summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/transform/CleanUp.scala
blob: c4a72401446bc55e0be33df750a1db1d452afbf1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/* NSC -- new Scala compiler
 * Copyright 2005-2006 LAMP/EPFL
 * @author Martin Odersky
 */
// $Id$

package scala.tools.nsc.transform

import symtab._
import Flags._
import scala.tools.nsc.util.Position
import scala.collection.mutable.{ListBuffer, HashMap}

abstract class CleanUp extends Transform {
  import global._
  import definitions._
  import posAssigner.atPos

  /** the following two members override abstract members in Transform */
  val phaseName: String = "cleanup"

  protected def newTransformer(unit: CompilationUnit): Transformer =
    new CleanUpTransformer(unit)

  class CleanUpTransformer(unit: CompilationUnit) extends Transformer {

    private val MethodClass = if (forCLDC || forMSIL) null
                              else definitions.getClass("java.lang.reflect.Method")
    private val newDefs = new ListBuffer[Tree]
    private val classConstantMeth = new HashMap[String, Symbol]

    // a map from the symbols of the Scala primitive types to the symbols
    // of the modules of the Java box classes
    private val javaBoxClassModule = new HashMap[Symbol, Symbol]

    if (!forMSIL) {
      javaBoxClassModule(BooleanClass) = getModule("java.lang.Boolean")
      javaBoxClassModule(ByteClass)    = getModule("java.lang.Byte")
      javaBoxClassModule(ShortClass)   = getModule("java.lang.Short")
      javaBoxClassModule(IntClass)     = getModule("java.lang.Integer")
      javaBoxClassModule(CharClass)    = getModule("java.lang.Character")
      javaBoxClassModule(LongClass)    = getModule("java.lang.Long")
      if (!forCLDC) {
        javaBoxClassModule(FloatClass)   = getModule("java.lang.Float")
        javaBoxClassModule(DoubleClass)  = getModule("java.lang.Double")
        javaBoxClassModule(UnitClass)    = getModule("java.lang.Void")
      }
    }

    private var localTyper: analyzer.Typer = null

    private def classConstantMethod(pos: Position, sig: String): Symbol = classConstantMeth.get(sig) match {
      case Some(meth) =>
        meth
      case None =>
        val forName = getMember(ClassClass.linkedModuleOfClass, nme.forName)
        val owner = currentOwner.enclClass

        val cvar = owner.newVariable(pos, unit.fresh.newName(pos, "class$Cache"))
          .setFlag(PRIVATE | STATIC | MUTABLE | SYNTHETIC).setInfo(ClassClass.tpe)
        owner.info.decls.enter(cvar)
        val cdef =
          localTyper.typed {
            atPos(pos) {
              ValDef(cvar, Literal(Constant(null)))
            }
          }

        val meth = owner.newMethod(pos, unit.fresh.newName(pos, "class$Method"))
          .setFlag(PRIVATE | STATIC | SYNTHETIC).setInfo(MethodType(List(), ClassClass.tpe))
        owner.info.decls.enter(meth)
        val mdef =
          localTyper.typed {
            atPos(pos) {
              DefDef(meth, vparamss =>
                gen.mkCached(
                  cvar,
                  Apply(
                    gen.mkAttributedRef(forName), List(Literal(sig)))))
            }
          }

        newDefs.append(cdef, mdef);
        classConstantMeth.update(sig, meth)
        meth
    }

    private val existingReflectiveMethodCache = new HashMap[(String, List[Type]), Symbol]

    /* Transforms a list of types into a list of trees representing these types
     * as java.lang.Class instances. */
    private def paramTypeClasses(paramTypes: List[Type]): List[Tree] =
      paramTypes map { pt => Literal(Constant(pt)) }

    private def reflectiveMethodCache(pos: Position, method: String, paramTypes: List[Type]): Symbol =
      existingReflectiveMethodCache.get((method, paramTypes)) match {
        case Some(cache) => cache
        case None =>
          val owner = currentOwner.enclClass

          val rmvar = owner.newVariable(pos, unit.fresh.newName(pos, "reflMethod$Cache"))
            .setFlag(PRIVATE | STATIC | MUTABLE | SYNTHETIC)
            .setInfo(MethodClass.tpe)
          owner.info.decls.enter(rmvar)
          val rmdef =
            localTyper.typed {
              atPos(pos) {
                ValDef(rmvar, Literal(Constant(null)))
              }
            }

          val rmcvar = owner.newVariable(pos, unit.fresh.newName(pos, "reflClass$Cache"))
            .setFlag(PRIVATE | STATIC | MUTABLE | SYNTHETIC)
            .setInfo(ClassClass.tpe)
          owner.info.decls.enter(rmcvar)
          val rmcdef =
            localTyper.typed {
              atPos(pos) {
                ValDef(rmcvar, Literal(Constant(null)))
              }
            }

          val rmmeth = owner.newMethod(pos, unit.fresh.newName(pos, "reflMethod$Method"))
            .setFlag(STATIC | SYNTHETIC)
            .setInfo(MethodType(List(ClassClass.tpe), MethodClass.tpe))
          owner.info.decls.enter(rmmeth)
          val rmmdef =
            localTyper.typed {
              atPos(pos) {
                DefDef(rmmeth, { vparamss =>
                  val callClass = vparamss(0)(0)
                  Block(
                    List(
                      If(
                        gen.mkOr(
                          Apply(Select(Select(This(owner), rmvar), nme.eq), List(Literal(Constant(null)))),
                          Apply(Select(Select(This(owner), rmcvar), nme.ne), List(gen.mkAttributedRef(callClass)))
                        ),
                        Block(
                          List(
                            Assign(
                              Select(This(owner), rmvar),
                              Apply(
                                Select(
                                  gen.mkAttributedRef(callClass),
                                  ClassClass.tpe.member(nme.getMethod_)
                                ),
                                List(
                                  Literal(Constant(method)),
                                  ArrayValue(TypeTree(ClassClass.tpe), paramTypeClasses(paramTypes))
                                )
                              )
                            ),
                            Assign(Select(This(owner), rmcvar), gen.mkAttributedRef(callClass))
                          ),
                          Literal(Constant(()))
                        ),
                        EmptyTree
                      )
                    ),
                    Select(This(owner), rmvar)
                  )
                })
              }
            }

          newDefs.append(transform(rmdef), transform(rmcdef), transform(rmmdef));
          existingReflectiveMethodCache.update((method, paramTypes), rmmeth)
          rmmeth
      }

    override def transformUnit(unit: CompilationUnit) =
      unit.body = transform(unit.body)

    /** A value class is defined to be only Java-compatible values: unit is
      * not part of it, as opposed to isValueClass in definitions. scala.Int is
      * a value class, java.lang.Integer is not. */
    def isValueClass(sym: Symbol) = boxedClass contains sym

    override def transform(tree: Tree): Tree = tree match {

      /* Transforms dynamic calls (i.e. calls to methods that are undefined
       * in the erased type space) to -- dynamically -- unsafe calls using
       * reflection. This is used for structural sub-typing of refinement
       * types.
       * For 'a.f(b)' it will generate something like:
       * 'a.getClass().
       * '  getMethod("f", Array(classOf[b.type])).
       * '  invoke(a, Array(b))
       * plus all the necessary casting/boxing/etc. machinery required
       * for type-compatibility (see fixResult and fixParams).
       *
       * USAGE CONTRACT:
       * There are a number of assumptions made on the way a dynamic apply
       * is used. Assumptions relative to type are handled by the erasure
       * phase.
       * - The applied arguments are compatible with AnyRef, which means
       *   that an argument tree typed as AnyVal has already been extended
       *   with the necessary boxing calls. This implies that passed
       *   arguments might not be strictly compatible with the method's
       *   parameter types (a boxed integeer while int is expected).
       * - The expected return type is an AnyRef, even when the method's
       *   return type is an AnyVal. This means that the tree containing the
       *   call has already been extended with the necessary unboxing calls
       *   (or keeps the boxed type).
       * - The type-checker has prevented dynamic applies on methods which
       *   parameter's erased types are not statically known at the call site.
       *   This is necessary to allow dispatching the call to the correct
       *   method (dispatching on paramters is static in Scala). In practice,
       *   this limitation only arises when the called method is defined as a
       *   refinement, where the refinement defines a parameter based on a
       *   type variable. */
      case ad@ApplyDynamic(qual, params) =>
        assert(ad.symbol.isPublic)

        val testForNumber: Tree =
          gen.mkOr(
            Apply(
              TypeApply(
                gen.mkAttributedSelect(qual, definitions.Object_isInstanceOf),
                List(TypeTree(BoxedNumberClass.tpe.normalize))
              ),
              List()
            ),
            Apply(
              TypeApply(
                gen.mkAttributedSelect(qual, definitions.Object_isInstanceOf),
                List(TypeTree(BoxedCharacterClass.tpe.normalize))
              ),
              List()
            )
          )

        val testForBoolean: Tree =
          Apply(
            TypeApply(
              gen.mkAttributedSelect(qual, definitions.Object_isInstanceOf),
              List(TypeTree(BoxedBooleanClass.tpe.normalize))
            ),
            List()
          )

        val testForNumberOrBoolean: Tree = gen.mkOr(testForNumber, testForBoolean)

        def getPrimitiveReplacementForStructuralCall: PartialFunction[Name, (Symbol, Tree)] = {
        /* Unary arithmetic */
          case nme.UNARY_+ =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("positive")), testForNumber)
          case nme.UNARY_- =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("negate")), testForNumber)
        /* Unary logic */
          case nme.UNARY_~ =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("complement")), testForNumber)
          case nme.UNARY_! =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("takeNot")), testForBoolean)
        /* Binary arithmetic */
          case nme.ADD =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("add")), testForNumber)
          case nme.SUB =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("subtract")), testForNumber)
          case nme.MUL =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("multiply")), testForNumber)
          case nme.DIV =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("divide")), testForNumber)
          case nme.MOD =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("takeModulo")), testForNumber)
        /* Binary logic */
          case nme.OR =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("takeOr")), testForNumberOrBoolean)
          case nme.XOR =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("takeXor")), testForNumberOrBoolean)
          case nme.AND =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("takeAnd")), testForNumberOrBoolean)
          case nme.ZOR =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("takeConditionalOr")), testForBoolean)
          case nme.ZAND =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("takeConditionalAnd")), testForBoolean)
        /* Shifting */
          case nme.LSL =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("shiftSignedLeft")), testForNumber)
          case nme.LSR =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("shiftSignedRight")), testForNumber)
          case nme.ASR =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("shiftLogicalRight")), testForNumber)
          case nme.EQ =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("testEqual")), testForNumberOrBoolean)
          case nme.NE =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("testNotEqual")), testForNumberOrBoolean)
          case nme.LT =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("testLessThan")), testForNumber)
          case nme.LE =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("testLessOrEqualThan")), testForNumber)
          case nme.GE =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("testGreaterOrEqualThan")), testForNumber)
          case nme.GT =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("testGreaterThan")), testForNumber)
        /* Conversions */
          case nme.toByte =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("toByte")), testForNumber)
          case nme.toShort =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("toShort")), testForNumber)
          case nme.toChar =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("toCharacter")), testForNumber)
          case nme.toInt =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("toInteger")), testForNumber)
          case nme.toLong =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("toLong")), testForNumber)
          case nme.toFloat =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("toFloat")), testForNumber)
          case nme.toDouble =>
            (definitions.getMember(definitions.BoxesRunTimeClass, newTermName("toDouble")), testForNumber)
        }

        /* Transforms the result of a reflective call (always an AnyRef) to
         * the actual result value (an AnyRef too). The transformation
         * depends on the method's static return type.
         * - for units (void), the reflective call will return null: a new
         *   boxed unit is generated.
         * - for arrays, the reflective call will return an unboxed array:
         *   the resulting array is boxed.
         * - otherwise, the value is simply casted to the expected type. This
         *   is enough even for value (int et al.) values as the result of
         *   a dynamic call will box them as a side-effect. */
        def fixResult(resType: Type)(tree: Tree): Tree =
          localTyper.typed {
            if (resType.typeSymbol == UnitClass)
              Block (
                List(tree),
                gen.mkAttributedRef(BoxedUnit_UNIT)
              )
            else if (resType.typeSymbol == ArrayClass) {
              val sym = currentOwner.newValue(tree.pos, newTermName(unit.fresh.newName(tree.pos))) setInfo ObjectClass.tpe
              Block(
                List(ValDef(sym, tree)),
                If(
                  Apply(Select(Literal(Constant(null)), Any_==), List(gen.mkAttributedRef(sym))),
                  Literal(Constant(null)),
                  Apply(
                    Select(
                      gen.mkAttributedRef(ScalaRunTimeModule),
                      ScalaRunTimeModule.tpe.member(nme.boxArray)
                    ),
                    List(gen.mkAttributedRef(sym))
                  )
                )
              )
            }
            else if (resType.typeSymbol == ObjectClass) // TODO: remove the cast always when unnecessary.
              tree
            else
              gen.mkAttributedCast(tree, resType)
          }

        /* Transforms the parameters of a dynamic apply (always AnyRefs) to
         * something compatible with reclective calls. The transformation depends
         * on the method's static parameter types.
         * - for (unboxed) arrays, the (non-null) value is tested for its erased
         *   type. If it is a boxed array, the array is unboxed. If it is an
         *   unboxed array, it is left alone. */
        def fixParams(params: List[Tree], paramTypes: List[Type]): List[Tree] =
          (params zip paramTypes) map { case (param, paramType) =>
            localTyper.typed {
              if (paramType.typeSymbol == ArrayClass) {
                val sym = currentOwner.newValue(tree.pos, newTermName(unit.fresh.newName(tree.pos))) setInfo ObjectClass.tpe
                val arrayType = {
                  assert(paramType.typeArgs.length == 1)
                  paramType.typeArgs(0).normalize
                }
                Block(
                  List(ValDef(sym, param)),
                  If(
                    Apply(Select(Literal(Constant(null)), Any_==), List(gen.mkAttributedRef(sym))),
                    Literal(Constant(null)),
                    If(
                      Apply(
                        TypeApply(
                          gen.mkAttributedSelect(gen.mkAttributedRef(sym), definitions.Object_isInstanceOf),
                          List(TypeTree(BoxedArrayClass.tpe.normalize))
                        ),
                        List()
                      ),
                      Apply(
                        Select(gen.mkAttributedCast(gen.mkAttributedRef(sym), BoxedArrayClass.tpe), getMember(BoxedArrayClass, nme.unbox)),
                        List(Literal(Constant(arrayType)))
                      ),
                      gen.mkAttributedRef(sym)
                    )
                  )
                )
              }
              else
                param
            }
          }

        def callAsOperator(paramTypes: List[Type], resType: Type): Tree = localTyper.typed {
          if (getPrimitiveReplacementForStructuralCall isDefinedAt ad.symbol.name) {
            val (operator, test) = getPrimitiveReplacementForStructuralCall(ad.symbol.name)
            If(
              test,
              Apply(
                gen.mkAttributedRef(operator),
                qual :: fixParams(params, paramTypes)
              ),
              callAsMethod(paramTypes, resType)
            )
          }
          else callAsMethod(paramTypes, resType)
        }

        def callAsMethod(paramTypes: List[Type], resType: Type): Tree = localTyper.typed {
          val invokeExc =
            currentOwner.newValue(tree.pos, newTermName(unit.fresh.newName(tree.pos))) setInfo InvocationTargetExceptionClass.tpe
          Try(
            Apply(
              Select(
                Apply(
                  gen.mkAttributedRef(reflectiveMethodCache(tree.pos, ad.symbol.name.toString, paramTypes)),
                  List(Apply(Select(qual, ObjectClass.tpe.member(nme.getClass_)), Nil))
                ),
                MethodClass.tpe.member(nme.invoke_)
              ),
              List(
                qual,
                ArrayValue(TypeTree(ObjectClass.tpe), fixParams(params, paramTypes))
              )
            ),
            List(CaseDef(
              Bind(invokeExc, Typed(Ident(nme.WILDCARD), TypeTree(InvocationTargetExceptionClass.tpe))),
              EmptyTree,
              Throw(Apply(Select(Ident(invokeExc), nme.getCause), Nil))
            )),
            EmptyTree
          )
        }

        def mayRequirePrimitiveReplacement: Boolean = {

          def isBoxed(sym: Symbol): Boolean =
            if (forCLDC) {
              (sym isNonBottomSubClass ByteClass) ||
              (sym isNonBottomSubClass ShortClass) ||
              (sym isNonBottomSubClass CharClass) ||
              (sym isNonBottomSubClass IntClass) ||
              (sym isNonBottomSubClass LongClass)
            }
            else ((sym isNonBottomSubClass BoxedNumberClass) ||
              (!forMSIL && (sym isNonBottomSubClass BoxedCharacterClass)))

          val sym = qual.tpe.typeSymbol
          (sym == definitions.ObjectClass) || isBoxed(sym)

        }

        /* This creates the tree that does the reflective call (see general comment
         * on the apply-dynamic tree for its format). This tree is simply composed
         * of three succesive calls, first to getClass on the callee, then to
         * getMethod on the classs, then to invoke on the method.
         * - getMethod needs an array of classes for choosing one amongst many
         *   overloaded versions of the method. This is provided by paramTypeClasses
         *   and must be done on the static type as Scala's dispatching is static on
         *   the parameters.
         * - invoke needs an array of AnyRefs that are the method's arguments. The
         *   erasure phase guarantees that any parameter passed to a dynamic apply
         *   is compatible (through boxing). Boxed ints et al. is what invoke expects
         *   when the applied method expects ints, hence no change needed there.
         *   On the other hand, arrays must be dealt with as they must be entered
         *   unboxed in the parameter array of invoke. fixParams is responsible for
         *   that.
         * - in the end, the result of invoke must be fixed, again to deal with arrays.
         *   This is provided by fixResult. fixResult will cast the invocation's result
         *   to the method's return type, which is generally ok, except when this type
         *   is a value type (int et al.) in which case it must cast to the boxed version
         *   because invoke only returns object and erasure made sure the result is
         *   expected to be an AnyRef. */
        val t: Tree = ad.symbol.tpe match {
          case MethodType(paramTypes, resType) =>
            assert(params.length == paramTypes.length)
            atPos(tree.pos)(localTyper.typed {
              fixResult(if (isValueClass(resType.typeSymbol)) boxedClass(resType.typeSymbol).tpe else resType) {
                if (mayRequirePrimitiveReplacement)
                  callAsOperator(paramTypes, resType)
                else
                  callAsMethod(paramTypes, resType)
              }
            })
        }

        /* For testing purposes, the dynamic application's condition
         * can be printed-out in great detail. Remove? */
        if (settings.debug.value) {
          Console.println(
            "Dynamically applying '" + qual + "." + ad.symbol.name +
            "(" + params.map(_.toString).mkString(", ") + ")' with"
          )
          ad.symbol.tpe match {
            case MethodType(paramTypes, resType) =>
              Console.println(
                "  - declared parameters' types: " +
                (paramTypes.map(_.toString)).mkString("'",", ","'"))
              Console.println(
                "  - passed arguments' types:    " +
                (params.map(_.toString)).mkString("'",", ","'"))
              Console.println(
                "  - result type:                '" +
                resType.toString + "'")
          }
          Console.println("  - resulting code:    '" + t + "'")
        }

        /* We return the dynamic call tree, after making sure no other
         * clean-up transformation are to be applied on it. */
        transform(t)

      /* end of dynamic call transformer. */

      case Template(parents, self, body) =>
        localTyper = typer.atOwner(tree, currentOwner)
        if (!forMSIL) {
          classConstantMeth.clear
          newDefs.clear
          val body1 = transformTrees(body)
          copy.Template(tree, parents, self, newDefs.toList ::: body1)
        }
        else super.transform(tree)

      case Literal(c) if (c.tag == ClassTag) && !forMSIL=>
        val tpe = c.typeValue
        atPos(tree.pos) {
          localTyper.typed {
            if ((isValueClass(tpe.typeSymbol) || tpe.typeSymbol == definitions.UnitClass)
                && !forCLDC)
              Select(gen.mkAttributedRef(javaBoxClassModule(tpe.typeSymbol)), "TYPE")
            else if (settings.target.value != "jvm-1.5" && !forMSIL)
              Apply(
                gen.mkAttributedRef(classConstantMethod(tree.pos, signature(tpe))),
                List())
            else tree
          }
        }

      /* MSIL requires that the stack is empty at the end of a try-block.
       * Hence, we here rewrite all try blocks with a result != {Unit, All} such that they
       * store their result in a local variable. The catch blocks are adjusted as well.
       * The try tree is subsituted by a block whose result expression is read of that variable. */
      case theTry @ Try(block, catches, finalizer)
        if theTry.tpe.typeSymbol != definitions.UnitClass && theTry.tpe.typeSymbol != definitions.AllClass =>
        val tpe = theTry.tpe.widen
        val tempVar = currentOwner.newValue(theTry.pos, unit.fresh.newName(theTry.pos, "exceptionResult"))
          .setInfo(tpe).setFlag(Flags.MUTABLE)

        val newBlock = super.transform(Block(Nil, Assign(Ident(tempVar), transform(block))))
        val newCatches = for (CaseDef(pattern, guard, body) <- catches) yield {
          CaseDef(
            super.transform(pattern),
            super.transform(guard),
            Block(Nil, Assign(Ident(tempVar), super.transform(body)))
          )
        }
        val newTry = Try(newBlock, newCatches, super.transform(finalizer))
        val res = Block(List(ValDef(tempVar, EmptyTree), newTry), Ident(tempVar))
        localTyper.typed(res)

      case _ =>
        super.transform(tree)
    }
  } // CleanUpTransformer

}