summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/ast/TreeInfo.scala
blob: 8a6f26c9b1e51426e65b790ac1aa2041a2310fda (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/* NSC -- new Scala compiler
 * Copyright 2005-2011 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.tools.nsc
package ast

import symtab.Flags._
import symtab.SymbolTable
import util.HashSet

/** This class ...
 *
 *  @author Martin Odersky
 *  @version 1.0
 */
abstract class TreeInfo {
  val trees: SymbolTable
  import trees._
  import definitions.ThrowableClass

  def isOwnerDefinition(tree: Tree): Boolean = tree match {
    case PackageDef(_, _)
       | ClassDef(_, _, _, _)
       | ModuleDef(_, _, _)
       | DefDef(_, _, _, _, _, _)
       | Import(_, _) => true
    case _ => false
  }

  def isDefinition(tree: Tree): Boolean = tree.isDef

  def isDeclaration(tree: Tree): Boolean = tree match {
    case DefDef(_, _, _, _, _, EmptyTree)
       | ValDef(_, _, _, EmptyTree)
       | TypeDef(_, _, _, _) => true
    case _ => false
  }

  /** Is tree legal as a member definition of an interface?
   */
  def isInterfaceMember(tree: Tree): Boolean = tree match {
    case EmptyTree                     => true
    case Import(_, _)                  => true
    case TypeDef(_, _, _, _)           => true
    case DefDef(mods, _, _, _, _, __)  => mods.isDeferred
    case ValDef(mods, _, _, _)         => mods.isDeferred
    case DocDef(_, definition)         => isInterfaceMember(definition)
    case _ => false
  }

  /** Is tree a pure (i.e. non-side-effecting) definition?
   */
  def isPureDef(tree: Tree): Boolean = tree match {
    case EmptyTree
       | ClassDef(_, _, _, _)
       | TypeDef(_, _, _, _)
       | Import(_, _)
       | DefDef(_, _, _, _, _, _) =>
      true
    case ValDef(mods, _, _, rhs) =>
      !mods.isMutable && isPureExpr(rhs)
    case DocDef(_, definition) =>
      isPureDef(definition)
    case _ =>
      false
  }

  /** Is tree a stable and pure expression?
   */
  def isPureExpr(tree: Tree): Boolean = tree match {
    case EmptyTree
       | This(_)
       | Super(_, _)
       | Literal(_) =>
      true
    case Ident(_) =>
      tree.symbol.isStable
    case Select(qual, _) =>
      tree.symbol.isStable && isPureExpr(qual)
    case TypeApply(fn, _) =>
      isPureExpr(fn)
    case Apply(fn, List()) =>
      /* Note: After uncurry, field accesses are represented as Apply(getter, Nil),
       * so an Apply can also be pure.
       * However, before typing, applications of nullary functional values are also
       * Apply(function, Nil) trees. To prevent them from being treated as pure,
       * we check that the callee is a method. */
      fn.symbol.isMethod && !fn.symbol.isLazy && isPureExpr(fn)
    case Typed(expr, _) =>
      isPureExpr(expr)
    case Block(stats, expr) =>
      (stats forall isPureDef) && isPureExpr(expr)
    case _ =>
      false
  }

  def mayBeVarGetter(sym: Symbol) = sym.info match {
    case NullaryMethodType(_)  => sym.owner.isClass && !sym.isStable
    case mt @ MethodType(_, _) => mt.isImplicit && sym.owner.isClass && !sym.isStable
    case _                     => false
  }

  def isVariableOrGetter(tree: Tree) = {
    def sym       = tree.symbol
    def isVar     = sym.isVariable
    def isGetter  = mayBeVarGetter(sym) && sym.owner.info.member(nme.getterToSetter(sym.name)) != NoSymbol

    tree match {
      case Ident(_)         => isVar
      case Select(_, _)     => isVar || isGetter
      case _                =>
        methPart(tree) match {
          case Select(qual, nme.apply)  => qual.tpe.member(nme.update) != NoSymbol
          case _                        => false
        }
    }
  }

  /** Is tree a self constructor call?
   */
  def isSelfConstrCall(tree: Tree): Boolean = methPart(tree) match {
    case Ident(nme.CONSTRUCTOR)
       | Select(This(_), nme.CONSTRUCTOR) => true
    case _ => false
  }

  def isSuperConstrCall(tree: Tree): Boolean = methPart(tree) match {
    case Select(Super(_, _), nme.CONSTRUCTOR) => true
    case _ => false
  }

  def isSelfOrSuperConstrCall(tree: Tree) =
    isSelfConstrCall(tree) || isSuperConstrCall(tree)

  /** Is tree a variable pattern */
  def isVarPattern(pat: Tree): Boolean = pat match {
    case _: BackQuotedIdent => false
    case x: Ident           => isVariableName(x.name)
    case _                  => false
  }

  /** The first constructor definitions in `stats' */
  def firstConstructor(stats: List[Tree]): Tree = stats find {
    case x: DefDef  => nme.isConstructorName(x.name)
    case _          => false
  } getOrElse EmptyTree

  /** The arguments to the first constructor in `stats'. */
  def firstConstructorArgs(stats: List[Tree]): List[Tree] = firstConstructor(stats) match {
    case DefDef(_, _, _, args :: _, _, _) => args
    case _                                => Nil
  }

  /** The value definitions marked PRESUPER in this statement sequence */
  def preSuperFields(stats: List[Tree]): List[ValDef] =
    stats collect { case vd: ValDef if isEarlyValDef(vd) => vd }

  def isEarlyDef(tree: Tree) = tree match {
    case TypeDef(mods, _, _, _) => mods hasFlag PRESUPER
    case ValDef(mods, _, _, _) => mods hasFlag PRESUPER
    case _ => false
  }

  def isEarlyValDef(tree: Tree) = tree match {
    case ValDef(mods, _, _, _) => mods hasFlag PRESUPER
    case _ => false
  }

  def isEarlyTypeDef(tree: Tree) = tree match {
    case TypeDef(mods, _, _, _) => mods hasFlag PRESUPER
    case _ => false
  }

  /** Is tpt of the form T* ? */
  def isRepeatedParamType(tpt: Tree) = tpt match {
    case TypeTree()                                                          => definitions.isRepeatedParamType(tpt.tpe)
    case AppliedTypeTree(Select(_, tpnme.REPEATED_PARAM_CLASS_NAME), _)      => true
    case AppliedTypeTree(Select(_, tpnme.JAVA_REPEATED_PARAM_CLASS_NAME), _) => true
    case _                                                                   => false
  }
  /** The parameter ValDefs from a def of the form T*. */
  def repeatedParams(tree: Tree): List[ValDef] = tree match {
    case DefDef(_, _, _, vparamss, _, _)  => vparamss.flatten filter (vd => isRepeatedParamType(vd.tpt))
    case _                                => Nil
  }

  /** Is tpt a by-name parameter type? */
  def isByNameParamType(tpt: Tree) = tpt match {
    case TypeTree()                                                 => definitions.isByNameParamType(tpt.tpe)
    case AppliedTypeTree(Select(_, tpnme.BYNAME_PARAM_CLASS_NAME), _) => true
    case _                                                          => false
  }

  /** Is name a left-associative operator? */
  def isLeftAssoc(operator: Name) = operator.nonEmpty && (operator.endChar != ':')

  private val reserved = Set[Name](nme.false_, nme.true_, nme.null_)

  /** Is name a variable name? */
  def isVariableName(name: Name): Boolean = {
    val first = name(0)
    ((first.isLower && first.isLetter) || first == '_') && !reserved(name)
  }

  /** Is tree a this node which belongs to `enclClass'? */
  def isSelf(tree: Tree, enclClass: Symbol): Boolean = tree match {
    case This(_) => tree.symbol == enclClass
    case _ => false
  }

  /** can this type be a type pattern */
  def mayBeTypePat(tree: Tree): Boolean = tree match {
    case CompoundTypeTree(Template(tps, _, Nil)) => tps exists mayBeTypePat
    case Annotated(_, tp)                        => mayBeTypePat(tp)
    case AppliedTypeTree(constr, args)           => mayBeTypePat(constr) || args.exists(_.isInstanceOf[Bind])
    case SelectFromTypeTree(tp, _)               => mayBeTypePat(tp)
    case _                                       => false
  }

  /** Is this argument node of the form <expr> : _* ?
   */
  def isWildcardStarArg(tree: Tree): Boolean = tree match {
    case Typed(_, Ident(tpnme.WILDCARD_STAR)) => true
    case _                                  => false
  }
  def isWildcardStarArgList(trees: List[Tree]) =
    trees.nonEmpty && isWildcardStarArg(trees.last)

  /** Is the argument a (possibly bound) _ arg?
   */
  def isWildcardArg(tree: Tree): Boolean = unbind(tree) match {
    case Ident(nme.WILDCARD) => true
    case _                   => false
  }

  /** Is this pattern node a catch-all (wildcard or variable) pattern? */
  def isDefaultCase(cdef: CaseDef) = cdef match {
    case CaseDef(pat, EmptyTree, _) => isWildcardArg(pat)
    case _                          => false
  }

  /** Does this CaseDef catch Throwable? */
  def catchesThrowable(cdef: CaseDef) = catchesAllOf(cdef, ThrowableClass.tpe)

  /** Does this CaseDef catch everything of a certain Type? */
  def catchesAllOf(cdef: CaseDef, threshold: Type) =
    isDefaultCase(cdef) || (cdef.guard.isEmpty && (unbind(cdef.pat) match {
      case Typed(Ident(nme.WILDCARD), tpt)  => (tpt.tpe != null) && (threshold <:< tpt.tpe)
      case _                                => false
    }))

  /** Is this pattern node a catch-all or type-test pattern? */
  def isCatchCase(cdef: CaseDef) = cdef match {
    case CaseDef(Typed(Ident(nme.WILDCARD), tpt), EmptyTree, _) =>
      isSimpleThrowable(tpt.tpe)
    case CaseDef(Bind(_, Typed(Ident(nme.WILDCARD), tpt)), EmptyTree, _) =>
      isSimpleThrowable(tpt.tpe)
    case _ =>
      isDefaultCase(cdef)
  }

  private def isSimpleThrowable(tp: Type): Boolean = tp match {
    case TypeRef(pre, sym, args) =>
      (pre == NoPrefix || pre.widen.typeSymbol.isStatic) &&
      (sym isNonBottomSubClass ThrowableClass) &&  /* bq */ !sym.isTrait
    case _ =>
      false
  }

  /* If we have run-time types, and these are used for pattern matching,
     we should replace this  by something like:

      tp match {
        case TypeRef(pre, sym, args) =>
          args.isEmpty && (sym.owner.isPackageClass || isSimple(pre))
        case NoPrefix =>
          true
        case _ =>
          false
      }
*/

  /** Is this pattern node a sequence-valued pattern? */
  def isSequenceValued(tree: Tree): Boolean = unbind(tree) match {
    case Alternative(ts)            => ts exists isSequenceValued
    case ArrayValue(_, _) | Star(_) => true
    case _                          => false
  }

  /** The underlying pattern ignoring any bindings */
  def unbind(x: Tree): Tree = x match {
    case Bind(_, y) => unbind(y)
    case y          => y
  }

  /** Is this tree a Star(_) after removing bindings? */
  def isStar(x: Tree) = unbind(x) match {
    case Star(_)  => true
    case _        => false
  }

  /** The method part of an application node
   */
  def methPart(tree: Tree): Tree = tree match {
    case Apply(fn, _)           => methPart(fn)
    case TypeApply(fn, _)       => methPart(fn)
    case AppliedTypeTree(fn, _) => methPart(fn)
    case _                      => tree
  }

  def firstArgument(tree: Tree): Tree = tree match {
    case Apply(fn, args) =>
      val f = firstArgument(fn)
      if (f == EmptyTree && !args.isEmpty) args.head else f
    case _ =>
      EmptyTree
  }

  /** Top-level definition sequence contains a leading import of
   *  <code>Predef</code> or <code>scala.Predef</code>.
   */
  def containsLeadingPredefImport(defs: List[Tree]): Boolean = defs match {
    case List(PackageDef(_, defs1)) =>
      containsLeadingPredefImport(defs1)
    case Import(Ident(nme.Predef), _) :: _ =>
      true
    case Import(Select(Ident(nme.scala_), nme.Predef), _) :: _ =>
      true
    case Import(_, _) :: defs1 =>
      containsLeadingPredefImport(defs1)
    case _ =>
      false
  }

  /** Compilation unit is class or object 'name' in package 'scala'
   */
  def isUnitInScala(tree: Tree, name: Name) = tree match {
    case PackageDef(Ident(nme.scala_), defs) => isImplDef(defs, name)
    case _ => false
  }

  private def isImplDef(trees: List[Tree], name: Name): Boolean = trees match {
    case Import(_, _) :: xs => isImplDef(xs, name)
    case DocDef(_, tree1) :: Nil => isImplDef(List(tree1), name)
    case Annotated(_, tree1) :: Nil => isImplDef(List(tree1), name)
    case ModuleDef(_, `name`, _) :: Nil => true
    case ClassDef(_, `name`, _, _) :: Nil => true
    case _ => false
  }

  def isAbsTypeDef(tree: Tree) = tree match {
    case TypeDef(_, _, _, TypeBoundsTree(_, _)) => true
    case TypeDef(_, _, _, rhs) => rhs.tpe.isInstanceOf[TypeBounds]
    case _ => false
  }

  def isAliasTypeDef(tree: Tree) = tree match {
    case TypeDef(_, _, _, _) => !isAbsTypeDef(tree)
    case _ => false
  }

  /** Some handy extractors for spotting true and false expressions
   *  through the haze of braces.
   */
  abstract class SeeThroughBlocks[T] {
    protected def unapplyImpl(x: Tree): T
    def unapply(x: Tree): T = x match {
      case Block(Nil, expr)         => unapply(expr)
      case _                        => unapplyImpl(x)
    }
  }
  object IsTrue extends SeeThroughBlocks[Boolean] {
    protected def unapplyImpl(x: Tree): Boolean = x equalsStructure Literal(Constant(true))
  }
  object IsFalse extends SeeThroughBlocks[Boolean] {
    protected def unapplyImpl(x: Tree): Boolean = x equalsStructure Literal(Constant(false))
  }
}