summaryrefslogtreecommitdiff
path: root/sources/scala/tools/scalac/typechecker/Infer.scala
blob: 1886a4282282382fbaa1d1df6839538b3d59a63f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/*     ____ ____  ____ ____  ______                                     *\
**    / __// __ \/ __// __ \/ ____/    SOcos COmpiles Scala             **
**  __\_ \/ /_/ / /__/ /_/ /\_ \       (c) 2002, LAMP/EPFL              **
** /_____/\____/\___/\____/____/                                        **
\*                                                                      */

// $Id$

package scala.tools.scalac.typechecker;

import java.lang.Object;

import scalac.Global;
import scalac.ApplicationError;
import scalac.util._;
import scalac.ast._;
import scalac.symtab._;

import scala.tools.scalac.util.NewArray;

class Infer(global: Global, gen: TreeGen, make: TreeFactory) {

  import Modifiers._, Kinds._;

  val definitions: Definitions = global.definitions;
  val substituter: Substituter = new Substituter(global, gen);

  def this(trans: Transformer) = this(trans.global, trans.gen, trans.make);

// Error messages -------------------------------------------------------------

  def applyErrorMsg(msg1: String, fn: Tree, msg2: String, argtypes: Array[Type], pt: Type): String =
    msg1 + toString(fn.symbol(), fn.getType()) + msg2 +
    ArrayApply.toString(argtypes.asInstanceOf[Array[Object]], "(", ",", ")") +
    (if (pt == Type.AnyType) "" else " with expected result type " + pt);

  def typeErrorMsg(msg: String, found: Type, req: Type): String =
    msg + ";\n found   : " + found.toLongString() + "\n required: " + req;

  def overloadResolveErrorMsg(sym1: Symbol, tpe1: Type, sym2: Symbol, tpe2: Type): String =
    "ambiguous reference to overloaded definition,\n" +
    "both " + sym1 + ": " + tpe1 + "\n" +
    "and  " + sym2 + ": " + tpe2 + "\nmatch";

  /** Give a string representation of symbol `sym' with type `tp'
  *  for error diagnostics. `sym' may be null.
  */
  def toString(sym: Symbol, tp: Type): String =
    (if (tp.isInstanceOf[Type$OverloadedType]) "overloaded " else "") +
    (if (sym == null) "expression" else sym) + " of type " + tp;

// Variance calculation ----------------------------------------------------------

  private def flip(v: int): int = {
    if (v == COVARIANT) CONTRAVARIANT;
    else if (v == CONTRAVARIANT) COVARIANT;
    else v
  }

  private def cut(v: int): int = {
    if (v == VARIANCES) v
    else 0
  }

  /** Compute variances of all type parameters `tparams' in type `tp'.
  *  A variance is taken from the four point lattice
  *
  *  0, Modifiers.COVARIANT, Modifiers.CONTRAVARIANT, Modifiers.VARIANCES.
  */
  private def variance(tparams: Array[Symbol], tp: Type): Array[int] = {
    val vs: Array[int] = new Array[int](tparams.length);
    for (val i <- Iterator.range(0, vs.length))
      vs(i) = variance(tparams(i), tp);
    vs
  }

  /** Compute variances of all type parameters `tparams' in types `tps'.
  */
  private def variance(tparams: Array[Symbol], tps: Array[Type]): Array[int] = {
    val vs: Array[int] = new Array[int](tparams.length);
    for (val i <- Iterator.range(0, vs.length))
      vs(i) = variance(tparams(i), tps);
    vs
  }

  /** Compute variance of type parameter `tparam' in types of all symbols `sym'.
  */
  private def variance(tparam: Symbol, syms: Array[Symbol]): int = {
    var v: int = VARIANCES;
    for (val i <- Iterator.range(0, syms.length)) {
      v = v & variance(tparam, syms(i));
    }
    v
  }

  /** Compute variance of type parameter `tparam' in type of symbol `sym'.
  */
  private def variance(tparam: Symbol, sym: Symbol): int = sym.kind match {
    case ERROR =>
      VARIANCES
    case VAL =>
      variance(tparam, sym.info())
    case TYPE =>
      variance(tparam, sym.info()) & flip(variance(tparam, sym.loBound()))
    case ALIAS =>
      cut(variance(tparam, sym.info()))
    case _ =>
      0
  }

  /** Compute variance of type parameter `tparam' in all types `tps'.
     */
  private def variance(tparam: Symbol, tps: Array[Type]): int = {
    var v: int = VARIANCES;
    for (val i <- Iterator.range(0, tps.length)) {
      v = v & variance(tparam, tps(i));
    }
    v
  }

  /** Compute variance of type parameter `tparam' in all type arguments
  *  `tps' which correspond to formal type parameters `tparams'.
  */
  private def varianceInArgs(tvar: Symbol, tps: Array[Type], tparams: Array[Symbol]): int = {
    var v: int = VARIANCES;
    for (val i <- Iterator.range(0, tps.length)) {
      if ((tparams(i).flags & COVARIANT) != 0) {
	v = v & variance(tvar, tps(i));
      } else if ((tparams(i).flags & CONTRAVARIANT) != 0) {
	v = v & flip(variance(tvar, tps(i)));
      } else {
	v = v & cut(variance(tvar, tps(i)));
      }
    }
    v
  }

  /** Does given `tparam' occur with variance `v' in type?
  */
  private def variance(tparam: Symbol, tp: Type): int = tp match {
    case Type.ErrorType | Type.AnyType | Type.NoType |
         Type$ThisType(_) | Type$ConstantType(_, _) =>
      VARIANCES
    case Type$TypeRef(pre, sym, args) =>
      if (sym == tparam) COVARIANT
      else variance(tparam, pre) & varianceInArgs(tparam, args, sym.typeParams())
    case Type$SingleType(pre, sym) =>
      cut(variance(tparam, pre))
    case Type$CompoundType(parts, members) =>
      variance(tparam, parts) & variance(tparam, members.elements())
    case Type$MethodType(params, restype) =>
      flip(variance(tparam, params)) & variance(tparam, restype)
    case Type$PolyType(tparams, restype) =>
      flip(variance(tparam, tparams)) & variance(tparam, restype)
  }

// Type parameter inference -----------------------------------------------------

  private class NoInstance(msg: String) extends RuntimeException(msg);

  /** map every TypeVar to its constraint.inst field.
  *  throw a NoInstance exception if a NoType or AnyType is encountered.
  */
  private val instantiateMap: Type$Map = new Type$Map() {
    def apply(t: Type): Type = instantiate(t)
  }

  private def instantiate(tp: Type): Type = tp match {
    case Type.AnyType | Type.NoType =>
      throw new NoInstance("undetermined type");
    case Type$TypeVar(origin, constr) =>
      if (constr.inst != Type.NoType) instantiate(constr.inst)
      else throw new NoInstance("no unique instantiation of type variable " +
				origin + " could be found");
    case _ =>
      instantiateMap.map(tp)
  }

  /** Map type variable to its instance, or, if `covariant' is true,
  *  to its upper bound;
  */
  private def instantiateToBound(tp: Type, variance: int): Type = tp match {
    case Type$TypeVar(origin, constr) =>
      try {
	if (constr.inst != Type.NoType) {
	  instantiate(constr.inst)
	} else if ((variance & COVARIANT) != 0 && constr.hibounds != Type$List.EMPTY) {
	  maximizeVar(tp);
	  instantiate(constr.inst)
	} else if ((variance & CONTRAVARIANT) != 0 && constr.lobounds != Type$List.EMPTY) {
	  minimizeVar(tp);
	  instantiate(constr.inst)
	} else {
	  Type.AnyType;
	}
      } catch {
	case ex: NoInstance => Type.AnyType
      }
  }

  /** The formal parameter types corresponding to `params'.
  *  If `params' is a repeated parameter, a list of `length' copies
  *  of its type is returned.
  */
  def formalTypes(params: Array[Symbol], length: int): Array[Type] = {
    if (params.length == 1 && (params(0).flags & REPEATED) != 0) {
      val formals: Array[Type] = new Array[Type](length);
      val args: Array[Type] = params(0).getType().typeArgs();
      if (args.length == 1) {
	val ft: Type = args(0);
	// params(0) has type Seq[T], we need T here
	for (val i <- Iterator.range(0, length))
	  formals(i) = ft;
	return formals;
      }
    }
    Symbol.getType(params);
  }

  /** Is type fully defined, i.e. no embedded anytypes or typevars in it?
  */
  def isFullyDefined(tp: Type): boolean = {
    try {
      instantiate(tp);
      true
    } catch {
      case ex: NoInstance => false
    }
  }

  /** Do type arguments `targs' conform to formal parameters `tparams'?
  */
  private def isWithinBounds(tparams: Array[Symbol], targs: Array[Type]): boolean = {
    var i = 0;
    while (i < targs.length) {
      val hibound: Type = tparams(i).info().subst(tparams, targs);
      if (!targs(i).isSubType(hibound)) {
	var j = 0;
	while (j < tparams.length) {
	  if (hibound.symbol() == tparams(j))
	    return isWithinBounds(
	      tparams,
	      Type.subst(
		targs,
		NewArray.Symbol(tparams(j)),
		NewArray.Type(targs(i))));
	  j = j + 1
	}
	return false;
      }
      val lobound: Type = tparams(i).loBound().subst(tparams, targs);
      if (!lobound.isSubType(targs(i))) {
	var j = 0;
	while (j < tparams.length) {
	  if (lobound.symbol() == tparams(j))
	    return isWithinBounds(
	      tparams,
	      Type.subst(
		targs,
		NewArray.Symbol(tparams(j)),
		NewArray.Type(targs(i))));
	  j = j + 1
	}
	return false
      }
      i = i + 1
    }
    true
  }

  /** throw a type error if arguments not within bounds.
  */
  def checkBounds(tparams: Array[Symbol], targs: Array[Type], prefix: String): unit =
    if (!isWithinBounds(tparams, targs))
      throw new Type$Error(
	prefix + "type arguments " +
	ArrayApply.toString(targs.asInstanceOf[Array[Object]], "[", ",", "]") +
	" do not conform to " +
	tparams(0).owner() + "'s type parameter bounds " +
	ArrayApply.toString(Symbol.defString(tparams).asInstanceOf[Array[Object]], "[", ",", "]"));

  /** Instantiate variable to glb of its high bounds.
  */
  private def maximizeVar(tp: Type): unit = tp match {
    case Type$TypeVar(origin, constr) =>
      if (constr.inst == Type.NoType)
	constr.inst = Type.glb(constr.hibounds.toArray());
  }

  /** Instantiate variable to lub of its low bounds.
  */
  private def minimizeVar(tp: Type): unit = tp match {
    case Type$TypeVar(origin, constr) =>
      if (constr.inst == Type.NoType)
	constr.inst = Type.lub(constr.lobounds.toArray());
  }

  /** Solve constraint collected in types `tvars', instantiating `tvars(i)'
  *  in the process.
  *  @param tparams    The type parameters corresponding to `tvars'
  *  @param upper      When `true' search for max solution else min.
  *  @param variances  The variances of type parameters; need to reverse
  *                    solution direction for all contravariant variables.
  *  @param tvars      All type variables to be instantiated.
  *  @param i          The index of the type variable to be instantiated.
  */
  private def solve(tparams: Array[Symbol], upper: boolean, variances: Array[int], tvars: Array[Type], i: int): unit = {
    if (tvars(i) != Type.NoType) {
      tvars(i) match {
	case Type$TypeVar(origin, constr) =>
	  if (constr.inst != Type.NoType) {
	    constr.inst = instantiate(constr.inst);
	    tvars(i) = constr.inst;
	  } else {
	    val tvar: Type = tvars(i);
	    val up: boolean = if (variances(i) != CONTRAVARIANT) upper
			      else !upper;
	    tvars(i) = Type.NoType;
	    val bound: Type = if (up) tparams(i).info() else tparams(i).loBound();
	    var cyclic: boolean = false;
	    for (val j <- Iterator.range(0, tvars.length)) {
	      if (bound.contains(tparams(j)) ||
		  up && tparams(j).loBound().isSameAs(tparams(i).getType()) ||
		  !up && tparams(j).info().isSameAs(tparams(i).getType())) {
		    cyclic = cyclic | tvars(j) == Type.NoType;
		    solve(tparams, upper, variances, tvars, j);
	      }
	    }
	    if (!cyclic) {
	      if (up) {
		if (bound.symbol() != Global.instance.definitions.ANY_CLASS)
		  constr.hibounds = new Type$List(
		    bound.subst(tparams, tvars), constr.hibounds);
		for (val j <- Iterator.range(0, tvars.length)) {
		  if (tparams(j).loBound().isSameAs(
		    tparams(i).getType())) {
		      constr.hibounds = new Type$List(
			tparams(j).getType().subst(tparams, tvars),
			constr.hibounds);
		    }
		}
	      } else {
		if (bound.symbol() != Global.instance.definitions.ALL_CLASS)
		  constr.lobounds = new Type$List(
		    bound.subst(tparams, tvars), constr.lobounds);
		for (val j <- Iterator.range(0, tvars.length)) {
		  if (tparams(j).info().isSameAs(
		    tparams(i).getType())) {
		      constr.lobounds = new Type$List(
			tparams(j).getType().subst(tparams, tvars),
			constr.lobounds);
		    }
		}
	      }
	    }
	    if (up) maximizeVar(tvar);
	    else minimizeVar(tvar);
	    tvars(i) = tvar.asInstanceOf[Type$TypeVar].constr.inst;
	  }
	case _ =>
      }
    }
  }

  /** Generate an array of fresh type variables corresponding to parameters
  *  `tparams'
  */
  private def freshVars(tparams: Array[Symbol]): Array[Type] = {
    val tvars: Array[Type] = new Array[Type](tparams.length);
    for (val i <- Iterator.range(0, tvars.length)) {
      tvars(i) = new Type$TypeVar(tparams(i).getType(), new Type$Constraint());
    }
    tvars
  }

  private val freshInstanceMap: Type$Map = new Type$Map() {
    def apply(t: Type): Type = t match {
      case Type$PolyType(tparams, restp) =>
	val restp1: Type = apply(restp);
	var tparams1: Array[Symbol] = Symbol.EMPTY_ARRAY;
	var newparams1: Array[Symbol] = Symbol.EMPTY_ARRAY;
	restp1 match {
	  case Type$PolyType(_, _) =>
	    // If there is a nested polytype, we need to
	    // substitute also its new type parameters for its old ones
	    // here. Reason: The outer polytype may refer to type
	    // variables of the inner one.
	    tparams1 = restp.typeParams();
	    newparams1 = restp1.typeParams();
	  case _ =>
	}
	val newparams: Array[Symbol] = new Array[Symbol](tparams.length);
	for (val i <- Iterator.range(0, tparams.length))
	  newparams(i) = tparams(i).cloneSymbol();
	for (val i <- Iterator.range(0, tparams.length)) {
	  newparams(i).setInfo(
	    newparams(i).info()
	    .subst(tparams, newparams)
	    .subst(tparams1, newparams1));
	  newparams(i).setLoBound(
	    newparams(i).loBound()
	    .subst(tparams, newparams)
	    .subst(tparams1, newparams1));
	}
	new Type$PolyType(newparams, restp1.subst(tparams, newparams))

      case Type$OverloadedType(_, _) =>
	map(t)

      case _ =>
	t
    }
  }

  def freshInstance(tp: Type): Type = freshInstanceMap.apply(tp);

  /** Automatically perform the following conversions on expression types:
  *  A method type becomes the corresponding function type.
  *  A nullary method type becomes its result type.
  */
  private def normalize(tp: Type): Type = tp match {
    case Type$MethodType(params, restype) =>
      global.definitions.FUNCTION_TYPE(
	Symbol.getType(params), normalize(restype));
    case Type$PolyType(tparams, restype) if (tparams.length == 0) =>
      normalize(restype);
    case _ =>
      tp
  }

  /** Is normalized type `tp' a subtype of prototype `pt'?
  */
  def isCompatible(tp: Type, pt: Type): boolean =
    normalize(tp).isSubType(pt);

  /** Type arguments mapped to `scala.All' are taken to be uninstantiated.
  *  Map all those type arguments to their corresponding type parameters
  *  and return all these type parameters as result.
  */
  private def normalizeArgs(targs: Array[Type], tparams: Array[Symbol]): Array[Symbol] = {
    var uninstantiated: Type$List = Type$List.EMPTY;
    for (val i <- Iterator.range(0, targs.length)) {
      if (targs(i).symbol() == Global.instance.definitions.ALL_CLASS) {
	targs(i) = tparams(i).getType();
	uninstantiated = Type$List.append(uninstantiated, targs(i));
      }
    }
    Type.symbol(uninstantiated.toArray());
  }

  /** Return inferred type arguments of polymorphic expression, given
  *  its type parameters and result type and a prototype `pt'.
  *  If no minimal type variables exist that make the
  *  instantiated type a subtype of `pt', return `null'.
  */
  private def exprTypeArgs(tparams: Array[Symbol], restype: Type, pt: Type): Array[Type] = {
    val tvars: Array[Type] = freshVars(tparams);
    val insttype: Type = restype.subst(tparams, tvars);
    if (isCompatible(insttype, pt)) {
      try {
	val restype1 = normalize(restype);
	for (val i <- Iterator.range(0, tvars.length)) {
	  solve(tparams, false, variance(tparams, restype1), tvars, i);
	}
	tvars
      } catch {
	case ex: NoInstance => null
      }
    } else {
	null
    }
  }

  /** Return inferred proto-type arguments of function, given
  *  its type and value parameters and result type, and a
  *  prototype `pt' for the function result.
  *  Type arguments need to be either determined precisely by
  *  the prototype, or they are maximized, if they occur only covariantly
  *  in the value parameter list.
  *  If instantiation of a type parameter fails,
  *  take Type.AnyType for the proto-type argument.
  */
  def protoTypeArgs(tparams: Array[Symbol], restype: Type, pt: Type, params: Array[Symbol]): Array[Type] = {
    val tvars: Array[Type] = freshVars(tparams);
    val insttype: Type = restype.subst(tparams, tvars);
    val targs: Array[Type] = new Array[Type](tvars.length);
    for (val i <- Iterator.range(0, tvars.length))
      targs(i) = Type.AnyType;
    if (isCompatible(insttype, pt)) {
      try {
	for (val i <- Iterator.range(0, tvars.length)) {
	  targs(i) = instantiateToBound(
	    tvars(i), variance(tparams(i), params));
	}
      } catch {
	case ex: NoInstance =>
	  for (val i <- Iterator.range(0, tvars.length))
	    targs(i) = Type.AnyType;
      }
    }
    targs
  }

  /** Return inferred type arguments, given type parameters, formal parameters,
  *  argument types, result type and expected result type.
  *  If this is not possible, throw a `NoInstance' exception, or, if
  *  `needToSucceed' is false alternatively return `null'.
  *  Undetermined type arguments are represented by `definitions.ALL_TYPE'.
  *  No check that inferred parameters conform to their bounds is made here.
  */
  private def methTypeArgs(tparams: Array[Symbol], params: Array[Symbol], argtypes: Array[Type], restp: Type, pt: Type, needToSucceed: boolean): Array[Type] = {
    //System.out.println("methTypeArgs, tparams = " + ArrayApply.toString(tparams) + ", params = " + ArrayApply.toString(params) + ", type(params) = " + ArrayApply.toString(Symbol.type(params)) + ", argtypes = " + ArrayApply.toString(argtypes));//DEBUG

    val tvars: Array[Type] = freshVars(tparams);
    val formals: Array[Type] = formalTypes(params, argtypes.length);
    if (formals.length != argtypes.length) {
      if (needToSucceed)
	throw new NoInstance("parameter lists differ in length");
      return null;
    }

    // check first whether type variables can be fully defined from
    // expected result type.
    if (!isCompatible(restp.subst(tparams, tvars), pt)) {
      if (needToSucceed)
	throw new NoInstance("result type " + restp +
			     " is incompatible with expected type " + pt);
      return null;
    }
    for (val i <- Iterator.range(0, tvars.length)) {
      val tvar: Type$TypeVar = tvars(i).asInstanceOf[Type$TypeVar];
      if (!isFullyDefined(tvar)) tvar.constr.inst = Type.NoType;
    }

    // Then define remaining type variables from argument types.
    var i = 0;
    while (i < argtypes.length) {
      if (!isCompatible(argtypes(i).widen().subst(tparams, tvars), formals(i).subst(tparams, tvars))) {
	if (needToSucceed) {
	  if (global.explaintypes) {
	    Type.explainSwitch = true;
	    argtypes(i).widen().subst(tparams, tvars).isSubType(
	      formals(i).subst(tparams, tvars));
	    Type.explainSwitch = false;
	  }
	  throw new NoInstance(
	    typeErrorMsg(
	      "argument expression's type is not compatible with formal parameter type",
	      argtypes(i).widen().subst(tparams, tvars),
	      formals(i).subst(tparams, tvars)));
	}
	return null;
      }
      i = i + 1;
    }
    for (val i <- Iterator.range(0, tvars.length)) {
      solve(tparams, false, variance(tparams, formals), tvars, i);
    }
    //System.out.println(" = " + ArrayApply.toString(tvars));//DEBUG
    tvars
  }

  /** Create and attribute type application node. Pass arguments for that
  *  `tparams' prefix which is owned by the tree's symbol. If there are remaining
  *  type parameters, substitute corresponding type arguments for them in the
  *  tree. Such remaining type parameters always come from an inferred PolyType.
  */
  def mkTypeApply(tree: Tree, tparams: Array[Symbol], restype: Type, targs: Array[Type]): Tree = {
    var tree1: Tree = tree;
    val sym: Symbol = tree.symbol();
    var i: int = 0;
    while (i < tparams.length && tparams(i).owner() == sym)
      i = i + 1;
    if (i < tparams.length) {
      //System.out.println("tpar " + tparams(i) + " of " + tparams(i).owner() + " <> " + sym);//DEBUG
      //new Printer().print(tree1);//DEBUG
      //System.out.println(ArrayApply.toString(targs) + "/" + i + "/" + ArrayApply.toString(tparams));//DEBUG
      val tparams1: Array[Symbol] = new Array[Symbol](tparams.length - i);
      System.arraycopy(tparams.asInstanceOf[Array[Object]], i,
		       tparams1.asInstanceOf[Array[Object]], 0, tparams1.length);
      val targs1: Array[Type] = new Array[Type](tparams.length - i);
      System.arraycopy(targs.asInstanceOf[Array[Object]], i,
		       targs1.asInstanceOf[Array[Object]], 0, targs1.length);
      tree1 = substituter.apply(tree1, tparams1, targs1);
    }
    if (0 < i) {
      val argtrees: Array[Tree] = new Array[Tree](i);
      for (val j <- Iterator.range(0, i))
	argtrees(j) = gen.mkType(tree.pos, targs(j));
      tree1 = make.TypeApply(tree.pos, tree1, argtrees);
    }
    //System.out.println(Sourcefile.files[Position.file(tree1.pos)] + ": ");
    tree1.setType(restype.subst(tparams, targs))
  }

  /** Return the instantiated and normalized type of polymorphic expression
  *  with type `[tparams]restype', given two prototypes `pt1', and `pt2'.
  *  `pt1' is the strict first attempt prototype where type parameters
  *  are left unchanged. `pt2' is the fall-back prototype where type parameters
  *  are replaced by `AnyType's. We try to instantiate first to `pt1' and then,
  *  if this fails, to `pt2'. If both attempts fail, a Type.Error is thrown.
  */
  def argumentTypeInstance(tparams: Array[Symbol], restype: Type, pt1: Type, pt2: Type): Type = {
    restype match {
      case Type$PolyType(tparams1, restype1) =>
	val tparams2: Array[Symbol] = new Array[Symbol](tparams.length + tparams1.length);
	System.arraycopy(tparams.asInstanceOf[Array[Object]], 0,
			 tparams2.asInstanceOf[Array[Object]], 0, tparams.length);
	System.arraycopy(tparams1.asInstanceOf[Array[Object]], 0,
			 tparams2.asInstanceOf[Array[Object]], tparams.length, tparams1.length);
	argumentTypeInstance(tparams2, restype1, pt1, pt2);

      case _ =>
	if (tparams.length != 0) {
	  var targs: Array[Type] = exprTypeArgs(tparams, restype, pt1);
	  if (targs == null)
	    targs = exprTypeArgs(tparams, restype, pt2);
	  if (targs == null)
	    throw new Type$Error(
	      typeErrorMsg(
		"polymorphic argument cannot be instantiated to formal parameter type",
		new Type$PolyType(tparams, restype), pt2));
	  checkBounds(tparams, targs, "inferred ");
	  restype.subst(tparams, targs);
	} else {
	  normalize(restype);
	}
    }
  }

  /** Instantiate expression `tree' of polymorphic type [tparams]restype,
  *  using prototype `pt'.
  */
  def exprInstance(tree: Tree, tparams: Array[Symbol], restype: Type, pt: Type): Tree = {
    restype match {
      case Type$PolyType(tparams1, restype1) =>
	val tparams2: Array[Symbol] = new Array[Symbol](tparams.length + tparams1.length);
	System.arraycopy(tparams.asInstanceOf[Array[Object]], 0,
			 tparams2.asInstanceOf[Array[Object]], 0, tparams.length);
	System.arraycopy(tparams1.asInstanceOf[Array[Object]], 0,
			 tparams2.asInstanceOf[Array[Object]], tparams.length, tparams1.length);
	exprInstance(tree, tparams2, restype1, pt)
      case _ =>
	val targs: Array[Type] = exprTypeArgs(tparams, restype, pt);
	if (targs == null)
	  throw new Type$Error(
	    "polymorphic expression of type " + tree.getType() +
	    " cannot be instantiated from expected type " + pt);
	checkBounds(tparams, targs, "inferred ");
	mkTypeApply(tree, tparams, restype, targs)
    }
  }

  /** Instantiate method `tree' of polymorphic type [tparams]restype,
  *  so that resulting method type can be applied to arguments with
  *  types `argtypes' and its result type is compatible with `pt'.
  */
  def methodInstance(tree: Tree, tparams: Array[Symbol], restype: Type, argtypes: Array[Type], pt: Type): Tree = {
    restype match {
      case Type$PolyType(tparams1, restype1) =>
	val tparams2: Array[Symbol] = new Array[Symbol](tparams.length + tparams1.length);
	System.arraycopy(tparams.asInstanceOf[Array[Object]], 0,
			 tparams2.asInstanceOf[Array[Object]], 0, tparams.length);
	System.arraycopy(tparams1.asInstanceOf[Array[Object]], 0,
			 tparams2.asInstanceOf[Array[Object]], tparams.length, tparams1.length);
	methodInstance(tree, tparams2, restype1, argtypes, pt)

      case Type$MethodType(params, restpe) =>
	var targs: Array[Type] = _;
	try {
	  targs = methTypeArgs(tparams, params, argtypes, restpe, pt, true);
	} catch {
	  case ex: NoInstance =>
	    throw new Type$Error(
	      applyErrorMsg(
		"no type parameters for ", tree,
		" exist so that it can be applied to arguments ",
		Type.widen(argtypes), Type.AnyType) +
	      "\n --- because ---\n" + ex.getMessage());
	}
	val uninstantiated: Array[Symbol] = normalizeArgs(targs, tparams);
	checkBounds(tparams, targs, "inferred ");
	val restype1: Type =
	  if (uninstantiated.length == 0) restype
	  else new Type$MethodType(
	    params, new Type$PolyType(uninstantiated, restpe));
	mkTypeApply(tree, tparams, restype1, targs);
      case _ =>
	tree
    }
  }

  /** Instantiate constructor `tree' of polymorphic type [tparams]restype',
  *  so that its the result type of `restype' matches prototype `pt'.
  *  If constructor is polymorphic, maximize all type variables under this
  *  condition.
  */
  def constructorInstance(tree: Tree, tparams: Array[Symbol], restype: Type, pt: Type): unit = {
    restype match {
      case Type$PolyType(tparams1, restype1) =>
	val tparams2: Array[Symbol] = new Array[Symbol](tparams.length + tparams1.length);
	System.arraycopy(tparams.asInstanceOf[Array[Object]], 0,
			 tparams2.asInstanceOf[Array[Object]], 0, tparams.length);
	System.arraycopy(tparams1.asInstanceOf[Array[Object]], 0,
			 tparams2.asInstanceOf[Array[Object]], tparams.length, tparams1.length);
	constructorInstance(tree, tparams2, restype1, pt)

      case _ =>
	val tvars: Array[Type] = freshVars(tparams);
	val restype1: Type = restype.subst(tparams, tvars);
	val ctpe1: Type = restype1.resultType();
	if (ctpe1.isSubType(pt)) {
	  try {
	    for (val i <- Iterator.range(0, tvars.length)) {
	      solve(tparams, true, variance(tparams, restype.resultType()),
		    tvars, i);
	    }
	    checkBounds(tparams, tvars, "inferred ");
	    tree.setType(restype.subst(tparams, tvars));
	    //System.out.println("inferred constructor type: " + tree.getType());//DEBUG
	  } catch {
	    case ex: NoInstance =>
	      throw new Type$Error(
		"constructor of type " + ctpe1 +
		" can be instantiated in more than one way to expected type " +
		pt +
		"\n --- because ---\n" + ex.getMessage());
	  }
	} else {
	  throw new Type$Error(
	    typeErrorMsg(
	      "constructor cannot be instantiated to expected type",
	      ctpe1, pt));
	}
    }
  }

// Overload Resolution -------------------------------------------------------------

  /** Is function type `ftpe' applicable to `argtypes' and
  *  does its result conform to `pt'?
  */
  def isApplicable(ftpe: Type, argtypes: Array[Type], pt: Type): boolean = ftpe match {
    case Type$MethodType(params, restpe) =>
      // sequences ? List( a* )
      val formals: Array[Type] = formalTypes(params, argtypes.length);
      isCompatible(restpe, pt) &&
      formals.length == argtypes.length &&
      Type.isSubType(argtypes, formals);
    case Type$PolyType(tparams, Type$MethodType(params, restpe)) =>
      try {
	val targs: Array[Type] = methTypeArgs(
	  tparams, params, argtypes, restpe, pt, false);
	if (targs != null) {
	  val uninstantiated: Array[Symbol] = normalizeArgs(targs, tparams);
	  isWithinBounds(tparams, targs) &&
	  exprTypeArgs(uninstantiated, restpe.subst(tparams, targs), pt) != null;
	} else {
	  false
	}
      } catch {
	case ex: NoInstance => false
      }
    case _ =>
      false
  }

  /** Does function type `ftpe1' specialize function type `ftpe2'
  *  when both are alternatives in an overloaded function?
  */
  def specializes(ftpe1: Type, ftpe2: Type): boolean = ftpe1 match {
    case Type$MethodType(params, _) =>
      isApplicable(ftpe2, Symbol.getType(params), Type.AnyType)
    case Type$PolyType(_, Type$MethodType(params, _)) =>
      isApplicable(ftpe2, Symbol.getType(params), Type.AnyType);
    case _ =>
      false
  }

  /** Assign `tree' the type of the alternative which matches
  *  prototype `pt', if it exists.
  *  If several alternatives match `pt', take unique parameterless one.
  *  Throw a Type.Error if several such alternatives exist.
  *  If no alternative matches, leave `tree' unchanged.
  */
  def exprAlternative(tree: Tree, alts: Array[Symbol], alttypes: Array[Type], pt: Type): unit = {

    def improves(tp1: Type, tp2: Type): boolean =
      tp2.isParameterized() &&
      (!tp1.isParameterized() || specializes(tp1, tp2));

    // first, catch the case of a missing parameter
    // list for an overloaded constructor.
    if (alts.length > 0) {
      var i: int = 0;
      while (i < alts.length && alts(i).isConstructor() && alttypes(i).isInstanceOf[Type$MethodType])
	i = i + 1;
      if (i == alts.length)
	throw new Type$Error("missing arguments for " + alts(0));
    }
    // second, do the normal case.
    var best: int = -1;
    for (val i <- Iterator.range(0, alttypes.length)) {
      if (isCompatible(alttypes(i), pt) && (best < 0 || improves(alttypes(i), alttypes(best)))) {
	best = i;
      }
    }
    if (best >= 0) {
      for (val i <- Iterator.range(0, alttypes.length)) {
	if (isCompatible(alttypes(i), pt) && best != i && !improves(alttypes(best), alttypes(i))) {
	  throw new Type$Error(
	    overloadResolveErrorMsg(
	      alts(best), alttypes(best), alts(i), alttypes(i)) +
	    " expected type " + pt);
	}
      }
      tree.setSymbol(alts(best)).setType(alttypes(best));
    }
  }

  /** Assign `tree' the type of an alternative
  *  which is applicable to `argtypes', and whose result type is
  *  a subtype of `pt' if it exists.
  *  If several applicable alternatives exist, take the
  *  most specialized one, or throw an error if no
  *  most specialized applicable alternative exists.
  *  If no alternative matches, leave `tree' unchanged,
  *  try to select method with pt = AnyType.
  *  If pt is AnyType, leave tree unchanged.
  */
  def methodAlternative(tree: Tree, alts: Array[Symbol], alttypes: Array[Type], argtypes: Array[Type], pt: Type): unit = {
    if (alts.length == 1) {
      tree.setSymbol(alts(0)).setType(alttypes(0));
      return;
    }
    var best: int = -1;
    for (val i <- Iterator.range(0, alttypes.length)) {
      if (isApplicable(alttypes(i), argtypes, pt) &&
	  (best < 0 || specializes(alttypes(i), alttypes(best))))
	best = i;
    }
    if (best >= 0) {
      for (val i <- Iterator.range(0, alttypes.length)) {
	if (i != best &&
	    isApplicable(alttypes(i), argtypes, pt) &&
	    !(specializes(alttypes(best), alttypes(i)) &&
	      !specializes(alttypes(i), alttypes(best))))
	   throw new Type$Error(
	     overloadResolveErrorMsg(
	       alts(best), alttypes(best), alts(i), alttypes(i)) +
	     " argument types " +
	     ArrayApply.toString(argtypes.asInstanceOf[Array[Object]], "(", ",", ")") +
	     (if (pt == Type.AnyType) "" else " and expected result type " + pt));
      }
      tree.setSymbol(alts(best)).setType(alttypes(best));
    } else if (pt != Type.AnyType) {
      methodAlternative(tree, alts, alttypes, argtypes, Type.AnyType);
    }
  }

  /** Assign `tree' the type of unique polymorphic alternative with `nparams'
  *  as the number of type parameters, if it exists.
  *  Throw error if several such polymorphic alternatives exist.
  *  If no alternative matches, leave `tree' unchanged.
  */
  def polyAlternative(tree: Tree, alts: Array[Symbol], alttypes: Array[Type], nparams: int): unit = {
    if (alts.length == 1) {
      tree.setSymbol(alts(0)).setType(alttypes(0));
      return;
    }
    var i: int = 0;
    while (i < alttypes.length &&
	   !(alts(i).isValue() &&
	     alttypes(i).typeParams().length == nparams))
      i = i + 1;

    if (i < alttypes.length) {
      for (val j <- Iterator.range(i + 1, alttypes.length)) {
	if (alts(j).isValue() &&
	    alttypes(j).typeParams().length == nparams)
	  throw new Type$Error(
	    overloadResolveErrorMsg(alts(i), alttypes(i), alts(j), alttypes(j)) +
	    " polymorphic function with " + nparams + " parameters");
      }
      tree.setSymbol(alts(i)).setType(alttypes(i));
    }
  }
}