summaryrefslogtreecommitdiff
path: root/test/files/neg/t6446-show-phases.check
Commit message (Collapse)AuthorAgeFilesLines
* Shorten fields phase descriptionSom Snytt2016-09-301-1/+1
| | | | | | | | | | | | | | | | | | | Makes fields fit the field width, which is fitting. `s/including/add` seems sufficient. Possibly, "synthesize" is an extravagance for "add", but "add" is used previously in that column. Resolve, load, translate, add, synthesize, replace, erase, move, eliminate, remove, generate. Would love to learn a word that says what typer does, if the word "type" is too redundant or overloaded, besides the food metaphor. Also "meat-and-potatoes" implies basic, simple, not fussy or fancy. There are many devices, like the heart or a Ferrari engine, that are fundamental without being unfussy.
* Fields does bitmaps & synch for lazy vals & modulesAdriaan Moors2016-08-291-10/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Essentially, we fuse mixin and lazyvals into the fields phase. With fields mixing in trait members into subclasses, we have all info needed to compute bitmaps, and thus we can synthesize the synchronisation logic as well. By doing this before erasure we get better signatures, and before specialized means specialized lazy vals work now. Mixins is now almost reduced to its essence: implementing super accessors and forwarders. It still synthesizes accessors for param accessors and early init trait vals. Concretely, trait lazy vals are mixed into subclasses with the needed synchronization logic in place, as do lazy vals in classes and methods. Similarly, modules are initialized using double checked locking. Since the code to initialize a module is short, we do not emit compute methods for modules (anymore). For simplicity, local lazy vals do not get a compute method either. The strange corner case of constant-typed final lazy vals is resolved in favor of laziness, by no longer assigning a constant type to a lazy val (see widenIfNecessary in namers). If you explicitly ask for something lazy, you get laziness; with the constant-typedness implicit, it yields to the conflicting `lazy` modifier because it is explicit. Co-Authored-By: Lukas Rytz <lukas@lightbend.com> Fixes scala/scala-dev#133 Inspired by dotc, desugar a local `lazy val x = rhs` into ``` val x$lzy = new scala.runtime.LazyInt() def x(): Int = { x$lzy.synchronized { if (!x$lzy.initialized) { x$lzy.initialized = true x$lzy.value = rhs } x$lzy.value } } ``` Note that the 2.11 decoding (into a local variable and a bitmap) also creates boxes for local lazy vals, in fact two for each lazy val: ``` def f = { lazy val x = 0 x } ``` desugars to ``` public int f() { IntRef x$lzy = IntRef.zero(); VolatileByteRef bitmap$0 = VolatileByteRef.create((byte)0); return this.x$1(x$lzy, bitmap$0); } private final int x$lzycompute$1(IntRef x$lzy$1, VolatileByteRef bitmap$0$1) { C c = this; synchronized (c) { if ((byte)(bitmap$0$1.elem & 1) == 0) { x$lzy$1.elem = 0; bitmap$0$1.elem = (byte)(bitmap$0$1.elem | 1); } return x$lzy$1.elem; } } private final int x$1(IntRef x$lzy$1, VolatileByteRef bitmap$0$1) { return (byte)(bitmap$0$1.elem & 1) == 0 ? this.x$lzycompute$1(x$lzy$1, bitmap$0$1) : x$lzy$1.elem; } ``` An additional problem with the above encoding is that the `lzycompute` method synchronizes on `this`. In connection with the new lambda encoding that no longer generates anonymous classes, captured lazy vals no longer synchronize on the lambda object. The new encoding solves this problem (scala/scala-dev#133) by synchronizing on the lazy holder. Currently, we don't exploit the fact that the initialized field is `@volatile`, because it's not clear the performance is needed for local lazy vals (as they are not contended, and as soon as the VM warms up, biased locking should deal with that) Note, be very very careful when moving to double-checked locking, as this needs a different variation than the one we use for class-member lazy vals. A read of a volatile field of a class does not necessarily impart any knowledge about a "subsequent" read of another non-volatile field of the same object. A pair of volatile reads and write can be used to implement a lock, but it's not clear if the complexity is worth an unproven performance gain. (Once the performance gain is proven, let's change the encoding.) - don't explicitly init bitmap in bytecode - must apply method to () explicitly after uncurry
* Fields phaseAdriaan Moors2016-08-111-14/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | One step towards teasing apart the mixin phase, making each phase that adds members to traits responsible for mixing in those members into subclasses of said traits. Another design tenet is to not emit symbols or trees only to later remove them. Therefore, we model a val in a trait as its accessor. The underlying field is an implementation detail. It must be mixed into subclasses, but has no business in a trait (an interface). Also trying to reduce tree creation by changing less in subtrees during tree transforms. A lot of nice fixes fall out from this rework: - Correct bridges and more precise generic signatures for mixed in accessors, since they are now created before erasure. - Correct enclosing method attribute for classes nested in trait fields. Trait fields are now created as MethodSymbol (no longer TermSymbol). This symbol shows up in the `originalOwner` chain of a class declared within the field initializer. This promoted the field getter to being the enclosing method of the nested class, which it is not (the EnclosingMethod attribute is a source-level property). - Signature inference is now more similar between vals and defs - No more field for constant-typed vals, or mixed in accessors for subclasses. A constant val can be fully implemented in a trait. TODO: - give same treatment to trait lazy vals (only accessors, no fields) - remove support for presuper vals in traits (they don't have the right init semantics in traits anyway) - lambdalift should emit accessors for captured vals in traits, not a field Assorted notes from the full git history before squashing below. Unit-typed vals: don't suppress field it affects the memory model -- even a write of unit to a field is relevant... unit-typed lazy vals should never receive a field this need was unmasked by test/files/run/t7843-jsr223-service.scala, which no longer printed the output expected from the `0 to 10 foreach` Use getter.referenced to track traitsetter reify's toolbox compiler changes the name of the trait that owns the accessor between fields and constructors (`$` suffix), so that the trait setter cannot be found when doing mkAssign in constructors this could be solved by creating the mkAssign tree immediately during fields anyway, first experiment: use `referenced` now that fields runs closer to the constructors phase (I tried this before and something broke) Infer result type for `val`s, like we do for `def`s The lack of result type inference caused pos/t6780 to fail in the new field encoding for traits, as there is no separate accessor, and method synthesis computes the type signature based on the ValDef tree. This caused a cyclic error in implicit search, because now the implicit val's result type was not inferred from the super member, and inferring it from the RHS would cause implicit search to consider the member in question, so that a cycle is detected and type checking fails... Regardless of the new encoding, we should consistently infer result types for `def`s and `val`s. Removed test/files/run/t4287inferredMethodTypes.scala and test/files/presentation/t4287c, since they were relying on inferring argument types from "overridden" constructors in a test for range positions of default arguments. Constructors don't override, so that was a mis-feature of -Yinfer-argument-types. Had to slightly refactor test/files/presentation/doc, as it was relying on scalac inferring a big intersection type to approximate the anonymous class that's instantiated for `override lazy val analyzer`. Now that we infer `Global` as the expected type based on the overridden val, we make `getComment` private in navigating between good old Skylla and Charybdis. I'm not sure why we need this restriction for anonymous classes though; only structural calls are restricted in the way that we're trying to avoid. The old behavior is maintained nder -Xsource:2.11. Tests: - test/files/{pos,neg}/val_infer.scala - test/files/neg/val_sig_infer_match.scala - test/files/neg/val_sig_infer_struct.scala need NMT when inferring sig for accessor Q: why are we calling valDefSig and not methodSig? A: traits use defs for vals, but still use valDefSig... keep accessor and field info in synch
* Remove ICodeSimon Ochsenreither2015-10-311-13/+2
|
* Add a skeletal Delambdafy phase.James Iry2013-11-011-10/+11
| | | | | | This commit adds a do-nothing phase called "Delambdafy" that will eventually be responsible for doing the final translation of lambdas into classes.
* Update description of explicitouter phase.Jason Zaugg2013-10-241-1/+1
| | | | Patern translation now happens earlier.
* SI-7622 Clean Up Phase AssemblySom Snytt2013-08-211-0/+5
| | | | | | | | Let optimiser components and continuations plugin opt-out when required flags are not set. Wasted time on a whitespace error in check file, so let --debug dump the processed check file and its diff.
* SI-7622 Phases are enabled or notSom Snytt2013-08-211-1/+1
| | | | | | | | | | | Refactor the calculation of the "phase chain" a bit. In particular, initial and terminal phases are not special except that they must be head and last. When done, filter for enabled phases. At this commit, nobody claims to be disabled. Additional sanity support of phases settings.
* Analyze constants to remove unnecessary branchesJames Iry2013-03-071-3/+4
| | | | | | | | | | | | | | This commit adds analysis and optimization of constants to remove unnecessary branches. It uses abstract interpretation to determine what constant(s) a particular stack slot or variable might or might not hold at a given spot and uses that knowledge to eliminate branches that cannot be taken. Its primary goal is null check removal, but it also works for other constants. Several tests are modified to include the new optimization phase. Two new tests are added. One verifies that branching still works as expected. The other verifies that branches are removed.
* PluginComponent contributes description to -Xshow-phases.Som Snytt2012-12-181-0/+30
In Global, SubComponent is called a phase descriptor, but it doesn't actually have a description. (Phase itself does.) This fix adds a description to PluginComponent so that plugins can describe what they do in -Xshow-phases. Elliptical descriptions Exploded archives Plugged-in partest Roundup at the Little h!