summaryrefslogtreecommitdiff
path: root/sources/scalac/transformer/matching/CodeFactory.java
blob: cab3d852535fee46438355f793004c0a11398c5f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/*     ____ ____  ____ ____  ______                                     *\
**    / __// __ \/ __// __ \/ ____/    SOcos COmpiles Scala             **
**  __\_ \/ /_/ / /__/ /_/ /\_ \       (c) 2002, LAMP/EPFL              **
** /_____/\____/\___/\____/____/                                        **
**                                                                      **
** $Id$
\*                                                                      */

package scalac.transformer.matching;

import ch.epfl.lamp.util.Position;

import scalac.*;
import scalac.ast.*;
import scalac.util.*;
import scalac.symtab.*;
import scalac.typechecker.*;
import PatternNode.*;
import Tree.*;

class CodeFactory extends PatternTool {

    public int pos = Position.FIRSTPOS ;

    static final Name TUPLE2_N       = Name.fromString("scala.Tuple2");

    static final Name LEFT_N = Name.fromString("_1");
    static final Name RIGHT_N = Name.fromString("_2");
    static final Name HEAD_N       = Name.fromString("head");
    static final Name TAIL_N       = Name.fromString("tail");
    static final Name ISEMPTY_N        = Name.fromString("isEmpty");

    Symbol refSym() { // delete Names.Ref
	return defs.getType( Names.scala_Ref ).symbol() ;
    }

    Symbol seqSym() {
	return defs.getType( Names.scala_Seq ).symbol() ;
    }

    Symbol intSym() {
	return defs.getType( Names.scala_Int ).symbol() ;
    }

    Symbol tuple2Sym() {
	return defs.getType( TUPLE2_N ).symbol() ;
    }

    Symbol tuple2Sym_left() {
	return tuple2Sym().lookup( LEFT_N );
    }

    Symbol tuple2Sym_right() {
	return tuple2Sym().lookup( RIGHT_N );
    }

    Symbol iteratorSym() {
	return defs.getType( Names.scala_Iterator ).symbol() ;
    }

    Symbol seqListSym() {
	return defs.getType( Names.scala_List ).symbol() ;
    }

    Symbol seqListSym_isEmpty() {
	return seqListSym().lookup( ISEMPTY_N );
    }

    Symbol seqListSym_head() {
	return seqListSym().lookup( HEAD_N );
    }

    Symbol seqListSym_tail() {
	return seqListSym().lookup( TAIL_N );
    }

    /*
    Symbol seqConsSym() {
	return defs.getType( Names.scala_COLONCOLON ).symbol() ;
    }

    Symbol seqNilSym() {
	return defs.getType( Names.scala_Nil ).symbol().module(); // no need for TypeApply anymore!x
    }
    */
    Symbol seqIterSym() {
	return defs.getType( Names.scala_Iterator ).symbol();
    }

    Symbol seqIterSym_next() {
	return seqIterSym().lookup( Names.next );
    }

    Symbol seqIterSym_hasNext() {
	return seqIterSym().lookup( Names.hasNext );
    }
    /*

    Symbol seqTraceSym() {
	return defs.getType( Name.fromString( "scala.SeqTrace" ) ).symbol();
    }
    Symbol seqTraceConsSym() {
	return defs.getType( Name.fromString( "scala.SeqTraceCons" ) ).symbol();
    }

    Symbol seqTraceNilSym() {
	return defs.getType( Name.fromString( "scala.SeqTraceNil" ) ).symbol();
    }
    */
    Symbol iterableSym() {
	return defs.getType( Names.scala_Iterable ).symbol();
    }

    Symbol newIterSym() {
	return iterableSym().lookup( Names.elements );
    }

    Symbol andSym() {
        return defs.BOOLEAN_CLASS.lookup(AND_N);
    }

    Symbol orSym() {
        return defs.BOOLEAN_CLASS.lookup(OR_N);
    }

    Symbol failSym() {
        return defs.SCALA_CLASS.lookup(MATCHERROR_N).lookup(FAIL_N);
    }


    public CodeFactory( Unit unit, Infer infer, int pos ) {
	super( unit, infer );
	this.pos = pos;
    }

    // --------- these are new

    /** If  ... pos, type is copied from thenBody
     */
    Tree If( Tree cond, Tree thenBody, Tree elseBody ) {
	assert cond != null:"cond is null";
	assert thenBody != null:"thenBody is null";
	assert elseBody != null:"elseBody is null";
	return gen.If( thenBody.pos, cond, thenBody, elseBody );
    }

    /** a faked switch statement
     */
    Tree Switch( Tree selector,
		 Tree condition[],
		 Tree body[],
		 Tree defaultBody ) {
	assert selector != null:"selector is null";
	assert condition != null:"cond is null";
	assert body != null:"body is null";
	assert defaultBody != null:"defaultBody is null";
	Tree result = defaultBody;

	for( int i = condition.length-1; i >= 0; i-- )
	    result = If(condition[i], body[i], result);

	return result ;
    }

    /** returns `List[ elemType ]' */
      Type SeqListType( Type elemType ) {
            return Type.TypeRef( defs.SCALA_TYPE,
                                 seqListSym(),
                                 new Type[] { elemType });
      }

    /** returns  `List[ Tuple2[ scala.Int, <elemType> ] ]' */
      Type SeqTraceType( Type elemType ) {
	  Type t = Type.TypeRef( defs.SCALA_TYPE,
                                 seqListSym(),
                                 new Type[] { pairType( defs.INT_TYPE,
							elemType ) });
	  //System.err.println("CodeFactory::SeqTraceType -"+ t );
	  return t;
      }

    /**  returns `Iterator[ elemType ]' */
    Type _seqIterType( Type elemType ) {
	Symbol seqIterSym = defs.getType( Names.scala_Iterator ).symbol();

	return Type.TypeRef( defs.SCALA_TYPE, seqIterSym(),
			     new Type[] { elemType });
    }

    /**  returns `<seqObj.elements>' */
    Tree newIterator( Tree seqObj, Type elemType ) {
	return gen.mkApply__(gen.Select(seqObj, newIterSym()));
    }

    /** returns code `<seqObj>.elements'
     *  the parameter needs to have type attribute `Sequence[<elemType>]'
     */
    Tree newIterator( Tree seqObj ) {
	return newIterator( seqObj, getElemType_Sequence( seqObj.type() ));
    }

    /** code `Nil'
        Tree _seqTraceNil( Type elemType ) {
	return newSeqNil( null );
    }
     */

      //                       `SeqCons[ elemType ]'
    /*

      Type _seqConsType( Type elemType ) {
            return Type.TypeRef( defs.SCALA_TYPE,
                                 seqConsSym(),
                                 new Type[] { elemType });
      }

    Tree newSeqNil( Type tpe ) {
	return gen.Select(gen.Ident(pos, defs.SCALA), seqNilSym());
    }
    */

    // EXPERIMENTAL
    Tree newRef( Tree init ) {
	//System.out.println( "hello:"+refSym().type() );
	return gen.New(gen.mkPrimaryConstr(pos, refSym(),
			                    new Type[] { init.type() },
			                    new Tree[] { init } ));
    }

    /** returns A for T <: Sequence[ A ]
     */
    Type getElemType_Sequence( Type tpe ) {
	//System.err.println("getElemType_Sequence("+tpe.widen()+")");
	Type tpe1 = tpe.widen().baseType( seqSym() );

	if( tpe1 == Type.NoType )
	    throw new ApplicationError("arg "+tpe+" not subtype of Sequence[ A ]");

	return tpe1.typeArgs()[ 0 ];
    }

    /** returns A for T <: Iterator[ A ]
     */
    Type getElemType_Iterator( Type tpe ) {
	//System.err.println("getElemType_Iterator("+tpe+")");

	Type tpe1 = tpe.widen().baseType( iteratorSym() );

	switch( tpe1 ) {
	case TypeRef(_,_,Type[] args):
	    return args[ 0 ];
	default:
	    throw new ApplicationError("arg "+tpe+" not subtype of Iterator[ A ]");
	}

    }

    /** `it.next()'
     */
    public Tree _next( Tree iter ) {
	return gen.mkApply__(gen.Select(iter, seqIterSym_next()));
    }

    /** `it.hasNext()'
     */
    public Tree _hasNext( Tree iter ) {
	return gen.mkApply__(gen.Select(iter, seqIterSym_hasNext()));
    }

    /** `!it.hasCur()'
     */
    public Tree _not_hasNext( Tree iter ) {
	return gen.mkApply__(gen.Select(_hasNext(iter), notSym));
    }

      /** `trace.isEmpty'
       */
      public Tree isEmpty( Tree iter ) {
          return gen.mkApply__(gen.Select(iter, seqListSym_isEmpty()));
      }

    Tree SeqTrace_headElem( Tree arg ) { // REMOVE SeqTrace
	Tree t = gen.mkApply__(gen.Select(arg, seqListSym_head()));
	return gen.mkApply__(gen.Select(t, tuple2Sym_right()));
    }

    Tree SeqTrace_headState( Tree arg ) { // REMOVE SeqTrace
	Tree t = gen.mkApply__(gen.Select(arg, seqListSym_head()));
	return gen.mkApply__(gen.Select(t, tuple2Sym_left()));

    }

    Tree SeqTrace_tail( Tree arg ) { // REMOVE SeqTrace
	return gen.mkApply__(gen.Select(arg, seqListSym_tail()));
    }

    /** `<seqlist>.head()'
     */
    Tree SeqList_head( Tree arg ) {
	return gen.mkApply__(gen.Select(arg, seqListSym_head()));
    }

    /** return the analyzed type
     */
    public Type typeOf(Symbol sym) {
        return sym.type();
        //return sym.typeAt(unit.global.ANALYZER_PHASE.id);
    }

     // unused
       public Tree Negate(Tree tree) {
       switch (tree) {
       case Literal(Object value):
       return gen.mkBooleanLit(tree.pos, !((Boolean)value).booleanValue());
       }
       return gen.mkApply__(gen.Select(tree, notSym));
       }

    protected Tree And(Tree left, Tree right) {
        switch (left) {
	case Literal(Object value):
	    return ((Boolean)value).booleanValue() ? right : left;
        }
        switch (right) {
	case Literal(Object value):
	    if (((Boolean)value).booleanValue()) return left;
        }
        return gen.mkApply_V(gen.Select(left, andSym()), new Tree[]{right});
    }

    protected Tree Or(Tree left, Tree right) {
        switch (left) {
	case Literal(Object value):
	    return ((Boolean)value).booleanValue() ? left : right;
        }
        switch (right) {
	case Literal(Object value):
	    if (!((Boolean)value).booleanValue()) return left;
        }
        return gen.mkApply_V(gen.Select(left, orSym()), new Tree[]{right});
    }

    protected Tree Equals(Tree left, Tree right) {
        Symbol fun = unit.global.definitions.EQEQ;
        return gen.mkApply_V(gen.Select(left, fun), new Tree[]{right});
    }

    protected Tree ThrowMatchError(int pos, Type type) {
        return gen.mkApplyTV(
			     gen.mkRef(pos, failSym()),
                             new Tree[]{gen.mkType(pos, type)},
                             new Tree[]{
                                 gen.mkStringLit(pos, unit.toString()),
                                 gen.mkIntLit(pos, Position.line(pos))
                             });
    }


    Type pairType( Type left, Type right ) {
	return Type.TypeRef( defs.SCALA_TYPE,
			     tuple2Sym() ,
			     new Type[] { left, right } );
    }

    Tree newPair( Tree left, Tree right ) {
 	return gen.New(gen.mkPrimaryConstr(pos, tuple2Sym(),
			                   new Type[] { left.type(), right.type() },
			                   new Tree[] { left, right }));

    }

}