summaryrefslogtreecommitdiff
path: root/test/files/run/reflection-sorted-members.check
Commit message (Collapse)AuthorAgeFilesLines
* SI-7475 Private members are not inheritableJason Zaugg2014-02-101-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It turns out `findMembers` has been a bit sloppy in recent years and has returned private members from *anywhere* up the base class sequence. Access checks usually pick up the slack and eliminate the unwanted privates. But, in concert with the "concrete beats abstract" rule in `findMember`, the following mishap appeared: scala> :paste // Entering paste mode (ctrl-D to finish) trait T { def a: Int } trait B { private def a: Int = 0 } trait C extends T with B { a } // Exiting paste mode, now interpreting. <console>:9: error: method a in trait B cannot be accessed in C trait C extends T with B { a } ^ I noticed this when compiling Akka against JDK 8; a new private method in the bowels of the JDK was enough to break the build! It turns out that some finesse in needed to interpret SLS 5.2: > The private modifier can be used with any definition or declaration > in a template. They are not inherited by subclasses [...] So, can we simply exclude privates from all but the first base class? No, as that might be a refinement class! The following must be allowed: trait A { private def foo = 0; trait T { self: A => this.foo } } This commit: - tracks when the walk up the base class sequence passes the first non-refinement class, and excludes private members - ... except, if we are at a direct parent of a refinement class itself - Makes a corresponding change to OverridingPairs, to only consider private members if they are owned by the `base` Symbol under consideration. We don't need to deal with the subtleties of refinements there as that code is only used for bona-fide classes. - replaces use of `hasTransOwner` when considering whether a private[this] symbol is a member. The last condition was not grounded in the spec at all. The change is visible in cases like: // Old scala> trait A { private[this] val x = 0; class B extends A { this.x } } <console>:7: error: value x in trait A cannot be accessed in A.this.B trait A { private[this] val x = 0; class B extends A { this.x } } ^ // New scala> trait A { private[this] val x = 0; class B extends A { this.x } } <console>:8: error: value x is not a member of A.this.B trait A { private[this] val x = 0; class B extends A { this.x } } ^ Furthermore, we no longer give a `private[this]` member a free pass if it is sourced from the very first base class. trait Cake extends Slice { private[this] val bippy = () } trait Slice { self: Cake => bippy // BCS: Cake, Slice, AnyRef, Any } The different handling between `private` and `private[this]` still seems a bit dubious. The spec says: > An different form of qualification is private[this]. A member M > marked with this modifier can be accessed only from within the > object in which it is defined. That is, a selection p.M is only > legal if the prefix is this or O.this, for some class O enclosing > the reference. In addition, the restrictions for unqualified > private apply. This sounds like a question of access, not membership. If so, we should admit `private[this]` members from parents of refined types in `FindMember`. AFAICT, not too much rests on the distinction: do we get a "no such member", or "member foo inaccessible" error? I welcome scrutinee of the checkfile of `neg/t7475f.scala` to help put this last piece into the puzzle. One more thing: findMember does not have *any* code the corresponds to the last sentence of: > SLS 5.2 The modifier can be qualified with an identifier C > (e.g. private[C]) that must denote a class or package enclosing > the definition. Members labeled with such a modifier are accessible > respectively only from code inside the package C or only from code > inside the class C and its companion module (ยง5.4). > Such members are also inherited only from templates inside C. When I showed Martin this, he suggested it was an error in the spec, and we should leave the access checking to callers of that inherited qualified-private member.
* Normalized line endings.Paul Phillips2012-09-201-4/+4
| | | | | | This brings all the files into line with the .gitattributes settings, which should henceforth be automatically maintained by git.
* fixes non-determinism in reflection-sorted-declsEugene Burmako2012-08-211-30/+0
| | | | | | | | ordering of synthetic members on java7 with a lot of cores is non-deterministic that's not a problem, because the doc doesn't promise anything about synthetics hence I've adjusted the test, so that it no longer includes accessors discussion: http://groups.google.com/group/scala-internals/msg/087a7d4805313561
* SI-5732 members and derivatives now return ScopeEugene Burmako2012-08-021-0/+34
Firstly this unifies the reflection API - now both decls and members return Scope (not Scope and List[Symbol] as it were before). Secondly this fixes SI-5732 without having to sort the result of members. Type.members now returns Scope, a distinguished type, which has the `sorted` method, which does the required sorting if necessary. Also removes nonPrivateMembers and nonPrivateDeclarations to keep the API minimalistic (as can be seen from their implementation in internal.Types they are just members and decls with bridges and private members removed).