summaryrefslogtreecommitdiff
path: root/test/files/pos/spec-params-new.scala
Commit message (Collapse)AuthorAgeFilesLines
* Fix SI-5284.Aleksandar Prokopec2012-06-211-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The problem was the false assumption that methods specialized on their type parameter, such as this one: class Foo[@spec(Int) T](val x: T) { def bar[@spec(Int) S >: T](f: S => S) = f(x) } have their normalized versions (`bar$mIc$sp`) never called from the base specialization class `Foo`. This meant that the implementation of `bar$mIc$sp` in `Foo` simply threw an exception. This assumption is not true, however. See this: object Baz { def apply[T]() = new Foo[T] } Calling `Baz.apply[Int]()` will create an instance of the base specialization class `Foo` at `Int`. Calling `bar` on this instance will be rewritten by specialization to calling `bar$mIc$sp`, hence the error. So, we have to emit a valid implementation for `bar`, obviously. Problem is, such an implementation would have conflicting type bounds in the base specialization class `Foo`, since we don't know if `T` is a subtype of `S = Int`. In other words, we cannot emit: def bar$mIc$sp(f: Int => Int) = f(x) // x: T without typechecking errors. However, notice that the bounds are valid if and only if `T = Int`. In the same time, invocations of `bar$mIc$sp` will only be emitted in callsites where the type bounds hold. This means we can cast the expressions in method applications to the required specialized type bound. The following changes have been made: 1) The decision of whether or not to create a normalized version of the specialized method is not done on the `conflicting` relation anymore. Instead, it's done based on the `satisfiable` relation, which is true if there is possibly an instantiation of the type parameters where the bounds hold. 2) The `satisfiable` method has a new variant called `satisfiableConstraints`, which does unification to figure out how the type parameters should be instantiated in order to satisfy the bounds. 3) The `Duplicators` are changed to transform a tree using the `castType` method which just returns the tree by default. In specialization, the `castType` in `Duplicators` is overridden, and uses a map from type parameters to types. This map is obtained by `satisfiableConstraints` from 2). If the type of the expression is not equal to the expected type, and this map contains a mapping to the expected type, then the tree is cast, as discussed above. Additional tests added. Review by @dragos Review by @VladUreche Conflicts: src/compiler/scala/tools/nsc/transform/SpecializeTypes.scala src/compiler/scala/tools/nsc/typechecker/Duplicators.scala
* removes array tagsEugene Burmako2012-06-081-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Before 2.10 we had a notion of ClassManifest that could be used to retain erasures of abstract types (type parameters, abstract type members) for being used at runtime. With the advent of ClassManifest (and its subtype Manifest) it became possible to write: def mkGenericArray[T: Manifest] = Array[T]() When compiling array instantiation, scalac would use a ClassManifest implicit parameter from scope (in this case, provided by a context bound) to remember Ts that have been passed to invoke mkGenericArray and use that information to instantiate arrays at runtime (via Java reflection). When redesigning manifests into what is now known as type tags, we decided to explore a notion of ArrayTags that would stand for abstract and pure array creators. Sure, ClassManifests were perfectly fine for this job, but they did too much - technically speaking, one doesn't necessarily need a java.lang.Class to create an array. Depending on a platform, e.g. within JavaScript runtime, one would want to use a different mechanism. As tempting as this idea was, it has also proven to be problematic. First, it created an extra abstraction inside the compiler. Along with class tags and type tags, we had a third flavor of tags - array tags. This has threaded the additional complexity though implicits and typers. Second, consequently, when redesigning tags multiple times over the course of Scala 2.10.0 development, we had to carry this extra abstraction with us, which exacerbated the overall feeling towards array tags. Finally, array tags didn't fit into the naming scheme we had for tags. Both class tags and type tags sound logical, because, they are descriptors for the things they are supposed to tag, according to their names. However array tags are the odd ones, because they don't actually tag any arrays. As funny as it might sound, the naming problem was the last straw that made us do away with the array tags. Hence this commit.
* repairs the tests after the refactoring spreeEugene Burmako2012-06-081-1/+3
|
* migrates stdlib and compiler to tagsEugene Burmako2012-04-231-0/+32
* all usages of ClassManifest and Manifest are replaced with tags * all manifest tests are replaced with tag tests