summaryrefslogtreecommitdiff
path: root/src/compiler/scala/reflect/quasiquotes/Reifiers.scala
blob: 8462debe216c792ae015064c403f16fdfe84673a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
package scala.reflect
package quasiquotes

import java.lang.UnsupportedOperationException
import scala.reflect.reify.{Reifier => ReflectReifier}
import scala.reflect.internal.Flags._

trait Reifiers { self: Quasiquotes =>
  import global._
  import global.build._
  import global.definitions._
  import Rank._
  import universeTypes._

  abstract class Reifier(val isReifyingExpressions: Boolean) extends {
    val global: self.global.type = self.global
    val universe = self.universe
    val reifee = EmptyTree
    val mirror = EmptyTree
    val concrete = false
  } with ReflectReifier {
    lazy val typer = throw new UnsupportedOperationException

    def isReifyingPatterns: Boolean = !isReifyingExpressions
    def action = if (isReifyingExpressions) "unquote" else "extract"
    def holesHaveTypes = isReifyingExpressions

    /** Map that stores freshly generated names linked to the corresponding names in the reified tree.
     *  This information is used to reify names created by calls to freshTermName and freshTypeName.
     */
    val nameMap = collection.mutable.HashMap.empty[Name, Set[TermName]].withDefault { _ => Set() }

    /** Wraps expressions into:
     *    a block which starts with a sequence of vals that correspond
     *    to fresh names that has to be created at evaluation of the quasiquote
     *    and ends with reified tree:
     *
     *      {
     *        val name$1: universe.TermName = universe.build.freshTermName(prefix1)
     *        ...
     *        val name$N: universe.TermName = universe.build.freshTermName(prefixN)
     *        tree
     *      }
     *
     *  Wraps patterns into:
     *    a call into anonymous class' unapply method required by unapply macro expansion:
     *
     *      new {
     *        def unapply(tree) = tree match {
     *          case pattern if guard => Some(result)
     *          case _ => None
     *        }
     *      }.unapply(<unapply-selector>)
     *
     *    where pattern corresponds to reified tree and guard represents conjunction of equalities
     *    which check that pairs of names in nameMap.values are equal between each other.
     */
    def wrap(tree: Tree) =
      if (isReifyingExpressions) {
        val freshdefs = nameMap.iterator.map {
          case (origname, names) =>
            assert(names.size == 1)
            val FreshName(prefix) = origname
            val nameTypeName = if (origname.isTermName) tpnme.TermName else tpnme.TypeName
            val freshName = if (origname.isTermName) nme.freshTermName else nme.freshTypeName
            // q"val ${names.head}: $u.$nameTypeName = $u.internal.reificationSupport.$freshName($prefix)"
            ValDef(NoMods, names.head, Select(u, nameTypeName),
              Apply(Select(Select(Select(u, nme.internal), nme.reificationSupport), freshName), Literal(Constant(prefix)) :: Nil))
        }.toList
        // q"..$freshdefs; $tree"
        SyntacticBlock(freshdefs :+ tree)
      } else {
        val freevars = holeMap.keysIterator.map(Ident(_)).toList
        val isVarPattern = tree match { case Bind(name, Ident(nme.WILDCARD)) => true case _ => false }
        val cases =
          if(isVarPattern) {
            val Ident(name) :: Nil = freevars
            // cq"$name: $treeType => $SomeModule($name)" :: Nil
            CaseDef(Bind(name, Typed(Ident(nme.WILDCARD), TypeTree(treeType))),
              EmptyTree, Apply(Ident(SomeModule), List(Ident(name)))) :: Nil
          } else {
            val (succ, fail) = freevars match {
              case Nil =>
                // (q"true", q"false")
                (Literal(Constant(true)), Literal(Constant(false)))
              case head :: Nil =>
                // (q"$SomeModule($head)", q"$NoneModule")
                (Apply(Ident(SomeModule), List(head)), Ident(NoneModule))
              case vars =>
                // (q"$SomeModule((..$vars))", q"$NoneModule")
                (Apply(Ident(SomeModule), List(SyntacticTuple(vars))), Ident(NoneModule))
            }
            val guard =
              nameMap.collect { case (_, nameset) if nameset.size >= 2 =>
                nameset.toList.sliding(2).map { case List(n1, n2) =>
                  // q"$n1 == $n2"
                  Apply(Select(Ident(n1), nme.EQ), List(Ident(n2)))
                }
              }.flatten.reduceOption[Tree] { (l, r) =>
                // q"$l && $r"
                Apply(Select(l, nme.ZAND), List(r))
              }.getOrElse { EmptyTree }
            // cq"$tree if $guard => $succ" :: cq"_ => $fail" :: Nil
            CaseDef(tree, guard, succ) :: CaseDef(Ident(nme.WILDCARD), EmptyTree, fail) :: Nil
          }
        // q"new { def unapply(tree: $AnyClass) = { ..${unlifters.preamble()}; tree match { case ..$cases } } }.unapply(..$args)"
        Apply(
          Select(
            SyntacticNew(Nil, Nil, noSelfType, List(
              DefDef(NoMods, nme.unapply, Nil, List(List(ValDef(NoMods, nme.tree, TypeTree(AnyClass.toType), EmptyTree))), TypeTree(),
                SyntacticBlock(unlifters.preamble() :+ Match(Ident(nme.tree), cases))))),
            nme.unapply),
          args)
      }

    def reifyFillingHoles(tree: Tree): Tree = {
      val reified = reifyTree(tree)
      holeMap.unused.foreach { hole =>
        c.abort(holeMap(hole).pos, s"Don't know how to $action here")
      }
      wrap(reified)
    }

    override def reifyTree(tree: Tree): Tree =
      reifyTreePlaceholder(tree) orElse
      reifyTreeSyntactically(tree)

    def reifyTreePlaceholder(tree: Tree): Tree = tree match {
      case Placeholder(hole: ApplyHole) if hole.tpe <:< treeType => hole.tree
      case Placeholder(Hole(tree, NoDot)) if isReifyingPatterns => tree
      case Placeholder(hole @ Hole(_, rank @ Dot())) => c.abort(hole.pos, s"Can't $action with $rank here")
      case TuplePlaceholder(args) => reifyTuple(args)
      // Due to greediness of syntactic applied we need to pre-emptively peek inside.
      // `rest` will always be non-empty due to the rule on top of this one.
      case SyntacticApplied(id @ Ident(nme.QUASIQUOTE_TUPLE), first :: rest) =>
        mirrorBuildCall(nme.SyntacticApplied, reifyTreePlaceholder(Apply(id, first)), reify(rest))
      case TupleTypePlaceholder(args) => reifyTupleType(args)
      case FunctionTypePlaceholder(argtpes, restpe) => reifyFunctionType(argtpes, restpe)
      case CasePlaceholder(hole) => hole.tree
      case RefineStatPlaceholder(hole) => reifyRefineStat(hole)
      case EarlyDefPlaceholder(hole) => reifyEarlyDef(hole)
      case PackageStatPlaceholder(hole) => reifyPackageStat(hole)
      case ParamPlaceholder(hole) => hole.tree
      // for enumerators are checked not during splicing but during
      // desugaring of the for loop in SyntacticFor & SyntacticForYield
      case ForEnumPlaceholder(hole) => hole.tree
      case _ => EmptyTree
    }

    override def reifyTreeSyntactically(tree: Tree) = tree match {
      case RefTree(qual, SymbolPlaceholder(Hole(tree, _))) if isReifyingExpressions =>
        mirrorBuildCall(nme.mkRefTree, reify(qual), tree)
      case This(SymbolPlaceholder(Hole(tree, _))) if isReifyingExpressions =>
        mirrorCall(nme.This, tree)
      case SyntacticTraitDef(mods, name, tparams, earlyDefs, parents, selfdef, body) =>
        reifyBuildCall(nme.SyntacticTraitDef, mods, name, tparams, earlyDefs, parents, selfdef, body)
      case SyntacticClassDef(mods, name, tparams, constrmods, vparamss,
                             earlyDefs, parents, selfdef, body) =>
        mirrorBuildCall(nme.SyntacticClassDef, reify(mods), reify(name), reify(tparams), reify(constrmods),
                                               reifyVparamss(vparamss), reify(earlyDefs), reify(parents),
                                               reify(selfdef), reify(body))
      case SyntacticPackageObjectDef(name, earlyDefs, parents, selfdef, body) =>
        reifyBuildCall(nme.SyntacticPackageObjectDef, name, earlyDefs, parents, selfdef, body)
      case SyntacticObjectDef(mods, name, earlyDefs, parents, selfdef, body) =>
        reifyBuildCall(nme.SyntacticObjectDef, mods, name, earlyDefs, parents, selfdef, body)
      case SyntacticNew(earlyDefs, parents, selfdef, body) =>
        reifyBuildCall(nme.SyntacticNew, earlyDefs, parents, selfdef, body)
      case SyntacticDefDef(mods, name, tparams, vparamss, tpt, rhs) =>
        mirrorBuildCall(nme.SyntacticDefDef, reify(mods), reify(name), reify(tparams),
                                             reifyVparamss(vparamss), reify(tpt), reify(rhs))
      case SyntacticValDef(mods, name, tpt, rhs) if tree != noSelfType =>
        reifyBuildCall(nme.SyntacticValDef, mods, name, tpt, rhs)
      case SyntacticVarDef(mods, name, tpt, rhs) =>
        reifyBuildCall(nme.SyntacticVarDef, mods, name, tpt, rhs)
      case SyntacticValFrom(pat, rhs) =>
        reifyBuildCall(nme.SyntacticValFrom, pat, rhs)
      case SyntacticValEq(pat, rhs) =>
        reifyBuildCall(nme.SyntacticValEq, pat, rhs)
      case SyntacticFilter(cond) =>
        reifyBuildCall(nme.SyntacticFilter, cond)
      case SyntacticFor(enums, body) =>
        reifyBuildCall(nme.SyntacticFor, enums, body)
      case SyntacticForYield(enums, body) =>
        reifyBuildCall(nme.SyntacticForYield, enums, body)
      case SyntacticAssign(lhs, rhs) =>
        reifyBuildCall(nme.SyntacticAssign, lhs, rhs)
      case SyntacticApplied(fun, argss) if argss.nonEmpty =>
        reifyBuildCall(nme.SyntacticApplied, fun, argss)
      case SyntacticTypeApplied(fun, targs) if targs.nonEmpty =>
        reifyBuildCall(nme.SyntacticTypeApplied, fun, targs)
      case SyntacticAppliedType(tpt, targs) if targs.nonEmpty =>
        reifyBuildCall(nme.SyntacticAppliedType, tpt, targs)
      case SyntacticFunction(args, body) =>
        reifyBuildCall(nme.SyntacticFunction, args, body)
      case SyntacticEmptyTypeTree() =>
        reifyBuildCall(nme.SyntacticEmptyTypeTree)
      case SyntacticImport(expr, selectors) =>
        reifyBuildCall(nme.SyntacticImport, expr, selectors)
      case SyntacticPartialFunction(cases) =>
        reifyBuildCall(nme.SyntacticPartialFunction, cases)
      case SyntacticMatch(scrutinee, cases) =>
        reifyBuildCall(nme.SyntacticMatch, scrutinee, cases)
      case SyntacticTermIdent(name, isBackquoted) =>
        reifyBuildCall(nme.SyntacticTermIdent, name, isBackquoted)
      case SyntacticTypeIdent(name) =>
        reifyBuildCall(nme.SyntacticTypeIdent, name)
      case SyntacticCompoundType(parents, defns) =>
        reifyBuildCall(nme.SyntacticCompoundType, parents, defns)
      case SyntacticSingletonType(ref) =>
        reifyBuildCall(nme.SyntacticSingletonType, ref)
      case SyntacticTypeProjection(qual, name) =>
        reifyBuildCall(nme.SyntacticTypeProjection, qual, name)
      case SyntacticAnnotatedType(tpt, annot) =>
        reifyBuildCall(nme.SyntacticAnnotatedType, tpt, annot)
      case SyntacticExistentialType(tpt, where) =>
        reifyBuildCall(nme.SyntacticExistentialType, tpt, where)
      case Q(tree) if fillListHole.isDefinedAt(tree) =>
        mirrorBuildCall(nme.SyntacticBlock, fillListHole(tree))
      case Q(other) =>
        reifyTree(other)
      // Syntactic block always matches so we have to be careful
      // not to cause infinite recursion.
      case block @ SyntacticBlock(stats) if block.isInstanceOf[Block] =>
        reifyBuildCall(nme.SyntacticBlock, stats)
      case SyntheticUnit() =>
        reifyBuildCall(nme.SyntacticBlock, Nil)
      case Try(block, catches, finalizer) =>
        reifyBuildCall(nme.SyntacticTry, block, catches, finalizer)
      case CaseDef(pat, guard, body) if fillListHole.isDefinedAt(body) =>
        mirrorCall(nme.CaseDef, reify(pat), reify(guard), mirrorBuildCall(nme.SyntacticBlock, fillListHole(body)))
      // parser emits trees with scala package symbol to ensure
      // that some names hygienically point to various scala package
      // members; we need to preserve this symbol to preserve
      // correctness of the trees produced by quasiquotes
      case Select(id @ Ident(nme.scala_), name) if id.symbol == ScalaPackage =>
        reifyBuildCall(nme.ScalaDot, name)
      case Select(qual, name) =>
        val ctor = if (name.isTypeName) nme.SyntacticSelectType else nme.SyntacticSelectTerm
        reifyBuildCall(ctor, qual, name)
      case _ =>
        super.reifyTreeSyntactically(tree)
    }

    override def reifyName(name: Name): Tree = name match {
      case Placeholder(hole: ApplyHole) =>
        if (!(hole.tpe <:< nameType)) c.abort(hole.pos, s"$nameType expected but ${hole.tpe} found")
        hole.tree
      case Placeholder(hole: UnapplyHole) => hole.treeNoUnlift
      case FreshName(prefix) if prefix != nme.QUASIQUOTE_NAME_PREFIX =>
        def fresh() = c.freshName(TermName(nme.QUASIQUOTE_NAME_PREFIX))
        def introduceName() = { val n = fresh(); nameMap(name) += n; n}
        def result(n: Name) = if (isReifyingExpressions) Ident(n) else Bind(n, Ident(nme.WILDCARD))
        if (isReifyingPatterns) result(introduceName())
        else result(nameMap.get(name).map { _.head }.getOrElse { introduceName() })
      case _ =>
        super.reifyName(name)
    }

    def reifyTuple(args: List[Tree]) = args match {
      case Nil => reify(Literal(Constant(())))
      case List(hole @ Placeholder(Hole(_, NoDot))) => reify(hole)
      case List(Placeholder(_)) => reifyBuildCall(nme.SyntacticTuple, args)
      // in a case we only have one element tuple without
      // any rank annotations this means that this is
      // just an expression wrapped in parentheses
      case List(other) => reify(other)
      case _ => reifyBuildCall(nme.SyntacticTuple, args)
    }

    def reifyTupleType(args: List[Tree]) = args match {
      case Nil => reify(Select(Ident(nme.scala_), tpnme.Unit))
      case List(hole @ Placeholder(Hole(_, NoDot))) => reify(hole)
      case List(Placeholder(_)) => reifyBuildCall(nme.SyntacticTupleType, args)
      case List(other) => reify(other)
      case _ => reifyBuildCall(nme.SyntacticTupleType, args)
    }

    def reifyFunctionType(argtpes: List[Tree], restpe: Tree) =
      reifyBuildCall(nme.SyntacticFunctionType, argtpes, restpe)

    def reifyConstructionCheck(name: TermName, hole: Hole) = hole match {
      case _: UnapplyHole => hole.tree
      case _: ApplyHole => mirrorBuildCall(name, hole.tree)
    }

    def reifyRefineStat(hole: Hole) = reifyConstructionCheck(nme.mkRefineStat, hole)

    def reifyEarlyDef(hole: Hole) = reifyConstructionCheck(nme.mkEarlyDef, hole)

    def reifyAnnotation(hole: Hole) = reifyConstructionCheck(nme.mkAnnotation, hole)

    def reifyPackageStat(hole: Hole) = reifyConstructionCheck(nme.mkPackageStat, hole)

    def reifyVparamss(vparamss: List[List[ValDef]]) = {
      val build.ImplicitParams(paramss, implparams) = vparamss
      if (implparams.isEmpty) reify(paramss)
      else reifyBuildCall(nme.ImplicitParams, paramss, implparams)
    }

    /** Splits list into a list of groups where subsequent elements are considered
     *  similar by the corresponding function.
     *
     *  Example:
     *
     *    > group(List(1, 1, 0, 0, 1, 0)) { _ == _ }
     *    List(List(1, 1), List(0, 0), List(1), List(0))
     *
     */
    def group[T](lst: List[T])(similar: (T, T) => Boolean) = lst.foldLeft[List[List[T]]](List()) {
      case (Nil, el) => List(List(el))
      case (ll :+ (last @ (lastinit :+ lastel)), el) if similar(lastel, el) => ll :+ (last :+ el)
      case (ll, el) => ll :+ List(el)
    }

    /** Reifies list filling all the valid holeMap.
     *
     *  Reification of non-trivial list is done in two steps:
     *
     *  1. split the list into groups where every placeholder is always
     *     put in a group of its own and all subsquent non-holeMap are
     *     grouped together; element is considered to be a placeholder if it's
     *     in the domain of the fill function;
     *
     *  2. fold the groups into a sequence of lists added together with ++ using
     *     fill reification for holeMap and fallback reification for non-holeMap.
     *
     *  Example:
     *
     *    reifyHighRankList(lst) {
     *      // first we define patterns that extract high-rank holeMap (currently ..)
     *      case Placeholder(IterableType(_, _)) => tree
     *    } {
     *      // in the end we define how single elements are reified, typically with default reify call
     *      reify(_)
     *    }
     *
     *  Sample execution of previous concrete list reifier:
     *
     *    > val lst = List(foo, bar, qq$f3948f9s$1)
     *    > reifyHighRankList(lst) { ... } { ... }
     *    q"List($foo, $bar) ++ ${holeMap(qq$f3948f9s$1).tree}"
     */
    def reifyHighRankList(xs: List[Any])(fill: PartialFunction[Any, Tree])(fallback: Any => Tree): Tree

    val fillListHole: PartialFunction[Any, Tree] = {
      case Placeholder(Hole(tree, DotDot)) => tree
      case CasePlaceholder(Hole(tree, DotDot)) => tree
      case RefineStatPlaceholder(h @ Hole(_, DotDot)) => reifyRefineStat(h)
      case EarlyDefPlaceholder(h @ Hole(_, DotDot)) => reifyEarlyDef(h)
      case PackageStatPlaceholder(h @ Hole(_, DotDot)) => reifyPackageStat(h)
      case ForEnumPlaceholder(Hole(tree, DotDot)) => tree
      case ParamPlaceholder(Hole(tree, DotDot)) => tree
      case SyntacticPatDef(mods, pat, tpt, rhs) =>
        reifyBuildCall(nme.SyntacticPatDef, mods, pat, tpt, rhs)
      case SyntacticValDef(mods, p @ Placeholder(h: ApplyHole), tpt, rhs) if h.tpe <:< treeType =>
        mirrorBuildCall(nme.SyntacticPatDef, reify(mods), h.tree, reify(tpt), reify(rhs))
    }

    val fillListOfListsHole: PartialFunction[Any, Tree] = {
      case List(ParamPlaceholder(Hole(tree, DotDotDot))) => tree
      case List(Placeholder(Hole(tree, DotDotDot))) => tree
    }

    /** Reifies arbitrary list filling ..$x and ...$y holeMap when they are put
     *  in the correct position. Fallbacks to regular reification for zero rank
     *  elements.
     */
    override def reifyList(xs: List[Any]): Tree = reifyHighRankList(xs)(fillListHole.orElse(fillListOfListsHole))(reify)

    def reifyAnnotList(annots: List[Tree]): Tree = reifyHighRankList(annots) {
      case AnnotPlaceholder(h @ Hole(_, DotDot)) => reifyAnnotation(h)
    } {
      case AnnotPlaceholder(h: ApplyHole) if h.tpe <:< treeType => reifyAnnotation(h)
      case AnnotPlaceholder(h: UnapplyHole) if h.rank == NoDot => reifyAnnotation(h)
      case other => reify(other)
    }

    // These are explicit flags except those that are used
    // to overload the same tree for two different concepts:
    // - MUTABLE that is used to override ValDef for vars
    // - TRAIT that is used to override ClassDef for traits
    val nonOverloadedExplicitFlags = ExplicitFlags & ~MUTABLE & ~TRAIT

    def ensureNoExplicitFlags(m: Modifiers, pos: Position) = {
      // Traits automatically have ABSTRACT flag assigned to
      // them so in that case it's not an explicit flag
      val flags = if (m.isTrait) m.flags & ~ABSTRACT else m.flags
      if ((flags & nonOverloadedExplicitFlags) != 0L)
        c.abort(pos, s"Can't $action modifiers together with flags, consider merging flags into modifiers")
    }

    override def mirrorSelect(name: String): Tree =
      Select(universe, TermName(name))

    override def mirrorCall(name: TermName, args: Tree*): Tree =
      Apply(Select(universe, name), args.toList)

    override def mirrorBuildCall(name: TermName, args: Tree*): Tree =
      Apply(Select(Select(Select(universe, nme.internal), nme.reificationSupport), name), args.toList)

    override def scalaFactoryCall(name: String, args: Tree*): Tree =
      call("scala." + name, args: _*)
  }

  class ApplyReifier extends Reifier(isReifyingExpressions = true) {
    def reifyHighRankList(xs: List[Any])(fill: PartialFunction[Any, Tree])(fallback: Any => Tree): Tree =
      if (xs.isEmpty) mkList(Nil)
      else {
        def reifyGroup(group: List[Any]): Tree = group match {
          case List(elem) if fill.isDefinedAt(elem) => fill(elem)
          case elems => mkList(elems.map(fallback))
        }
        val head :: tail = group(xs) { (a, b) => !fill.isDefinedAt(a) && !fill.isDefinedAt(b) }
        tail.foldLeft[Tree](reifyGroup(head)) { (tree, lst) => Apply(Select(tree, nme.PLUSPLUS), List(reifyGroup(lst))) }
      }

    override def reifyModifiers(m: Modifiers) =
      if (m == NoMods) super.reifyModifiers(m)
      else {
        val (modsPlaceholders, annots) = m.annotations.partition {
          case ModsPlaceholder(_) => true
          case _ => false
        }
        val (mods, flags) = modsPlaceholders.map {
          case ModsPlaceholder(hole: ApplyHole) => hole
        }.partition { hole =>
          if (hole.tpe <:< modsType) true
          else if (hole.tpe <:< flagsType) false
          else c.abort(hole.pos, s"$flagsType or $modsType expected but ${hole.tpe} found")
        }
        mods match {
          case hole :: Nil =>
            if (flags.nonEmpty) c.abort(flags(0).pos, "Can't unquote flags together with modifiers, consider merging flags into modifiers")
            if (annots.nonEmpty) c.abort(hole.pos, "Can't unquote modifiers together with annotations, consider merging annotations into modifiers")
            ensureNoExplicitFlags(m, hole.pos)
            hole.tree
          case _ :: hole :: Nil =>
            c.abort(hole.pos, "Can't unquote multiple modifiers, consider merging them into a single modifiers instance")
          case _ =>
            val baseFlags = reifyFlags(m.flags)
            val reifiedFlags = flags.foldLeft[Tree](baseFlags) { case (flag, hole) => Apply(Select(flag, nme.OR), List(hole.tree)) }
            mirrorFactoryCall(nme.Modifiers, reifiedFlags, reify(m.privateWithin), reifyAnnotList(annots))
        }
      }

  }
  class UnapplyReifier extends Reifier(isReifyingExpressions = false) {
    private def collection = ScalaDot(nme.collection)
    private def collectionColonPlus = Select(collection, nme.COLONPLUS)
    private def collectionCons = Select(Select(collection, nme.immutable), nme.CONS)
    private def collectionNil = Select(Select(collection, nme.immutable), nme.Nil)
    // pq"$lhs :+ $rhs"
    private def append(lhs: Tree, rhs: Tree) = Apply(collectionColonPlus, lhs :: rhs :: Nil)
    // pq"$lhs :: $rhs"
    private def cons(lhs: Tree, rhs: Tree) = Apply(collectionCons, lhs :: rhs :: Nil)

    def reifyHighRankList(xs: List[Any])(fill: PartialFunction[Any, Tree])(fallback: Any => Tree): Tree = {
      val grouped = group(xs) { (a, b) => !fill.isDefinedAt(a) && !fill.isDefinedAt(b) }
      def appended(lst: List[Any], init: Tree)  = lst.foldLeft(init)  { (l, r) => append(l, fallback(r)) }
      def prepended(lst: List[Any], init: Tree) = lst.foldRight(init) { (l, r) => cons(fallback(l), r)   }
      grouped match {
        case init :: List(hole) :: last :: Nil if fill.isDefinedAt(hole) => appended(last, prepended(init, fill(hole)))
        case init :: List(hole) :: Nil         if fill.isDefinedAt(hole) => prepended(init, fill(hole))
        case         List(hole) :: last :: Nil if fill.isDefinedAt(hole) => appended(last, fill(hole))
        case         List(hole) :: Nil         if fill.isDefinedAt(hole) => fill(hole)
        case _                                                           => prepended(xs, collectionNil)
      }
    }

    override def reifyModifiers(m: Modifiers) =
      if (m == NoMods) super.reifyModifiers(m)
      else {
        val mods = m.annotations.collect { case ModsPlaceholder(hole: UnapplyHole) => hole }
        mods match {
          case hole :: Nil =>
            if (m.annotations.length != 1) c.abort(hole.pos, "Can't extract modifiers together with annotations, consider extracting just modifiers")
            ensureNoExplicitFlags(m, hole.pos)
            hole.treeNoUnlift
          case _ :: hole :: _ =>
            c.abort(hole.pos, "Can't extract multiple modifiers together, consider extracting a single modifiers instance")
          case Nil =>
            mirrorFactoryCall(nme.Modifiers, reifyFlags(m.flags), reify(m.privateWithin), reifyAnnotList(m.annotations))
        }
      }
  }
}