summaryrefslogtreecommitdiff
path: root/test/files/run/t6733.check
Commit message (Collapse)AuthorAgeFilesLines
* Fields phase expands lazy vals like modulesAdriaan Moors2016-08-291-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | They remain ValDefs until then. - remove lazy accessor logic now that we have a single ValDef for lazy vals, with the underlying machinery being hidden until the fields phase leave a `@deprecated def lazyAccessor` for scala-refactoring - don't skolemize in purely synthetic getters, but *do* skolemize in lazy accessor during typers Lazy accessors have arbitrary user code, so have to skolemize. We exempt the purely synthetic accessors (`isSyntheticAccessor`) for strict vals, and lazy accessors emitted by the fields phase to avoid spurious type mismatches due to issues with existentials (That bug is tracked as https://github.com/scala/scala-dev/issues/165) When we're past typer, lazy accessors are synthetic, but before they are user-defined to make this hack less hacky, we could rework our flag usage to allow for requiring both the ACCESSOR and the SYNTHETIC bits to identify synthetic accessors and trigger the exemption. see also https://github.com/scala/scala-dev/issues/165 ok 7 - pos/existentials-harmful.scala ok 8 - pos/t2435.scala ok 9 - pos/existentials.scala previous attempt: skolemize type of val inside the private[this] val because its type is only observed from inside the accessor methods (inside the method scope its existentials are skolemized) - bean accessors have regular method types, not nullary method types - must re-infer type for param accessor some weirdness with scoping of param accessor vals and defs? - tailcalls detect lazy vals, which are defdefs after fields - can inline constant lazy val from trait - don't mix in fields etc for an overridden lazy val - need try-lift in lazy vals: the assign is not seen in uncurry because fields does the transform (see run/t2333.scala) - ensure field members end up final in bytecode - implicit class companion method: annot filter in completer - update check: previous error message was tangled up with unrelated field definitions (`var s` and `val s_scope`), now it behaves consistently whether those are val/vars or defs - analyzer plugin check update seems benign, but no way to know... - error message gen: there is no underlying symbol for a deferred var look for missing getter/setter instead - avoid retypechecking valdefs while duplicating for specialize see pos/spec-private - Scaladoc uniformly looks to field/accessor symbol - test updates to innerClassAttribute by Lukas
* Fields phaseAdriaan Moors2016-08-111-8/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | One step towards teasing apart the mixin phase, making each phase that adds members to traits responsible for mixing in those members into subclasses of said traits. Another design tenet is to not emit symbols or trees only to later remove them. Therefore, we model a val in a trait as its accessor. The underlying field is an implementation detail. It must be mixed into subclasses, but has no business in a trait (an interface). Also trying to reduce tree creation by changing less in subtrees during tree transforms. A lot of nice fixes fall out from this rework: - Correct bridges and more precise generic signatures for mixed in accessors, since they are now created before erasure. - Correct enclosing method attribute for classes nested in trait fields. Trait fields are now created as MethodSymbol (no longer TermSymbol). This symbol shows up in the `originalOwner` chain of a class declared within the field initializer. This promoted the field getter to being the enclosing method of the nested class, which it is not (the EnclosingMethod attribute is a source-level property). - Signature inference is now more similar between vals and defs - No more field for constant-typed vals, or mixed in accessors for subclasses. A constant val can be fully implemented in a trait. TODO: - give same treatment to trait lazy vals (only accessors, no fields) - remove support for presuper vals in traits (they don't have the right init semantics in traits anyway) - lambdalift should emit accessors for captured vals in traits, not a field Assorted notes from the full git history before squashing below. Unit-typed vals: don't suppress field it affects the memory model -- even a write of unit to a field is relevant... unit-typed lazy vals should never receive a field this need was unmasked by test/files/run/t7843-jsr223-service.scala, which no longer printed the output expected from the `0 to 10 foreach` Use getter.referenced to track traitsetter reify's toolbox compiler changes the name of the trait that owns the accessor between fields and constructors (`$` suffix), so that the trait setter cannot be found when doing mkAssign in constructors this could be solved by creating the mkAssign tree immediately during fields anyway, first experiment: use `referenced` now that fields runs closer to the constructors phase (I tried this before and something broke) Infer result type for `val`s, like we do for `def`s The lack of result type inference caused pos/t6780 to fail in the new field encoding for traits, as there is no separate accessor, and method synthesis computes the type signature based on the ValDef tree. This caused a cyclic error in implicit search, because now the implicit val's result type was not inferred from the super member, and inferring it from the RHS would cause implicit search to consider the member in question, so that a cycle is detected and type checking fails... Regardless of the new encoding, we should consistently infer result types for `def`s and `val`s. Removed test/files/run/t4287inferredMethodTypes.scala and test/files/presentation/t4287c, since they were relying on inferring argument types from "overridden" constructors in a test for range positions of default arguments. Constructors don't override, so that was a mis-feature of -Yinfer-argument-types. Had to slightly refactor test/files/presentation/doc, as it was relying on scalac inferring a big intersection type to approximate the anonymous class that's instantiated for `override lazy val analyzer`. Now that we infer `Global` as the expected type based on the overridden val, we make `getComment` private in navigating between good old Skylla and Charybdis. I'm not sure why we need this restriction for anonymous classes though; only structural calls are restricted in the way that we're trying to avoid. The old behavior is maintained nder -Xsource:2.11. Tests: - test/files/{pos,neg}/val_infer.scala - test/files/neg/val_sig_infer_match.scala - test/files/neg/val_sig_infer_struct.scala need NMT when inferring sig for accessor Q: why are we calling valDefSig and not methodSig? A: traits use defs for vals, but still use valDefSig... keep accessor and field info in synch
* SI-6733 LOCAL, isLocal, and private[this]Eugene Burmako2014-02-121-0/+27
Due to an unfortunate name collision, internal.Symbols#Symbol.isLocal means something different from Flag.LOCAL. Therefore api.Symbols#Symbol.isLocal was directly violating its documentation. Since we can’t give api#isLocal an implementation different from internal#isLocal, we have to rename, and for that occasion I have come up with names api#isPrivateThis and api#isProtectedThis, which in my opinion suits the public API better than internal#isPrivateLocal and internal#isProtectedLocal. Given the extraordinary circumstances of having no way for api#isLocal to work correctly, I’m forced to remove api#isLocal without a deprecation notice, exercising our right to break experimental APIs, something that we have never done before for reflection or macros. This is sad.