summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/Interpreter.scala
blob: de752737d8c56b45decb3b56194a74166c35f82d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
/* NSC -- new Scala compiler
 * Copyright 2005-2008 LAMP/EPFL
 * @author  Martin Odersky
 */
// $Id$

package scala.tools.nsc

import java.io.{File, PrintWriter, StringWriter, Writer}
import java.lang.{Class, ClassLoader}
import java.net.{MalformedURLException, URL, URLClassLoader}

import scala.collection.immutable.ListSet
import scala.collection.mutable
import scala.collection.mutable.{ListBuffer, HashSet, ArrayBuffer}

//import ast.parser.SyntaxAnalyzer
import io.{PlainFile, VirtualDirectory}
import reporters.{ConsoleReporter, Reporter}
import symtab.Flags
import util.{SourceFile,BatchSourceFile,ClassPath,NameTransformer}
import nsc.{InterpreterResults=>IR}
import scala.tools.nsc.interpreter._

/** <p>
 *    An interpreter for Scala code.
 *  </p>
 *  <p>
 *    The main public entry points are <code>compile()</code>,
 *    <code>interpret()</code>, and <code>bind()</code>.
 *    The <code>compile()</code> method loads a
 *    complete Scala file.  The <code>interpret()</code> method executes one
 *    line of Scala code at the request of the user.  The <code>bind()</code>
 *    method binds an object to a variable that can then be used by later
 *    interpreted code.
 *  </p>
 *  <p>
 *    The overall approach is based on compiling the requested code and then
 *    using a Java classloader and Java reflection to run the code
 *    and access its results.
 *  </p>
 *  <p>
 *    In more detail, a single compiler instance is used
 *    to accumulate all successfully compiled or interpreted Scala code.  To
 *    "interpret" a line of code, the compiler generates a fresh object that
 *    includes the line of code and which has public member(s) to export
 *    all variables defined by that code.  To extract the result of an
 *    interpreted line to show the user, a second "result object" is created
 *    which imports the variables exported by the above object and then
 *    exports a single member named "result".  To accomodate user expressions
 *    that read from variables or methods defined in previous statements, "import"
 *    statements are used.
 *  </p>
 *  <p>
 *    This interpreter shares the strengths and weaknesses of using the
 *    full compiler-to-Java.  The main strength is that interpreted code
 *    behaves exactly as does compiled code, including running at full speed.
 *    The main weakness is that redefining classes and methods is not handled
 *    properly, because rebinding at the Java level is technically difficult.
 *  </p>
 *
 * @author Moez A. Abdel-Gawad
 * @author Lex Spoon
 */
class Interpreter(val settings: Settings, out: PrintWriter) {
  import symtab.Names

  /* If the interpreter is running on pre-jvm-1.5 JVM,
     it is necessary to force the target setting to jvm-1.4 */
  private val major = System.getProperty("java.class.version").split("\\.")(0)
  if (major.toInt < 49) {
    this.settings.target.value = "jvm-1.4"
  }

  /** directory to save .class files to */
  val virtualDirectory = new VirtualDirectory("(memory)", None)

  /** the compiler to compile expressions with */
  val compiler: scala.tools.nsc.Global = newCompiler(settings, reporter)

  import compiler.Traverser
  import compiler.{Tree, TermTree,
                   ValOrDefDef, ValDef, DefDef, Assign,
                   ClassDef, ModuleDef, Ident, Select, TypeDef,
                   Import, MemberDef, DocDef}
  import compiler.CompilationUnit
  import compiler.{Symbol,Name,Type}
  import compiler.nme
  import compiler.newTermName
  import compiler.nme.{INTERPRETER_VAR_PREFIX, INTERPRETER_SYNTHVAR_PREFIX}
  import Interpreter.string2code

  /** construct an interpreter that reports to Console */
  def this(settings: Settings) =
    this(settings,
         new NewLinePrintWriter(new ConsoleWriter, true))

  /** whether to print out result lines */
  private var printResults: Boolean = true

  /** Be quiet.  Do not print out the results of each
    * submitted command unless an exception is thrown.  */
  def beQuiet = { printResults = false }

  /** Temporarily be quiet */
  def beQuietDuring[T](operation: => T): T = {
    val wasPrinting = printResults
    try {
      printResults = false
      operation
    } finally {
      printResults = wasPrinting
    }
  }

  /** interpreter settings */
  lazy val isettings = new InterpreterSettings

  object reporter extends ConsoleReporter(settings, null, out) {
    //override def printMessage(msg: String) { out.println(clean(msg)) }
    override def printMessage(msg: String) { out.print(clean(msg) + "\n"); out.flush() }
  }

  /** Instantiate a compiler.  Subclasses can override this to
   *  change the compiler class used by this interpreter. */
  protected def newCompiler(settings: Settings, reporter: Reporter) = {
    val comp = new scala.tools.nsc.Global(settings, reporter)
    comp.genJVM.outputDir = virtualDirectory
    comp
  }


  /** the compiler's classpath, as URL's */
  val compilerClasspath: List[URL] = {
    val classpathPart =
      (ClassPath.expandPath(compiler.settings.classpath.value).
         map(s => new File(s).toURL))
    def parseURL(s: String): Option[URL] =
      try { Some(new URL(s)) }
      catch { case _:MalformedURLException => None }
    val codebasePart = (compiler.settings.Xcodebase.value.split(" ")).toList.flatMap(parseURL)
    classpathPart ::: codebasePart
  }

  /* A single class loader is used for all commands interpreted by this Interpreter.
     It would also be possible to create a new class loader for each command
     to interpret.  The advantages of the current approach are:

       - Expressions are only evaluated one time.  This is especially
         significant for I/O, e.g. "val x = Console.readLine"

     The main disadvantage is:

       - Objects, classes, and methods cannot be rebound.  Instead, definitions
         shadow the old ones, and old code objects refer to the old
         definitions.
  */
  /** class loader used to load compiled code */
  private val classLoader = {
    val parent =
      if (parentClassLoader == null)
        new URLClassLoader(compilerClasspath.toArray)
      else
         new URLClassLoader(compilerClasspath.toArray,
                            parentClassLoader)
    new AbstractFileClassLoader(virtualDirectory, parent)
  }

  /** Set the current Java "context" class loader to this
    * interpreter's class loader */
  def setContextClassLoader() {
    Thread.currentThread.setContextClassLoader(classLoader)
  }

  protected def parentClassLoader: ClassLoader = this.getClass.getClassLoader()

  /** the previous requests this interpreter has processed */
  private val prevRequests = new ArrayBuffer[Request]()

  /** next line number to use */
  private var nextLineNo = 0

  /** allocate a fresh line name */
  private def newLineName = {
    val num = nextLineNo
    nextLineNo += 1
    compiler.nme.INTERPRETER_LINE_PREFIX + num
  }

  /** next result variable number to use */
  private var nextVarNameNo = 0

  /** allocate a fresh variable name */
  private def newVarName() = {
    val num = nextVarNameNo
    nextVarNameNo += 1
    INTERPRETER_VAR_PREFIX + num
  }

  /** next internal variable number to use */
  private var nextInternalVarNo = 0

  /** allocate a fresh internal variable name */
  private def newInternalVarName() = {
    val num = nextVarNameNo
    nextVarNameNo += 1
    INTERPRETER_SYNTHVAR_PREFIX + num
  }


  /** Check if a name looks like it was generated by newVarName */
  private def isGeneratedVarName(name: String): Boolean =
    name.startsWith(INTERPRETER_VAR_PREFIX) && {
      val suffix = name.drop(INTERPRETER_VAR_PREFIX.length)
      suffix.forall(_.isDigit)
    }


  /** generate a string using a routine that wants to write on a stream */
  private def stringFrom(writer: PrintWriter => Unit): String = {
    val stringWriter = new StringWriter()
    val stream = new NewLinePrintWriter(stringWriter)
    writer(stream)
    stream.close
    stringWriter.toString
  }

  /** Truncate a string if it is longer than settings.maxPrintString */
  private def truncPrintString(str: String): String = {
    val maxpr = isettings.maxPrintString

    if (maxpr <= 0)
      return str

    if (str.length <= maxpr)
      return str

    val trailer = "..."
    if (maxpr >= trailer.length+1)
      return str.substring(0, maxpr-3) + trailer

    str.substring(0, maxpr)
  }

  /** Clean up a string for output */
  private def clean(str: String) =
    truncPrintString(Interpreter.stripWrapperGunk(str))

  /** Indent some code by the width of the scala> prompt.
   *  This way, compiler error messages read beettr.
   */
  def indentCode(code: String) = {
    val spaces = "       "

    stringFrom(str =>
      for (line <- code.lines) {
        str.print(spaces)
        str.print(line + "\n")
        str.flush()
      })
  }

  implicit def name2string(name: Name) = name.toString

  /** Compute imports that allow definitions from previous
   *  requests to be visible in a new request.  Returns
   *  three pieces of related code:
   *
   *  1. An initial code fragment that should go before
   *  the code of the new request.
   *
   *  2. A code fragment that should go after the code
   *  of the new request.
   *
   *  3. An access path which can be traverested to access
   *  any bindings inside code wrapped by #1 and #2 .
   *
   * The argument is a set of Names that need to be imported.
   *
   * Limitations: This method is not as precise as it could be.
   * (1) It does not process wildcard imports to see what exactly
   * they import.
   * (2) If it imports any names from a request, it imports all
   * of them, which is not really necessary.
   * (3) It imports multiple same-named implicits, but only the
   * last one imported is actually usable.
   */
  private def importsCode(wanted: Set[Name]): (String, String, String) = {
    /** Narrow down the list of requests from which imports
     *  should be taken.  Removes requests which cannot contribute
     *  useful imports for the specified set of wanted names.
     */
    def reqsToUse: List[(Request,MemberHandler)] = {
      /** Loop through a list of MemberHandlers and select
       *  which ones to keep.  'wanted' is the set of
       *  names that need to be imported, and
       *  'shadowed' is the list of names useless to import
       *  because a later request will re-import it anyway.
       */
      def select(reqs: List[(Request,MemberHandler)], wanted: Set[Name]):
      List[(Request,MemberHandler)] = {
        reqs match {
          case Nil => Nil

          case (req,handler)::rest =>
            val keepit =
              (handler.definesImplicit ||
               handler.importsWildcard ||
               handler.importedNames.exists(wanted.contains(_)) ||
               handler.boundNames.exists(wanted.contains(_)))

            val newWanted =
              if (keepit) {
                (wanted
                   ++ handler.usedNames
                   -- handler.boundNames
                   -- handler.importedNames)
              } else {
                wanted
              }

            val restToKeep = select(rest, newWanted)

            if(keepit)
              (req,handler) :: restToKeep
            else
              restToKeep
        }
      }

      val rhpairs = for {
        req <- prevRequests.toList.reverse
        handler <- req.handlers
      } yield (req, handler)

      select(rhpairs, wanted).reverse
    }

    val code = new StringBuffer
    val trailingBraces = new StringBuffer
    val accessPath = new StringBuffer
    val impname = compiler.nme.INTERPRETER_IMPORT_WRAPPER
    val currentImps = mutable.Set.empty[Name]

    // add code for a new object to hold some imports
    def addWrapper() {
      code.append("object " + impname + "{\n")
      trailingBraces.append("}\n")
      accessPath.append("." + impname)
      currentImps.clear
    }

    addWrapper()

    // loop through previous requests, adding imports
    // for each one
    for ((req,handler) <- reqsToUse) {
          // If the user entered an import, then just use it

          // add an import wrapping level if the import might
          // conflict with some other import
          if(handler.importsWildcard ||
             currentImps.exists(handler.importedNames.contains))
            if(!currentImps.isEmpty)
              addWrapper()

          if (handler.member.isInstanceOf[Import])
            code.append(handler.member.toString + ";\n")

          // give wildcard imports a import wrapper all to their own
          if(handler.importsWildcard)
            addWrapper()
          else
            currentImps ++= handler.importedNames

          // For other requests, import each bound variable.
          // import them explicitly instead of with _, so that
          // ambiguity errors will not be generated. Also, quote
 	  // the name of the variable, so that we don't need to
 	  // handle quoting keywords separately.
          for (imv <- handler.boundNames) {
            if (currentImps.contains(imv))
              addWrapper()
            code.append("import ")
            code.append(req.objectName + req.accessPath + ".`" + imv + "`;\n")
            currentImps += imv
          }
    }

    addWrapper() // Add one extra wrapper, to prevent warnings
                 // in the frequent case of redefining
                 // the value bound in the last interpreter
                 // request.

    (code.toString, trailingBraces.toString, accessPath.toString)
  }

  /** Parse a line into a sequence of trees. Returns None if the input
    * is incomplete. */
  private def parse(line: String): Option[List[Tree]] = {
    var justNeedsMore = false
    reporter.withIncompleteHandler((pos,msg) => {justNeedsMore = true}) {
      // simple parse: just parse it, nothing else
      def simpleParse(code: String): List[Tree] = {
        reporter.reset
        val unit =
          new CompilationUnit(
            new BatchSourceFile("<console>", code.toCharArray()))
        val scanner = new compiler.syntaxAnalyzer.UnitParser(unit);
        val xxx = scanner.templateStatSeq;
        (xxx._2)
      }
      val (trees) = simpleParse(line)
      if (reporter.hasErrors) {
        Some(Nil) // the result did not parse, so stop
      } else if (justNeedsMore) {
        None
      } else {
        Some(trees)
      }
    }
  }

  /** Compile an nsc SourceFile.  Returns true if there are
   *  no compilation errors, or false othrewise.
   */
  def compileSources(sources: List[SourceFile]): Boolean = {
    val cr = new compiler.Run
    reporter.reset
    cr.compileSources(sources)
    !reporter.hasErrors
  }

  /** Compile a string.  Returns true if there are no
   *  compilation errors, or false otherwise.
   */
  def compileString(code: String): Boolean =
    compileSources(List(new BatchSourceFile("<script>", code.toCharArray)))

  /** Build a request from the user. <code>trees</code> is <code>line</code>
   *  after being parsed.
   */
  private def buildRequest(trees: List[Tree], line: String, lineName: String): Request =
    new Request(line, lineName)

  private def chooseHandler(member: Tree): Option[MemberHandler] =
    member match {
      case member: DefDef =>
          Some(new DefHandler(member))
      case member: ValDef =>
          Some(new ValHandler(member))
      case member@Assign(Ident(_), _) => Some(new AssignHandler(member))
      case member: ModuleDef => Some(new ModuleHandler(member))
      case member: ClassDef => Some(new ClassHandler(member))
      case member: TypeDef => Some(new TypeAliasHandler(member))
      case member: Import => Some(new ImportHandler(member))
      case DocDef(_, documented) => chooseHandler(documented)
      case member => Some(new GenericHandler(member))
    }

  /** <p>
   *    Interpret one line of input.  All feedback, including parse errors
   *    and evaluation results, are printed via the supplied compiler's
   *    reporter.  Values defined are available for future interpreted
   *    strings.
   *  </p>
   *  <p>
   *    The return value is whether the line was interpreter successfully,
   *    e.g. that there were no parse errors.
   *  </p>
   *
   *  @param line ...
   *  @return     ...
   */
  def interpret(line: String): IR.Result = {
    if (prevRequests.isEmpty)
      new compiler.Run // initialize the compiler

    // parse
    val trees = parse(indentCode(line)) match {
      case None => return IR.Incomplete
      case (Some(Nil)) => return IR.Error // parse error or empty input
      case Some(trees) => trees
    }

    trees match {
      case List(_:Assign) => ()

      case List(_:TermTree) | List(_:Ident) | List(_:Select) =>
        // Treat a single bare expression specially.
        // This is necessary due to it being hard to modify
        // code at a textual level, and it being hard to
        // submit an AST to the compiler.
        return interpret("val "+newVarName()+" = \n"+line)

      case _ => ()
    }

    val lineName = newLineName

    // figure out what kind of request
    val req = buildRequest(trees, line, lineName)
    if (req eq null) return IR.Error  // a disallowed statement type

    if (!req.compile)
      return IR.Error  // an error happened during compilation, e.g. a type error

    val (interpreterResultString, succeeded) = req.loadAndRun

    if (printResults || !succeeded) {
      // print the result
      out.print(clean(interpreterResultString))
    }

    // book-keeping
    if (succeeded)
      prevRequests += req

    if (succeeded) IR.Success else IR.Error
  }

  /** A counter used for numbering objects created by <code>bind()</code>. */
  private var binderNum = 0

  /** Bind a specified name to a specified value.  The name may
   *  later be used by expressions passed to interpret.
   *
   *  @param name      the variable name to bind
   *  @param boundType the type of the variable, as a string
   *  @param value     the object value to bind to it
   *  @return          an indication of whether the binding succeeded
   */
  def bind(name: String, boundType: String, value: Any): IR.Result = {
    val binderName = "binder" + binderNum
    binderNum += 1

    compileString(
        "object " + binderName +
        "{ var value: " + boundType + " = _; " +
        " def set(x: Any) = value=x.asInstanceOf[" + boundType + "]; }")

    val binderObject =
      Class.forName(binderName, true, classLoader)
    val setterMethod =
      (binderObject
          .getDeclaredMethods
          .toList
          .find(meth => meth.getName == "set")
          .get)
    var argsHolder: Array[Any] = null // this roundabout approach is to try and
                                      // make sure the value is boxed
    argsHolder = List(value).toArray
    setterMethod.invoke(null, argsHolder.asInstanceOf[Array[AnyRef]])

    interpret("val " + name + " = " + binderName + ".value")
  }


  /** <p>
   *    This instance is no longer needed, so release any resources
   *    it is using.  The reporter's output gets flushed.
   *  </p>
   */
  def close() {
    reporter.flush()
  }

  /** A traverser that finds all mentioned identifiers, i.e. things
   *  that need to be imported.
   *  It might return extra names.
   */
  private class ImportVarsTraverser(definedVars: List[Name]) extends Traverser {
    val importVars = new HashSet[Name]()

    override def traverse(ast: Tree) {
      ast match {
        case Ident(name) => importVars += name
        case _ => super.traverse(ast)
      }
    }
  }


  /** Class to handle one member among all the members included
   *  in a single interpreter request.
   */
  private sealed abstract class MemberHandler(val member: Tree) {
    val usedNames: List[Name] = {
      val ivt = new ImportVarsTraverser(boundNames)
      ivt.traverseTrees(List(member))
      ivt.importVars.toList
    }
    val boundNames: List[Name] = Nil
    def valAndVarNames: List[Name] = Nil
    def defNames: List[Name] = Nil
    val importsWildcard = false
    val importedNames: Seq[Name] = Nil
    val definesImplicit =
      member match {
        case tree:MemberDef =>
          tree.mods.hasFlag(symtab.Flags.IMPLICIT)
        case _ => false
      }

    def extraCodeToEvaluate(req: Request, code: PrintWriter) { }
    def resultExtractionCode(req: Request, code: PrintWriter) { }
  }

  private class GenericHandler(member: Tree) extends MemberHandler(member)

  private class ValHandler(member: ValDef) extends MemberHandler(member) {
    override val boundNames = List(member.name)
    override def valAndVarNames = boundNames

    override def resultExtractionCode(req: Request, code: PrintWriter) {
      val vname = member.name
      if (member.mods.isPublic &&
          !(isGeneratedVarName(vname) &&
            req.typeOf(compiler.encode(vname)) == "Unit"))
      {
        val prettyName = NameTransformer.decode(vname)
        code.print(" + \"" + prettyName + ": " +
	           string2code(req.typeOf(vname)) +
	           " = \" + " +
                   " (if(" +
	           req.fullPath(vname) +
                   ".asInstanceOf[AnyRef] != null) " +
                   " ((if(" +
	           req.fullPath(vname) +
	           ".toString().contains('\\n')) " +
                   " \"\\n\" else \"\") + " +
                   req.fullPath(vname) + ".toString() + \"\\n\") else \"null\\n\") ")
      }
    }
  }

  private class DefHandler(defDef: DefDef) extends MemberHandler(defDef) {
    override val boundNames = List(defDef.name)
    override def defNames = boundNames

    override def resultExtractionCode(req: Request, code: PrintWriter) {
      if (defDef.mods.isPublic)
        code.print("+\""+string2code(defDef.name)+": "+
		   string2code(req.typeOf(defDef.name))+"\\n\"")
    }
  }

  private class AssignHandler(member: Assign) extends MemberHandler(member) {
    val lhs = member. lhs.asInstanceOf[Ident] // an unfortunate limitation

    val helperName = newTermName(newInternalVarName())
    override val valAndVarNames = List(helperName)

    override def extraCodeToEvaluate(req: Request, code: PrintWriter) {
      code.println("val "+helperName+" = "+member.lhs+";")
    }

    /** Print out lhs instead of the generated varName */
    override def resultExtractionCode(req: Request, code: PrintWriter) {
      code.print(" + \"" + lhs + ": " +
                 string2code(req.typeOf(compiler.encode(helperName))) +
                 " = \" + " +
		 string2code(req.fullPath(helperName))
		 + " + \"\\n\"")
    }
  }

  private class ModuleHandler(module: ModuleDef) extends MemberHandler(module) {
    override val boundNames = List(module.name)

    override def resultExtractionCode(req: Request, code: PrintWriter) {
      code.println(" + \"defined module " +
		   string2code(module.name)
		   + "\\n\"")
    }
  }

  private class ClassHandler(classdef: ClassDef)
  extends MemberHandler(classdef)
  {
    override val boundNames =
      List(classdef.name) :::
      (if (classdef.mods.hasFlag(Flags.CASE))
         List(classdef.name.toTermName)
       else
         Nil)

    // TODO: MemberDef.keyword does not include "trait";
    // otherwise it could be used here
    def keyword: String =
      if (classdef.mods.isTrait) "trait" else "class"

    override def resultExtractionCode(req: Request, code: PrintWriter) {
      code.print(
          " + \"defined " +
          keyword +
          " " +
          string2code(classdef.name) +
          "\\n\"")
    }
  }

  private class TypeAliasHandler(typeDef: TypeDef)
  extends MemberHandler(typeDef)
  {
    override val boundNames =
      if (typeDef.mods.isPublic && compiler.treeInfo.isAliasTypeDef(typeDef))
        List(typeDef.name)
      else
        Nil

    override def resultExtractionCode(req: Request, code: PrintWriter) {
      code.println(" + \"defined type alias " +
                   string2code(typeDef.name) + "\\n\"")
    }
  }

  private class ImportHandler(imp: Import) extends MemberHandler(imp) {
    override def resultExtractionCode(req: Request, code: PrintWriter) {
      code.println("+ \"" + imp.toString + "\\n\"")
    }

    /** Whether this import includes a wildcard import */
    override val importsWildcard =
      imp.selectors.map(_._1).contains(nme.USCOREkw)

    /** The individual names imported by this statement */
    override val importedNames: Seq[Name] =
      for {
        val (_,sel) <- imp.selectors
        sel != null
        sel != nme.USCOREkw
        val name <- List(sel.toTypeName, sel.toTermName)
      }
      yield name
  }

  /** One line of code submitted by the user for interpretation */
  private class Request(val line: String, val lineName: String) {
    val trees = parse(line) match {
      case Some(ts) => ts
      case None => Nil
    }

    /** name to use for the object that will compute "line" */
    def objectName = lineName + compiler.nme.INTERPRETER_WRAPPER_SUFFIX

    /** name of the object that retrieves the result from the above object */
    def resultObjectName = "RequestResult$" + objectName

    val handlers: List[MemberHandler] = trees.flatMap(chooseHandler(_))

    /** all (public) names defined by these statements */
    val boundNames = (ListSet() ++ handlers.flatMap(_.boundNames)).toList

    /** list of names used by this expression */
    val usedNames: List[Name] = handlers.flatMap(_.usedNames)

    def myImportsCode = importsCode(Set.empty ++ usedNames)

    /** Code to append to objectName to access anything that
     *  the request binds.  */
    val accessPath = myImportsCode._3


    /** Code to access a variable with the specified name */
    def fullPath(vname: String): String =
      objectName + accessPath + ".`" + vname + "`"

    /** Code to access a variable with the specified name */
    def fullPath(vname: Name): String = fullPath(vname.toString)

    /** the line of code to compute */
    def toCompute = line

    /** generate the source code for the object that computes this request */
    def objectSourceCode: String =
      stringFrom { code =>
        // header for the wrapper object
        code.println("object " + objectName + " {")

        val (importsPreamble, importsTrailer, _) = myImportsCode

        code.print(importsPreamble)

        code.println(indentCode(toCompute))

        handlers.foreach(_.extraCodeToEvaluate(this,code))

        code.println(importsTrailer)

        //end the wrapper object
        code.println(";}")
      }

    /** Types of variables defined by this request.  They are computed
        after compilation of the main object */
    var typeOf: Map[Name, String] = _

    /** generate source code for the object that retrieves the result
        from objectSourceCode */
    def resultObjectSourceCode: String =
      stringFrom(code => {
        code.println("object " + resultObjectName)
        code.println("{ val result: String = {")
        code.println(objectName + accessPath + ";")  // evaluate the object, to make sure its constructor is run
        code.print("(\"\"")  // print an initial empty string, so later code can
                            // uniformly be: + morestuff
        handlers.foreach(_.resultExtractionCode(this, code))
        code.println("\n)}")
        code.println(";}")
      })


    /** Compile the object file.  Returns whether the compilation succeeded.
     *  If all goes well, the "types" map is computed. */
    def compile(): Boolean = {
      reporter.reset  // without this, error counting is not correct,
                      // and the interpreter sometimes overlooks compile failures!

      // compile the main object
      val objRun = new compiler.Run()
      //println("source: "+objectSourceCode) //DEBUG
      objRun.compileSources(
        List(new BatchSourceFile("<console>", objectSourceCode.toCharArray))
      )
      if (reporter.hasErrors) return false


      // extract and remember types
      typeOf = findTypes(objRun)

      // compile the result-extraction object
      new compiler.Run().compileSources(
        List(new BatchSourceFile("<console>", resultObjectSourceCode.toCharArray))
      )

      // success
      !reporter.hasErrors
    }

    /** Dig the types of all bound variables out of the compiler run.
     *
     *  @param objRun ...
     *  @return       ...
     */
    def findTypes(objRun: compiler.Run): Map[Name, String] = {
      def valAndVarNames = handlers.flatMap(_.valAndVarNames)
      def defNames = handlers.flatMap(_.defNames)

      def getTypes(names: List[Name], nameMap: Name=>Name): Map[Name, String] = {
      /** the outermost wrapper object */
      val outerResObjSym: Symbol =
        compiler.definitions.getMember(compiler.definitions.EmptyPackage,
          newTermName(objectName))

      /** the innermost object inside the wrapper, found by
        * following accessPath into the outer one. */
      val resObjSym =
        (accessPath.split("\\.")).foldLeft(outerResObjSym)((sym,name) =>
          if(name == "") sym else
            compiler.atPhase(objRun.typerPhase.next) {
              sym.info.member(newTermName(name)) })

      names.foldLeft(Map.empty[Name,String])((map, name) => {
          val rawType =
            compiler.atPhase(objRun.typerPhase.next) {
              resObjSym.info.member(name).tpe
            }

          // the types are all =>T; remove the =>
          val cleanedType= rawType match {
            case compiler.PolyType(Nil, rt) => rt
            case rawType => rawType
          }

          map + (name -> compiler.atPhase(objRun.typerPhase.next) { cleanedType.toString })
        })
      }

      val names1 = getTypes(valAndVarNames, n => compiler.nme.getterToLocal(n))
      val names2 = getTypes(defNames, identity)
      names1 ++ names2
    }

    /** load and run the code using reflection */
    def loadAndRun: (String, Boolean) = {
      val interpreterResultObject: Class[_] =
        Class.forName(resultObjectName, true, classLoader)
      val resultValMethod: java.lang.reflect.Method =
        interpreterResultObject.getMethod("result", null)
      try {
        (resultValMethod.invoke(interpreterResultObject, null).toString(),
             true)
      } catch {
        case e =>
          def caus(e: Throwable): Throwable =
            if (e.getCause eq null) e else caus(e.getCause)
          val orig = caus(e)
          (stringFrom(str => orig.printStackTrace(str)), false)
      }
    }
  }
}

/** Utility methods for the Interpreter. */
object Interpreter {
  /** Delete a directory tree recursively.  Use with care!
   */
  private[nsc] def deleteRecursively(path: File) {
    path match  {
      case _ if !path.exists =>
        ()
      case _ if path.isDirectory =>
        for (p <- path.listFiles)
          deleteRecursively(p)
        path.delete
      case _ =>
        path.delete
    }
  }

  /** Heuristically strip interpreter wrapper prefixes
   *  from an interpreter output string.
   */
  def stripWrapperGunk(str: String): String = {
    val wrapregex = "(line[0-9]+\\$object[$.])?(\\$iw[$.])*"
    str.replaceAll(wrapregex, "")
  }

  /** Convert a string into code that can recreate the string.
   *  This requires replacing all special characters by escape
   *  codes. It does not add the surrounding " marks.  */
  def string2code(str: String): String = {
    /** Convert a character to a backslash-u escape */
    def char2uescape(c: Char): String = {
      var rest = c.toInt
      val buf = new StringBuilder
      for (i <- 1 to 4) {
	buf ++= (rest % 16).toHexString
	rest = rest / 16
      }
      "\\" + "u" + buf.toString.reverse
    }


    val res = new StringBuilder
    for (c <- str) {
      if ("'\"\\" contains c) {
	res += '\\'
	res += c
      } else if (!c.isControl) {
	res += c
      } else {
	res ++= char2uescape(c)
      }
    }
    res.toString
  }
}