasicValue(method)
- def removalRound(): Boolean = {
- // unreachable-code, empty-handlers and simplify-jumps run until reaching a fixpoint (see doc on class LocalOpt)
- val (codeRemoved, handlersRemoved, liveHandlerRemoved) = if (compilerSettings.YoptUnreachableCode && canRunDCE) {
- val (removedInstructions, liveLabels) = removeUnreachableCodeImpl(method, ownerClassName)
- val removedHandlers = removeEmptyExceptionHandlers(method)
- (removedInstructions.nonEmpty, removedHandlers.nonEmpty, removedHandlers.exists(h => liveLabels(h.start)))
- } else {
- (false, false, false)
+ var currentTrace: String = null
+ def traceIfChanged(optName: String): Unit = if (compilerSettings.YoptTrace.value) {
+ val after = AsmUtils.textify(method)
+ if (currentTrace != after) {
+ println(s"after $optName")
+ println(after)
}
-
- val jumpsChanged = if (compilerSettings.YoptSimplifyJumps) simplifyJumps(method) else false
-
- // Eliminating live handlers and simplifying jump instructions may render more code
- // unreachable, so we need to run another round.
- if (liveHandlerRemoved || jumpsChanged) removalRound()
-
- codeRemoved || handlersRemoved || jumpsChanged
+ currentTrace = after
}
- val codeHandlersOrJumpsChanged = removalRound()
+ /**
+ * Runs the optimizations that depend on each other in a loop until reaching a fixpoint. See
+ * comment in class [[LocalOpt]].
+ *
+ * Returns a pair of booleans (codeChanged, requireEliminateUnusedLocals).
+ */
+ def removalRound(
+ requestNullness: Boolean,
+ requestDCE: Boolean,
+ requestBoxUnbox: Boolean,
+ requestStaleStores: Boolean,
+ requestPushPop: Boolean,
+ requestStoreLoad: Boolean,
+ firstIteration: Boolean,
+ maxRecursion: Int = 10): (Boolean, Boolean) = {
+ if (maxRecursion == 0) return (false, false)
+
+ traceIfChanged("beforeMethodOpt")
+
+ // NULLNESS OPTIMIZATIONS
+ val runNullness = compilerSettings.YoptNullnessTracking && requestNullness
+ val nullnessOptChanged = runNullness && nullnessOptimizations(method, ownerClassName)
+ traceIfChanged("nullness")
+
+ // UNREACHABLE CODE
+ // Both AliasingAnalyzer (used in copyProp) and ProdConsAnalyzer (used in eliminateStaleStores,
+ // boxUnboxElimination) require not having unreachable instructions (null frames).
+ val runDCE = (compilerSettings.YoptUnreachableCode && (requestDCE || nullnessOptChanged)) ||
+ compilerSettings.YoptBoxUnbox ||
+ compilerSettings.YoptCopyPropagation
+ val (codeRemoved, liveLabels) = if (runDCE) removeUnreachableCodeImpl(method, ownerClassName) else (false, Set.empty[LabelNode])
+ traceIfChanged("dce")
+
+ // BOX-UNBOX
+ val runBoxUnbox = compilerSettings.YoptBoxUnbox && (requestBoxUnbox || nullnessOptChanged)
+ val boxUnboxChanged = runBoxUnbox && boxUnboxElimination(method, ownerClassName)
+ traceIfChanged("boxUnbox")
+
+ // COPY PROPAGATION
+ val runCopyProp = compilerSettings.YoptCopyPropagation && (firstIteration || boxUnboxChanged)
+ val copyPropChanged = runCopyProp && copyPropagation(method, ownerClassName)
+ traceIfChanged("copyProp")
+
+ // STALE STORES
+ val runStaleStores = compilerSettings.YoptCopyPropagation && (requestStaleStores || nullnessOptChanged || codeRemoved || boxUnboxChanged || copyPropChanged)
+ val storesRemoved = runStaleStores && eliminateStaleStores(method, ownerClassName)
+ traceIfChanged("staleStores")
+
+ // REDUNDANT CASTS
+ val runRedundantCasts = compilerSettings.YoptRedundantCasts && (firstIteration || boxUnboxChanged)
+ val castRemoved = runRedundantCasts && eliminateRedundantCasts(method, ownerClassName)
+ traceIfChanged("redundantCasts")
+
+ // PUSH-POP
+ val runPushPop = compilerSettings.YoptCopyPropagation && (requestPushPop || firstIteration || storesRemoved || castRemoved)
+ val pushPopRemoved = runPushPop && eliminatePushPop(method, ownerClassName)
+ traceIfChanged("pushPop")
+
+ // STORE-LOAD PAIRS
+ val runStoreLoad = compilerSettings.YoptCopyPropagation && (requestStoreLoad || boxUnboxChanged || copyPropChanged || pushPopRemoved)
+ val storeLoadRemoved = runStoreLoad && eliminateStoreLoad(method)
+ traceIfChanged("storeLoadPairs")
+
+ // STALE HANDLERS
+ val removedHandlers = if (runDCE) removeEmptyExceptionHandlers(method) else Set.empty[TryCatchBlockNode]
+ val handlersRemoved = removedHandlers.nonEmpty
+ val liveHandlerRemoved = removedHandlers.exists(h => liveLabels(h.start))
+ traceIfChanged("staleHandlers")
+
+ // SIMPLIFY JUMPS
+ // almost all of the above optimizations enable simplifying more jumps, so we just run it in every iteration
+ val runSimplifyJumps = compilerSettings.YoptSimplifyJumps
+ val jumpsChanged = runSimplifyJumps && simplifyJumps(method)
+ traceIfChanged("simplifyJumps")
+
+ // See doc comment in the beginning of this file (optimizations marked UPSTREAM)
+ val runNullnessAgain = boxUnboxChanged
+ val runDCEAgain = liveHandlerRemoved || jumpsChanged
+ val runBoxUnboxAgain = boxUnboxChanged || castRemoved || pushPopRemoved || liveHandlerRemoved
+ val runStaleStoresAgain = pushPopRemoved
+ val runPushPopAgain = jumpsChanged
+ val runStoreLoadAgain = jumpsChanged
+ val runAgain = runNullnessAgain || runDCEAgain || runBoxUnboxAgain || pushPopRemoved || runStaleStoresAgain || runPushPopAgain || runStoreLoadAgain
+
+ val downstreamRequireEliminateUnusedLocals = runAgain && removalRound(
+ requestNullness = runNullnessAgain,
+ requestDCE = runDCEAgain,
+ requestBoxUnbox = runBoxUnboxAgain,
+ requestStaleStores = runStaleStoresAgain,
+ requestPushPop = runPushPopAgain,
+ requestStoreLoad = runStoreLoadAgain,
+ firstIteration = false,
+ maxRecursion = maxRecursion - 1)._2
+
+ val requireEliminateUnusedLocals = downstreamRequireEliminateUnusedLocals ||
+ nullnessOptChanged || // nullness opt may eliminate stores / loads, rendering a local unused
+ codeRemoved || // see comment in method `methodOptimizations`
+ boxUnboxChanged || // box-unbox renders locals (holding boxes) unused
+ storesRemoved ||
+ storeLoadRemoved ||
+ handlersRemoved
+
+ val codeChanged = nullnessOptChanged || codeRemoved || boxUnboxChanged || castRemoved || copyPropChanged || storesRemoved || pushPopRemoved || storeLoadRemoved || handlersRemoved || jumpsChanged
+ (codeChanged, requireEliminateUnusedLocals)
+ }
- // (*) Removing stale local variable descriptors is required for correctness of unreachable-code
+ val (nullnessDceBoxesCastsCopypropPushpopOrJumpsChanged, requireEliminateUnusedLocals) = if (AsmAnalyzer.sizeOKForBasicValue(method)) {
+ // we run DCE even if the method is already in the `unreachableCodeEliminated` map: the DCE
+ // here is more thorough than `minimalRemoveUnreachableCode` that run before inlining.
+ val r = removalRound(
+ requestNullness = true,
+ requestDCE = true,
+ requestBoxUnbox = true,
+ requestStaleStores = true,
+ requestPushPop = true,
+ requestStoreLoad = true,
+ firstIteration = true)
+ if (compilerSettings.YoptUnreachableCode) unreachableCodeEliminated += method
+ r
+ } else (false, false)
+
+ // (*) Removing stale local variable descriptors is required for correctness, see comment in `methodOptimizations`
val localsRemoved =
if (compilerSettings.YoptCompactLocals) compactLocalVariables(method) // also removes unused
- else if (compilerSettings.YoptUnreachableCode) removeUnusedLocalVariableNodes(method)() // (*)
+ else if (requireEliminateUnusedLocals) removeUnusedLocalVariableNodes(method)() // (*)
else false
+ traceIfChanged("localVariables")
- val lineNumbersRemoved = if (compilerSettings.YoptEmptyLineNumbers) removeEmptyLineNumbers(method) else false
+ val lineNumbersRemoved = if (compilerSettings.YoptUnreachableCode) removeEmptyLineNumbers(method) else false
+ traceIfChanged("lineNumbers")
- val labelsRemoved = if (compilerSettings.YoptEmptyLabels) removeEmptyLabelNodes(method) else false
+ val labelsRemoved = if (compilerSettings.YoptUnreachableCode) removeEmptyLabelNodes(method) else false
+ traceIfChanged("labels")
// assert that local variable annotations are empty (we don't emit them) - otherwise we'd have
// to eliminate those covering an empty range, similar to removeUnusedLocalVariableNodes.
@@ -176,9 +379,101 @@ class LocalOpt[BT <: BTypes](val btypes: BT) {
assert(nullOrEmpty(method.visibleLocalVariableAnnotations), method.visibleLocalVariableAnnotations)
assert(nullOrEmpty(method.invisibleLocalVariableAnnotations), method.invisibleLocalVariableAnnotations)
- unreachableCodeEliminated += method
+ nullnessDceBoxesCastsCopypropPushpopOrJumpsChanged || localsRemoved || lineNumbersRemoved || labelsRemoved
+ }
+
+ /**
+ * Apply various optimizations based on nullness analysis information.
+ * - IFNULL / IFNONNULL are rewritten to GOTO if nullness is known
+ * - IF_ACMPEQ / IF_ACMPNE are rewritten to GOTO if the both references are known null, or if
+ * one is known null and the other known not-null
+ * - ALOAD is replaced by ACONST_NULL if the local is known to hold null
+ * - ASTORE of null is removed if the local is known to hold null
+ * - INSTANCEOF of null is replaced by `ICONST_0`
+ * - scala.runtime.BoxesRunTime.unboxToX(null) is rewritten to a zero-value load
+ */
+ def nullnessOptimizations(method: MethodNode, ownerClassName: InternalName): Boolean = {
+ AsmAnalyzer.sizeOKForNullness(method) && {
+ lazy val nullnessAnalyzer = new AsmAnalyzer(method, ownerClassName, new NullnessAnalyzer(btypes))
+
+ // When running nullness optimizations the method may still have unreachable code. Analyzer
+ // frames of unreachable instructions are `null`.
+ def frameAt(insn: AbstractInsnNode): Option[Frame[NullnessValue]] = Option(nullnessAnalyzer.frameAt(insn))
+
+ def nullness(insn: AbstractInsnNode, slot: Int): Option[NullnessValue] = {
+ frameAt(insn).map(_.getValue(slot))
+ }
- codeHandlersOrJumpsChanged || localsRemoved || lineNumbersRemoved || labelsRemoved
+ def isNull(insn: AbstractInsnNode, slot: Int) = nullness(insn, slot).contains(NullValue)
+
+ // cannot change instructions while iterating, it gets the analysis out of synch (indexed by instructions)
+ val toReplace = mutable.Map.empty[AbstractInsnNode, List[AbstractInsnNode]]
+
+ val it = method.instructions.iterator()
+ while (it.hasNext) it.next() match {
+ case vi: VarInsnNode if isNull(vi, vi.`var`) =>
+ if (vi.getOpcode == ALOAD)
+ toReplace(vi) = List(new InsnNode(ACONST_NULL))
+ else if (vi.getOpcode == ASTORE)
+ for (frame <- frameAt(vi) if frame.peekStack(0) == NullValue)
+ toReplace(vi) = List(getPop(1))
+
+ case ji: JumpInsnNode =>
+ val isIfNull = ji.getOpcode == IFNULL
+ val isIfNonNull = ji.getOpcode == IFNONNULL
+ if (isIfNull || isIfNonNull) for (frame <- frameAt(ji)) {
+ val nullness = frame.peekStack(0)
+ val taken = nullness == NullValue && isIfNull || nullness == NotNullValue && isIfNonNull
+ val avoided = nullness == NotNullValue && isIfNull || nullness == NullValue && isIfNonNull
+ if (taken || avoided) {
+ val jump = if (taken) List(new JumpInsnNode(GOTO, ji.label)) else Nil
+ toReplace(ji) = getPop(1) :: jump
+ }
+ } else {
+ val isIfEq = ji.getOpcode == IF_ACMPEQ
+ val isIfNe = ji.getOpcode == IF_ACMPNE
+ if (isIfEq || isIfNe) for (frame <- frameAt(ji)) {
+ val aNullness = frame.peekStack(1)
+ val bNullness = frame.peekStack(0)
+ val eq = aNullness == NullValue && bNullness == NullValue
+ val ne = aNullness == NullValue && bNullness == NotNullValue || aNullness == NotNullValue && bNullness == NullValue
+ val taken = isIfEq && eq || isIfNe && ne
+ val avoided = isIfEq && ne || isIfNe && eq
+ if (taken || avoided) {
+ val jump = if (taken) List(new JumpInsnNode(GOTO, ji.label)) else Nil
+ toReplace(ji) = getPop(1) :: getPop(1) :: jump
+ }
+ }
+ }
+
+ case ti: TypeInsnNode =>
+ if (ti.getOpcode == INSTANCEOF) for (frame <- frameAt(ti) if frame.peekStack(0) == NullValue) {
+ toReplace(ti) = List(getPop(1), new InsnNode(ICONST_0))
+ }
+
+ case mi: MethodInsnNode =>
+ if (isScalaUnbox(mi)) for (frame <- frameAt(mi) if frame.peekStack(0) == NullValue) {
+ toReplace(mi) = List(
+ getPop(1),
+ loadZeroForTypeSort(Type.getReturnType(mi.desc).getSort))
+ }
+
+ case _ =>
+ }
+
+ def removeFromCallGraph(insn: AbstractInsnNode): Unit = insn match {
+ case mi: MethodInsnNode => callGraph.removeCallsite(mi, method)
+ case _ =>
+ }
+
+ for ((oldOp, newOps) <- toReplace) {
+ for (newOp <- newOps) method.instructions.insertBefore(oldOp, newOp)
+ method.instructions.remove(oldOp)
+ removeFromCallGraph(oldOp)
+ }
+
+ toReplace.nonEmpty
+ }
}
/**
@@ -186,14 +481,14 @@ class LocalOpt[BT <: BTypes](val btypes: BT) {
*
* @return A set containing eliminated instructions, and a set containing all live label nodes.
*/
- def removeUnreachableCodeImpl(method: MethodNode, ownerClassName: InternalName): (Set[AbstractInsnNode], Set[LabelNode]) = {
+ def removeUnreachableCodeImpl(method: MethodNode, ownerClassName: InternalName): (Boolean, Set[LabelNode]) = {
val a = new AsmAnalyzer(method, ownerClassName)
val frames = a.analyzer.getFrames
var i = 0
var liveLabels = Set.empty[LabelNode]
- var removedInstructions = Set.empty[AbstractInsnNode]
- var maxLocals = (Type.getArgumentsAndReturnSizes(method.desc) >> 2) - (if (BytecodeUtils.isStaticMethod(method)) 1 else 0)
+ var changed = false
+ var maxLocals = parametersSize(method)
var maxStack = 0
val itr = method.instructions.iterator()
while (itr.hasNext) {
@@ -214,18 +509,63 @@ class LocalOpt[BT <: BTypes](val btypes: BT) {
maxLocals = math.max(maxLocals, i.`var` + 1)
case _ =>
- if (!isLive || insn.getOpcode == Opcodes.NOP) {
+ if (!isLive || insn.getOpcode == NOP) {
// Instruction iterators allow removing during iteration.
// Removing is O(1): instructions are doubly linked list elements.
itr.remove()
- removedInstructions += insn
+ changed = true
+ insn match {
+ case invocation: MethodInsnNode => callGraph.removeCallsite(invocation, method)
+ case indy: InvokeDynamicInsnNode => callGraph.removeClosureInstantiation(indy, method)
+ case _ =>
+ }
}
}
i += 1
}
method.maxLocals = maxLocals
method.maxStack = maxStack
- (removedInstructions, liveLabels)
+ (changed, liveLabels)
+ }
+
+ /**
+ * Eliminate `CHECKCAST` instructions that are statically known to succeed. This is safe if the
+ * tested object is null: `null.asInstanceOf` always succeeds.
+ *
+ * The type of the tested object is determined using a NonLubbingTypeFlowAnalyzer. Note that this
+ * analysis collapses LUBs of non-equal references types to Object for simplicity. Example:
+ * given `B <: A <: Object`, the cast in `(if (..) new B else new A).asInstanceOf[A]` would not
+ * be eliminated.
+ *
+ * Note: we cannot replace `INSTANCEOF` tests by only looking at the types, `null.isInstanceOf`
+ * always returns false, so we'd also need nullness information.
+ */
+ def eliminateRedundantCasts(method: MethodNode, owner: InternalName): Boolean = {
+ AsmAnalyzer.sizeOKForBasicValue(method) && {
+ def isSubType(aRefDesc: String, bClass: InternalName): Boolean = aRefDesc == bClass || bClass == ObjectRef.internalName || {
+ (bTypeForDescriptorOrInternalNameFromClassfile(aRefDesc) conformsTo classBTypeFromParsedClassfile(bClass)).getOrElse(false)
+ }
+
+ lazy val typeAnalyzer = new NonLubbingTypeFlowAnalyzer(method, owner)
+
+ // cannot remove instructions while iterating, it gets the analysis out of synch (indexed by instructions)
+ val toRemove = mutable.Set.empty[TypeInsnNode]
+
+ val it = method.instructions.iterator()
+ while (it.hasNext) it.next() match {
+ case ti: TypeInsnNode if ti.getOpcode == CHECKCAST =>
+ val frame = typeAnalyzer.frameAt(ti)
+ val valueTp = frame.getValue(frame.stackTop)
+ if (valueTp.isReference && isSubType(valueTp.getType.getDescriptor, ti.desc)) {
+ toRemove += ti
+ }
+
+ case _ =>
+ }
+
+ toRemove foreach method.instructions.remove
+ toRemove.nonEmpty
+ }
}
}
@@ -245,16 +585,16 @@ object LocalOptImpls {
def removeEmptyExceptionHandlers(method: MethodNode): Set[TryCatchBlockNode] = {
/** True if there exists code between start and end. */
def containsExecutableCode(start: AbstractInsnNode, end: LabelNode): Boolean = {
- start != end && ((start.getOpcode : @switch) match {
+ start != end && ((start.getOpcode: @switch) match {
// FrameNode, LabelNode and LineNumberNode have opcode == -1.
- case -1 | Opcodes.GOTO => containsExecutableCode(start.getNext, end)
+ case -1 | GOTO => containsExecutableCode(start.getNext, end)
case _ => true
})
}
var removedHandlers = Set.empty[TryCatchBlockNode]
val handlersIter = method.tryCatchBlocks.iterator()
- while(handlersIter.hasNext) {
+ while (handlersIter.hasNext) {
val handler = handlersIter.next()
if (!containsExecutableCode(handler.start, handler.end)) {
removedHandlers += handler
@@ -273,9 +613,10 @@ object LocalOptImpls {
* same type or name.
*/
def removeUnusedLocalVariableNodes(method: MethodNode)(firstLocalIndex: Int = parametersSize(method), renumber: Int => Int = identity): Boolean = {
- def variableIsUsed(start: AbstractInsnNode, end: LabelNode, varIndex: Int): Boolean = {
+ @tailrec def variableIsUsed(start: AbstractInsnNode, end: LabelNode, varIndex: Int): Boolean = {
start != end && (start match {
case v: VarInsnNode if v.`var` == varIndex => true
+ case i: IincInsnNode if i.`var` == varIndex => true
case _ => variableIsUsed(start.getNext, end, varIndex)
})
}
@@ -295,17 +636,6 @@ object LocalOptImpls {
}
/**
- * The number of local variable slots used for parameters and for the `this` reference.
- */
- private def parametersSize(method: MethodNode): Int = {
- // Double / long fields occupy two slots, so we sum up the sizes. Since getSize returns 0 for
- // void, we have to add `max 1`.
- val paramsSize = scala.tools.asm.Type.getArgumentTypes(method.desc).iterator.map(_.getSize max 1).sum
- val thisSize = if ((method.access & Opcodes.ACC_STATIC) == 0) 1 else 0
- paramsSize + thisSize
- }
-
- /**
* Compact the local variable slots used in the method's implementation. This prevents having
* unused slots for example after eliminating unreachable code.
*
@@ -320,8 +650,8 @@ object LocalOptImpls {
val renumber = collection.mutable.ArrayBuffer.empty[Int]
// Add the index of the local variable used by `varIns` to the `renumber` array.
- def addVar(varIns: VarInsnNode): Unit = {
- val index = varIns.`var`
+ def addVar(varIns: AbstractInsnNode, slot: Int): Unit = {
+ val index = slot
val isWide = isSize2LoadOrStore(varIns.getOpcode)
// Ensure the length of `renumber`. Unused variable indices are mapped to -1.
@@ -339,7 +669,7 @@ object LocalOptImpls {
val firstLocalIndex = parametersSize(method)
for (i <- 0 until firstLocalIndex) renumber += i // parameters and `this` are always used.
method.instructions.iterator().asScala foreach {
- case VarInstruction(varIns) => addVar(varIns)
+ case VarInstruction(varIns, slot) => addVar(varIns, slot)
case _ =>
}
@@ -360,10 +690,12 @@ object LocalOptImpls {
// update variable instructions according to the renumber table
method.maxLocals = nextIndex
method.instructions.iterator().asScala.foreach {
- case VarInstruction(varIns) =>
- val oldIndex = varIns.`var`
- if (oldIndex >= firstLocalIndex && renumber(oldIndex) != oldIndex)
- varIns.`var` = renumber(varIns.`var`)
+ case VarInstruction(varIns, slot) =>
+ val oldIndex = slot
+ if (oldIndex >= firstLocalIndex && renumber(oldIndex) != oldIndex) varIns match {
+ case vi: VarInsnNode => vi.`var` = renumber(slot)
+ case ii: IincInsnNode => ii.`var` = renumber(slot)
+ }
case _ =>
}
true
@@ -551,7 +883,7 @@ object LocalOptImpls {
private def simplifyBranchOverGoto(method: MethodNode, instruction: AbstractInsnNode): Option[JumpInsnNode] = instruction match {
case ConditionalJump(jump) =>
// don't skip over labels, see doc comment
- nextExecutableInstruction(jump, alsoKeep = _.isInstanceOf[LabelNode]) match {
+ nextExecutableInstructionOrLabel(jump) match {
case Some(Goto(goto)) =>
if (nextExecutableInstruction(goto, alsoKeep = Set(jump.label)) == Some(jump.label)) {
val newJump = new JumpInsnNode(negateJumpOpcode(jump.getOpcode), goto.label)
@@ -579,7 +911,7 @@ object LocalOptImpls {
case Goto(jump) =>
nextExecutableInstruction(jump.label) match {
case Some(target) =>
- if (isReturn(target) || target.getOpcode == Opcodes.ATHROW) {
+ if (isReturn(target) || target.getOpcode == ATHROW) {
method.instructions.set(jump, target.clone(null))
true
} else false
diff --git a/src/compiler/scala/tools/nsc/settings/ScalaSettings.scala b/src/compiler/scala/tools/nsc/settings/ScalaSettings.scala
index 78e8c328b8..d6ca0125ea 100644
--- a/src/compiler/scala/tools/nsc/settings/ScalaSettings.scala
+++ b/src/compiler/scala/tools/nsc/settings/ScalaSettings.scala
@@ -222,52 +222,65 @@ trait ScalaSettings extends AbsScalaSettings
val Ydelambdafy = ChoiceSetting ("-Ydelambdafy", "strategy", "Strategy used for translating lambdas into JVM code.", List("inline", "method"), "method")
object YoptChoices extends MultiChoiceEnumeration {
- val unreachableCode = Choice("unreachable-code", "Eliminate unreachable code, exception handlers protecting no instructions, debug information of eliminated variables.")
+ val unreachableCode = Choice("unreachable-code", "Eliminate unreachable code, exception handlers guarding no instructions, redundant metadata (debug information, line numbers).")
val simplifyJumps = Choice("simplify-jumps", "Simplify branching instructions, eliminate unnecessary ones.")
- val emptyLineNumbers = Choice("empty-line-numbers", "Eliminate unnecessary line number information.")
- val emptyLabels = Choice("empty-labels", "Eliminate and collapse redundant labels in the bytecode.")
val compactLocals = Choice("compact-locals", "Eliminate empty slots in the sequence of local variables.")
+ val copyPropagation = Choice("copy-propagation", "Eliminate redundant local variables and unused values (including closures). Enables unreachable-code.")
+ val redundantCasts = Choice("redundant-casts", "Eliminate redundant casts using a type propagation analysis.")
+ val boxUnbox = Choice("box-unbox", "Eliminate box-unbox pairs within the same method (also tuples, xRefs, value class instances). Enables unreachable-code.")
val nullnessTracking = Choice("nullness-tracking", "Track nullness / non-nullness of local variables and apply optimizations.")
- val closureElimination = Choice("closure-elimination" , "Rewrite closure invocations to the implementation method and eliminate closures.")
- val inlineProject = Choice("inline-project", "Inline only methods defined in the files being compiled.")
- val inlineGlobal = Choice("inline-global", "Inline methods from any source, including classfiles on the compile classpath.")
+ val closureInvocations = Choice("closure-invocations" , "Rewrite closure invocations to the implementation method.")
+ val inlineProject = Choice("inline-project", "Inline only methods defined in the files being compiled. Enables unreachable-code.")
+ val inlineGlobal = Choice("inline-global", "Inline methods from any source, including classfiles on the compile classpath. Enables unreachable-code.")
- val lNone = Choice("l:none", "Don't enable any optimizations.")
+ // note: unlike the other optimizer levels, "l:none" appears up in the `Yopt.value` set because it's not an expanding option (expandsTo is empty)
+ val lNone = Choice("l:none", "Disable optimizations. Takes precedence: `-Yopt:l:none,+box-unbox` / `-Yopt:l:none -Yopt:box-unbox` don't enable box-unbox.")
private val defaultChoices = List(unreachableCode)
- val lDefault = Choice("l:default", "Enable default optimizations: "+ defaultChoices.mkString(","), expandsTo = defaultChoices)
+ val lDefault = Choice("l:default", "Enable default optimizations: "+ defaultChoices.mkString("", ",", "."), expandsTo = defaultChoices)
- private val methodChoices = List(unreachableCode, simplifyJumps, emptyLineNumbers, emptyLabels, compactLocals, nullnessTracking, closureElimination)
- val lMethod = Choice("l:method", "Enable intra-method optimizations: "+ methodChoices.mkString(","), expandsTo = methodChoices)
+ private val methodChoices = List(unreachableCode, simplifyJumps, compactLocals, copyPropagation, redundantCasts, boxUnbox, nullnessTracking, closureInvocations)
+ val lMethod = Choice("l:method", "Enable intra-method optimizations: "+ methodChoices.mkString("", ",", "."), expandsTo = methodChoices)
private val projectChoices = List(lMethod, inlineProject)
- val lProject = Choice("l:project", "Enable cross-method optimizations within the current project: "+ projectChoices.mkString(","), expandsTo = projectChoices)
+ val lProject = Choice("l:project", "Enable cross-method optimizations within the current project: "+ projectChoices.mkString("", ",", "."), expandsTo = projectChoices)
private val classpathChoices = List(lProject, inlineGlobal)
- val lClasspath = Choice("l:classpath", "Enable cross-method optimizations across the entire classpath: "+ classpathChoices.mkString(","), expandsTo = classpathChoices)
+ val lClasspath = Choice("l:classpath", "Enable cross-method optimizations across the entire classpath: "+ classpathChoices.mkString("", ",", "."), expandsTo = classpathChoices)
}
+ // We don't use the `default` parameter of `MultiChoiceSetting`: it specifies the default values
+ // when `-Yopt` is passed without explicit choices. When `-Yopt` is not explicitly specified, the
+ // set `Yopt.value` is empty.
val Yopt = MultiChoiceSetting(
name = "-Yopt",
helpArg = "optimization",
descr = "Enable optimizations",
domain = YoptChoices)
- def YoptNone = Yopt.isSetByUser && Yopt.value.isEmpty
- def YoptUnreachableCode = !Yopt.isSetByUser || Yopt.contains(YoptChoices.unreachableCode)
- def YoptSimplifyJumps = Yopt.contains(YoptChoices.simplifyJumps)
- def YoptEmptyLineNumbers = Yopt.contains(YoptChoices.emptyLineNumbers)
- def YoptEmptyLabels = Yopt.contains(YoptChoices.emptyLabels)
- def YoptCompactLocals = Yopt.contains(YoptChoices.compactLocals)
- def YoptNullnessTracking = Yopt.contains(YoptChoices.nullnessTracking)
- def YoptClosureElimination = Yopt.contains(YoptChoices.closureElimination)
-
- def YoptInlineProject = Yopt.contains(YoptChoices.inlineProject)
- def YoptInlineGlobal = Yopt.contains(YoptChoices.inlineGlobal)
+ private def optEnabled(choice: YoptChoices.Choice) = {
+ !Yopt.contains(YoptChoices.lNone) && {
+ Yopt.contains(choice) ||
+ !Yopt.isSetByUser && YoptChoices.lDefault.expandsTo.contains(choice)
+ }
+ }
+
+ def YoptNone = Yopt.contains(YoptChoices.lNone)
+ def YoptUnreachableCode = optEnabled(YoptChoices.unreachableCode)
+ def YoptSimplifyJumps = optEnabled(YoptChoices.simplifyJumps)
+ def YoptCompactLocals = optEnabled(YoptChoices.compactLocals)
+ def YoptCopyPropagation = optEnabled(YoptChoices.copyPropagation)
+ def YoptRedundantCasts = optEnabled(YoptChoices.redundantCasts)
+ def YoptBoxUnbox = optEnabled(YoptChoices.boxUnbox)
+ def YoptNullnessTracking = optEnabled(YoptChoices.nullnessTracking)
+ def YoptClosureInvocations = optEnabled(YoptChoices.closureInvocations)
+
+ def YoptInlineProject = optEnabled(YoptChoices.inlineProject)
+ def YoptInlineGlobal = optEnabled(YoptChoices.inlineGlobal)
def YoptInlinerEnabled = YoptInlineProject || YoptInlineGlobal
- def YoptBuildCallGraph = YoptInlinerEnabled || YoptClosureElimination
- def YoptAddToBytecodeRepository = YoptBuildCallGraph || YoptInlinerEnabled || YoptClosureElimination
+ def YoptBuildCallGraph = YoptInlinerEnabled || YoptClosureInvocations
+ def YoptAddToBytecodeRepository = YoptBuildCallGraph || YoptInlinerEnabled || YoptClosureInvocations
val YoptInlineHeuristics = ChoiceSetting(
name = "-Yopt-inline-heuristics",
@@ -306,6 +319,8 @@ trait ScalaSettings extends AbsScalaSettings
def YoptWarningNoInlineMissingBytecode = YoptWarnings.contains(YoptWarningsChoices.noInlineMissingBytecode)
def YoptWarningNoInlineMissingScalaInlineInfoAttr = YoptWarnings.contains(YoptWarningsChoices.noInlineMissingScalaInlineInfoAttr)
+ val YoptTrace = BooleanSetting("-YoptTrace", "trace optimizer progress")
+
private def removalIn212 = "This flag is scheduled for removal in 2.12. If you have a case where you need this flag then please report a bug."
object YstatisticsPhases extends MultiChoiceEnumeration { val parser, typer, patmat, erasure, cleanup, jvm = Value }
diff --git a/src/compiler/scala/tools/nsc/transform/LambdaLift.scala b/src/compiler/scala/tools/nsc/transform/LambdaLift.scala
index facb6ed263..f6e2dd68f0 100644
--- a/src/compiler/scala/tools/nsc/transform/LambdaLift.scala
+++ b/src/compiler/scala/tools/nsc/transform/LambdaLift.scala
@@ -31,11 +31,6 @@ abstract class LambdaLift extends InfoTransform {
}
}
- /** scala.runtime.*Ref classes */
- private lazy val allRefClasses: Set[Symbol] = {
- refClass.values.toSet ++ volatileRefClass.values.toSet ++ Set(VolatileObjectRefClass, ObjectRefClass)
- }
-
/** Each scala.runtime.*Ref class has a static method `create(value)` that simply instantiates the Ref to carry that value. */
private lazy val refCreateMethod: Map[Symbol, Symbol] = {
mapFrom(allRefClasses.toList)(x => getMemberMethod(x.companionModule, nme.create))
diff --git a/src/partest-extras/scala/tools/partest/ASMConverters.scala b/src/partest-extras/scala/tools/partest/ASMConverters.scala
index b4c686473b..d990160ce8 100644
--- a/src/partest-extras/scala/tools/partest/ASMConverters.scala
+++ b/src/partest-extras/scala/tools/partest/ASMConverters.scala
@@ -38,6 +38,11 @@ object ASMConverters {
}
def dropNonOp = dropLinesFrames.dropStaleLabels
+
+ def summary: List[Any] = dropNonOp map {
+ case i: Invoke => i.name
+ case i => i.opcode
+ }
}
sealed abstract class Instruction extends Product {
diff --git a/src/reflect/scala/reflect/internal/Definitions.scala b/src/reflect/scala/reflect/internal/Definitions.scala
index d167f1485d..ba6c363918 100644
--- a/src/reflect/scala/reflect/internal/Definitions.scala
+++ b/src/reflect/scala/reflect/internal/Definitions.scala
@@ -94,6 +94,10 @@ trait Definitions extends api.StandardDefinitions {
lazy val refClass = classesMap(x => getRequiredClass("scala.runtime." + x + "Ref"))
lazy val volatileRefClass = classesMap(x => getRequiredClass("scala.runtime.Volatile" + x + "Ref"))
+ lazy val allRefClasses: Set[Symbol] = {
+ refClass.values.toSet ++ volatileRefClass.values.toSet ++ Set(VolatileObjectRefClass, ObjectRefClass)
+ }
+
def isNumericSubClass(sub: Symbol, sup: Symbol) = (
(numericWeight contains sub)
&& (numericWeight contains sup)
diff --git a/src/reflect/scala/reflect/runtime/JavaUniverseForce.scala b/src/reflect/scala/reflect/runtime/JavaUniverseForce.scala
index a9b91b5ec3..d6b611a3f4 100644
--- a/src/reflect/scala/reflect/runtime/JavaUniverseForce.scala
+++ b/src/reflect/scala/reflect/runtime/JavaUniverseForce.scala
@@ -423,6 +423,7 @@ trait JavaUniverseForce { self: runtime.JavaUniverse =>
definitions.boxedClass
definitions.refClass
definitions.volatileRefClass
+ definitions.allRefClasses
definitions.UnitClass
definitions.ByteClass
definitions.ShortClass